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Abstract
We consider strictly convex energy densities f: R® — R under nonstandard

growth conditions. More precisely, we assume that for some constants A\, A and for
all Z,Y € R” the inequality

A1+|212) 5[V < D*f(Z)(Y,Y) < A1 +|Z2) 7 |Y]?

holds with exponents y € R and ¢ > 1. If u denotes a bounded local minimizer
of the energy [ f(Vw)dz subject to a constraint of the form w > 1 a.e. with a
given obstacle ¢ € C1*(€2), then we prove local C1®-regularity of u provided that
g < 4 — p. This result substantially improves what is known up to now (see, for
instance, [CH], [BFM], [FM]), even for the case of unconstrained local minimizers.

1 Introduction

Given a smooth, strictly convex integrand f: R® — R and an open set {2 C R” we are
interested in the smoothness properties of (local) minimizers of the energy

Jw] ::/Qf(Vw)dx (1)

in a suitable energy class, where we also like to include obstacle problems into our consid-
erations. Here and in the following we concentrate on scalar problems, the unconstrained
vector-valued setting is discussed in [BF4] (compare [Bil] for more information on the
subject).

Given a power growth integrand f, it is well known how to obtain local C1®-regularity
in the unconstrained case (we just mention the names of De Giorgi, Moser, Nash, La-
dyzhenskaya and Ural’tseva), a discussion of (maybe degenerate) obstacle problems in
this setting is found, for instance, in [MiZ], [CL|, [LIN], [MuZ], [Ful] and [Fu2] — the
classical quadratic case is extensively treated in the monographs [KS], [Fr].

In recent years variational problems with nonstandard growth conditions became
more and more popular. For example, we may assume that f is bounded from above and
below by different growth rates ¢ > p > 1 (together with the corresponding estimates for
the second derivatives), typical examples are given by anisotropic integrands as considered
in Example 1 below. Studies in this direction were forced in particular by Marcellini —
starting with [Mal]-[Ma3]— with the main result that an appropriate upper bound for the
quantity ¢/p is sufficient for interior regularity. In fact, the existence of irregular solutions
was already observed by Giaquinta ([Gi]) if p and ¢ differ too much.

As a model case for a second class of nonstandard integrands one may think of f(Z) =
|Z|In(1+1Z]), a function of nearly linear growth which is studied in the theory of Prandtl-
Eyring fluids and of plastic materials with logarithmic hardening (an exhaustive overview
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is found in [FS]). Motivated by this logarithmic example, the analysis of variational
problems in general Orlicz-Sobolev energy classes starts with the papers [FO] (partial
regularity even for vector-valued local minimizers u: Q — RY) and [FM]. Note that [FM]
also covers the case of obstacle problems.

Finally, a unified and extended approach to “anisotropic energy densities defined on
Orlicz-Sobolev classes and satisfying a quite bad ellipticity condition” is given in [BFM]
(compare [BF1] for the vector-valued setting) by introducing the notion of (s, y, ¢)-growth:
the variational integrand f is bounded from below by some N-function F' (which in turn
has at least the growth rate s > 1) and the second derivatives are supposed to satisfy

A1+ ZP) 5[V < D*f(2)(Y,Y) < A(L+ |25 V]2 2)

for all Z, Y € R", for some positive constants A, A, for 4 € R and with the choice g > 1.
Hence, anisotropic power growth is covered by letting 2 — 4 = p = s > 1, the logarithmic
integrand from above satisfies (2) by choosing s =1, p =1 and ¢ = 1 +¢. For integrands
of (s, i, q)-growth, smoothness of local minimizers was proved under the so-called (s, u, q)-
condition relating the parameters s, p and ¢ in such a way that a variety of known results
is included and extended (see also [Bil] for a detailed discussion). From the technical
point of view, a (first) restriction on the parameters enters through an application of
Sobolev’s inequality, which gives uniform local higher integrability of the gradients of
some regularization.

