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MSC 2000: 11 F 33, 11 B 68

Abstract

We prove congruences of shape Ey,, = Ey-Ep( mod N) modulo powers
N of small prime numbers p, thereby refining the well-known Kummer-
type congruences modulo these p of the normalized Eisenstein series
E).. The method uses Serre’s theory of Iwasawa functions and p-adic
Eisenstein series; it presents a rather general procedure to find and
verify such congruences with a modest amount of numerical calculation.

1. Introduction, nature of results.

We let E}, (k > 4 even) be the normalized Eisenstein series of weight &
for the modular group SL(2,Z), given through its g-expansion

(11) Ek =1- Z—k Zak_l(n)q”.

Here B, =1,—1/2,1/6,0,—1/30, ... are the Bernoulli numbers defined

by
X E ﬁX,andog(n)zdgnd.

k>0

We regard the E}, as formal power series in the indeterminate ¢. Quite
generally, if f, g € Q[[¢]] are power series and N is a natural number,
f = ¢g (mod N) means that f and g are both N-integral and the
congruence holds coefficientwise. A weakened version of one of our
results is

1.2 Theorem. Let k > 4 be an even natural number and N = 27-3*.
53.7%2.13. Then

Ek—|—12 = Ek . E12 (mod N)

This congruence was announced in [1], where some related arithmetic

properties of the E} were studied.
1
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Let p be a prime number, p > 2 to fix ideas. It is an easy consequence
of (1.1) and the congruences of Kummer and Clausen-von Staudt for
the By (see e.g. [9] p. 55, p. 241) that

Ey
Ex

1 (mod p") ifk=0(mod (p—1)p" ') and

(1.3) E, (mod p’) ifk=/¢(mod (p—1)p"),

k,¢ > r+1, and (k,p), (¢,p) are regular. The last condition signifies
that p doesn’t divide (the numerator of ) By. It depends only on the
residue class of k£ (mod p — 1) and therefore holds simultaneously for
k and /.

The congruence (mod 13) in (1.2) immediately results from (1.3), as
is the case with the congruences modulo 7, 5 or 32. We will reduce the
verification of the stronger congruence (1.2) to a (small) finite number
of numerical checks. There are three steps:

(a) Of course, (1.2) may be proved separately for the relevant powers p”
of p=2,3,5,7,13. Fixing such a p, we replace Ej by its “p-smoothed”
version E} (see section 2), which doesn’t essentially affect the validity
of (1.2).

(b) The congruence
(1.2%) Ey 1, = E}; - Eip (mod p")

is doubly infinite (in £ and n = exponent of ¢") and can therefore not
be directly verified through calculation.

For n > 0 and any modular form f, let a,(f) be its n-th Fourier
coefficient. Fix n > 0 and consider the function

an : k— a,(Ey, o — EE).

On each residue class modulo p — 1 (that is, if p # 2; as usual, this
must be somewhat modified for p = 2), a,, gives rise to an Iwasawa
function f : Z, — Z, (see sect. 3, 4). Now it is a basic property of
Iwasawa functions g that:

(1.4) 9(Z,) Cp'Zy < g(i) =0 (mod p"),i=0,1,...,7r — 1L

Therefore (1.2*) holds for all £ on the n-th coefficient if and only if this
is the case for a certain finite set Ky = Ko(p") C K := {4,6,8,...} of
weights k£ depending only on p” but not on n.

(c) We now use the g-expansion principle in the following form:
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(1.5) Let f = Zanq” be a modular form of weight ky with coeffi-
n>0

cients in Ly = QN Zy. If a, = 0 (mod p") for n < ko/12 then

f=0(mod p"), i.e., all its coefficients a,, satisfy the congruence.

The principle follows with easy considerations like e.g. [1] 2.3 from
the traditional form as given in [5] pp. 144/145 or [2] pp. 132-134,
say. See also [8], where the case r = 1 is treated. Applying it with
ko := max Koy(p") + 12, we reduce the proof of (1.2) to its checking for
a finite number of pairs (k,n). In fact, (1.2) turns out as a special case
of the following principle (1.6), the parameters of which are specified
in (5.3).

