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Abstract

This paper is concerned with the existence and uniqueness analysis of global
classical solutions of a diffusive quantum evolution equation with non-linear coupling
to the Poisson equation. The main technical difficulty in the existence proof is to
show that the quantum Fokker-Planck term is a semigroup-generator in a weighted
L?space. The potential term is then a Lipschitz-perturbation of it.

1 INTRODUCTION

The object of this paper is the analysis of the coupled Wigner-Poisson-Fokker-Planck
(WPFP) system in one dimension with periodic boundary conditions. We focus on
the existence and uniqueness of global-in-time solutions to this system.

Wigner functions provide a kinetic description of quantum mechanics (cf. [19])
and have recently become a valuable modeling and simulation tool in fields like
semiconductor device modeling (cf. [12] and references therein), quantum Brownian
motion, and quantum optics ([6, 8]). The real-valued Wigner function w(z,v,t) is a
probabilistic quasi-distribution function in the position-velocity (z,v) phase space
for the considered quantum system at time £.

Its temporal evolution is governed by the Wigner-Fokker-Planck (WFP) equa-
tion:

wy + vwg + OV]w = Blow)y + owyy + 27Way + Qwyy, t>0, (1.1)
on the phase space slab = € (0,27), v € IR with periodic boundary conditions in z:
w(0,v,t) = w(2m,v,t),
and the initial condition
w(z,v,t=0) = w!(z,v).

With a vanishing right hand side Equation (1.1) would be the (diffusion-free) Wigner
equation. It describes the reversible evolution of a quantum system under the action



of a (possibly time-dependent) electrostatic potential V' = V (z,t). Its effect enters
in the equation via the pseudo-differential operator O[V]:

(O[V]w)(z, v, 1) :iW@+%%ﬁ—VQ—%%ﬁWmMﬂ

]

= \/Q—WAéV(x,n,t)fvw(w,n,t)ei”"dn

//5V(ac,n,t)w(w,v’,t)ei(”fv’)"dv’dr], (1.2)
RJR

*
27
where 6V (z,n,t) = V(z+1%,t) - V(z—1,t) and F,w denotes the Fourier transform
of w with respect to v:

Fow(z,n,t z, v, t)e” V" dv,

1
)= 75
For simplicity of the notation we have here set the Planck constant, particle mass
and charge equal to unity.

The right hand side of (1.1) is a Fokker-Planck type model for the non-reversible
interaction of this quantum system with an environment, e.g. the interaction of
electrons with a phonon bath (cf. [9, 18]). In (1.1) 8 > 0 is the friction parameter
and the parameters a, v > 0, 0 > 0 constitute the phase-space diffusion matrix of
the system. In the kinetic Fokker-Planck equation of classical mechanics (cf. [17, 7])
one would have o = v = 0. For the WFP equation (1.1) we have to assume

o + 1
( i 7 46)2()’
YT~ 1 g

which guarantees that the system is quantum mechanically correct. More precisely,
it guarantees that the corresponding von Neumann equation is in Lindblad form
and that the density matrix of the quantum system stays a positive operator under
temporal evolution (see [4] for details).

In the sequel we shall hence assume

2
>4, 1.3
ao > v+ 16 (1.3)
However, the subsequent mathematical analysis will even hold for
ao > 72.

The WFP equation (1.1) is self-consistently coupled with the Poisson equation
for the (real-valued) potential V{w|(z,t):

Vee = nlw]— D, z € (z,2m), t >0,
V(0,t) = V(2m,t),

with the particle density

MM@ﬂ:Ay@uﬂw. (1.4)
D = D(z) denotes the density of some fixed charges (“doping profile” in the context
of semiconductor modeling), which is assumed to be given.

Mathematical properties of the Wigner-Poisson equation and dissipative Wigner
systems have been intensively studied in the last decade (see [12, 3] and references
therein). The (friction-free) WPFP equation in 3 dimensions was first analyzed



in [4], where unique local-in-time solutions were constructed. The main analytical
challenge of Wigner-Poisson systems lies in controling the particle density (1.4) in
appropriate LP spaces. Usually this is achieved by either reformulating the Wigner
equation as a Schrodinger system or a von Neumann equation ([12, 3]) or by exploit-
ing the dissipative structure of the system ([4]). The 1-dimensional Wigner-Poisson
equation, however, allows for a ‘direct’ analysis (cf. [5], §5). Hence our interest in
this analytical framework.