Studying a linear growth situation it turned out in [Bi2] that much better results
can be obtained if the solution is supposed to be bounded (this assumption is reasonable
e.g. for Dirichlet problems with L*°-boundary data). In this case, Sobolev’s inequality
may be replaced by an additional application of the (non-differentiated) Euler equation.
This method enabled us to reach (up to a certain extend) the limit case p = 3 and
g = 1in (2) by the way covering p-elliptic integrands of linear growth with corresponding
generalized minimizers. Moreover, as outlined in [Bil], [BF3], we do not expect regular
solutions if (in the linear case) the left-hand side of (2) holds for some p > 3.

Let us focus again on variational problems with nonstandard but superlinear growth.
If we restrict ourselves to the study of bounded solutions, then, as a formal correspondence
to the results given in [Bi2], the relation 1 < ¢ < 4 — u (for anisotropic power growth
integrands this condition reads as 1 < ¢ < 2 + p) is expected to be the best possible one
inducing regular solutions. Note that the condition ¢ < 2 + p first appeared in [ELM],
where higher integrability (up to a certain extend) in the anisotropic, superquadratic,
vector-valued (p, ¢)-case was proved under some extra boundedness condition.

Nevertheless, the full strength of the above stated correspondence could not be shown
in the paper [BF2| on anisotropic variational integrals with convex hull property: instead
of 1 < g < 2+ p the exponents have to be related via 1 < ¢ < p + 2/3 (note that [BF2]
deals with the vector-valued situation, however, the restrictions on the exponents are the
same in the scalar case). This is caused by an essential difference to the linear growth
situation: in [Bi2] we benefit from the growth rate 1 = ¢ of the main quantity Vf(Z) - Z
under consideration. Given an anisotropic power growth integrand, we just have the lower
bound p < ¢ for this quantity.

As a consequence, the techniques again have to be changed in such a way that we do
not have to rely on the growth of the quantity V f(Z)-Z. This leads to the study of Choe’s
article ([CH]), where bounded solutions w.r.t. “anisotropic” integrands f(Z) = ¢(|Z]?)
(the “anisotropy” being formulated in terms of the second derivatives) are handled under
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the restriction 1 < ¢ < p+ 1 (note that this special structure of the integrand is required
for the scalar case as well as for vector-valued problems). As a third approach, his results
depend on a partial integration combined with a Caccioppoli-type inequality (of course
this type of inequality also enters the two other techniques mentioned above).

In [BF4] we gave a refinement of Choe’s Ansatz in the vector-valued case, where the
main assertion (local higher integrability of the gradient) in fact was shown for ¢ < 4 — p,
thus the formal correspondence to the linear growth situation holds.

In our paper we are now interested in the question whether Choe’s Ansatz can be
improved in the case of scalar obstacle problems as well. Following the above listed ref-
erences ([FM], [BFM], [BF1]-[BF4], [Bil], [Bi2]) we introduce a regularization satisfying
a Caccioppoli-type inequality which is slightly different from the one given in [CH|. This
again enables us to refine Choe’s reasoning with surprisingly strong results. Roughly
speaking we otain

MAIN THEOREM Consider a variational integrand f satisfying (2) with
q< 4— I

and a local minimizer u (with respect to the side-condition u > 1) of the energy J given
in (1). If u is of class L (€2), then u is of class CH*(Q) for any 0 < « < 1.

loc

REMARK 1 [t should be emphasized again that this result s new also in the uncon-
strained case.

REMARK 2 i) Recall that anisotropic power growth energy densities (compare Ez-
ample 1 below) satisfy our assumption whenever

g<2+p.

ii) As mentioned above, the condition q < 4 — i is in complete formal accordance with
the requirement p < 3 in the case of linear growth problems (see [Bil], [Bi2], [BF3]).

iii) In contrast to [BFM], Theorem 1.1, the lower growth rate s of the variational inte-
grand is not involved. We just make use of the bounds induced by (2).

iv) In terms of anisotropic integrands with (p,q)-growth, the main assumption of The-
orem 1.1, [BFM], reads as
n+2 (a)
n )
and if (a) holds, then (according to [BFM]) there is no need to impose L*®-bounds
on the solution. Hence, at first sight one may wonder about the case

q<p

n+2
2+p<pT, (b)

since then the hypothesis ¢ < 2 4+ p occurring in our Main Theorem implies (a),
thus the conclusion of the Main Theorem holds without an additional boundedness
condition. But (b) is equivalent to p > n, hence, by Sobolev’s embedding theorem,
boundedness becomes no restriction at all.