1.6 Principle. Let h € K = {4,6,8,...}, p a prime number, C C K a
residue class modulo (p —1)p, and a4 := an(Egsn — Ex - Ep). There
exists a finite subset Cy(h,p") of C and a constant ny(h,p") such that

ankpn =0 (mod p") for n < mng and k € Co(h,p")
implies
Eyyp = Ey - By (mod pr) forallkeC, k>r+1.

Whether or not the “initial congruences” for n < ng, k € Cy are satisfied
can in general be considered as random; the fact that they hold in the
situation of (1.2) so as to conclude (1.2) from (1.6) is largely due to
the trivial identities EZ = Ey, FgE, = Eyy, EsEg = E14, which come
from dim M, = 1 for the spaces M} of modular forms of weights
k = 8,10,14. In case such “initial congruences” are satisfied, results
like e.g.

(17) k=0 (mod 6 - 7) = Ek:—i—lO = Ek . E10 (mod 74)

come out. A sample of similar congruences is given in section 5. Since
the first coefficient of E}, is

(1.6) also produces congruences for the Cy, which apparently have es-
caped general attention so far. E.g. from (1.2),

(18) Ck_|_12 = Ck + 012 (mod N)

But note that congruences like (1.8) need not necessarily extend to the
Ey (i.e., to the higher Fourier coefficients; see (5.8)). This contradicts
the general expectation that “all congruences between Bernoulli num-
bers turn over to Eisenstein series”.
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All the present results are mere corollaries to Serre’s theory of Iwa-
sawa functions as presented in [6]. The author takes the opportunity
to express his gratitude to Prof. Serre for enlightening and very helpful
correspondence about these questions [7].

2. p-adic Eisenstein series.

Write By /k = Ni/Dy with integers Ny and Dy, Dy > 0, (N, Dy) = 1.
Then Nj, is also the numerator of By/2k, and we read off from (1.1)
that Ey € N, 'Z[[q]] with precise denominator N;. In particular, FEj
is p-integral if (k, p) is regular, which will usually be assumed in what
follows. We now fix a prime p and write

B; = (1-pYH)B,
C;; = —;—’2 = (1 —pkil)*l(]k
(2.1) oin) = Y d
dln,(d,p)=1
E; = 1+C;) oi(n)g"
n>1

The E}; are Serre’s normalized p-adic Eisenstein series; due to our reg-
ularity assumption, they are p-integral and satisfy

(2.2) E, = E; (mod p*t).

3. Iwasawa functions (p > 2).

We collect the facts on Iwasawa functions needed in the sequel. Proofs
and more details can be found in [6], section 4.

Suppose that p > 2, and let U; be the group of 1-units in Z;. Then
U, is topologically isomorphic with the additive group (Z,, +). Choose
a generator u = 1 + 7 with v,(7) = 1 of Uy, for example u = 1 + p.
An Iwasawa function on Z, is a function f : Z, — Z, that may be
written

(3.1) fls) =Y an(w —1)

with a formal power series g(T") = > a,I™ € Z,[[T]]. (Note that the
function f, : s — v° is well-defined for any v € U; in view of the
binomial theorem.) Clearly, the definition is independent of the choice
of the generator u, and f <> g provides an isomorphism of the algebra A
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of Iwasawa functions with Z,[[T]]. There are several other descriptions
of A, e.g. as the uniform closure of the algebra generated by the f, in
the algebra C°(Z,,Z,) of continuous Z,-valued functions on Z,, or as
an algebra of distributions on Z, (loc. cit.).

Next, recall that each function f € C°%Z,,Z,) has a unique Mahler

eTpansion
f&=30.(")

n>0
with coefficients 6,, € Z,, 6, — 0, viz.,

= Y (1) (Z‘) Fln—1).

1

It is a crucial fact ([6] Théoreme 15) that for ¢ € A, actually 6, =
0 (mod p") holds. Thus criterion (1.4) results, i.e.,
(3.3) 9(Z,) Cp'Zy, < g(i) =0 (mod p"), i=0,1,...,7r—1

for Iwasawa functions g.

Let now X = a + p'Z, C Z, be a residue class, and choose an affine

isomorphism o : X =, Z,. A function f : X — Z, is called
Iwasawa on X if f o ™! is an Iwasawa function on Z,. This definition
is meaningful and independent of the choice of «, as results from

3.4 Proposition. Let f be an Twasawa function on Zi,.
(i) For any a,b € Z,, s — f(as +b) is an Iwasawa function on
Z,.
(ii) f restricted to X is an Iwasawa function on X.

