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Abstract

Suppose that f: R*™ — R is a strictly convex energy density of linear growth,
f(Z) = g(|Z]?) if N > 1. If f satisfies an ellipticity condition of the form

D*f(Z)Y,Y) > c(1+|Z) 5|V, 1<pu<3,

then, following [Bi3], there exists a unique (up to a constant) solution of the varia-
tional problem

/f(Vw) dx—i—/ foo((g —w) @ V) dH™™ ' = min in W (RY),
Q [219)

provided that the given boundary data ug € W{(Q;RY) are additionally assumed
to be of class L>®(2;RY). Moreover, if 4 < 3, then the boundedness of g yields
local C*®-regularity (and uniqueness up to a constant) of generalized minimizers of
the problem

/ f(Vw)dz — min in ug + W (Q;RY).
Q

In our paper we show that the restriction ug € L*®(£;R”Y) is superfluous in
the twodimensional case n = 2, hence we may prescribe boundary values from the
energy class Wi (£;RY) and still obtain the above results.

1 Introduction

In the following we always consider a bounded Lipschitz domain 2 C R" and a strictly
convex energy density f: R™ — [0, 00), which is of linear growth, i.e.

alZ| -b< f(Z) < A|Z|+ B forall ZeRY (1)

holds with suitable constants a > 0, A > 0, b, B. Moreover, we fix some boundary data
ug of the Sobolev class W (€2; RY). Then we are interested in the variational problem

= /Qf(Vw) dr — min  in g+ Vf/f(Q; RY), (P)
which in general fails to have solutions. For this reason we introduce the set
M = {u € BV(Q;RY) : u is the L-limit of some
J-minimizing sequence {u;} C ug+ I/f/f (; RN)}
of generalized minimizers of problem (P), which, by [BF3] (compare also the monograph

[Gi] for the minimal surface case), coincides with the set of solutions of the relaxed prob-
lem

Kw] = /Qf( dx+/foo \Vs d|V5wH— mfoo((uo—w)@l/)d%”_l

—min in BV(;RY), (P)
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where v is the outward unit normal to 02, f is the recession function of f, and V%w
and V*w denote the regular and the singular part of Vw w.r.t. the Lebesgue measure,
respectively.

Our main concern is the study of the smoothness properties of generalized minimizers.
To this purpose and in order to formulate what is known up to now, let us precisely state
our general

Assumption 1 The energy density f: R*™Y — [0, 00) is supposed to satisfy the following
set of hypotheses: there exist positive constants v1, va, v3 and a real number 1 < p < 3
such that for any Z € RV

i) [ € C*R™);
i) |[V(Z)] < wi;
iii) for any Y € R™ we have

w(L+|ZP)EYP < D F(Z)(YV,Y) < vs(1+]2) 2|V P

Moreover, in the vector case N > 1 we assume that

£(2) =g(12]") (2)
for some function g: [0,00) — [0,00), which is of class C2.

Remark 1 From Assumption 1 we easily obtain the following structure conditions (see
[Bi2] or [Bi3] for a short proof).

i) There are real numbers vy > 0 and vs such that for any Z € RN
VHZ): Z>wu(l+|2)2 — s,
where we use the symbol Y : Z to denote the standard scalar-product in RN .
ii) The integrand f is of linear growth in the sense that (1) holds.

iii) The energy density f satisfies a “balancing condition”: there is a positive number
vg such that

\D2f(2)||Z)? < vs(1+ f(Z)) holds for any Z € R*N .

The most prominent (scalar) example satisfying Assumption 1 with the limit expo-
nent 4 = 3 is the minimal surface integrand f(Z) = /1 + |Z|? admitting only regular
solutions (see, for instance, [Gi] and the a priori estimates given in [GMS] and [LU2]),
which are uniquely determined up to a constant. However, on account of the geometric
structure of this example, there is much better information in this case than supposed in
Assumption 1 (see Remark 2.3 of [Bi3]).