EXAMPLE 1 i) Let us first have a look at the anisotropic energy density (Z =
(Zl,ZQ) € Rk X R’n—k’ 1 < k< n)

F(Z) = (1L +]2)% + (1 +1 23,

with exponents 2 < p < g. Here, Theorem 1.1 of [BFM] yields regular solutions

whenever
n+2

" .

q<p

ii) Let us now discuss the same example in the subquadratic case 1 < p < ¢ < 2. Then,
by elementary calculations, the estimate

ML+ [ZD) Y2 < DX H(Z)(Y,Y) < AlYP?

is seen to be the best possible one.

As a consequence, no reqularity results have been available up to now if p is close
to 1, even if ¢ — p becomes very small. Hence, on account of the trivial inequality
2 < p+ 2, our theorem really covers a new class of variational integrals.

Our paper is organized as follows: after a precise formulation of the assumptions and
main result, we introduce in Section 3 a regularization and prove two Caccioppoli-type
inequalities. Uniform local higher integrability of the gradients is established in Section
4, and with the help of a modified De Giorgi-type technique we complete the proof of our
main theorem in Section 5.

2 Assumptions and main results

In the following it is always supposed that the variational integrand under consideration
satisfies

ASSUMPTION 1 The energy density f: R* — [0,00) is a strictly convez function of
class C*(R") which satisfies f(0) = 0 and Vf(0) = 0. Its second derivative is estimated
for allY € R and for all Z e R*, |Z| > 1, by

ML+ 1ZP) B YP < DF(Z2) (YY) S AL+ |27 |V (3)
Here A\, A denote some positive constants and the exponents € R, ¢ > 1 are related by

q<4—pu. (4)

Let us finally assume that there is some continuous function F: [0,00) — [0,00) of

superlinear growth, i.e.
F(t)

lim —= = oo,
tsoo

such that for some real numbers c; > 0, ¢

ciF(|Z|)—ca < f(Z) forall Z eR". (5)



REMARK 3 i) Clearly the setting is much more general in comparison to the one
considered in [CHJ: we do not suppose f(Z) = g(|Z|*) and we merely assume (4).

As a formal difference, Choe studies energy densities admitting some kind of degen-
eracy as |Z| — 0. This behaviour of the second derivative is covered by Assumption
1 since the validity of (3) is not supposed in the case |Z| < 1. We already like to
remark that this causes no additional technical difficulties since in any way we make
use of a cut-off function vanishing for small value of |Vu| in order to study obstacle
problems.

ii) To have the existence of minimizers of Dirichlet boundary value problems in Orlicz-
Sobolev spaces one should assume in addition that F is a N-function having the
Aq-property (see, for instance, [FO] or [Bil]).

iii) If p < 1, then ellipticity is good enough to improve (5) to the power growth estimate
alZPF —cy < f(Z) forall ZeR"

and with some constants c; > 0, co. In fact, the convexity of f yields on account of
f(0)=0
[(2) 2 f(Z/2)+V[f(Z]2)-Z]2.

This, together with the inequality (recall V f(0) =0)
1
Vi(Z) 7= / D*f(02)(2, Z) 40
0

proves the claim.

iv) Note that V f(0) = 0 may be assumed w.l.o.g. since we may replace f by f(Z) :=
f(Z) =V f(0)-Z. Of course, normalization also gives w.l.o.g. that f(0) = 0.

v) Note that (3) implies the obvious inequality 2 — p < q.
We now formulate

THEOREM 1 Let f be given as above and consider a function ¢ € W, ;,.(Q2). More-
over, denote by u € W} ,,.(Q) a local minimizer of (1) subject to the constraint u > 1
a.e., i.e.

