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Abstract

The goal of this paper is to present a unified description of diffu-
sion and regularization techniques for vector-valued as well as matrix-
valued data fields. In the vector-valued setting, we first review a num-
ber of existing methods and classify them into linear and nonlinear
as well as isotropic and anisotropic methods. For these approaches
we present corresponding regularization methods. This taxonomy is
applied to the design of regularization methods for variational motion
analysis in image sequences. Our vector-valued framework is then ex-
tended to the smoothing of positive semidefinite matrix fields. In this
context a novel class of anisotropic diffusion and regularization meth-
ods is derived and it is shown that suitable algorithmic realizations
preserve the positive semidefiniteness of the matrix field without any
additional constraints. As an application, we present an anisotropic
nonlinear structure tensor and illustrate its advantages over the linear
structure tensor.

AMS Subject Classification: 68T10, 68T45, 35J60, 35K55
Key words: image processing, diffusion filtering, regularization methods
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1 Introduction

In digital image processing, vector- and matrix-valued data sets are becoming
increasingly important. This is caused by rapidly dropping prices for color
imaging devices as well as by novel imaging techniques such as Diffusion
Tensor MRI. Often these data suffer from noise creating the need for image
restoration methods that allow to remove the noise without severely affecting
important structures such as image discontinuities (edges).

In the present paper we will review some recent techniques that achieve this
goal by using nonlinear diffusion or regularization approaches. A unifying
description is presented that includes diffusion and regularization techniques,
linear and nonlinear approaches as well as isotropic and anisotropic methods
for vector- or matrix-valued data sets. However, we will not only confine
ourselves to the review of existing techniques, we will also present several
novel approaches that have not been considered before. Since this paper is
mainly intended as a means to communicate the essential ideas and structural
similarities, we do not go very deeply into mathematical details. Such details
and full proofs can be found in more specialized publications.

Our paper is organized as follows. In Section 2 we first review diffusion
techniques for vector-valued images before we present energy functionals for
corresponding regularization methods. This taxonomy is then used for classi-
fying variational approaches for motion analysis in image sequences. Section
3 is devoted to matrix-valued image processing. In analogy to our discussions
in the vector-valued case, we present diffusion and regularization methods in
the isotropic and anisotropic setting. The latter methods are studied here
for the first time. We argue that these methods are capable of preserving the
positive semidefiniteness of an initial matrix field without the need to impose
additional constraints. Finally we apply our ideas to the generalization of the
linear structure tensor, a very successful tool for analysing corners, textures
and flow-like structures, to the nonlinear setting. Our paper is concluded
with a summary in Section 4.

2 Vector-Valued Filtering

2.1 Diffusion of Vector-Valued Images

Vector-valued images arise for example as color images, multi-spectral satel-
lite images and multi-spin echo MR images. Diffusion filtering of some mul-
tichannel image f = (fi(z,¥),..., fm(z,y))" may be based on one of the
following evolutions:



(a) Homogeneous diffusion ([14] in the scalar case):

(b) Linear isotropic diffusion ([9] in the scalar case):
Opu; = div (g(z |ij|2) Vui) (i=1,..,m) (2)
J

(c) Linear anisotropic diffusion ([15] in the scalar case):
du; = div (D(ZijijT) w,-) (=1,...m) (3)
J
(d) Nonlinear isotropic diffusion [10]:

Owu; = div (g(z |Vuj\2> Vui> (i=1,..,m) (4)

(e) Nonlinear anisotropic diffusion [33]:
Ou; = div (D(Zvujvu}) w,-) (i=1,..,m) (5
J

with f as initial condition:

ui(z,y,0) = fi(z,y) (1=1,..,m). (6)

Here, g denotes a scalar-valued diffusivity, and D is a positive definite diffu-
sion matrix. The diffusivity g(s?) is a decreasing function in its argument.
Moreover, we assume that the flux function g(s®)s is nondecreasing in s. One
may e.g. use [19]

1

with some small positive numbers « and 3. In the linear case this ensures
that at edges of the initial image f, where )|V fi|? is large, the diffusivity
9(3=; IV £;]?) is close to zero. Consequently, diffusion at edges is inhibited.
In the nonlinear case one introduces a feedback by adapting the diffusivity g

9(s*) = a+

(7)
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to the evolving image u. In physics, a diffusion process with a scalar-valued
diffusivity is called isotropic, since its diffusive behavior does not depend on
the direction.