Proof. Rearrangement of power series. We omit the details. [

We still need a further extension of the definition. Consider an arith-
metic progression

(3.5) C={kk+(p-1Dpk+2(p—-1)p' ...} CcK=1{4,6,8,...}

modulo (p — 1)p’. A function f : C — Z, is said to be Iwasawa if
it is the restriction to C of an Iwasawa function (in the above sense)
[+ X — Z, on its topological closure X = k + p'Z, in Z,. For such
functions, we can apply the next result, which is an easy consequence
of (3.3) and (3.4).

3.6 Proposition. Let f be an Iwasawa function on C. Then
f=0(mod p") if and only if there are r consecutive elements k1, ky =
ki+®@—10p" ...,k =k + (r—1)(p— 1)p" of C such that f(k)) =
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f(k2) = -+ f(k;) =0 (mod p").
Finally, the relation with the Eisenstein series E}, is as follows:

3.7 Theorem (Iwasawa, Serre). Let (k,p) be reqular and C C K the
class (mod p — 1) determined by k. For each n > 0, the function
k — an(Ef) is an Iwasawa function on C.

Remark. The corresponding property is stated in [6] p. 245 for the
function Gj = E;/C;. Thanks to our regularity assumption, C} is
a p-adic integer for each k € C, equal to 2@)_1(1 — k), where (, is a
branch of the p-adic zeta function. Therefore, £ — C} is an Iwasawa
function by Iwasawa’s original results [3] [4], and (3.7) follows from the
statement as given in [6].

4. Iwasawa functions (p = 2).

Here we have to modify some definitions and statements about Iwasawa
functions. We briefly state the necessary changes, see [6] for details.
Let Uy = 14475 be the subgroup of 2-units in Z3, which is isomorphic
with (Zy,+). Choosing a topological generator u of Uy, an Iwasawa
function f: Zs — Zs is a function of the form

(4.1) f(s)=g(u’ —1)
with some g € Z[[T]]. Again, f « g identifies the algebra A of

Iwasawa functions with Zy[[T]]. For g € A, the Mahler coefficients &,
satisfy even

(4.2) 0, =0 (mod 4"),

which gives rise to the equivalence

2

Proposition 3.4 and the definition of Iwasawa functions on classes X
(mod p') in Z, and on progressions

(4.5) C={k,k+2"k+2-2",...} CK
remain unchanged for p = 2. The substitute for (3.6) is

(4.3)  g(Zs) C 2%y < g(i) =0 (mod 27), i=0,1,... [’" — 1] .

4.6 Proposition. Let f be an Iwasawa function on C. Then
f =0 (mod 27) if and only if there are r' := [%] consecutive el-
ements ki, ki + 2%, ... kv = ki + [%] 2t of C such that f(k)) =--- =

f(ky) =0 (mod 27).

As to the analogue of (3.7), we can suppress the regularity condition.



Thus:

4.7 Theorem. For each n > 0, the function k — an(E}) is an Iwa-
sawa function on K = {4,6,8,...} C Zs.

5. Precise statement and proof of Principle 1.6.

Let p > 2 be a prime, h € K, and C C K a class modulo (p — 1)p* for
some t > 0. Suppose that (h,p), (k,p), and (k + h,p) are regular. If
we wish to prove that

(51) Ek+h = Ek . Eh (mod pr)

for some » > 1 and all K € C, & > r + 1, we may replace Ej by E}
and Ej.p, by E;_,, which doesn’t affect (5.1). For fixed n, the function
an : k +— an(E},, — Ef - Ey) on C is Iwasawa. Let ki, ks,..., k. be
the first r consecutive elements of C with k1 > r + 1, and put

k() = kr + h = Welght of Ek’!'_'—h' — EkT . Eh,
ng = nO(Ca h’apr) = [k0/12]

Suppose that
(53) an(EIH_h — Ek . Eh) =0 (mod pr)

holds for k = kq, ..., k. and n < ny. Then for these &k, Eyyp — Ex-Ep =
E} ., —E;-E, =0 (mod p") from the g-expansion principle (1.5), i.e.,
we have the congruences for all the coefficients a,. Referring to (3.6),
the Iwasawa function a,, satisfies a,, = 0 (mod p"), which in turn gives
(5.3) for alln > 0 and all k € C, k > r + 1, that is, (5.1). The same
argument, but (3.6) replaced by its counterpart (4.6), yields a similar
result for p = 2. Together, we have proved the following precise version
of Principle (1.6).

