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Abstract

In this paper we study the large time behavior of a fully implicit semi-
discretization (in time) of parabolic Fokker—Planck type equations. Using
logarithmic Sobolev inequalities exponential decay of the relative entropy
(w.r.t. the steady state) is proved which yields convergence of the discrete
scheme towards the unique steady state. The exponential decay rate recov-
ers as At | 0 the decay rate of the original Fokker—Planck type equations.

1 Introduction

This paper is concerned with the behavior of temporal semi-discretizations of
Fokker—Planck type equations for the real-valued function p(z,t):

ptzdiv[D-(Vp-i—p[VA-l—ﬁ]) C zeRL >0, (1)
p(t =0,z) = p°(z) € LL(R?),

with the confinement potential A € L} (R?) such that

loc

poc =€ (2)
- which is a (formal) steady state of (1) - is in L'(R?). We assume that the
symmetric diffusion matrix D = D(z) is locally uniformly positive definite on
R? with D € L2 (R%;R*4). The (possibly time-dependent) vector field F'(z, 1)

loc
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is assumed to satisfy F(.,t) € L. _(R%), t € (0,00), and (in an appropriate weak
sense specified later on)

divg(po D - F) =0, on R x (0, 00). (3)

We observe that (1) is (at least formally) mass-conserving, i.e. for all ¢ € (0, 00),
Jgap(@,t)dz = [pup°(z)dz. Consequently, we shall assume in the sequel that A
is gauged (by an additive constant) such that

[ p@do= [ P (4)

holds.

In recent years the large time behavior of (1) and particularly the exponential
convergence (in relative entropy) of p(t) towards py, as t — oo has attracted lots
of attention (cf. [1, 6] and references therein). Here we shall study whether the
implicitly time-discretized Fokker—Planck equation

PnHA; Pt div [D- (Vpn+1 4 VA + F’n+1])]

n—+1
1%

= div [pooD-V<
Fa) € LLRY

)] + div [p”+1D : ﬁ"+1] . neN, (5)

o0

(with the time step At > 0, and F"(z) := F(z, nAt)) preserves this exponential
decay.

The large time behavior of such (semi-)discrete evolution equations is also
interesting from a numerical point of view and has led to the construction of
entropy schemes for dissipative Fokker—Planck-type models (cf. [4, 3, 2]). There
the schemes guarantee a decay of the numerical entropy. However, exponential
entropy decay rates of such numerical scheme have -to our knowledge- not yet
been investigated.

The paper is organized as follows: In §2 we establish existence and uniqueness
of a weak solution to (5) and prove that this iteration scheme preserves positivity
(i.e. p® > 0, n € N, provided p® > 0). Assuming that the evolution equa-
tion (1) corresponds to a convex Sobolev inequality (which is a generalization of
Gross’ logarithmic Sobolev inequality [5]) we prove in §3 exponential decay of p"
towards p., in relative entropy and give a numerical illustration of this result.
In particular, we show that the decay rate of the relative entropy converges to
the exponential decay rate holding for the original Fokker-Planck-equation (1) as
At ] 0.



2 Wellposedness and positivity preservation of
the iteration scheme

Equation (5) defines (at least formally) a sequence of functions {p"},en. In this

section we shall give a weak formulation of it and prove its unique solvability for
pn+1.

To this end we shall need the following complex Hilbert spaces: The weighted
L?-space L*(pg) is equipped with the inner product

Vo, 6 € L(py) (0, 9),r = /deapo; dz.

Furthermore, we introduce

H/}m,D = {gb € L*(p}) : /]Rd v’ (pi) -D-V (pi) Poo dx < oo},

which is equipped with the canonical inner product

_ [ 29 EAN'Y E)
.0)n = /deoo poopoodx—i_/ﬂkdv (poo) b v(/Ooo Poo 4

=t (0, 9) =t + (P; D) poe.D-
For (5) we shall henceforth assume (further assumptions will follow):

A.1 The symmetric diffusion matrix D = D(z) is locally uniformly positive
definite on R? with D € L (R¢; R¥*?).
A2 0< ps € L'(R?).
A.3 Foreach n € N, F" € L. (R%;R%) and |[v/D - F*| € L®(R%).
A4 p’ e LL(RY) and [p, p° dz = [a poo d.
We give