Remark 2 For the sake of completeness we should also mention the theory of perfect
plasticity as a second significant example with a linear growth energy density. Here As-
sumption 1 of course no longer is valid, and we can only expect partial reqularity results,
which are mainly due to Seregin (compare [Sel]-[Sel]). Note that even in the twodimen-
sional setting we just have some additional information on the singular set (see [Sel]).
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The discussion of p-elliptic integrands satisfying Assumption 1 without an additional
geometric structure condition started in [BF2]. Here the one parameter family

|1Z| s
@M(Z)::/O /0(1+t2)‘z‘dtds, 1<p<3,

serves as a typical example. Note that in the case ®,_3 we exactly recover the minimal
surface integrand. For a detailed discussion of examples with the limit exponent p = 3 of
ellipticity, which are not of minimal surface type, we refer to [Bi2], [BF5] (for instance,
we may consider integrands which are not depending on |Z| but on dist(Z, C), where C
denotes a suitable convex set).

However, smoothness of generalized minimizers was proved in [BF2] under the quite
restrictive assumption 1 < g < 1+ 2/n. Note that even in two dimensions the reasoning
of [BF2] is limited to the case p < 2.

The considerable improvement to ellipticity exponents 1 < p < 3 then was given in
[Bi2] and [Bi3] by imposing an additional L*°-bound on the data uo. Here we observe
that, on account of the counterexample given in [Bi2] and [BF5], we do not expect to get
an extension of the following theorem to the case u > 3.

Theorem 1 (/Bi2]/, [Bi3]) Suppose that Assumption 1 holds in the limit case p = 3 and
that we have in addition ug € L>® N W (Q;RY). Then there is a generalized minimizer
u* € M such that

i) Vu* =0.

ii) For any Q' € Q we have

/ V| In(1 + | Var']) dz < oo.
QI

iii) u* is (up to a constant) the unique solution of the problem
/ f(Vw)dz + | foo((up —w) @ v) dH"' = min in W/ (% RY). (P
Q o9
If ellipticity is slightly better, i.e. if ;1 < 3, then full regularity is obtained in the sense

of

Theorem 2 ([Bi2], [Bi3]) Suppose that Assumption 1 holds with p < 3 and that we again
have ug € L= N W (4 RY). In the vector-valued case we assume in addition to (2) that
there are real numbers 3 € (0,1], K > 0, such that for all Z, Z € R*N

ID*f(2) - D*f(Z)| < K|Z — Z|V". (3)
Then we have:

i) each generalized minimizer u € M is an element of the space CH*(Q;RY) for any
O<a<ly

i) for u, v € M we have Vu = Vv, i.e. up to a constant uniqueness of generalized
minimizers holds true.



In the following we study the question whether at least in two dimensions the assump-
tion uy € L°(Q;R™) can be dropped, i.e. we are going to discuss the Dirichlet boundary
value problem (P) with data uy from the energy class W' (Q; RY). In fact, it turns out
that:

Theorem 3 In the twodimensional case n = 2, Theorems 1 and 2 remain valid without
the requirement uy € L*(Q; RY).

From now on we restrict our considerations to the twodimensional case n = 2 and
proceed as follows: after introducing some suitable (and well known) regularization, we
will prove in Section 3 uniform local higher integrability in the limit case p = 3. Using this
result, we complete the proof of our main theorem in Section 4 by reducing the problem
to the setting discussed in [Bi3].

2 Regularization

We start with a well known regularization procedure. However, we focus on the discus-
sion of boundary data from the energy class W} (€;RY), and, in contrast to [Bi3], we
now include a precise approximation argument w.r.t. the boundary data as sketched, for
instance, in [BF1]. To this purpose let us consider a sequence {u'}, uf* € C®(;RY)
such that

ul = ug  in WHOQ;RY) as m — oo (4)

We then denote by uj*, 0 < d < 1, the unique solution of the variational problem
5 o
Js[w] := 3 /Q \Vw|*dz + J[w] = min  in u'+ W, (;RY) (P™)

and abbreviate f5 = 2|+ [2+ f. If § = §(m) is chosen sufficiently small (see the proof of
Lemma 1, i) and ii), for the precise conditions) and if we write for short us = Ug(my> then
the main properties of the regularization are summarized in the following lemma.