(5.2)

5.4 Theorem. (p > 2) Let p > 2 be a prime, h € K = {4,6,8,...},
C C K a class modulo (p—1)p*, and suppose that (h,p), (k,p), and (k+

h,p) are reqular for all k € C, i.e., p divides neither of the numerators
of By, B, Bgyp- For givenr > 1 and 1 <5 <, let

kj=min{k€eC|k>r+1}+(j—1)(p—1)p"
Put further ko = k. + h and ng = [ko/12]. Then the congruences
an(Ertn) = an(FEy - Ey) (mod p")
fork =k, ko, ..., k. and n < ng imply
Eyih = Ei - E (mod p")
forallk € C with k > r+ 1.
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et h € K and C C K be a class mod 2t. For givenr > 1 and
L= [TE], let

(p=2) L
1<5<r
kj=min{keC|k>r+1}+(j —1)2"
Put further ko = k. + h and ng = [ko/12]. Then the congruences
an(Ek+h) = an(Ek . En) (mod QT)
fork =k, ko, ... kn and n < ng imply
Ek—|—h = Ek: . Eh, (mod QT)
forallk € C with k > r+ 1.

5.5 Remarks. (i) If the requirements of (5.4) are fulfilled, then E}  , =
E} - Ey, for all k € C, but we cannot in general replace the E} by E.
(ii) As the proof shows, even the weaker requirement

an(Egyn) = an(Ey, - Ep) (mod ph)

for k = ki,..., k- and n < [Et"] suffices to derive the conclusion in
(5.4) (p > 2), and similarly for (5.4) (p = 2).

5.6 Corollary. (p > 2) Let the assumptions be as in (5.4) (p > 2).
The congruences

Ci+n = Cx + Cy (mod p")
for k =ky,..., k. imply the same congruences for allk € C, k > r +1.

(p = 2) In the situation of (5.4) (p = 2), the congruences
Ck+h = Ck + Ch (IIlOd QT)

fork =kyi,..., k. imply the same congruences for allk € C, k > r+1.

Proof. Recall that C}, = —123—'2, and Cj} is the linear term of E;. The
map k — C} is an Iwasawa function on C. Hence the result follows

from (3.6) and (4.6), respectively. O

(Strictly speaking, (5.6) is not a corollary to (5.4), but it is suitable to
place it here.)

Using a tiny bit of numerical calculation, we now show that (5.4) and
(5.6) apply to many situations “in nature” and produce explicit uncon-
ditional congruences, among which those of (1.2).
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(5.7) Let A(h,a mod ¢,p") (resp. B(h,a mod ¢,p")) denote the asser-
tion
Eyin = By - By (mod p")  (resp. Cypip = Cp + Cp (mod p"))

whenever £ = a mod ¢q. Here h and k are elements of . We also write
A(h,all,p") (resp. B(h,all,p")) if the congruence holds for all £ € K.
Clearly A(...) implies B(...).

5.8 Corollary. The following congruences A(h,a mod ¢,p") hold:

| h] a mod ¢ " | a mod gq | p" |
4 all 97 6,10 mod 2-3° | 3°
2 mod 2? 28 6,10 mod 2-3* | 37

2 mod 23 29 all 53

10 mod 2% 210 110,4,6,10 mod 4-5 5%

10 mod 2° 211 6,10 mod 4-52 5°

10 mod 2° 212 0,4 mod 6 72

74 mod 27 213 10,4,6,10 mod 6-7 7

202 mod 28 214 0 mod 10 112

all 33 0,10 mod 10-11|11°

0,4 mod 2-3 |3* 6 mod 12 132

6,10 mod 2-3%2|3° 6 mod 12-13|13°

6 all 26 0,8 mod 2-3% | 3°
0 mod 22 27 0,8 mod 2-3% | 37

0 mod 2° 28 8,108 mod 2-3* 38

8 mod 2% 2° 0 mod 4 5%

8 mod 2° 210 0,8 mod 4-5 5°

8 mod 2° 21 820 mod 4-52 5°

8 mod 27 212 all 72

136 mod 28 213 0,48 mod 6-7 73

all 3t 4 mod 10 112

0,2 mod 2-3 [3° 4 mod 10-11]11°

\ 8\ 0 mod 2-3 \35 H 0 mod 6 \ 73\
0] 0 mod 6.7 |7 | |
[12] 0,2 mod 12 [13%] ]
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Furthermore, we have the supplementary congruences B(h,a mod ¢, p"):