/Af(Vu)da: < oo for any Q@Q,
9

/Spt(uv)f(Vu)dx < / £(Vo) do

spt (u—v)

for any v € Wll,loc(Q)7 spt (u — v) € 2, such that v > 1 a.e. Suppose further that u is of
class L;2 (?). Then we have:

i) u is of class W, 1,.(2);

ii) if in addition inequality (3) holds for any Z € R, then u is of class C»*(Q) for any
0 < a <1, if so is the obstacle.



REMARK 4 i) If we consider degenerate energy densities with anisotropic (p,q)-

ii)

iii)

growth, then local Lipschitz continuity can be improved to Cllo’?—regularity following

[BFM] (compare [MuZ]). Here an additional hypothesis is needed to control the kind
of degeneration of D*f.

Following Remark 2, iv), our results extend to the case

2
q<max{4—p,(2—,u)n+ }

Note that, if 4 — u < (2 — pu)(n+ 2)/n, then 2 — p > n, in particular p < 1 and f
15 at least of growth rate s = 2 — . Hence, in this case we may apply Theorem 1.1
of [BFM] to obtain Theorem 1 (without imposing a local L*°-bound for u).

Note that Assumption 1 is strong enough to imply boundedness of solutions of
Dirichlet problems whenever the boundary data ug are of class L*°. In fact, we
take w := min{u,supgup} as a comparison function and recall that f(0) = 0 and
Vf(0) = 0. Hence, the strictly conver integrand f attains its minimum in 0 and we
get u < supq ug by standard arguments.

Regularization and Caccioppoli-type
inequalities

We denote by (u)®, (1) the e-mollification through a family of smooth mollifiers of the

local

minimizer v under consideration and the obstacle v, respectively; we fix B :=

Bgr(zo) € Q and assume that B C {z € Q : dist(z,0Q) > ¢} for any small € > 0 as
above. Next we let for any § € (0,1)

f5(2) = f(Z)+6(1 + | Z])%,

and define v; as the unique solution of the Dirichlet problem

Js[w, B] := / fs(Vw)dz — min, w € (u)fp+ Vf/ql(B), w > (V) a.e.
B

If 6 = d(e) is chosen sufficiently small (see, for instance, [BF2]), then we obtain writing
Ve = U;(s) and fe = fd(s)

LEMMA 1 With the above notation we have (for some constants c;, co not depending

on €)
i)
i)

iii)

iv)

/ F(|Vv])dz < ¢; < o0y
B

v, — u in W} (B) and a.e. as ¢ — 0;

wplos| < sup u] < ez < oo;
B Brte(zo)

5(6)/(1 FIVB2)"2 dz = 0 as & — 0;
B
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v) /Bf(VUS) dz — /Bf(Vu) dz as e — 0;

vi) /BfE(VUE) dz — /B f(Vu)dz as e — 0.

Proof. As mentioned above, the proof is standard and outlined in detail, for instance, in
[BF1] and [BF2] — in [BFM] the reader will find the modifications which are necessary to
include obstacles: in the constrained case we first show weak W- and a.e. convergence of
the sequence {v.}. As a result, the limit v is seen to respect the obstacle by a.e. conver-
gence, hence lower semicontinuity and the uniqueness of solutions yield v = u. |

Next we state a suitable Euler-Lagrange equation, a proof of the following lemma is
given in [Ful].

LEMMA 2 Let Assumption 1 hold. Then the functions v. introduced above are of class
W2,.(B) for any t < co and

t,loc

V/.(Vo.) € Who(B).

loc
Moreover, the equation

/B Vfe(Vve) - Vpdz = /B pgdz (6)

is walid for any ¢ € Cy(B), where
g:= 1{w€B:115:(1/))5}( — div [st(v(d})g)]) :

REMARK 5 In the unconstrained case we refer to [LU], Chapter 4, in order to obtain
the appropriate starting integrability needed in the following.