Anisotropic diffusion with a direction depending behavior may be realized
by replacing the scalar-valued diffusivity g by some positive definite diffusion
matrix D. One may design the diffusion matrix D such that diffusion along
edges of f or u is preferred and diffusion across edges is inhibited. This may
be very useful in cases when noisy edges are present.

How can edge directions in some vector-valued image f be measured? Di
Zenzo [7] has proposed to consider the matrix Zj V£V ij. It serves as a
structure tensor for vector-valued images since its eigenvectors v1, v, describe
the directions of highest and lowest contrast. This contrast is given by the
corresponding eigenvalues p; and po.

A natural choice for the design of some diffusion matrix D as a function
of a vector-valued image f would thus be to specify its eigenvectors as the
eigenvectors vy, vy of Zj Vf;V ij, and its eigenvalues A\;, A\g via

A= g(m), (8)
A = g(p2), 9)

with a diffusivity function g as e.g. in (7).

Remark 1. The fact that in the preceding models the same diffusivity or
diffusion matrix is used for all channels ensures that the evolutions between
the channels are synchronized. This prevents e.g. that discontinuities are
created at different locations in each channel.

Remark 2. Let J € R?*? be symmetric with eigenvectors v, vy and eigen-
values 1, po:

J = vv] + psvav, (10)

A formal way to extend some scalar-valued function g(s?) to a matrix-valued
function g(J) is to define

9(J) = g(m)viv] + g(pz)vav, . (11)

With this notation we may characterize the linear and nonlinear isotropic
models by their diffusivities g(3°, V£V f;) and g(3,; Vu, Vu,), while their
anisotropic counterparts are given by Q(Zj ViV ij) and Q(Zj VujVujT).
Hence, isotropic and anisotropic models only differ by the location of the
transposition.



Remark 3. It should be noted that the preceding models are not the only
diffusion methods that have been proposed for processing vector-valued im-
ages. For alternative approaches the reader is referred to [3, 17, 26, 30, 35].

Remark 4. The requirement of having a nondecreasing flux g(s?)s has
been introduced in order to ensure well-posedness in the nonlinear setting
using classical frameworks such as maximal monotone operators [4]. It is
also possible to use more sophisticated models that allow contrast enhance-
ment. In this case one can establish well-posedness results if some Gaussian
presmoothing is introduced in the diffusivity or the diffusion matrix [5, 34].

Experiments. Figure 1 illustrates the effect of the different smoothing
strategies for a noisy color image with three channels corresponding to the
red, green and blue components. We observe that homogeneous diffusion
performs well with respect to denoising, but does not respect image edges.
Space-variant linear isotropic diffusion, however, may suffer from noise sensi-
tivity as strong noise may be misinterpreted as an important edge structure
where the diffusivity is reduced. Anisotropic linear diffusion allows smooth-
ing along edges, but reduces smoothing across them. This leads to a better
performance than isotropic linear diffusion if images are noisy. We can also
observe that nonlinear models give better results than their linear counter-
parts. This is not surprising, since the nonlinear models adapt the diffusion
process to the evolving image instead of the initial one.

2.2 Regularization Methods for Vector-Valued Images

Let us now explain some connections between the preceding vector-valued
diffusion filters and regularization methods for vector-valued data. To this
end we consider minimizers of the following energy functionals over some
rectangular image domain 2:

(a) homogeneous reqularization:

1

Buv(u) = 5 [ (1 =uf+a X [Vul)dedy (12

(b) linear isotropic regularization:

Epv(u) = %/ (|f—u|2+049(2|vfj|2) Z|Vuk|2> dx dy
Q j k

] (13)



Figure 1: (a) Top LEFT: Noisy color image. (b) Top RIGHT: Homogeneous
diffusion. (¢) MIDDLE LEFT: Linear isotropic diffusion. (d) MIDDLE RIGHT:
Linear anisotropic diffusion. (e¢) BorToM LEFT: Nonlinear isotropic diffu-
sion. (f) BorTtoM RIGHT: Nonlinear anisotropic diffusion.



