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over finite fields

Ernst-Ulrich Gekeler

In friendship to Prof. Shreeram Abhyankar on the occasion of his
70 birthday

1. INTRODUCTION

We let N,(g) be the maximal number of F,-rational points of a (smooth,
projective, geometrically connected) algebraic curve X over the finite
field F,. It is bounded by (see [24])

(1.1) N,(g) < q+1+ g[2¢"?);

sharper estimates have been given by Thara [18] and Oesterlé-Serre (loc.
cit.). On the other hand, if (Xj)xen is a series of curves over F, whose
genera g(X}) tend to infinity, the ratio of numbers N(X}) of rational
points and g(Xj) satisfies

N(Xk) < q1/2 —1,

9(Xk)

as has been proved by Drinfeld and Vladut [3]. Several authors have
shown that equality can be achieved whenever ¢ is a square; whether
or not this holds for non-squares ¢ is an open question. A series (Xj)
of curves X} /F, that realizes the upper bound ¢*/? — 1 is called asymp-
totically optimal. Such a series has been constructed through explicit
equations by Garcia and Stichtenoth [5]. Namely, putting

(1.2) lim sup

(1.3) Fy :=Tp(x)
and for k£ > 2,
Fy = Fy_1(2),
where 2! 4+ 2z, = 2%t} x := 2 /241, the fields Fy are the function

fields of an a.o. series of curves X, over F,2. The curves X have been
identified by Elkies as cyclic coverings of rather special Drinfeld mod-
ular curves [4]. In fact, all the known examples of a.o. series of curves
are derived from some sort of (classical elliptic, Shimura, or Drinfeld)
modular curves.

In the present contribution we will show that an arbitrary series of
(Drinfeld or elliptic) modular curves X; = X,(/Vx) of Hecke type al-
most inevitably is asymptotically optimal. The results (Theorem 2.16

and 3.2) are far more complete in the case of Drinfeld modular curves,
1
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where we can give precise formulas for the relevant quantities, mainly
the numbers of F;:-rational points. This is why we focus on that case;
quite generally, Drinfeld modular curves are somewhat simpler to ma-
nipulate compared to their elliptic counterparts. In particular, the ap-
pearance of non-abelian automorphism groups of some elliptic curves
creates obstacles for calculating the precise numbers of rational points
of elliptic modular curves reduced modulo the primes p = 2 or 3. The
study of these cases, mathematically the most interesting, remains for
future work.

2. SOME DATA FOR DRINFELD MODULAR CURVES

We recall the ingredients necessary to describe Drinfeld modular curves.
Proofs and more detailed explanations may be found e.g. in [14], [9],
[10], [11], [27]. See also [12] for some related questions. We put

F, = finite field with ¢ elements, of characteristic p,
A = F,[T], the polynomial ring, and

K = F,(T), the field of rational functions over F,,

Ky = F,((T™')), the completion of K at its infinite

(2.1) place, supplied with its absolute value

= the completed algebraic closure of K,

= (O — K, the Drinfeld upper half-plane,
acted upon by the modular group

I'(1) = GL(2,A), through (‘C‘Z) (2) = Zji’g

“| |7’
7

2
5

For some monic N € A, we let

I'(N) = {yeT'(1)|y=1(mod N)} and

Lo(N) = {yel()]7=(;) (mod n)}.
the full and the Hecke congruence subgroup of conductor N. A modular
form of weight k for I'(1) is some function f: Q@ — Cy that satisfies

) f(Z) = (cz+d) f2), (2) € T(D);
(2.2) (ii) f is rigid-analytically holomorphic (e.g. [27]; lect. 6, 7).
"7 (iii) f is holomorphic at co (which here means that
f is bounded on the set {z € Q | infcx |2 — 2| > 1}).

The main example of modular form (the only one we presently need)
is as follows (see [14]). Let

1
(2.3) Ey(z) = > (az 1 b)F
(0,0)%(a,b)eAx A

be the Eisenstein series of weight k for I'(1). The sum converges for
z € Qand k > 0, and is non-zero if £k =0 (mod ¢ — 1). The resulting



function Ej is a modular form of weight k. Define further

9(2) = (T* =T)E;.(2) i
(2.4) A(z) = (TT —T)Ep_,(2) + (T7 — TY)EI}(2)
i(z) = g7 (2)/A(2).