Lemma 2 is the main tool for proving the following Caccioppoli-type inequalities in the
presence of an obstacle.

LEMMA 3 Suppose that Assumption 1 holds and fix a number L > 1 such that for any
€ as above
L>1+ ||V(¢)E||%O°(B,Rn) .

i) Let B, :=={x € B: T, := 1+ |Vu.|* > 5}, 5c > 1. Then there is a constant c,
independent of €, such that for any » > L, for any real number s > 0 and for any
ne€CE(B), 0<n<1,

D?f.(Vv.) (0, Ve, 0, Vv )[n’ dx < c/ |D2f5(V1)5) |I‘2+5|V77|2 dz .
B2;¢ Bx

Here and in the following we always take the sum w.r.t. repeated Greek indices
vy=1,...,n.



i) Let
A(k,r) = A.(k,r)={z € By(zo) : Te >k}, k>14+L, 0<r<R.

Then there is a real number ¢ > 0 such that for any n € C§°(B,(x0)), 0 < n <1,
and for any € > 0

_ bk 92 9
/ F52|VFE|ndx§c/
Alk,r) Ak

Proof. ad i). This time we shortly sketch the proof following the idea given in [BFM],
Lemma 2.3: fix 2 > L and let for all t € R

|D? (Vo) ||V’ (Te — k) da .
r)

’

h(t) := min { max[t — 1,0],1},  h(t) = h,(t) = h(> 1), (7)

ie. h(t) = 0if t < 3 and h(t) = 1 if t > 2sc. Now observe that integrability is good
enough (see Lemma 2) to differentiate the Euler equation (6) with the result

/ D?*f.(Vv,) (&YVUE, V(nQ&ngh(FE)Fg)) dz = —/ g0, (nzawgh(l“g)f‘j) dz .
B B

On the set of coincidence we have a.e. Vv, = V(¢)¢ (see [GT], Lemma 7.7, p. 152), hence
the auxiliary function A(['.) vanishes on account of »c > L. This, together with

/B D2£,(V0.) (80,0, V., VT K (D)o da > 0,
s | D1(900(0,0.0, Vo, VLT W) da > 0
(which follows from A’ > 0, s > 0 and 20,v.0,Vv, = VI;) yields
/B D?£.(V.) (8, V., 8, Vo )h(T)Tn2 da
< 2 /B D?£.(90.)(3, Vo, V)i vch(T)T da

Finally, Young’s inequality proves the claim after absorbing terms.

ad ii). Following the reasoning of [Bi2], Lemma 3.2, ii), we now have to include the
side condition. If we are given k > 1+ L, then we choose ¢ = n?d,v, max [[. — k,0], n as
above. Again Lemma 2 shows the validity of the Euler equation (6) and its differentiated
version. As before the right-hand side vanishes since k is large enough, thus

/ D £.(V.)(8, Vo, 8, V0, ) (T — k)i da
Alk,r)
+ / D?f.(Vv.) (0, Ve, VI.)0,v.n° dz
A(k,r)

R / D2 £.(V.)(8, V., Vi)ndyw. (T — k) da (8)
A(k,r)



Here the non-negative first integral on the left-hand side is neglected, the second one
satisfies

1
/ D2fs(va)(87Vvs, VPE)&,vgnQ dz = = / D?f.(Vv,)(VI., VI )n*dz.  (9)
Alkyr) 2 J Ak

The right-hand side of (8) is estimated from above by
er [ DPR(Vu)(VEL VR dster [ DY) (VL V)T bR s, (10)
A(k,r) A(k,r)

where we made use of Young’s inequality for v > 0 sufficiently small. Absorbing terms,
the lemma is proved by (8)-(10) and the ellipticity condition (3), which can be applied
on account of £ > 1+ L. [ |

4 Uniform local higher integrability

In contrast to the discussion of the vector-valued case given in [BF4], we now can apply
an iteration procedure to get the following theorem on uniform local higher integrability.