Lemma 1 i) There is a real number c, independent of 0, such that

(5/|Vu(5|2da:§c, /\Vuﬂ <c;
Q Q

ii) each L'-cluster point u* of the sequence {us} is a generalized minimizer in the sense
that u* € M holds;

iii) ug is of class W3

iv)

n Wc}o,loc(Q; RN);

loc

/ Vfs(Vus) : Vodz =0 for all ¢ € C(;RY);
Q
v) for v =1,2 we have

/ D?f5(Vug)(0,Vus, Vo) dz =0 for all ¢ € C°(Q;RY).
Q



Proof. ad i). The minimality of us implies Js[us] = Jsm) [ujf,)] < Jom)|ug'], and if 6(m)
is chosen sufﬁciently small, then

Jsem)[ug'] = /|V m|2dx+/fVuO x<—+/f Vug') d
If we recall in addition the convergence (4) and the linear growth of f (see Assumption
1, ii)), i.e.

/Q (F(Vu) — F(Vup)) da

§c/|Vu6"—Vuo\da:—>0 as m — 0o, (5)
0

then the existence of a positive number ¢, independent of ¢, is established such that i)
holds.

ad ii). As shown in [BF1], Lemma 3.1, (see also [Se3], Lemma 2, and [Bi2] Remark
I1.1.8), we have for any fixed m € N

J[u§'] — inf Jw] as 6 =0,
weuP +WHQRN)

in particular it is possible to choose §(m) sufficiently small such that for all m € N

Jumol < inf Jfw] 4~ (6)

weu+WhH(QRN) m

We then fix £ > 0, and similar to (5) we can choose my € N sufficiently large such that
for all m > my

|J[w] — J[w — uf® + u)| Sc/ (Vul' — Vuglde < e forall we WHOQ;RY). (7)
"

As an immediate consequence we see that

inf Jw] — inf Jw]| <e,

weuP +Wi (RN weug+Wi(QRN)

whenever m > my. This, together with the choice of §(m) (recall (6)), implies (w.l.o.g. m™*

e for all m > my)

Jugm] < inf Jw]+e < inf J[w] + 2¢ (8)
wEuS”-l—V([)/%(Q;RN) wEuo-i—V?/%(Q;RN)

for all m > myg. Finally we let wij,, = ug,, + uo — ug’ and by (7) and (8) the se-

quence {wj;, } is seen to be a J-minimizing sequence from uo+ W' (;RY). Since the
sequences {wg,,} and {uy,, } generate the same L'-cluster points, assertion ii) is proved.

ad iii)-v). iv) is the Euler equation for us which, in the scalar case, implies iii) by
Theorem 5.2, Chapter 4 of [LU1|. In the vector-valued setting, we refer to [Uh| (compare
[GM], Theorem 3.1) which, together with the standard difference quotient technique, gives
iii). Finally, on account of iii), the Euler equation iv) may be differentiated with v) as a
result. [ |

As a corollary of v) we obtain the following Caccioppoli-type inequality.
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Corollary 1 If {us} denotes the regularization introduced above, then there are positive
numbers ci, ¢z, such that for any n € C§°(Q), 0 <n <1, and for any § as above

/ D2 5(Vug) (8, Vug, 0, Vug)iP dz < e / D2 £ (Vg ||V 2| V2 da
Q Q

< e m§X|V7]|2. 9)
Here and in the following we always take the sum w.r.t. repeated Greek indices v = 1,2
and w.r.t. repeated Latin indicesi=1,..., N.