2 EXISTENCE AND UNIQUENESS OF GLOBAL-IN-TIME SOLU-
TION

In this section we shall establish existence and uniqueness of global mild and classical
solutions to the WPFP system (1.1)-(1.4). This system will be considered as an
evolution problem in the weighted (real-valued) L2-space

X = L*((0,27) x IR; (1 + v?)dzdv),

endowed with the scalar product

27
<u,w>x = / / uw(1 4 v?)dvdz.
0o JR

This choice of the space X allows to define the particle density n[w] of a Wigner
function w € X: a simple estimate (using Cauchy-Schwartz) yields

In[wlllz202m) < Cllwlx. (2.1)

Here and in the sequel C' denotes generic, but not necessarily equal constants.

We shall use semigroup techniques to prove existence and uniqueness of a so-
lution to the semi-linear WPFP system (1.1)-(1.4). To this end the quadratically
nonlinear potential term ©[V]w will be considered as a bounded perturbation in the
kinetic Fokker-Planck equation w; + vw, = S(vw)y + 0Wyy + 2YWgy + Q.

We first consider the unbounded linear operator A : D(A) — X,

Au = —v0yu+ B0, (vu) + aagu + 270, 0,u + aagu, (2.2)
defined on

D(A) = {u € X|vug, Uy, Vg, gy, Ugy € X;u(0,v) = u(2m,v),
ug(0,v) = uy(2m,v) Vo € R}

Clearly, the restriction (to (0,27) x IR) of C*(IR?)-functions that are 2m-periodic
in z and have a compact support in v are included in D(A). Hence, D(A) is dense
in X. A simple calculation shows that for u € D(A), u, is also in X.
A straightforward calculation using the periodicity in z and integrations by part
yields
< Au,w >x=< u, Ajw >x + < u, Ajw >x, Yu,w € D(A),

with

w = 0w — Budyw + 002w + 20,0, w + adw,
1
Asw = m[20(111 + 200,w) — 2Bv*w + dyvw,).
Hence, A* [p(4) - the restriction of the adjoint of the operator A to D(A) - is given
by A*w = Ajw + ASw, w € D(A). A* is densly defined on D(A4*) D D(A), and



hence A is a closable operator (cf. Theorem VIIL.1.b of [15]). Its closure A satisfies

(A)* = A* (cf. [15], Theorem VIII.1.c).
Next we study the dissipation property of the operator A, which is defined on
the Hilbert space X (over IR) by:

< Au,u >x < 0, Yu e D(A).

Lemma 2.1 Let the coefficients of the operator A satisfy ac > 2. Then A — (o +
g)] and its closure are dissipative.

PROOF.- Using integrations by part we have for u € D(A):

< Auju>x = —//vuwu + ﬂ//(vu)vu + a//um,u + 2’7//um,u
ta //uu - //U3u$u B //UQ(UU)Uu +o //qﬂuwu
42 /v2umu + « //ru%mu
~ 8 /uvuv - //uu + 2y /uu - a//uzuz - ﬂ//(qu)Uvu
- // (02w + 29 //(Uu)mvu — 9y //uwvu —a //Uquuw

where [[f denotes the integral [7™ fi f(z,v) dvdz.
For the two integrals of the right side that involve mixed z-v-derivatives we shall
now use the interpolation inequality

€ 1
JJues < Sluslly + 5wl >0, (23
2 2e

which is immediately obtained by an integration by parts (in v) and Young’s in-
equality. With ¢ = 1 we then obtain

B

2
2 2 3

—oflug |12 — 2Blvul2 - B / ot — 20//vuuv

1
ol + evllvuals + vl (wu)oll3 — aflvue|3

1
<Au,u>x < Sllulz - ollul + evlualls + Zvlul:

_ B 2 ’Y2 2 2 2, 3 2
= Sllulz + ;Iluzllg = allugllz = 2Bllvullz + 5 Bllvullz

2
gl
+ollul3 + ;Ilvuwllg — aljous |3

B
< (o + Dl
Thus 5 5
<[A—(o+ E)I]u,u >x < —aljvul} - §||vu||% <0 (2.4)
and the operator A — (o + g)I is dissipative. By Theorem 1.4.5b of [14] its closure,
A—(oc+ g)[ =A—(c+ g)] is also dissipative. 0

It is easy to see that the operator A — gI defined on D/Z;l) = {u € L%((0,27) x
R) |0t , Uy, VT, Uz € L2((0, 27) xIR); u(0,v) = u(2m,v), uz(0,v) = ug(27,v), Vv €

IR} is dissipative in L2((0,27) x IR) and the L?-adjoint of A is A* = A} on D(A).