The (g, A, j) are similar to the classical elliptic modular forms (gs, g3, A, j)
for SL(2,Z). In particular, the Drinfeld discriminant A vanishes nowhere
on (), and j defines a biholomorphic isomorphism

(2.5) j: T\ Q= Cu.
Let now I' C I'(1) be a congruence subgroup, i.e., I'(N) C T" for some

N € A. In view of (2.5), the set I\ Q is the set of C,,o-valued points of
some smooth affine algebraic curve Yr:

(2.6) '\ Q=Yr(Cx),

which can be defined over a finite extension Kt of the field K = F, (7).
We put Xr/Kr for the smooth projective model of Yr/Kr. Curves of
shape Y or X are referred to as Drinfeld modular curves. The set of
Co-points of Xt is easily described:

(2.7) Xr(Cx) =T\ (QUP(K));

i.e., the cusps = points of Xt — YT correspond canonically to the orbits
of T on the projective line P! (K).

2.8 Examples. (i) If I' = I'(1) then by (2.5), Y/(1) := Yp( is the
affine line A" and X (1) := Xp¢) = P! with coordinate j, and Xt has
one cusp, corresponding to j = oo.

(ii) If I' = I'(IV) for some non-constant N € A, then X (N) := Xp(w)
is a Galois cover of X (1) with group I'(1)/T'(N) - Z — GL(2, A/N)/Z,
where Z = I} is the group of scalar matrices with coefficients in F,. It
is ramified above j = 0 (i.e., at the elliptic points of X(NN)) and above
j = oo (i.e., at the cusps). The cusps I'(N) \ P}(K) are in canoni-
cal bijection with the set (A/N)?,.,/F:, where (A/N)2, = {(a,b) €
(A/N)? | aA/N +bA/N = A/N}.

(iii) If I' = [o(V) then Xo(N) := Xpy(n) is the quotient of X (V) by
the subgroup of upper triangular matrices in I'(1) /['(N) - Z. Tt is called
a Drinfeld modular curve of Hecke type.

We collect some properties of the curves X,(/V) and their “affine parts”
Yo(N).

(2.9) First, Yp(N) solves a certain moduli problem, which explains the
name. Viz., Y5(N)(Cy) corresponds one-to-one to the set of isomor-
phism classes of triples (¢, n, ¢'), where ¢ and ¢’ are rank-two Drinfeld
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A-modules and n is a cyclic isogeny of order N. (For definitions and
general properties of Drinfeld modules, see [16] and [27].)

(2.10) All the curves Xo(/N) are defined over K and conservative, i.e.,
their genus is stable in constant field extensions [21]. The function field
of Xo(NNV) over K (or over C,) is generated over K (over Cy) by j and
Jjn, where jy(z) = j(INz). The functions j and jy satisfy ®xn(j, jn) =0
with the modular polynomial ®y (X,Y) € A[X, Y], which is symmetric
in X,Y and explicitly computable ([1] [20] [17]). It provides a (singu-
lar) plane model for Xy(N).

(2.11) Xo(N)/K has good reduction at all primes P € A with P /N.
Putting Fp = A/(P) and L for the algebraic closure of the field L,
there results a reduction mapping

red : Xo(N)(K8) — Xo(N)/Fp (F28),

which happens to be bijective on cusps (points above j = o0) and on
elliptic points (points above j = 0). Here Xo(NN)/Fp denotes the curve
Xo(N) reduced mod P.

In order to state some quantitative properties, we introduce the follow-
ing arithmetic functions. Let

N= ][] P
1<i<s(N)

be the factorization of the monic N € A into pairwise different monic
primes P;, of degree d;. Put ¢; := ¢% and

p(N) = HQ” Ngi— 1)

e(N) = Hq g

K(N) = H(q'l: ril? q[(“_lm]) (“[ . 17 = GauB bracket)

2

(2.12)

r(N) = 1, if all the d; are even, and 0 otherwise,
t; = 0,1,2if (d; = 1 and r; = 1,2, > 3, respectively) and ¢; = 0 if
d; > 1. Finally, u(N) =t; -toif (¢=2and P, =T, P, =T — 1 are
divisors of N), and u(N) = 0 otherwise.
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2.13 Theorem. With the above notation, the genus go(N) of Xo(N)
18 given by

(V) = (g + (V) = 2201 r(N)g(g = 1) + (¢ + 1)(g = 2)]
¢ —1

go(N) =1+

The number of cusps of Xo(N) is 2° + ”(]Zf#. Among these, precisely

25 + 25713 4 + 257 2u(N) are K-rational.

These three formulas are proved in [7] Satz 3.4.18, [13] 2.14-2.16 and
[12] 6.3, 6.7, respectively.