Proof. From iii) of Lemma 1 and a standard density argument we see that for v = 1,2
the choice ¢ = n?0,us is admissible in the differentiated form v), Lemma 1, of the Euler
equation. Using Young’s inequality, the left-hand inequality of (9) is immediate. The
uniform bound on the right-hand side of (9) follows from Remark 1, iii). [

3 Local Higher Integrability in the Limit Case

Here we are going to establish uniform local higher integrability of the sequence {Vus}
in the limit case pu = 3.

Let us, for a moment, concentrate on the scalar case N = 1. Then we have the
following assertion.

Lemma 2 Suppose that Assumption 1 holds in the twodimensional scalar case n = 2,
N =1, and let {us} denote the regularization introduced above. Moreover, fiz a ball
B, (x¢) satisfying Bor(xo) € 2. Then there is a positive number ¢ = ¢(r), independent of
d, such that for any n € C§°(Ba,(9)), 0 <n <1,

/ (1+ |Vua|2)%|u(; - (uJ)QT\QnZ dz + 5/ |Vu(;\2|u(5 — (U5)2T\2772 dr<e.
BZ'I‘(-'EO)

Bs, (wo)

Here (ug)o, denotes the mean value of us on B, ().

Remark 3 i) Following the proof of Theorem 4 below, it becomes obvious that this
estimate s exactly the one which is needed to reach the limit case yu = 3.

i) Inequality (10) given below is the main reason why the results in two dimensions are
better than the ones stated in [Bi3] for arbitrary dimensions.

Proof of Lemma 2. Note that in the twodimensional case n = 2 we have by Sobolev-
Poincare’s inequality

</ lusg — (u5)2,\2d:r> < / \Vus|dz < ¢ (10)
Bar(z0) By (z0)

for some constant ¢ which, on account of Lemma 1, i), is independent of . Moreover,
as a result of Lemma 1, iii), and a standard density argument, ¢ = (us — (ug)2r)3n?,



n € C§°(Bar(9)), 0 <7 <1, is seen to be admissible in the Euler equation iv) of Lemma
1, thus we obtain

3/ V£ (Vus) - Vus|us — (us)or*n? dz
Ba, (z0)

+36 / Vg g — (ug)ar P da

B27‘($0)
—=2 [ Vfs(Vug)- s — (us)ar) d.
B2r($0)
From this equality we arrive at (recalling Remark 1, i), (10) and the boundedness of |V f|)
[ @9l us = (s do
BZT(-TO)

+(5/ |Vu5|2|u5 - (U5)2T|2772 dz
BQ'I‘(ZO)
<cl+L+D), (11)

where the constant ¢ again is not depending on ¢, and [y, I, are given by

L o= / lug — (ug)ar [*n| V| dz,
B27‘($0)

I, = 0 [Vus|us — (us)2r >0 V| da .
B2'r(w0)

Estimating I; we observe that (using (10), Holder’s inequality, Sobolev-Poincare’s in-
equality and Young’s inequality for some sufficiently small number ¢ > 0)

1

3 3
L < (/ lus — (u5)2r|4n2dfv> (/ |u(s—(u(s)2r|2|V77|2dfv>
By, (z0) By, (o)

< c/ |V (lus — (us)2r*n)| dz
B2r($0)
<ot [ ol Vunae)
BQr(wO)
< C<1 "‘/ {5|“6 — (ug)2r [P (1 + |V ?) 21p?
B27‘($0)

+e (1 + |Vu5|2)%} dac) . (12)

Here again ¢ denotes some positive local constant which is not depending on 6. Note
that the “c”-part on the right-hand side of (12) can be absorbed (for £ > 0 sufficiently
small) on the left-hand side of (11), whereas the remaining integral is uniformly bounded
w.r.t. d.