Let us now study the dissipativity of the operator A* restricted to D(A). Anal-
ogously to Lemma, 2.1 we have:

<A'u,u>x < (o+ §)||u||§, Vu € D(A).

Hence the restriction of the operator A* — (o + g)] =[A—-(oc+ 'g)I]* to D(A) is
dissipative.

Next we consider the dissipativity of this operator on its proper domain D(A*),
which, however, is not known explicitly. To this end we shall use the following
technical lemma whose proof is defered to the appendix. Here we shall denote by @
the (in z) 27-periodic extension of a function v € X to IR2.

Lemma 2.2 Let P := p(v, 0y, 0y) be a linear operator in X, where p is a quadratic
polynomial and

D(P) :={u € X /@ € C®(IR?) with compact support in v} C X.
Then P is the mazimum extension of P in the sense that

D(P) :={u € X/ the distribution Pu € X}.

We now apply Lemma 2.2 to P = A*— (0 + 'g)I, which is dissipative on D(P) C
D(A). Since A* is closed, we have D(A*) = D(P) = {u € X /A*u € X} and
A*— (o + g)I is dissipative on all of D(A*).

Applying Corollary 1.4.4 of [14] to A — (o + g)I (with (A)* = A*), then implies
that 4 — (o + g)[ generates a Cy semigroup of contractions on X, and the C
semigroup generated by A satisfies

” B
le“tullx < et ullx, ue X,t>0.

By the same arguments A — gI generates a Cj semigroup of contractions on the
space L2((0,27) x IR).

Next we shall analyze the properties of the quadratically nonlinear term ©[V]w,
which will later be considered as a perturbation of the generator A.
For V € L*(IR) the pseudo-differential operator ©[V] from (1.2) is defined by

(FoO[Vu)(z,n) = idV (z,n)Fyu(z,n), u € L2((0,27) x Ry).

Since 6V (z,7n) € IR, the operator O[V] is skew-symmetric on L2((0,27) x IR,) and
it satisfies
(cf. [11], [5]):
1OIV]llB(z2((0,27) x1Ro)) < 2/V | co-
For V € L*°(IR) we define the pseudo-differential operator Q[V] on L?((0,27) x
R,) by

@VIu)(e,n) = SV(+ V) + V(e — 2 Vo)ulz,v)
= #ﬂ /]R[V(HU + g) +V(z - g)]fvu(x,n)ei”’? dn. (2.5)

As for the operator ©[V] we obtain

12VIIBez2((0,2m) xRo)) < 1V lloo- (2.6)



Proposition 2.3 Let V. € WL (IR). Then,
O[V](vw) = vO[V]w + Q[Vy]w (2.7)
holds for w € X.

PROOF.- By partial integration we obtain
o IL 7] 77 ) ) i(U—U’)n )
OV](vw) = —/ / V(z+2) = V(z—2))vw(z,v)e dvdn

27 JR JR 2 2
) ; iy

= 9. /IR/IR [(V($ + g) —Vi(z - g))w(x,v’)ew"] [v’e w "] dndv’
1 Ui Ui i(v—v)

= —/ / (Ve(x + =) + Vo(z — 2))w(z,v)e T dndv’
47 JR JR 2 2

.l My _ _n N i(v—v)n ,
t o [ ] o+ ) = Vie = Dule,v)e " dndy
= QVi]w+vO[V]w. ;

Now, let us consider the nonlinear operator B defined on X by
u +— Bu := —O[V[ulu,
where V[u] is the 27-periodically extended solution of the Poisson equation

Vee = nful—D, ze€(0,2n),

V() = V(2n), (2:8)
with nful(z) = [k u(z,v)dv.

Lemma 2.4 Let D € L'(0,27). Then
(a) B maps X into itself.
(b) Moreover, the operator B is of class C* in X, and satisfies

[Bur = Bug||x < C(lurllx + [luzllx + 1Dz 0,2m)llu1 — uallx,
for ui,ue € X.
For the simple proof we refer the reader to [5].

Remark 2.5 In the proof of Lemma 2.4 it is essential that ||u||x controls nlu] in
L'(0,27) (see (2.1)). Hence the solution of the Poisson equation (2.8) satisfies
Viu] € W(0,2r), and [0V [u]ls0x) < CIVIl ey

We rewrite the WPFP system as

wy = Aw+ Bw, t > 0,
w(t=0) = wl € X,

The main result of this paper is:

Theorem 2.6 Let D € L'(0,27).

a) For every w! € X, the WPFP problem (2.9) has a unique mild solution w €
C([0, 00), X).

b) If w' € D(A), w is a classical solution, i.e. w € C'([0,00),X), and w(t) € D(A)
fort > 0.