Let now P € A be a monic prime coprime with N. We put ng) for the
quadratic extension of Fp = A/(P) and F2¢ for its algebraic closure.

Upon reducing modulo P, we get a curve Xy(/N)/Fp, on which a cer-

)

tain number of ]Fg -rational points may be predicted.

(2.14) We let X(P) — F8 be the set of supersingular Drinfeld j-
invariants in characteristic P (see [8] and [10]). It is known (loc. cit.)
that 3(P) is contained in Fg) and has cardinality (¢ —1)/(¢®> — 1) or
(¢*—q)/(¢*> — 1)+ 1 if d = deg P is even or odd, respectively. Further,
0 € X(P) if and only if d is odd.

2.15 Proposition. Let z € Xo(N)/Fp(F28) be a supersingular geo-
metric point, i.e., one above a supersingular point s € X(P) —

X(1)/Fp(F8) =5 PL(FY%). Then z is already defined over F2.
j

Proof. Here we assume the reader familiar with Drinfeld modules and
their moduli theory. The point z is represented by a triple (¢, u, ¢'),
where ¢ and ¢’ are supersingular rank-two Drinfeld A-modules over
IE‘}lg and u : ¢ — ¢ is a cyclic isogeny of order N. If F' and F’
denote the respective Fp-Frobenius endomorphisms of ¢ and ¢, then
F? =a-¢p, F”” = d' - ¢» with automorphisms a of ¢ and a' of ¢'. Here
¢p resp. ¢'p describe the actions of P via the Drinfeld module structure
¢ resp. ¢'. Recall that Aut(¢) = Fy if j(¢) # 0 and Aut(¢) = F,, if
j(¢) = 0. In view of (2.14), we may assume that ¢ and ¢’ are defined

over ]Fg). Replacing ¢ and ¢’ by twists over ]Fg) if necessary, we can
achieve that moreover a = 1 = a’. The resulting triple (@, u, @) still

represents the same point x of the modular curve. Now we see from

uo ¢p = ¢pou =wuo F?2 = F” oy that u has its coeficients in ]Fg),

and thus z € XO(N)/IFP(IFg)). O
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The genus go(N) of Xo(N)/Fp is given by (2.13), and (2.15) yields a
lower bound for its number of Fg) -rational points. This suffices for the
following assertion.

2.16 Theorem. Let (Ni)ken be a series of elements of A coprime

with the prime P, and whose degrees tend to infinity. Then the series

of curves Xo(Ny)/Fp is asymptotically optimal over Fg).

Proof. (i) Let d = deg P. By (2.13), go(N;) is €(N)/(¢* — 1)+ terms
of smaller order of magnitude. We are thus done if we show that the
number #; of ng)-rational points of Xo(Ny)/Fp satisfies
d
-1
(+) #ez

~ q2 _ 16(Nk)

(ii) The canonical map Xo(N;) — X (1) has degree ¢(/Vy) and is un-
ramified above (j # 0,00). Above the point (j = 0) of X(1), there
are precisely r(IN;)2°(V¥) geometric points of X (/) which are unram-
ified and [e(Ny) — r(IN;)2°(V¥)] /(g + 1) points which are ramified with
index ¢ + 1 ([7] p. 77/78). As follows from the interpretation of our
curves as moduli schemes, this pattern remains unchanged upon reduc-
ing (mod P), i.e., for Xo(Ny)/Fp — X(1)/Fp. Hence we get

€(Ni) + qr(Ng)25(Ve)
qg+1

[#(3(P)) — 1]e(Ng) + if d := deg P is odd,
and

#(X(P))e(Ng) if dis even
for the number of supersingular geometric points on X(Ny)/Fp. These
are all Fg)-rational by (2.15). In both cases (d even/odd), our inequal-
ity (x) holds, as was to be shown. O

2.17 Remark. Viareduction ( mod P), the rational cusps of Xo(N)/K
yield Fp-rational cusps of X,(N)/Fp. Their number is given by (2.13),
taking (2.11) into account. While their asymptotic contribution is neg-
ligible, their presence is responsible for a certain number of record
curves for fixed parameters g and g (see section 4). On the other hand,
cusps of Xo(N)/Fp which are rational over ng) but not over Fp can
occur only in very restricted cases.