To find an estimate for I, we recall the uniform bound for ¢ [, |Vus|*dz. In fact,
it can be easily seen that this quantity converges to zero if § — 0 (see [BF1]), but here



we merely need i) of Lemma 1. As a consequence, we have with local constants and for
e > 0 sufficiently small

L < w(/ |vamﬁ (/ |w—wwmr%¢0
Ba, (zo) Bar(zo)

IN

IN

VAN

1

8 [ |V(jus ~ (ws)u )| da
By, (IO)

([ o o Vustndo [ = Gl )
By, (o) Bar (o)

1

e ( / (267 |us — (ug)ar 2| Vus2n? + 71677 |us — (ug)ar|?) da
B, (o)

+/ lusg — (u(s)gr|3d$>

BZ’I‘(IO)
3 .

= ¢y Ij. (13)
i=1

Now I} can be absorbed on the left-hand side of (11), whereas the second integral I2 is
uniformly bounded w.r.t. 6. I3 is estimated with the help of (10), Holder’s and Sobolev-
Poincare’s inequality

Iy =

IN

IN

IN

<

If we recall that

D=

) / lus — (ug)or | dz
B2r($0)

1 : :
52 (/ lusg — (u5)2,|4 dx) (/ lus — (ug)or? dx)
Ba,(x0) Ba,(x0)

5 / V]us — (ug)ar|*| da
B2r(w0)

52 (/ |Vu,5|2dx) (/ lug — (u5)27|2dx)
Bar(z0) Ba,(z0)

c. (14)
the e-terms occurring on the right-hand side of (12) and (13) can be

absorbed on the left-hand side of (11), then Lemma 2 follows from the uniform estimates
for the remaining terms on the right-hand side of (12), (13) and (14), respectively. W

Remark 4 Going through the proof of Lemma 2 we see that the assertion is not depending
on the exponent p of ellipticity.

Instead of the assumption ug € L*°(Q) used [Bi3], Lemma 2 now is the main tool
yielding uniform local higher integrability of |Vus| in the scalar case.

Theorem 4 Consider the twodimensional scalar case n = 2, N = 1, together with the
general Assumption 1. If Bo.(xo) € €, then there exists a local constant ¢, independent
of 0, such that the regqularizing sequence {us} satisfies

/ (14 [Vus2)3 In(1 + |Vaug|?) dz < c.
BT(-:CO)



Proof. We let ws = In(1 + |Vus|?) and choose ¢ = (us — (ug)or)wsn?, n € C§°(Bar(z0)),
0<n<1,n=1o0n B, (xy). Again ¢ is easily seen to be admissible in the Euler equation
iv), Lemma 1, and we obtain

/ V f(Vus) - Vuswsn?® dz + (5/ | Vus|*wsn? dz
B27‘(10)

Bs, (550)

= —/ Vf(Vus) - Vws(us — (ug)or)n® da
BZr(iﬁO)
=2 [ VF(Tus) - V(s = (u)ar s da
Bs, ($0)
—5/ Vus - Vws(us — (u(5)2,)772 dz
B27‘(1'0)

—25/ Vugs - Vn(us — (us)ar)ws dz
B2r($0)

Similar to the proof of Lemma 2, a lower bound for the first integral on the left-hand side
is given by Remark 1, i), thus

/ (1+ |Vu(;|2)%w5772 dz + 5/ |Vus|>wsn? dx
B27‘(-7U0)

Bs, (wo)

4
< c/ wen?dz + 3|5 | - (15)
B2r(-730) i=1

Clearly [ Baw (0) wsn? dz is uniformly bounded w.r.t. §, and in order to find an estimate for
I; we observe

Vws? < ————
Vs T 14 |[Vu[?

This, together with Lemma 2, implies (again we make use of the fact that |V f| is bounded)

|V2u(5|2.