Definition 1. A (real valued) function sequence {p"}nen € H,_p is a weak
solution of (5) iff the following property holds for each n € Ny:

n+1
/p"“qﬁpo;dx _ /p%p;dx—m/ A (”—)-D-v(i> o da
Re Rd R4 Poo Poo

—At/ Piasival (%) .D-Fdy VgeH . (6)
R4 oo



Since pe € H! p, choosing the test function ¢ = p, in (6) yields mass
conservation of a weak solution: [o, p"dz = [p, p°dz, n € N

To analyze the solvability of (6) we shall now introduce a sequence of (com-
plex) quadratic forms, {¢"},en With the common (n-independent) form domain

Q") =Q:=H, p.

We define ¢" : ) x Q — C with
. _ _
q(p,d) = —/ Lipood:v—{—At/ VT< ) -D- V<¢>poodx
R R4 Poo Poo

2 d Poo Poo
+At/ LA vl (i) D - F" poo da
R¢ Poo Poo

1
— §<p, ¢>p§ol + At (,0, ¢>poo,D + Qinm(pa ¢)

To make (3) precise we shall henceforth assume:

A.5 For each n € N, div(pe D - F™) = 0 in the following weak sense:

V real valued p,¢ € H: 1 qi(p, d) + 4n(8, p)

:At(/ LVT<E> .D- F"pooda:+/ —VT( ) .D- F"pood:r)zo.
R Poo Poo Re Poo Poo

Remark 2. (a) Due to the following estimate q" is well-defined on Q X Q:

42 (p,0)| = ‘At/ Loyt <i> D F*py de
Rd Poo Poo
||/J||,)—1 19| poo.D>- (8)

< At H|\/15-ﬁ"|

(b) Since div(peD-F™) vanishes in the sense of H,  p, we have for allp € H, n:

Re (g5, (p, p)) = 0.
(¢) From part (b) we have for all (complex valued) functions p € H,  p:

i 1
Re(q"(p,p)) = S llpllyz + Atllells.0 = 0, (9a)

Im(q"(p, p)) = —i qiru(p, 0)-

We easily prove
Proposition 3. Assume A.1-A.5. Then each quadratic form q", n € N is strictly
m-accretive (in the sense of the definition on p. 281 in [7]).



Proof. First, the form domain @ is dense in L?*(p_}).
Secondly, we shall prove that ¢" is a closed form: Let the sequence {¢;};en C
Q converge to ¢ in L?(p,.) and be a Cauchy sequence with respect to ¢", i.e

lim "(p; — Ok, O — =
ey (07 k205 = %)
Then, due to (9a), {¢;}jen is a Cauchy sequence in H, . Since the embedding
H!' 5 C L*(py)l) is continuous, the limit of {qﬁ]}JeN in H) p equals ¢. Thus

pOOa

¢ € Q. Since

1 1
ol + Al o < max {1 8k ol voe @,

and via (8), we also have limjr ¢"(¢; — @, ¢; — ¢) = 0. Hence, ¢" is closed.
Finally, we estimate | arg[q™(p, p)]| for p € Q: For p # 0 (8) and (9a) imply:

At VD F ol el

slells +At||p||
A .
< \/7t H|\/13-Fn|

and hence ¢" is strictly m-accretive. O
According to Theorem VIIL.16 in [7] the form ¢" corresponds to a strictly
m-~accretive operator 7":

Theorem 4. Assume A.1-A.5.
Then, ¥Yn € N there exists a unique closed operator T™ : D(T™) — L?*(p3}),
with D(T™) C @, such that ¢"(p, ) = (T”(p) ¢),=1 holds for all p, ¢ € D(T”)
Furthermore, D(T") is H,  p-dense in H) _p, and for each A € C wzth Re()) <
0, the operator T™ — X\ has a bounded znverse with |[(T™ = \) 7| <

‘lm(fﬂ(p ‘ <

Re(q"(p, p))

pOO!

Loo(RY)

A)I
With the aid of Theorem 4 we easily prove:

Theorem 5. Assume A.1-A.5.
Then there is for each p° € L*(p3l) eractly one weak solution of (5).