(c) linear anisotropic regularization:

Epav(u) = %/Q<|f—u\2+a2vn;g(Zijij) Vuk) dz dy
k J
(14)

(d) nonlinear isotropic regularization:
_ 1 2 2
Puiv(e) = 5 [ (1 =u +aw(;|w ))dedy  (15)

(e) monlinear anisotropic reqularization:

Enay(u) = %/ (|f—u\2+atr\I!<ZVukVu,I>)dxdy (16)
@ k

with some penalizing function ¥(s?) that is differentiable in its argument
and convex in s. Moreover, we assume that there exist constants ci,co > 0
such that ¢;5? < W(s?) < ¢ps? for all 5. In the experiments for this paper we
use the Nashed-Scherzer regularizer [19]

U(s?) 1= as®+ /B2 + s (17)

with some small parameters «, 8 > 0. Its derivative is given by the dif-
fusivity (7). Under the preceding assumptions one can show that the con-
vex minimization problems (12)-(16) are well-posed in the Sobolev space
HY(Q) x ... x H'(Q). Their unique solution satisfies the following Euler-
Lagrange equations:

(a) homogeneous reqularization:

ui_fi

«

= Au; (i=1,...,m) (18)

(b) isotropic linear reqularization:

wi— fi _ div (g(z |Vf1c|2) VUi) (t=1,..,m) (19)

o

(c) anisotropic linear reqularization:

SEI iy (o( S VAVA) Vi) = Lieam) (20)

«



(d) isotropic nonlinear regularization:

u; — fi — div (\IJ’(Z |Vuk|2> VW) (i=1,..,m) (21)

o

(e) anisotropic nonlinear reqularization:

u; — fi

«

= div (qﬂ(Zvukvu[) vu,-) (=1,.,m) (22

with homogeneous Neumann boundary conditions.

While this is very easy to verify for the cases (a)—(d), the proof for the case
(e) is more involved. More details can be found in a recent paper [36] where
these anisotropic nonlinear regularizers have been analyzed first.

We may regard the elliptic equations (18)—(22) as fully implicit time dis-
cretizations of the parabolic diffusion filters (1)—(4) with initial value f and
time step size a. This connection has been used in [27, 24] to establish a
scale-space theory for noniterated and iterated scalar-valued regularization
methods. The results include well-posedness, maximum-minimum principles,
a large family of Lyapunov functionals and convergence to a flat image as
a — 00. This reasoning can also be extended to the vector-valued case. Ex-
periments in [27, 24] showed that even for large regularization parameters o
the regularization methods and their diffusion counterparts are visually fairly
similar. This is also the case for the vector-valued setting, so we refrain from
showing experimental results, since they can hardly be distinguished from
those for diffusion filtering.

2.3 Application: Variational Image Sequence Analysis

Let us now apply the preceding concepts to the analysis of image sequences
[36].

One of the main goals of image sequence analysis is the recovery of the so-
called optic flow field. Optic flow describes the apparent motion of structures
in the image plane. It can be used in a large variety of applications ranging
from the recovery of motion parameters in robotics to the design of efficient
algorithms for second generation video compression.

In the following we consider an image sequence f(z,vy,z) where (z,y) €
denotes the location and z € [0, Z] is the time. We are looking for the optic

flow field (Z;ggg) which describes the correspondence of image structures

at different times.



Very frequently it is assumed that image structures do not change their grey
value over time. Therefore, along their path (z(z), y(z)) one obtains

df (z(2), y(2), 2)

0 =
dz

= f$u1+fyu2+fz- (23)

This brightness constancy assumption is called optic flow constraint (OFC).
It is not sufficient to determine u := (uj,us) uniquely. As a remedy, a
regularizing smoothness constraint may be introduced such that the optic
flow problem can be solved within a variational framework. We may recover
the optic flow as minimizer of some convex functional of type

B(u) = / (& (ot fyua + 1)+ V(S V) ) dedy (24

Q data term regularizer

where V(Vf,Vu) penalizes deviations from (piecewise) smoothness, and
Vu := (Vuy, Vug). The corresponding gradient descent equations are given
by

O = OV, +0,Va, — 2 fu (fowr fyuat 1), (25)
atUQ = 8xVuz$ +8yvu2y - ify <fzu1+fyu2+fz) (26)

This diffusion—-reaction system allows to recover the optic flow v as solution
for t — 0o. We observe that the regularizer V(V f, Vu) creates the vector-
valued diffusion processes