3. CLASSICAL ELLIPTIC MODULAR CURVES

The following well-known heuristical principle is frequently and fruit-
fully applied to shift information (in both directions) between the
“characteristic zero” and the “characteristic p > 0” world: The data



7

in the left and right column play similar parts in the respective arith-
metics of Q and of K =F,(T). (3.1)

Number field side Function field side
Q K =TF, (T)
Z A=F,[T|
- archimedean I non-archimedean
R 4. = Koo, . 7 =

absolute value absolute value

complex upper Drinfeld upper

H = half-plane = half-plane

I'(1) =SL(2,Z) modular group  I'(1) =GL(2, A)

['(N), To(N), NeN ['(N), Ty(N), Ne A
elliptic curves Drinfeld A-modules of rank two

X(N)=T(N)\(HUP'(Q)) X(N)=T(N)\ (QUP(K))
full level modular curves
Xo(N) Xo(N)
elliptic/Drinfeld modular curves of Hecke type
elliptic modular forms Drinfeld modular forms

92, g3, A= qH(l - qn)247 .7 g, A7 .7 as in (24)

For an extension of the table, which includes e.g. the arithmetic of
cyclotomic extensions of Q and of K, see the book [16]. But there are
also limitations to the analogy. For example, the elliptic modular curve
X(N) is defined over the N-th cyclotomic field Q(N) = Q(e2™/V),
while the Drinfeld modular curve X (V) is defined over K, (), the
counterpart of the maximal real subfield Q; (N) of Q(V) (see [9]).

As a positive example, we translate Theorem 2.16 to classical modular
curves. Of course, there is an abundance of old and new publications
about this topic, but surprisingly, our Theorem 3.2 below seems not to
have been recognized and explicitly stated before in the literature. In
[26], only a special case is mentioned. Let us first fix some notation;
our standard reference here is Shimura’s book [25].

For N € N, let X(/V) be the elliptic modular curve of Hecke type of
conductor N. It is a smooth projective curve over Q with set of C-
points Xo(N)(C) =To(N) \ (HUP(Q)). If p € N is a prime coprime
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with NV then X,(/V) has good reduction (mod p), which yields a curve
Xo(N)/F,.

3.2 Theorem Let (Ni)ien be a series of natural numbers coprime
with the prime p and tending to infinity. Then the series of curves
Xo(Ng) /T, is asymptotically optimal over F.

Proof. The structure of proof is identical, mutatis mutandis, with that
of (2.16), so we restrict to sketch the principal points.

(i) The genus of X, (V) is given in [25], Propositions 1.40 and 1.43, pp.
23-26. It is

0% = V4 o 10g ),

where €(N) = deg(Xo(N) : X(1)) > N is the obvious Z-analogue of
the former €(V).

(ii) All the supersingular geometric points of X,(/N)/F, are defined
over F,2. This is shown like (2.15); see [26] for a special case.

(iii) It now suffices to show that the number #(N) of supersingular
points of X, (V) /F, satisfies

p—1
(+) #(N) 2 L),

(iv) The number #(1) of supersingular j-invariants in characteristic p

is given by #(1) = 1 for p =2 and 3 and #(1) = 1’1;21, ’%27, 1%25, ’%213 for

p=1,5,7,11 (mod 12). Some supersingular point j € X(1)/F,(F,)
is unramified in

v Xo(N)/F, — X(1)/F,
if j is non-elliptic, i.e., if j # 0,1728. For such j, we have #(ay'(j)) =
€(N).
(v) Let first p > 3, so 0 # 1728 € F,. Then j = 0 is supersingular if
and only if p = 5,11 (mod 12), in which case #(ay' (j = 0)) > C(év),
since all the points above j = 0 are ramified with index 1 or 3.
Similarly, j = 1728 is supersingular if and only if p = 7,11 (mod 12),
in which case #(ay' (j = 1728)) > e(év ) since the possible ramification
indices are 1 or 2.
In all four cases, we get > 2Z_Le(IN) supersingular points on Xo(N)/F,,
i.e., (x) holds.
(vi) Next, we consider the case p = 2. The only supersingular invariant
is j = 0. The geometric automorphism group of an associated elliptic
curve has order 24 (in fact, it is isomorphic with SL(2,F;), see [2]),
hence all the points in ay'(j = 0) are ramified with index a divisor of

12, which gives #(ay'(j = 0)) > % = ELe(N).
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(vii) Finally, for p = 3, the automorphism group corresponding to the
only supersingular invariant j = 0 has order 12, and so #(a~'(j =

0)) > 4 = 2le(N). O

3.3 Remark. The practical importance of (2.16) is in applying it with
a prime P of degree one, without restriction, P =T or T'— 1. Then it
produces a wealth of essentially different asymptotically optimal series
(Xk)ken over Fp =TF,. Applying it to primes P of degree d > 1 yields
curves X;/F, (¢ = ¢%), which in general seem to have less rational
points over IF((;) than curves constructed over the same field with a
prime P of degree one.

