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1 Introduction

Given a bounded Lipschitz domain Q2 C R", n > 2, and a variational
integrand f: R™¥ — R of class C?(R*") we consider the autonomous mini-
mization problem

Jw] := /Qf(Vw) dxr — min (P)

among mappings w: Q — RY, N > 1, with prescribed Dirichlet boundary
data ug. Depending on f, the comparison functions are additionally assumed
to be elements of a suitable energy class K. In the following, the variational
integrand is always assumed to be strictly convex (in the sense of definition),
thus we do not touch the quasiconvex case (compare, for instance, [Ev], [FH],
[EG], [AF1], [AF2], [CFM]).

The purpose of our studies is to establish regularity results for mini-
mizers of problem (P) under quite general growth and structure conditions
imposed on f. Before going into details let us give a brief historical overview.

A.1 Power Growth

Having the standard example f,(Z) = (1 + |Z[?)"/?, 1 < p, in mind, let us
assume that the growth rates from above and below coincide, i.e. for some
number p > 1 and with constants ¢, co, C, A, A > 0 the integrand f satisfies
for all Z, Y € R*M (note that the second line of (1) implies the first one)

alZP—e, < f(Z) < CO+|ZP), "
AL+ZP)T Y < DH(2)(YY) < AL+ 2P Y.

With the pioneering work of De Giorgi, Moser, Nash as well as of Ladyzhen-
skaya and Ural’tseva, local C'*-regularity of minimizers of problem (P) in
the scalar case is well known in this setting, and of course many other authors
could be mentioned (see [DG1], [Mos], [Na] and [LU] for a complete overview
and a detailled list of references).

In the vectorvalued situation N > 1, the twodimensional case n = 2
differs substantially from the situation in higher dimensions: a classical result
of Morrey ensures full regularity if n = 2 (here we like to refer to [Morl],
the first monograph on multiple integrals in the calculus of variations, where
again detailled references can be found).
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However, according to an example of De Giorgi (see [DG3], compare
also [GiM2], [Ne| and the recent example [SY]), there is no hope to prove
an analogous result of this strength if n > 3 and N > 1. Here we merely
expect partially regular solutions, i.e. there is an open set y C € of full
Lebesgue measure such that C1“-regularity holds on 5. A theorem of this
type is proved in any dimension and in a quite general setting by Anzellotti
and Giaquinta ([AG]), where the whole scale of integrands up to the limit
case of linear growth is covered (with some suitable notion of relaxation). In
addition, the assumptions on the second derivatives are much weaker than
stated above, i.e. their partial regularity result is true whenever D?f(Z) > 0
holds for any matrix Z.

To keep the historical line, we like to mention the earlier contributions
on partial regularity given in [Mor2], [GiM1], [Giu] (compare also [DG2], [Al],
a detailled overview can be found in [Gial]).

Finally, if we impose some additional structure like f(Z) = g(|Z|?)
in the vectorvalued setting, then partial regularity is improved to full
C’llo’f—regularity of solutions. Results of this kind are mainly connected with
the name of Uhlenbeck (see [Uh|, where the full strength of (1) is not needed
which means that also degenerate ellipticity can be considered).

A.2 Anisotropic Power Growth

The study of anisotropic variational problems was forced by Marcellini [Mal]-
[Ma6] and is a natural extension of (1). To give some motivation we may
consider the case n = 2, 2 < p < g and replace f, by

FodZ)= (14122 + 1 +1|21)), Z=(Z1,Z,) e R,

hence f is allowed to have different growth rates from above and from below.
The natural generalization of the structure condition (1) is the requirement
that f satisfies (again the growth conditions on the second derivatives imply
the corresponding growth rates of f)

alZP—e, < f(Z) < C(1+]2]9), o)
M1+ ZP)5 YR < DX(Z)(Y,Y) < AQ+|Z2P)T|Y]

for all Z, Y € R™W, where as usual c¢i, co, C, A\, A denote some positive
constants and 1 < p <gq.

If p and ¢ differ too much, then it turns out that even in the scalar
case singularities may occur (we mention only one famous example given in
[Gia2]). However, following the work of Marcellini, suitable assumptions on
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p and q yield regular solutions. Note that [Mad] also covers the case N > 1
with some additional structure condition.

In the general vectorial setting only a few contributions are available,
we like to refer to the papers of Acerbi and Fusco ([AF3]) and Passarelli
Di Napoli and Siepe ([PS]), where partial regularity theorems are obtained
under quite restrictive assumptions on p and ¢ excluding any subquadratic
growth.

If some additional boundedness condition is imposed, then the above
results are improved by Esposito, Leonetti and Mingione ([ELM]) and Choe
([Ch]). In [ELM] higher integrability (up to a certain extend) is established
(N > 1, 2 < p) under a quite weak relation between p and g. A theorem for
energy densities f(Z) = g(|Z]?) is found in [Ch].

B.1 Growth Conditions Involving N-Functions

Studying the monograph of Seregin and the second author ([FS2]), it is ob-
vious that many problems in mathematical physics are not within the reach
of power growth models — the theories of Prandtl-Eyring fluids and of plastic
materials with logarithmic hardening serve as typical examples. The varia-
tional integrands under consideration are of nearly linear growth, for example
we have to study the logarithmic integrand

f(Z) = 1Z|In(1 + |Z])

which satisfies none of the conditions (1) or (2).

The main results on integrands with logarithmic structure are proved
by Frehse and Seregin ([FrS]: full regularity if n = 2), Seregin and the
second author ([FS1]: partial regularity if n < 4), Esposito and Mingione
([EM]: partial regularity in any dimension) and finally by Mingione and
Siepe ([MS]: full regularity in any dimension).