THEOREM 2 Assume that f satisfies Assumption 1 and consider the regularization
{v.} from above. Then, for any 1 < s < oo and for any ball B,(xq), r < R, there is a
constant ¢, just depending on the data, supg|(u)|, r and s, such that

/ |Vue|°dz < e < 0.
Br(mo)

Proof. We fix some non-negative number o > 0 and let

p=4—p—-q>0,

where the positive sign follows from assumption (4). As a consequence, we may define

0<0::2+w<2+ﬂ::0',
2 2
and choose k € N sufficiently large such that
o
2% <2k 2. (11)

Next we recall the definition of the auxiliary function A given in (7), where we now define
h w.r.t. 23z, 3¢ > L + 1, L given in Lemma 3. Moreover, we choose r < p < p' < R,
n € C°(By(x0)), n =1 on B,(xo), |Vn| < c(p' — p)~'. With this notation, our starting
inequality is derived by performing a partial integration, which is admissible on account
of the regularity results of Lemma 2

/ VoL AT de = - / 0.0, [0,0.T BT da
B B

IN

c/ |V205\Fi+%h(l¥)n2k dz
B

B

+C/Fs
+C/Fs
B
9

3ta—p
= R(T)n™ V| de
34+a—pu
h'(

2 L)V ||V, |n?* dz . (12)



Note that at this point the uniform bound for v, (recall Lemma 1, ii)) was used in an
essential way. The left-hand side of inequality (12) is bounded from below by

/ |VUE‘2F2+%’I(F5)H% dz > c¢(») / F?L%??% dr
B BN[|Vv:|>25]
> () / F?Jra_;ﬁn% dz — co(52).
B

On the right-hand side of (12) we observe that h'(L'.) identically vanishes outside the set
[25¢ <T'. < 43¢]. From this we obtain as an immediate consequence

3ta—p a—p
/ T W () V. ||V 2 dee < e(5¢) / V20, [T 2k g
B BQx
where the definition of Bs,, is the same as introduced in Lemma 3. Since it is also obvious
a—p
e 77% dz,

that
a=p
/|V2115|Fi+ 2 h(FE)n%de/ V20, |Te
B B

25

and since an analogous estimate holds for the remaining integral, we arrive at

a— a— 3+a—yg
/Fz-l-_zﬁn%dx < C{1+/ ‘V2U5|F;+_2En2kd$+/ | n2k_1|Vn\dx}
B Ba,. Ba.

= c{l+I+1}. (13)
Now, for v > 0 sufficiently small, Young’s inequality yields a bound for I
I < 7/ F?+%n2k da;—i—y_l/ F;27%F§+a_“n2k_2|Vn|2dx
B B
< 7/ re e 2t da + L_1/ LT 2 da, (14)
B (0 —p)?Js

where the first integral on the right-hand side of (14) may be absorbed on the left-hand
side of (13). The discussion of I starts by observing that we have for v > 0

atf  _p a—B—u
I < 7/ I, 2 FE2|V2v5|2n2k+2dx+7_l/ r
BZx B2x

24 —
< E 2 ,'72]{5 de

= AL+ L.

At this point we have to check that I; can be handled via Lemma 3, i): by definition it is
clear that o+ 8 > 0. Moreover, the choice of 3 implies the validity of assumption (3) on
the set B,, (recall that (3) is only supposed to be true whenever |Z| > 1), hence one gets
2 oth k+1
I, < ¢ D*f.(Vv.)(0,Vv,, 0,Vu, )T ? (77 * )