The situation is different with Thm. 3.2, since unlike the function field
case, we cannot reduce the study of curves over F,, with “large” primes
p' to the study of such over I, with “small” primes p through “base
extension”.

4. EXAMPLES

We restrict to presenting examples derived from (2.16) and some com-
plementary results of Andreas Schweizer [23].

(4.1) We first let P = T — 1 (then Fp = F,) and N, = T* (k > 3).
From (2.16),

k—1 gk—b/2—1
¢ —q 24— k odd

p} k even,

and the number of supersingular points on Xo(Ny)/Fr_; is ¢* 1. De-
pending on k and ¢, there are also some cusps on Xo(Ng)/Fr_; which

are ]Fg?)-rational (in most cases, already Fr-rational). We give a few
values, which show that the curves so found are not bad but fail to be
optimal. The last two columns contain the maximal numbers known of
rational points of curves for the given (g, g) and the theoretical upper
bounds. These are taken from [6].
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4.2 k| 9(Xo(TF)) | #{F,2-rational points} | maximal | upper
Table: larger or equal to # known | bound
7=2 |3 1 8 9 9

4 3 14 14 14

2 9 24 26 26

6 21 40 41 47

7 49 72 81 90
=3 |3 2 13 20 20

4 8 34 38 47

3 32 91 92 130

rational points
genus

some record curves, by passing from Xo(N) to its quotient X, (N) by its
canonical involution. We briefly describe the construction and some of
its output. The theory necessary to determine the invariants of X (V)
has been developed by A. Schweizer, to whose papers [19] [20] [21] [22]
[23] we refer for proofs, background, and more examples.

We can considerably optimize the ratio , and effectively find

(4.3) Let N € A = IF,[T] be non-constant and monic. On the mod-
ular curve Xy(N) we have the Fricke or Atkin-Lehner involution w =
w(N), which may be described either through the matrix (yi) €
GL(2, K) (which normalizes I['j(N) and therefore induces an involu-
tion on Ty(N) \ (QUPY(K)) = Xo(N)(Cw)) or through its action on
the objects of the moduli problem for X,(N). It is compatible with
reduction (mod P) and therefore yields an involution w = wW(N) on
Xo(N)/Fp. Since the Xo(N) are ordinary, the Hurwitz formula gives

9(X.(N)) = S[9(Xe(N)) +1 - #{fixed points of w}]

with ¢ = 1 in characteristic two and ¢ = % otherwise. On the other

hand, ’
#{]Fg)-rational points on X, (N)/Fp} >
%#{Fg)-rational points of X, (N)/Fp}.
Hence the ratio becomes larger for X, (N)/Fp, and it is reasonable to
search for “good” curves among them. Several problems arise:
(a) What is the number of fixed points of w?
(b) Describe the “reduction (mod P)-mapping” on fixed points!
(c) Which ones of the fixed points of w are Fg) -rational?
The numbers in (a) can be expressed through class numbers of A-

orders in certain quadratic extensions L of K (see [19]), and are difficult
to control in general. But in characteristic two, the relevant field L
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becomes the inseparable extension K(vT) = F,(v/T) of K, where
the class number problem collapses, and Schweizer found an explicit
formula (Lemma 3 in [23]) for the number in question. As to (b) and
(¢), although it seems difficult to give a uniform description, the number

of different ]Fg)—rational fixed points of w can be calculated in all cases
of modest size. As a result, we cite the following two examples from
[23]. Both these curves realize the maximal number of rational points
presently known for their parameters.

(4.4) Let g=2and N =T°(T?+T +1). The curve X, (N)/Fr_; has
genus 27 and at least 50 rational points over ]F(TQ)_1 = y.

(4.5) Let ¢g=4 and N =T°+ T+ T + 1. The curve X (N)/Fr has
genus 34 and at least 161 rational points over ]Fgg) = Fis.

4.6 Remark. Following the above strategy, one finds that for ¢ =
2 the curves X, (T**1) and X,(T*) have the same genus (given in
(4.1)). It deserves further investigation whether this is coincidence or
has a structural reason. While the series (Xo(7*)) has the advantage
of being even a tower (which fails to hold for (X, (T*%1)),cn), the
X (T*1)/Fr_; present slightly more (viz., > 281 4+2k/2=1 1 4) rational
points over ]Fg?)_l, as compared to 2871 + 8 for Xo(T*)/Fr_; (k > 6
even).
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