PROOF.- We consider B as a bounded perturbation of the gemerator A. Since
B is locally Lipschitz continuous, Theorem 6.1.4 of [14] shows that (2.9) has a
unique mild solution for every w! € X on some time interval [0, tmaz ). Moreover,
if tiaz = tmaez(w!) < 0o then limg »,,... [lw||x = oc. Since B is of class C* in X,
Theorem 6.1.5 in [14] proves that w is a classical solution on [0, £,z ) for w! € D(A).

To prove tya, = 0o we shall now derive an a-priori estimate for ||w(t)]|x.

Step 1. Here we shall derive this a-priori estimate under the assumption
w! € D(A). To this end we consider the evolution equation for ||w||%. By computing
its time derivative and taking into account (2.9), we deduce

1d

5%”“’”%{ =< Aw,w >x + < Bw,w >x .

Using the dissipativity of A — (o + g)] (cf. (2.4)) we conclude that

1d

sl < (o+5) ol < Buw >

The skew-symmetry of the operator ©[V] implies finally that

1d

sl < (o4 5) Il + [frosiva e, (2.10)

On the other hand, since A4 — g[ is dissipative on the space L2((0,27) x R), the
estimates

d
ZlwlE < Bllwl and Jwll3 < [lw’|3e” (2.11)

follow. From the proof of Lemma 2.4 in [5] we have for the solution of (2.8):

VIwlllweeem < Cllwlx +[[DllL1(0,2r))-

Using (2.6), (2.10) and (2.11) we hence obtain

salolz = (o4 5) Il < [fowotviom
< Ve ® lollvwlla|wll2
< C(lwllx + IDI) vwllz [ 2e5"
< Cllw! ae2(lwllk + llwllx | DI1)
< Clw! ae5t(lwll% + IIDI)-
Thus d
Zlwlk < a@®lwl +b(0),
where
a(t) = Ollw'|2¢5" + B + 20,
bt) = Clw'|2e2"|D|3.

Finally, applying Gronwall’s inequality yields:
t t t
lo@l < o' zeh @+ [bel“OFas, 120 (212)
0

Hence t,,4; = oo holds.



Step 2. Since (2.12) only involves ||w!||x this result carries over to w’ only in
X by the following density argument.
For w! € X let (wl) be a sequence in D(A) such that w) — w! in X. Using (2.12)
we have for every w! an a-priori estimate for the corresponding classical solution:

lwn(®)[x < h(t), Vi>0,n€NN

with h € C[0, 00) independent of n.

Let w € C([0,%mae(w’)), X) be the unique mild solution for w!, which exists ac-
cording to the first part of this theorem.

Next we assume tpqq(w!) < co. Thus limy ... w?y llw(t)lx = oco. For the contin-
uous, monotonously increasing function g(¢) := max {|w(7)||x, 0 < 7 < t} we also
have lim; .. (1) 9(t) = oo.

Choose N € IN with N > Zmax{h(t), te [O,tmaw(wl)]}. Then there exists a
tn < tmaez(w!) such that

g(ty) = N, (2.13)
g(t) S N, tstNa
g(t) > N, ty<t<tpa(w).

We denote by Ly the Lipschitz constant of the operator B on
By :={u€ X, |lu|x < N}.

Let B be a (globally) Lipschitz extension of B outside of By. Thus, applying
Theorem 6.1.2 in [14] on [0,%x] we obtain a Lipschitz dependence of the solutions
on their initial values,

lw = wnllcqoun]x) < CUN)|w" —w)lx.

Thus, w, — w in C([0,tn], X), and |[w(t)||x < h(t) < &, for 0 <t < ty follows.
This contradicts the assumption (2.13). 0

3 APPENDIX: PROOF OF LEMMA 2.2

To prove the assertion we shall construct for each f € D(P) c L%((0,27) x IR)
a sequence {f,} C D(P) such that f, — f in the graph norm ||f|lp = ||fllz2 +
[ofllLz + [|1PfllL2 + [[0Pf|| L2

To shorten the proof we shall consider here only the case

P = p+vv0; + Bvdy + 002 + 270,0; + ad?

(cf. the definition of the operator A in (2.2)), but exactly the same strategy extends
to the general case.
First we define the molifying delta sequence

on(z,v) = n’p(nz, nv); n €IN; z,v € R,
with the properties:

¢ € C°(IR?),
z,v) >0,

o
//(p(x,'u)davdv =1,

suppy C {|z|* + |[v[* < 1}.