‘ h ‘ a mod ¢ ‘pr H a mod g¢q ‘ p" ‘
| 4110 mod 28 129 [0 mod 52]53%|
mod 16 1720 mod 30]317%|

8
12| 0 mod 12 1330 mod 28] 292
0 mod 12-13]13°

5.9 Remarks and Comments. (i) We listed only such congruences
which are not implied by the Kummer and Clausen-von Staudt con-
gruences (1.3). All of them are sharp in a stable sense, i.e., cannot be
sharpened by omitting a finite number of £’s.

(ii) Theorem 5.4 gives congruences only for such weights £ with & >
r=+1. It turned out that in each of the cases listed, that restriction was
redundant. We therefore omitted that condition also in the definition
of the assertions A(...) and B(...) in (5.7).

(iii) The assertion A(hy + hg,all,p") is a formal consequence of
A(hy,all,p") and A(hg,all,p"), etc. We listed for h = 8,10,12 only
such congruences which we didn’t recognize as implied from congru-
ences for hy and hy, h = h; + hy. E.g., we have A(10,a mod 6, 7?) for
a = 0 and 4, which however is a consequence of A(4,a mod 6,7?) and
A(6,all, 7?). In particular, the congruences stated in (1.2) follow from
A(4,all, 27), A(6,all,3%), A(4,all,5), and A(6,all, 72).

(iv) In all cases analyzed, we found the following behavior (which can
be read off from the table in the cases h = 4,6 and p = 2,3): If a con-
gruence A(h,a mod ¢,p") with r > 2 holds, there exist one or several
classes a’ mod ¢ - p such that also A(h,a’ mod q - p,p" ™) is satisfied.
This indicates that the functions k£ — a,,(E},, — Ej - E) should have
a common zero k in Z,, k = a (mod ¢) = a’ (mod ¢-p) = ..., and
presumably each “super-Kummer congruence” as listed in (5.8) comes
from such a zero.

(v) We point out that the “natural” extensions of the congruences
B(h,a mod ¢,p") (see end of (5.8)) to Ej fail to hold, even after
omitting small values of k.

The proof of (5.8) is straightforward from checking the conditions of
(5.4) or (5.6), respectively. In order to convince the reader that at
least (1.2) can be achieved with a pocket calculator or even by hand,
we present the details in two significant cases. Let us first give a list of
the relevant C}, in factorized form.
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5.10 Table. Cy = 2%-3-5, Cy = —23-3%2.7, Cs = 2°-3-5, Cyp = —23-3-11,
Clo=2%-32.5-7-13/691, Oy = —23-3, C1g = 26-3-5-17/3617,
Clg = —2%-3%.7-19/43867, Cyy = 2* - 3-5%-11/283 - 617.

Proof of A(4,all,27): With the notation of (5.4) (p = 2) we have ' = 4,
ki, ko, k3, ks = 8,10,12,14, kg = 18, ny = 1. Thus we must check only
the linear terms, i.e., Cy14 = Cj, + Cy (mod 27) for the k;, 1 < j < 4,
which can be done with the table above. So we have the statement for
all £ > 8. However we know a priori that £y = E,-E4 and Eyy = Eg-E,.
O

Proof of A(6,all, 7%): We have to consider the three classes of 4,6, and
8 (mod 6) in K. In each case, the number ny of (5.4) equals 1, so we
are reduced to showing that Cy,6 = Cy + Cs (mod 72) for k = 4,10,
6,12, and 8,14. [

We found and verified the congruences stated in (5.8) using a list of
Bernoulli numbers By with £ < 3000. Accepting massive use of com-
puting power, it is certainly possible to extend the results to congru-
ences involving larger primes p, larger exponents r, and larger incre-
ments h. In that case it was preferable to replace the costly rational
arithmetic of large Bernoulli numbers by p-adic arithmetic. The actual
calculations were performed on MAPLE by Bodo Wack, whose help is
gratefully acknowledged.
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