L < e / s — (ug)ay || Veos|? da
By, (o)

< ¢ </ (1+ |Vu,5|2)%|u5 — (ug)2r|*n? dx)
B27‘($0)

1
3
. </ (1+ |Vu(s\2)_%|Vw5\2n2 dx)
327(30)
3
< c (/ (1+ |VU5|2)’%\V2u5|2772 dx)
BQT($0)

Here the right-hand side is bounded through the Caccioppoli-type inequality (9) of Corol-
lary 1. Note that we exactly reach the limit case y = 3. Next,

L] < C/ (o) (|U5 — (ug)er|> + 772|V77|2w§) dr<ec
Bar (o

9



is immediately verified,

Ll < o / (1Vuslus — (us)ar PP + [Veos|n?) da
BQr(mo)

IN

c (1 + (5/ (14 |Vus[P) 7 Vs *n? dx)
Ba,(z0)

< c

again follows from Lemma 2 and Corollary 1. Thus, together with

L] < ¢6 (IVus*lus — (us)2r|*n* + [V *wi) do < c,
B27-($0)

the Theorem is proved recalling (15) and since the constants occurring above are not
depending on 4. |

Let us turn our attention to the vectorial setting N > 1.
Theorem 5 Theorem 4 extends to the twodimensional vector-valued case n =2, N > 1.

Proof. The theorem is established once the following claims are verified (we keep the
notation introduced above)

i) o = |us — (us)2r|*(us — (us)2r)n? is admissible in the Euler equation iv) of Lemma 1
(this test-function is used to prove Lemma 2).

ii) This choice of ¢ implies (11).

iii) ¢ = (us — (us)2r)wsn® also is admissible (this is necessary to follow the arguments
given in the proof of Theorem 4).

If i)-iii) are verified, then the remaining arguments given in the proofs of Lemma 2 and
Theorem 4 can be carried over to the vectorial setting without any changes.

ad i) & iii). We already have noted (see Lemma 1, iii)) that us is of class W3, , N

2,loc
WL ..(;RY). This immediately gives i) and iii).

00,loc
ad ii). Here we first observe that the representation f(Z) = ¢g(|Z|?) implies
Vf(0)=0.
In particular we have

ViZ): Z = /01 D2f(67)(Z,Z)d0 > 0,

thus, with the notation f5(2) = g5(|2|?),

g5(|Z|?) >0 forany Z € R?N. 16
é

10



We next let ¢ = |us — (ug)or|*(us — (us)2-), and with the help of (16) we obtain a.e.

Vi(Vus) - VY = 2g5(|Vus|?)Vus : Vo
= 205(1V7us|?) [ DatusDatis s — (1)

o (Bt (15 — (5)})) (Ot () — ()]
25(|Vus|*) OausOnu|us — (us)2r|?
V f5(Vus) : Vugslus — (us)ar]? -

Of course this implies (11) exactly in the same way as above, and Theorem 5 is proved.
[ |

Before we are going to discuss the case u < 3, let us complete the

Proof of Theorem 3 in the case u = 3. We fix the regularization {us} as introduced above.
Then, if n = 2, Theorem 4 and Theorem 5, respectively, together with the de la Vallee
Poussin criterion yield a subsequence (which is not relabelled) such that us —: u* in
WY 1o (Q;RY) (recall that Lemma 1, ii), gives u* € M). Lower semicontinuity w.r.t. weak
W -convergence then proves the assertions i) and ii) as stated in Theorem 1, where we
now (in contrast to [Bi3]) merely have to assume that ug € W} (; RY). The last claim is
a consequence of the following Lemma given in [BF3] (compare [Bi2]).

Lemma 3 Suppose that the variational integrand f: R"™N — [0, 00) is strictly convez, of
linear growth, i.e.
alZ|-b< f(2) < A|Z| + B

with some positive constants a > 0, A > 0, b, B, and satisfies f(0) = 0. Moreover, we
assume that there exists

u e M = {UEM: u € W} (Q;RN)}:MﬂWll(Q;]RN).

Jloc
Then we have
i) The elements of M' are solutions of problem (P') and vice versa.
ii) The set M’ is uniquely determined up to constants.