The velocity-cutoff function
); nelN; veR
is assumed to have the properties

¥ € G (R),

0<9(v) <1,

WOW) <0 weR; j=12

suppy C [—1,1],
¢|[_ =1L

o=

1
29
We now define the approximating sequence

fn(xa'u) = (f* on)(T,v) - Pn(v), neN,

where ‘¢’ denotes the convolution in z and v. Remember that f denotes the (in
z) 2m-periodic extension of the function f € X to IR2. By construction we have
fn € C®(IR?) and fn is 2m-periodic in z with compact support in v. Now, let R
denote the restriction operator of (in ) 2w-periodic functions to (0,27) x IR. Then,
fn:=Rf, € D(P). According to the 4 terms of the graph norm we split the proof
into 4 steps:

Step 1: Since ¢, — ¢ in D'(IR?) and v, (v) — 1 pointwise, we have f, — f in

L? (R;) x L*(IR,) and

loc

fn— f in L*((0,27) x R).

Step 2: For the second term of the graph norm we write

'Ufn = ('Uf* ©On)tn + (.f* VPn)Pn-

The restriction of the first summand converges to vf in L?((0,27) x IR) and the
second term converges to 0 since vy, — 0 in D'(IR?). Hence we have

fn—=f in X.

Step 3: To prove that Pf, — Pf in L?((0,27) x R) we write:

an = ,U(f*fpn)d’n + V(Ufzc *fpn)d’n + /B(U.fv *~‘Pn)¢n
+0(foo * ©n)Vn + 27(fov * ©n)Vn + o foz * ©n)¥n
+rp(z,v)
= (Pf*on)¢n +rh(z,0).

As we shall show, the restriction of all six terms of the remainder
re = v(f % 00p0n)¥n + B(f * o) (vOuihn)

+:8(f * Oy (Vepn) ) Pn + ZU(f* (%avWH))(nav¢n)

Lo (F * on)0n + 29(F * (-Bapn))(nBuibn)

n



converge to 0 in L%((0,27) x IR):
In the first term v9, ¢, — 0 in D'(IR?). Hence we have

R(f*voupn) >0 in L*((0,27) x R),

and the same argument holds for the third term.

For the second term we have
v o,V
'Uav"pn = "/Jl(ﬁ)a

T n
which is in L*°(IR), uniformly for n € IN and with support in [-n,—%] U [§,n].

Hence, the second term converges to 0 in L?((0,27) x IR).
In the fourth term 18,4, — 0 in D'(IR?), and hence

n

R(f*(l(?v(pn)>—>0 in L2((0,27) x TR).

Furthermore, ndyv, = v¢'(2) with [¢'| < C;. By the same argument also the sixth
term converges to 0 in L?((0,27) x IR).
Finally, the fifth term converges to 0 since 021, = n—12¢” () with ["| < Cs.

Step 4: To prove that vPf, — vPf in L%((0,27) x R) we write:

'Uan = ,U('U.f ”iSon)Qpn + V(UQf:c * ?n)@bn + ,B(Uva * iPn)¢n
+U('Uf'uv * Wn)¢n + 27(Uf$v * Wn)¢n + a(”fmm * Wn)"ﬁn
+r2(z,v)

= ((UPf) * 0n)%n + 7",21(.%,’0),

with the remainder

7"72L = M(f* 'U(Pn)qpn + 2V(Uf * Uaac‘;on)"pn + V(.f* U28$‘Pn)¢n
+ﬁ(7if* Yn + f * U(Pn)'u?v"pn + 25(”.]; * av(v(;on))"pn
+B(f * v*0upn)¥n + o (f * Opw(vi0n)) ¢
z  Oypn z VOypy (Y
+2a(vf* + f* - )1/)(—)

n n

+0 (f * @n)v0gn + 27(F * Oro (vpn) )P
v (0« 284 o 2000 g (2 4o vdiaip

n n

For proving that the restriction of all terms of 72 converge to 0 in L2((0,27) x R)
we recall that both f,vf € L%((0,27) x IR). Since the strategy of the proof is the
same as in Step 3 we shall only give the key points:

The distributions vep, v0z ¢y, UQBJE‘Pn; Oy (vn), ")2611907», Opy (Vepn), 3_1;n<p_n’ ﬂ:;@’

0w (Vipn), B_xn@, Ua—’;@, and 10,4y, all converge to 0 in D' (IR?). Further, 92, — 0
in L*(IR) and the term v0,1,, was already discussed in Step 3. 0
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