B2x

ath
< c/ ‘DQfE(VU5)|F3;+ > % vn?da
B,

atB g
rfpy/rgz Tin* dz .
B

de

10



Finally, the choice of 5 implies

a— a—B—

r< " _ / re ey da +fy_1/ re 2 g (15)
(=07 Js B

If we let v = 4(p' — p)? and if ¥ > 0 is sufficiently small, then the first integral on the

right-hand side of (15) is absorbed on the left-hand side of (13), and it remains to find

a uniform bound for the second one. Here the choice of k, i.e. (11), comes into play: for
1> 4 > 0 we get with a final application of Young’s inequality

a—fB—
A —P)_Q/ I 2 g
B
< (Y —0)2{1 / 2t 2 dxwﬁlfﬂ}- (16)
B

Following (13)—(16), letting ¥ = v'4(p' — p)?, 1 > +' > 0 and absorbing terms for a last
time we have found a real number ¢ = ¢(s¢, a, p' — p,supg |(u)?]), independent of €, such

that
/ri*‘%&n% dz < c{l +/ Tt 2 dx}. (17)
B B

To start an iteration of (17) let
pp=r+(R—-7)27%  k=0,1,2,...,

as well as
o =2k, ie o1 =240, k=0,1,2,...,

where for any k as above «y is non-negative, hence admissible in the above calculations.
Then we obtain (17) for any k = 0,1,2,..., with the choices p = pr11, 0/ = px, @ =

1l.e.
Qg1 ap—p
/ plte dx§0{1+/ it dm}.
BPk+1 (1'0) BPk (10)

Iteration completes the proof since the choice oy = 0 gives a uniformly bounded right-
hand side, which is immediate for ;> 1, in case u < 1 we use Remark 3, iii). |

5 Proof of Theorem 1

Once Theorem 1 is established, one may apply a Moser-type iteration (similar to [CH]) to
obtain uniform local a priori gradient bounds for the regularization {v.}. We prefer a De
Giorgi-type technique (corresponding to [Bi2]), which seems to be much more convenient
in the case of “bad” ellipticity. Moreover, the side condition is easily eliminated.

THEOREM 3 Consider a ball Br,(z¢) € B and an energy density f as classified in
Assumption 1. Then there is a positive local constant ¢ such that for any € as above the
reqularizations v, satisfy the estimate

||V/UE||LOO(BR0/2’RTL) S C.
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Before proving Theorem 3 we are going to establish an auxiliary lemma which was shown
in [Bi2], Lemma 6.2, in the case ¢ = 2.

LEMMA 4 Consider radii 0 < r < 7 < Ry such that Bg,(x¢) € B. Then there is a real
number ¢, independent of r, ¥, Ry, k and €, satisfying for any k > 1+ L (L as above)

/ (T, — k)=1 dz
A(k,r)

1 1
-2 2n—1 2n—1
< %[ / re (Fs—k>2dx] [ / rs dx] N E)
(7 —7)o=1 LJ agwn) Alk,7)

where the sets A(k,r) = {z € B.(zo) : T'c > k} are introduced in Lemma 3.

Proof of Lemma 4. With the notion w* = max|w, 0], Sobolev’s inequality yields for
n € C§°(Bi(70)), 0 <n <1,n=1on B (z0), [Vn| < /(7 —1),

/ (T, — k)1 de < / [n(T. — k)*]" T da

A(k,r) B (zo)

c / |V[n(T. — k)*]] dx}
L J Bz(x0)

:/Aum |V [n(T. - k)]| dx} "

LRy (19)

n

n—1

IN

n—1

(AN
o

AN
o

where we have (recall 2 — u < q)

o [/ \Vn\(l“g—k)dx]
A(k,7)
q=2 %ﬁ 2—q %n—l
< [/ \Vn[*T.? (Fs—k)de] [/ .2 d:v]
A(k,7) A(k,7)

C a=2 %ﬁ © %nfl
< [/ r.> (T. —k)? dx] [/ 2 dx] ,
(7 — 7)1 LJ Agkp) Alk,7)

thus I, is seen to be bounded from above by the right-hand side of (18). Estimating
I, we recall the choice £ > 1+ L, hence it is possible to refer to Lemma 3, ii), with the
result

_n_
n—1

n_ a1
7t = [/ n|VT,| d:c]
A(k,t)

B %m © %n—l
[ / n’|VL|*T: dx] [ / Iz dm}
A(k,7) A(k,7)

n

< c[ / D?fg(st)(Vn,Vn)(Fs—k)ﬁ] " [ / rﬁdx] .
A(k,7) A(k,?)