Oui = Vi +0Ves,  (i=1,2). (27)

Specific choices of V' allow to design regularizers that smooth the flow field,
but respect semantically important image discontinuities or flow discontinu-
ities. In the first case, we call the method image-driven, in the second case it
is a flow-driven method. If the regularizer corresponds to an isotropic diffu-
sion process, it is named isotropic, otherwise it is an anisotropic regularizer.
Table 1 gives an overview of the different vector-valued diffusion processes
that we have just discussed, and their corresponding optic flow regularizers.
Firstly we observe that diffusion filters have been discovered several years
ahead of their corresponding optic flow regularizers. Secondly, it becomes
clear that image-driven regularizers always correspond to linear diffusion pro-
cesses, while flow-driven ones can be related to nonlinear diffusion filters.

It is possible to treat all these optic flow methods within a unifying theoretical
framework. In [36] the following well-posedness results have been established.
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Table 1: Vector-valued diffusion processes and their corresponding optic flow
regularizers. In the diffusion context, f denotes the vector-valued initial
image and u its evolution. In the optic flow setting, f is the scalar-valued
image sequence and u describes the optic flow field.

vector-valued diffusion process

optic flow regularizer

Opu; = 0V, + 0y Vi, V(Vf,Vu)
homogeneous homogeneous
Oyu; = Au; Z [V, |?

(scalar case: Iijima 1959 [14])

(Horn/SChunck 1981 [13])

linear isotropic

Oyui = div (9(32; IV ;) Vi)
(scalar case: Fritsch 1992 [9])

image-driven, isotropic

2
g(IV£P) 2 V[
(Alvarez et al. 1999 [1])

linear anisotropic

dwui = div (g(3, VVIT) Vi)
(scalar case: Tijima 1962 [15])

image driven, anisotropic
Z Vu; D(Vf) Vu;
(Nagel 1983 [18])

nonlinear isotropic
Byu; = div (qﬂ(zj Vu,)?) w,-)
(Gerig et al. 1992 [10])

flow-driven, isotropic

v (s |w2)

(Schnérr 1994 [28])

nonlinear anisotropic
dyu; = div (\Iﬂ(zj Vu; V) vu,-)
(Weickert 1994 [33])

flow-driven, anisotropic
tr U (Z Vu;Vu, >
(Weickert /Schnérr 2001 [36])

Theorem 1 Let V(V f, Vu) be one of the optic flow reqularizers from Table

1. Moreover, let us assume that

o U is differentiable, and U(s?) is strictly conver in s € R




o There exist c1,co > 0 such that c;5* < ¥(s?) < cp8? for all s.
o [ H'(@x (0,T))
e f., [, are linearly independent in L2(Q), and fy, f, € L®(9).

Then the optic flow functional (24) has a unique minimizer u(z) € H'(Q2) x
H'(Q) that depends in a continuous way on the image sequence f.

In order to illustrate the influence of the different regularization methods, we
used the marbled block sequence of Otte and Nagel (KOGS/IAKS, University
of Karlsruhe, Germany) [20]. These images can be downloaded from the web
site http://i21www.ira.uka.de/image-sequences. The sequence consists
of 31 frames of size 512 x 512. In our case we only used frame 16 and 17.
Figure 2 depicts the results for the optic flow magnitude. For better visibility,
we also show a detail of the low magnitude images in Figure 3.

As expected, one can observe that the homogeneous regularization of Horn
and Schunck creates very smooth flow fields. It is, however, unsuited to
respect any flow discontinuities.

Isotropic image-driven reduces smoothing at all image edges. This may create
an oversegmentation of the flow fields, as can be seen from the flow artifacts
resulting from the texture of the marbled floor. This oversegmentation influ-
ences in particular the flow magnitude, while the flow direction appears to
be more stable.

Anisotropic image-driven regularization permits smoothing along image edges.
This leads to a more homogeneous flow field than the one from isotropic
image-driven smoothing. Larger structures of the marble texture, however,
are still visible in this case as well.