Proof. Recalling the fact that M coincides with the set of solutions of the variational

~

problem (P), we shortly sketch the proof for the sake of completeness.

ad i). Fix u* € M'. On account of the K-minimizing property of u* and since
Viu* = 0, the representation of K clearly implies that u* € M’ is a solution of (P’).
Conversely, consider a solution v* of problem (P’) and a J-minimizing sequence {u,,}

from uo+ foll (£;RY). The minimality of v* gives

Kl = [ 190)da+ [ fulwn—v) @ an ' < [ f(Vug)da,

[219]

11



and 1) follows from inf{J[w] : w € up+ V?fll(Q; RY)} = inf{K[w] : w € BV(Q;RY)} and
the above mentioned identification of solutions.

ad ii). To prove uniqueness up to a constant, we just observe that f., is convex,
whereas f is strictly convex. This immediately gives Vu* = Vu** a.e. for any two gener-
alized minimizers u*, u™* € M’ hence the lemma is proved. |

4 The Case pu < 3

Proof of Theorem 3 in the case u < 3. Here we proceed in three steps:

we first fix a L!-cluster point u* € M of the regularizing sequence {us} and use
the higher integrability established in the last section to define a suitable local auxiliary
variational problem. Here we find uniform local gradient estimates according to Theorem
6.1 of [Bi3].

Next, the auxiliary solutions are modified and extended to the whole domain 2. We
obtain a sequence {w,,}, where it turns out that the L'-cluster points w* are generalized
minimizers of the original problem, hence elements of the set M.

Finally, the duality relation holds a.e. both for u* and for w*, which completes the
proof of Theorem 3.

Step 1. From now on suppose that Assumption 1 holds with n = 2 and p < 3. We fix a
L'-cluster point u* of the regularizing sequence {u;} (introduced in Section 2), and recall
that u* is already known to be of class W (£2;RY). We fix zy € 2 and write with a slight
abuse of notation u*(r,6) = u*(xo + re®). Moreover, let us assume that Byg, (7o) €
and observe that

a *

/Ro /27r w
0 0 00
Hence there exists a radius Ry/2 < R < Ry such that

/2” ou*(R, )
0

00
Next, we pass to a smooth sequence {u,,}, u, € C*®(Q;RY), with the property

Uy —u*  in WEHOQ;RY) as m — oo, (18)

Ro 2T
derg/ / |[Vu*|dfrdr <c<oo.
o Jo

‘d0§c<oo. (17)

hence it is possible to estimate
O(Up, — u*)

Ro Ro 2T
hp(r)dr =
fotmerar = [
Ro 2
< / / IV (U, — u*)|dOrdr "= 0.
0 Jo

Thus, h,,(r) — 0 in L'((0, Ry)) as m — oc, and we may assume in addition to (17) that
R is chosen to satisfy
27
J

dédr

df <c< o0, (19)

Oum (R, 0)
00
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where the constant ¢ does not depend on m. As a consequence of (19) it is finally
established: there is a radius R € (Ry/2, Ry) and real number K > 0 such that for all
meN

|UmoB ()| < K, (20)

and we have found suitable boundary data to consider the variational problem

Jslw, Br(zg)] := /B( )f(Vw)d:E—l—g/ |Vw|* dx

Br(zo)
— min in u,+ W5 (Bgr(z); RY). (P™)

If 6 = §(m) is chosen sufficiently small (analogous arguments are given in Section 2) and
if we denote by v, the unique solution of problem (P}"), then

Js(m) [V, Br(70)] < Js(m) [Um, Br(z0)] < ¢ (21)

follows with a constant ¢ not depending of m. Moreover, by (20), we find (citing for
example the maximum principle given in [DLM] or the convex hull property shown in
[BF4])
[0m | oo (B(ao)my) < K - (22)
At this point we observe that the a priori gradient estimates established in Theorem 6.1
of [Bi3] only depend on the data and the constants occurring on the right-hand side of
(21) and (22), respectively. As a result, a real number ¢ > 0, independent of m, is found
such that
190 Loy < - (23)