1 1
q—2 2n—-1 2n—1
_ [/ F?(Fs—k)de] [/ T2 dx} :
(F —7)n=1 LS agkp) Alk,)
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and the lemma follows from (19). [

Proof of Theorem 3. Again we follow the reasoning of [Bi2]. Starting with the left-hand
side of (18) we fix a real number s > 1 and observe that Holder’s inequality implies

[ rFE-kpas = [ @o-p
A(k,r) A(k,r)

1
< [/ (rs—k)ﬁdw]
A(k,r)

-2 s s
x [/ r:Tsfl(rE _ k)@-ﬁ%)&} _
A(k,r)

Theorem 2 ensures the existence of a real number ¢; (s, n, Bg,(%y)), independent of ¢,

q—2
2
&

(T, — k) ==+ da

s (ﬂ_}_Q,Ll) 3
c1(s,m, Bry(xg)) := sup / rg 12 el dy < 00,
e>0 L JBgy(0)

such that

1
s

/ r.? (. —k)?dz < e [/ (T, — k) dx} . (20)
A(k,r) A(k,r)

In a similar way one obtains

1

-2 T
[ tar<enBue)| [ o) (21)

A(k,7) A(k,F)
where ¢ > 1 is a fixed second parameter. Combining (18), (20) and (21) it is proved that
9=2 cC q—2 %%%
/ re (. —k)?dr < — & [/ r.> (I, — k)de]
Ak,r) (7 —r)n=Ts LJ A7)

q—2 %ﬁ %
x[ / res dx] | (22)
A(k,7)

For £k > 1+ L and r < 7 as above we now let

q=2 q=2
7(k,7) ::/ r.> (I, —k)?dz, a(k,7) ::/ r.? dz,
A(k,r) A(k,r)
hence (22) can be rewritten as
NS ")Ll [k, 7)) 277 [a(h, 7)) 27T (23)
r—Tr1r)n-1s

Given two real numbers h > k > 1 + L we have the obvious estimate

a(h,7) < ﬁﬂkaﬂa

13



which together with (23) implies

c 1n 1 1 ln 11
< - - 2n—1s -~ 2n—1st
T(h: 7”) — (72 . r)nﬁli [T(ha T)] (h o ]f) nﬁli% [T(k,T‘)]
< —— [r(k, 7)) 7 ()

o =

(7 —r)n-1s (h—k)a1

Finally s and ¢ are chosen sufficiently close to 1 (depending on n) such that

1 n 1 1
— - |14+-]1=06>1
2n—1s[+t:| f>1,
moreover we let
n 11>0 n 1>0
o= —— , = - .
n—1st Y n—1s

Then Theorem 3 is an immediate application of the following well known lemma (com-
pare, for instance, [ST], Lemma 5.1, p. 219) to the function 7(h, ), where we once more
benefit from Theorem 2. [ |

LEMMA 5 Assume that ¢(h, p) is a non-negative real valued function defined for h > kg
and p < Ry. Suppose further that for fixed p the function is non-increasing in h and that
it 1s non-decreasing in p if h is fired. Then

C

0 S e =y

[(p(k,R)]ﬁ, h>k>ky, p<R<Ry,

with some positive constants C', o, > 1, v, implies for all0 < o < 1
gO(lf() +d,R0 — O'R()) = 0,

where the quantity d is given by

20488/ C [ (ko, Ro)]”

4> =
o'R}

Since the data of the obstacle just enter through the choice of the constant L, the Proof
of Theorem 1, 1), is an immediate consequence of Lemma 1. Now, having established i),
the second assertion follows from the arguments outlined in the well known paper [MuZ]
(compare also [FM] for details). [
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