Flow-driven models are performing better here. The marble texture, which
corresponds to image discontinuities but not to flow discontinuities, does
hardly perturb the flow field. Figure 3 shows that, similar to the image-
driven case, anisotropic regularization is less affected by these texture ar-
tifacts that isotropic smoothing, although the differences are a bit smaller.
This shows that anisotropic flow-driven regularization is an interesting tech-
nique for optic flow problems where flow discontinuities are important and
highly textured image structures are present.

3 Matrix-Valued Filtering

In this section we extend diffusion and regularization methods to fields of
matrix-valued data. After giving a motivation of the practical importance of

11



Figure 2: (a) Top LEFT: Frame 16 of the marbled block sequence (512 x
512 pixels). (b) Top RIGHT: Optic flow magnitude between Frame 16 and
17 for homogeneous regularization. (¢) MIDDLE LEFT: Result for image-
driven isotropic regularization (d) MIDDLE RIGHT: Image-driven anisotropic
regularization. (e¢) BoTTOM LEFT: Flow-driven isotropic regularization (f)
BoTTOM RIGHT: Flow-driven anisotropic regularization. From [36].
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Figure 3: (a) Top LEFT: Detail from the lower right part of Frame 16
(128 x 128 pixels). (b) Top RIGHT: Optic flow magnitude for homoge-
neous regularization. (c) MIDDLE LEFT: Image-driven isotropic regular-
ization (d) MIDDLE RIGHT: Image-driven anisotropic regularization. (e)
BorToM LEFT: Flow-driven isotropic regularization (f) BOTTOM RIGHT:
Flow-driven anisotropic regularization. For better visibility, the grey val-
ues of the optic flow results been transformed by a gamma correction with
v = 0.4. From [36].



such data sets, we present our models. They also comprise novel anisotropic
techniques where a joint diffusion tensor is used instead of a scalar-valued
diffusivity. Afterwards we argue that these models are well-suited for the
practically important smoothing of positive semidefinite matrix fields, since
they maintain the property of positive semidefiniteness without additional
projection steps. Finally we study an example where a novel anisotropic
nonlinear variant of the structure tensor is constructed and its superiority
over linear and nonlinear isotropic structure tensors is illustrated.

3.1 Motivation

The need for smoothing methods for positive semidefinite matrix fields is
rapidly growing in the image processing and computer vision community.
Let us illustrate this by two examples.

(a) Matrix-valued data fields with positive semidefinite matrices arise for
example in all imaging applications where the so-called structure tensor
is used. The structure tensor of some scalar-valued image v is given by
K,+(VuVv") where K, denotes a Gaussian with standard deviation p.
This Gaussian convolution averages orientation over same scale of order
p. A principal component analysis of the structure tensor gives infor-
mation that is highly useful for corner detection [8], texture analysis
[25], optic flow computation [2], and even for designing better adaptive
numerical algorithms [11, 29].

The structure tensor, however, uses Gaussian convolution of each ma-
trix channel. This is equivalent to linear diffusion filtering with a con-
stant diffusivity. Thus, the question arises whether one can obtain
better results by replacing the matrix-valued linear diffusion process
by matrix-valued nonlinear diffusion or regularization methods. In this
case one would expect to have a better preservation of discontinuities.

(b) Another application consists of diffusion tensor magnetic resonance
imaging (DT-MRI), a recent medical image acquisition technique that
measures the diffusion characteristics of water molecules in tissues. The
resulting diffusion tensor field is a positive semidefinite matrix field that
provides valuable information for brain connectivity studies as well as
for multiple sclerosis or stroke diagnosis [22].

The search for good smoothing techniques for DT-MRI became a very
active research field in the last 3 years. Some authors suggest to perform
smoothing of directional images that are used for computing the diffu-
sion tensor field [16, 21, 32]. This comes down to scalar-valued smooth-
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ing processes. Other scalar- or vector-valued processes have been ap-
plied by smoothing derived expressions such as the eigenvalues and
eigenvectors of the diffusion tensor [23, 6, 31] or its fractional anisotropy
[21]. Methods that work directly on the diffusion tensor components
use linear [37] or nonlinear [12] techniques that filter all channels in-
dependently, thus performing scalar-valued filtering again. A nonlinear
regularization method giving true matrix-valued filtering by coupling
the channels via a common diffusivity is due to Tschumperlé and De-
riche [31]. They have also included additional projection steps in order
to preserve the positive semidefiniteness of the matrix field. Since their
diffusivity is scalar-valued, the method may be classified as isotropic.
Anisotropic matrix-valued techniques have not been considered so far.