Proof. Using (7) we re-write the recursion (6) in the equivalent form

1
VneN ¢ e H 5:q" (o™, ¢) = —2

2 <pn+1’ ¢)pgol + <pn’ d))pgol : (10)

Using Theorem 4 we re-write the Lh.s. of (1 0): For each n € N and for each
p € D(T™') there is a unique 7" (p) € L*(p}) such that

Vo € D(T™) 1 ¢"p, ¢) = (T""(p), 8) -

3



If p* € L*(py)) (for some n € Np), then there is a unique p"™' € D(T™*!) such
that (7! + 2)(p™™) = p", since T + 1 has a bounded inverse. Furthermore,

1" o = 1T+ 5) (") lpzr < 200" ]2

By a standard density argument one readily proves that p"*! satisfies (10).
A standard energy estimate using (9a) ensures that (10) has indeed at most one
solution p"*1. Furthermore, if p" is real-valued, p"*! will also be real-valued. [

Next, we show that the iteration scheme (5) preserves positivity:

Theorem 6. Assume A.1-A.5 and let p° € L% (py)). {p"}nen, the weak solution
of (5) then satisfies
p'(z) >0 VneN

Proof. 1t suffices to prove: If p® > 0, then p"*! > 0. We observe: If a real-
valued function p € H)_p, then its negative part, [p|~ € H, p. Now, using
[0"t]” € H)_ p as test function, (6) reads:

")z = 0 0T i = A [0 ) e — i (0" [0,
Since p" > 0 we readily verify
P ) = = )y S0,

", [Pn+1]_>p;} 20,
—(P" L1 ) g = (0 1" ) pep 2 0.

And since p"*! is real-valued Remark 2(b) gives:
Gim ("1 )T) = =g ("] 17T = 0.

Hence we deduce ([p"™']7,[p"*']7) =1 =0. O

(p"t

3 Decay of the relative entropy

We define the relative entropy of p with respect to p as

c(plpo) = [0 (L) (1)

where ¥ € C?(R") is a given non-negative convex function satisfying ¥(1) = 0.
Typical examples of such entropies are (cf. [1])

Ui(o):=clno—(c—1), and ¥,(0):=0?—1—plc—1),1<p<2. (12)

Our main assumption for this section is the validity of a conver Sobolev in-
equality in H;}OO,D for a fixed entropy that is generated by the function ¥. More
precisely, we assume:



A.6 There is a positive constant A such that

1
e(p]pes) < —/ g (i) Al <i> ‘D-V <i) poodz  holds
Ao \ oo Poo Poc

VpEH;wDWithOSpand /pdajz/ Poodz. (13)
’ Rd Rl

Note that (13) is equivalent to the exponential decay (with rate \) of the relative
entropy for the solution of (1).

For the entropies (12) the convex Sobolev inequality (13) was derived in [1]
under the condition that A € W2 (R%), and D = D(z)I, D € W2 (R%) satisfy

loc loc

1 dy1 1
———-)=VD D+ —-(AD—-VD-VA)I
(2 4)Dv ® VD + S VD - VA)
A VA®VD+VD®VA 9*°D A
D — > I
* 0x? + 2 ox? — 2
(in the sense of positive definite matrices) V2 € R?. If D = I, this condition
means uniform strict convexity of the potential A, i.e. (%{;ﬂfj) > %I.
9% ) j=1,..,d

Our main result is

Theorem 7. Assume A.1-A.5, and assume the validity of the conver Sobolev
inequality (13) for some convez function ¥ € C*(R") with ¥(1) = ¥'(1) = 0.
Then, {p"}nen, the weak solution of (5) satisfies

e(p"|poo) < (L4 AAL) " e(p°[po), VN €N.

Proof. Since there is nothing to prove in the case e(p’[ps) = 00, We assume
e(p°|peo) < oo henceforth.

Our line of argument involves several integrations by parts. Since the involved
test functions do not necessarily belong to H;oo p we shall need an approximation
for the entropy functional: Let {n}ren be a sequence in C(R') such that for all
k € N, n is compactly supported, 0 <, < mpp1 < 1and 7 = 1 on [27%, 2F]. We
set U} = W".n, k € N, and define

\Ilﬁc(s):/1 U (o) do, \Ilk(s):/1 U, (0)do, seR.