Step 2. Given u*, u,, and v, as above we choose n € C*(Bg(zo)), n = 1 on Bgr(xg) —
Bsgja(wo), n = 0 on Bgjs(wo), and let w},: Bg(zo) — RY,

1. * 1 =u
Wy =V + (0" — um), hence Wy ap.00) = YoBa() -

We then claim that w,, provides a J|g,(s,)-minimizing sequence w.r.t. the boundary data
Upn(so): N fact, (18) implies as m — oo

‘ [ 9um) s a

Sc/ Vi, — Vu*|dz — 0,
Br(zo)

and if we decrease ¢ (if necessary), then we obtain from the minimality of vy,

/ () 2 < o, Bale)] < i, B
BR Zo

me LR(xo)f(Vu*)dx. (24)

Moreover, we have

‘ /B (70— [ (V) da



which, together with (24) and the minimality of u* (recall that u* € W} (€;RY) is a local
J-minimizer) implies

/ F(Vwk)dz ™5 / F(Vu)dz, (25)
Br(wo) Br(wo)

i.e. the assertion is proved.
Next we claim that the sequence {w] } can be extended to a J-minimizing sequence

from uo+ W RY).
To this purpose we recall that, according to the previous sections, there exists a

J-minimizing sequence from uy+ Wi'(Q; RY), which we now denote by {u}}, such that
we even have uj, — u* in W}, (QRY) as k& — oo. With [BF1], Lemma 7.1 on local

comparison functions, we find a J-minimizing sequence {u}} from uo+ W' (;RY) such
that for any k£ € N and for a suitable ball Bp (), R < R/, the identity

uZ|BR, (z0) = U[Bpi(zo)» I Particular uZ‘BBR(:EO) = UBp(zo) »
holds true. On the other hand, for all m € N we also have w}n‘aBR(wo) = u‘*aBR(xo), hence,
on account of (25), it is possible to extend the sequence {w) } to a J-minimizing sequence

{wy} from ug+ W(2;RY). Summarizing these remarks, it is proved in the second step
that L'-cluster points w* of the extended sequence {w,,} are generalized minimizers in
the sense that w* € M.

Step 3. Finally we recall that partial regularity for u* follows from [AG]| (compare [BF1]
and [Bi2]), i.e. there is an open set €y C Q of full Lebesgue measure, |2 — Qq| = 0, such
that

u* € CH*(Q; RY).

As a consequence, the duality relation
o=Vf(Vu*) in Qq

is derived in [BF1]. Here o denotes the solution of the dual variational problem (see
[ET] for precise definitions and a detailed discussion). Let us just note that o is uniquely
determined (see [Bil]) and that on the open set ) it is admissible to perform the variation
of o as described in [BF2|, Lemma 5.1 (compare [Se4] for an earlier discussion of this
minimax inequality). As a result, any generalized minimizer v* € M is also seen to
satisfy

c=Vf(Vv*) in Q.

Since w* € M was proved in Step 2, we obtain
Vw* =Vu* a.e.
On the other hand, recall that
Win|Bry»(w0) = Win{Bpyp(z) = Vm|Brya(ao)
hence the a priori estimate (23) yields

||VU*||L°°(BR/2($0);R2N) S C.
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Note that we really have local Lipschitz continuity of u*, since u* € W (;RY), in
particular V*u* = 0, was already shown in the last section.

Once we have established local a priori gradient estimates, local C'"*-regularity fol-
lows in a standard way (see [GT] for the scalar case and [GM], [MS] in the vector-valued
setting, some details are given in [Bi2]). Note that in the vector case N > 1 condition (3)
is chosen in accordance to [GM]. To complete the proof of Theorem 3 in the case p < 3,
we finally observe that uniqueness up to a constant follows with the help of the above

mentioned variation of o (details are given in [BF2] and [Se4]). [
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