These examples illustrate that there is a clear need for a diffusion and regular-
ization framework for matrix fields. Ideally, it should be compatible with the
preceding vector-valued framework and it should take into account matrix-
specific requirements such as the preservation of positive semidefiniteness.
Below we shall describe such a framework for filtering matrix fields in an
isotropic or anisotropic way. Since the linear isotropic and anisotropic cases
are less important in practice, we focus on nonlinear methods. The linear
strategies can be extended from the vector-valued situation in the same way
as is described in the nonlinear setting.

3.2 Matrix-Valued Filter Design

Let us consider some matrix field F(z) = (fu(z)). A regularized version
U(z,a) = (ug(x,a)) can be obtained by minimizing

1
Em(U) = 5/ (||F U+ a\Il(tr Y Vuklvu,jl)) dedy — (28)
Q k,l
in the isotropic case, and
1
Eam(U) = 5/ (||F U+ atr\p(Zvuk,w{,)) drdy  (29)
Q k,l

in the anisotropic case. We assume that the penalizer ¥ satisfies the same
conditions that we imposed in the vector-valued context. As matrix norm,
we use the rotationally invariant Frobenius norm

1= ()" (30)

15



It guarantees that both energy functionals are rotationally invariant.

Note the large structural similarities between the isotropic and the anisotropic
functional: only the order of the penalizer and the trace operator is ex-
changed. One may also write the isotropic regularizer in a slightly simpler
form as W(3", ; [Vug,[?).

The Euler-Lagrange equations to the isotropic functional (28) and its aniso-
tropic counterpart (29) are given by

«

Wi S5 g (0 Vel Vuw) Vag)  vig, (31
k,l

)

uij — Jij = div (\I!' ( Z Vuleu,Il) Vuij) Vi, j. (32)
o k,l

These systems of elliptic PDEs may be regarded as implicit time discretiza-

tions of the isotropic resp. anisotropic matrix-valued diffusion processes

du; = div (w’(Zvu;vukl) vuij) Vi, 7, (33)
k,l
duy; = div <\Il'(kZJVuleu,Il) vuij) Vi, (34)

with initial condition

and time step size a. The isotropic diffusivity may be simplified to the
expression W'(3°, | [Vugl?).

As in the vector-valued case, one may also use diffusivities ¥’(s?) with non-
monotone flux functions ¥’(s?)s, if in their argument uy; is replaced by a
Gaussian-smoothed variant K, * uy;.

While the preceding isotropic regularization or diffusion methods are also
part of the models of Tschumperlé and Deriche [31], their anisotropic coun-
terparts are studied for the first time in the present paper. In Subsection 3.4
we shall see that anisotropy may lead to significantly improved results.

Our initial motivation for considering matrix-valued smoothing processes
stems from the quadratic case with symmetric matrices that are positive
semidefinite. However, it should be noted that our matrix-valued models are
not restricted to quadratic matrices: They may be applied to the smooth-
ing of arbitrary n X m matrix fields. In particular, we may regard an n-
dimensional vector as an n x 1 matrix. In this case it follows directly that
the matrix-valued diffusion and regularization models comprise our vector-
valued ones that we discussed before.

16



Another point that is worth mentioning is that the preceding matrix-valued
smoothing processes use diffusivities or diffusion tensors that are identical for
all matrix channels. As in the vector-valued case this ensures that the filter-
ing behavior at edges remains synchronized. Moreover, it has an additional
interesting consequence that shall be discussed next.

3.3 Preservation of Positive Semidefiniteness

Let us go back to quadratic matrix fields that are positive semidefinite. In
this case a natural requirement for a practically useful smoothing method is
that it should not destroy the positive semidefiniteness of the initial matrix
field. By construction of our continuous filters it is obvious that symmetric
matrix fields remain symmetric under filtering. In order to understand why
the nonnegativity of the eigenvalues is preserved as well, it is helpful to
consider a finite difference setting.
The sketch of the proof for the discrete diffusion case is as follows. With a
slight abuse of notation, let f;; be a discretization of the (¢, j) component
of the vector field F'(z). We may regard f;; as a vector whose components
describe the grey values of the (i, j) component at all pixel locations. Let us
consider some suitably small time step size 7 and let uF = (u;;)* represent
in a similar way some discretization of the matrix field U(z,t) at time level
t = k7. In [34] it is shown that there exist finite difference schemes for
diffusion filtering such that uf/" may be obtained from uf, by a matrix-
vector multiplication:

uy = fi Vi, j (36)
uitt = Ay, oub )uf Vi, VE>0 (37)