Then, for each k € N, 0 < ¥y < ¥, < ¥ and 0 < ¥y < ¥y < U, Con-
sequently, by Lebesgue’s Monotone Convergence Theorem for each non-negative

: . p p
lim e (plpoo) = lim » ’“(poo> Poo dx /Rd (poo) Poo AT = €(p|poo)

7



where all terms have values in [0, 00]. Certainly, for each & € N, U, ( ) Poo €
H; p- Thus, setting p = p, ¢ = Uy < ) Poo in A5 we have

/d ARV} <i> D-F'pydz=0 Vk,neN, (14)
R

o0

Furthermore, for each k£ € N, U}, ( ) poo € H) p, such that via A.5 and due
to (14) for all n € N,

/ —VT\IJ’( ) D- F"poodx——/ w;( )VT( ) D-F"po dx
Re Poo Poo R4 Poo Poo

= _/d vy, <i> D Fpydz =0. (15)
R

o0

We deduce from (15) for all k,n € N,

/Rd v (poo) v (poo> D F"de=0. (16)

Exploiting the convexity of ¥, we calculate for all £ € N and for all n € Ny:

. " pn—|—1 + pn _ pn—l—l)
(Wlow) 2 enlilow) = [ w( . poe
R 00

pn—l—l pn—i—l
/ \Ilk( ) pooda:+/ ‘I’fc< ) (p" — p"t ) dz
R4 Poo R4 Poo

= o)+ [ (0 (22) o) 7 - 00 it 10

Rd %)

Y

Setting ¢ = W}, ( £ 1) Poo € H)_ 1, in (6) gives:

pn—|—1
/ (‘%( ) poo) (0" = p"*) po d
Rd Poo
pn+1 pn+1 pn+1 .
_ At/ VT< ) D-VI, <—> oo d:c+At/ ot qu;;( )-D-F"+1 da
R4 Poo Poo R4 Poo

n+1 n+1 n+1
:At/ 7 (”—) Al (”—) DV (p ) poodz, (18)
R4 Poo Poo Poo

where we used (16) in the last step. Combining (17) and (18) gives for all £k € N
and for all n € Ny:

pn—l—l pn—l—l pn—i—l
e(p"pss) = er(p™ | poo) + At / vy ( > v’ <—> -D-V ( > Poo AT.
R4 Poo Poo Poo

8




We recall e(p"|ps) < oo and all integrands on the right-hand side of this in-
equality are non-negative. We deduce from Lebesgue’s Dominated Convergence
Theorem via ¥y + ¥ and ¥} 1+ ¥" as k 1 oo,

pn—l—l pn—|—1 pn—i—l
ey 8 [ 9 (27) 9 (20w (27
R4 Poo Poo Poo

Applying the convex Sobolev inequality (13) finally gives for all n € Ny,
e(p"[poo) > €(p"|poo) + AAL e(p" | poo).- O

Finally, we shall numerically illustrate the discussed entropy behavior for the
1D test case with A = 22/2, D =1, F = 0, and At = 0.003. We use a finite
difference discretization (Az = 0.08) of (5) and zero-flux boundary conditions on
a sufficiently large computational interval. Fig. 1 shows the exponential decay
of the logarithmic and quadratic relative entropies (corresponding to ¥y and Ws,
resp.). In the first example we chose the initial condition p{ = exp[—z?/2 + 2],
which is an extremal function for ¥, i.e. p = p? makes (13) an equality. Hence we
observe in Fig. 1a the predicted exponential decay of the logarithmic entropy with
rate 2.0091 (for At — 0 one recovers the rate A = 2 of the continuous equation
(1)) and an initially faster decay of the quadratic entropy. After n &~ 2500 time
steps effects of the spatial discretization become visible.

time evolution of logarithmic and quadratic (-—-) relative entropy time evolution of logarithmic and quadratic (-—-) relative entropy
T T T T

107

L L L L L 107 L L L L L
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
n ... time steps n ... time steps

Figure 1: Exponential decay of the logarithmic and quadratic entropies. The
initial condition was chosen as an extremal function for (a - left) the logarithmic
entropy and (b - right) the quadratic entropy.

In the second example we chose p3 = (1 + ) exp[—=z? /2], which is an extremal
function for Uy. Hence Fig. 1b shows the predicted exponential decay of the
quadratic entropy. The logarithmic entropy is only plotted for n > 600, as p"(x)
takes negative values for smaller times.
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