%] ) Y'n,n i

where the matrix A has unit row sums and all entries are nonnegative. Since
we have a common diffusivity or diffusion tensor for all channels, it follows
that A is identical for all channels:

A=Aty ... ul ). (38)

» “n,n

Thus, the discrete iteration scheme performs convex combinations of the
matrices from the iteration level £ in order to obtain the result at level
k-+1. Since convex combinations of positive semidefinite matrices are positive
semidefinite again (see e.g. the proof of Proposition 2 in [36]), it follows that
the positive semidefiniteness of the initial matrix field is preserved for all
iteration levels.

It should be noted that this reasoning depends strongly on the use of a joint
diffusivity or diffusion tensor for all matrix channels. Thus, models that apply
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different diffusivities in each channel may not preserve positive semidefinite
matrix fields unless additional projection steps are introduced (cf. [31]).

3.4 Example: Nonlinear Structure Tensors

Let us now illustrate the usefulness of nonlinear smoothing strategies for
matrix-valued data sets by investigating nonlinear versions of the structure
tensor that we mentioned in Subsection 3.1.

Given some image v, we consider the tensor product

F = (f;;) :== VoVo' (39)

The linear structure tensor computes the convolution K, * (VoVo'), where
K, denotes a Gaussian with standard deviation p. This is equivalent to the
linear matrix valued diffusion process

atuz'j = Auij Vi, j (40)

with stopping time T = 1 p?.

Figure 4(a) shows a synthetic test image where we have two regions with
homogeneous orientation transitions. These two regions are separated by an
orientation discontinuity. An ideal orientation measure would average the
orientation information within each region without affecting the orientation
discontinuity.

In Figure 4(b) we can see all four components of the structure tensor field
when the preceding linear diffusion process is applied. This process blurs each
of the tensor components. While this is desirable within the same region, it
also blurs the matrix components at orientation discontinuities. If one wants
to avoid this shortcoming, one has to use adaptive filters.

A first attempt along these lines is shown in Figure 4(c). It depicts the
structure tensor field when the linear diffusion process (40) has been replaced
by the isotropic nonlinear evolution (33) with a diffusivity of type (7). We
observe that this process does respect orientation discontinuities. On the
other hand, it may even be too conservative: at discontinuities, diffusion is
stopped in all directions. This may lead to problems in noisy or textured
images, where spatial smoothing of the tensor components does not take
place.

Anisotropic matrix-valued diffusion filtering on the basis of equations (34)
and (7) is illustrated in Figure 4(d). At discontinuities, only diffusion across
the discontinuity is inhibited, while diffusion along the discontinuity is still
maintained. As one would expect, this leads to the desired matrix averaging
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Figure 4: (a) Top LEFT: Synthetic test image. (b) Topr RIGHT: Structure
tensor components with matrix-valued linear diffusion filtering. (c¢) BoT-
TOM LEFT: Ditto with isotropic nonlinear diffusion filtering. (d) BoTTOM
RigHT: Ditto with anisotropic nonlinear diffusion filtering.

without blurring across orientation discontinuities. This makes the nonlinear
anisotropic structure tensor an interesting candidate for a number of appli-
cations where the linear structure tensor has limited performance. We are
currently trying to identify such situations in order to quantify the benefits
of nonlinear anisotropic structure tensors.

4 Summary

In this paper we have given a unified description of diffusion and regulariza-
tion methods for vector- and matrix-valued data sets. These ideas have been
illustrated by applying them to variational motion analysis and by deriving
novel nonlinear structure tensors. Since motion analysis in image sequences
is only one representative of a large class of correspondence problems in com-
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puter vision, and since the structure tensor is present in a large number of
different applications, we are optimistic that this framework is applicable to
many more areas than those described here. In our future work we plan to
present a detailed theoretical analysis of our models, to carry out research on
highly efficient numerical algorithms for these approaches, and to investigate
further application areas.
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