B.2 The First Extension of the Logarithm

As a first natural extension one may think of integrands which are bounded
from above and below by the same quantity A(|Z]), where A: [0, 00) — [0, c0)
denotes some arbitrary N-function satisfying a Aj-condition (see [Ad] for
precise definitions). Although this does not imply some natural bounds (in
terms of A) on the second derivatives, (1) and (2) suggest the following
model: given a N-function A as above and positive constants ¢, C', A and A,
we assume that our integrand f satisfies

cA(Z)) < f(z) < CA(Z)), 5
A1+ 1ZP) 5]V < Df(2)(Y,Y) < A1+|ZP)T |V



for all Z, Y € R™ and for some real numbers 1 < u, 1 < g, this choice
being adapted to the logarithmic integrand which satifies (3) with x = 1 and
q =1+¢ for any € > 0. Note that the correspondence to (1) and (2) is only
of formal nature: since we require 4 > 1, the p-ellipticity condition, i.e. the
first inequality in the second line of (3), does not give any information on the
lower growth rate of f in terms of a power function with exponent p > 1.

A first investigation of variational problems with the structure (3) under
some additional balancing conditions is due to Osmolovskii and the second
author ([FO]), where partial regularity in the vectorvalued case is shown to
be true in the case that p < 4/n.

Full regularity if N = 1 or if N > 1 and f(Z) = g(|Z]?) is established
by Mingione and the second author (see [FM]) whenever p < 1+ 2/n.

2 Notation and statements of the results

Now let us give a precise formulation of our assumptions and results: for a
bounded Lipschitz domain 2 C R*, n > 2, we consider the minimization
problem

J{w] = /Qf(Vw) dr — min in ug+ I/%/j(Q;RN) (P)

where Wi(Q;RY) denotes the subclass of the Orlicz-Sobolev space
WL(;RY) generated by the N-function A (having the A,-property) con-
sisting of all mappings Q — RN with zero trace, and ug is a given function
of class W}(€; RY) with finite energy, i.e. J[ug] < co. The energy density f
is a function in C%(R"") which satisfies

f(2), (4)
D2, Y) < A0+ [ZP)T|Y]P (5)

ClA(|Z|) — C9 S
AL+ [ZP) 5P <

for all Y, Z € R™™. Here ¢, cp, A and A denote positive constants, and
1€ R, g >1 are fixed real numbers. Finally, we choose s > 1 according to

A(t) > const -t°  forall t>>1. (6)

Let is look at some Ezramples, for which it is immediate how to choose the
parameters s, p and q.

i) f(Vu) =|Vu|ln(1+ |Vul|): p=1,s=1,¢=1+¢;

i) f(Vu) =1+ \Vu|2)g +(1+ |81u|2)% forl<p<t: pu=2-—p,s=p,
q=t;



iii) f(Vu) = ®,(Vu) + h(Vu) with h of growth order ¢ satisfying 0 <
D?*h(Z)(Y,Y) < const(1+ |Z?)*T \Y|2 and

|z
/ /1+ﬂfwﬁm

Note that on account of D?h(Z) > 0 (allowing degeneracy of D?h) the
ellipticity estimate, i.e. the left-hand side of (5), is a consequence of the
corresponding inequality valid for the function ®,, see e.g. [BFM].

We have the following regularity results

Theorem 1 ((s, i, q)-GROWTH CONDITIONS) Let u denote the unique solu-
tion of problem (P ). Suppose that (4)-(6) hold together with ¢ < 2 — p+ 2s.

i) (scalar case) If N =1, then we have u € C*(Q) for any 0 < a < 1.
ii) Let N > 1 and assume f(Z) = g(|Z|?). Then the statement of i) holds.

iii) In the vectorial case N > 1 without additional structure we have partial
CY-reqularity.

Remark 1 i) The results easily extend to locally minimizing maps.
Moreover, for the scalar case we can include (double) obstacles.

ii) The detailled discussion and the comparison with the known results
given in [BFM], [BF1], [BF3] and [Bil] shows that Theorem 1 pro-
vides a unified and extended approach to the reqularity theory of conver
variational problems having nonstandard growth.

Under the additional requirement
uy € L®(;RY) (7)
we can improve Theorem 1 as follows:

Theorem 2 If u denotes the solution of (P) and if we assume (4), (5), (7)
together with ¢ < 4 — p, then i), ii) of Theorem 1 hold.

If N > 1, then we get from q < 4 — p: for any k € (¢,4 — pu) and for
any ' € ) there is a positive number ¢ such that

|Vu|"dz < ¢ < o0, (8)
Q/
provided that the structure condition f(Z1,...,Zn) = g(|Z1|,...,|Zn]), Z €
RN | ¢ increasing in each argument, holds true.
If we additionally replace ¢ < 4 — p in case n > 3 by the requirement
g <min{(2 — p)n/(n —2),4 — u}, then we have iii) of Theorem 1.
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Remark 2 i) In the scalar case we again can include obstacle problems.

ii) Theorem 2 substantially extends the results of [BF3].

iii) Note that the condition ¢ < 4 — p is in complete accordance with the

iv)

vi)

ellipticity constraint
u<3

in the case of linear growth problems (see [Bil], [Bi2], [BF5]). More-
over, we like to remark that the analogous constraint ¢ < 2 + p first
appeared in [ELM], where higher integrability (up to a certain extend)
in the anisotropic, superquadratic (p,q)-case was proved under some
extra boundedness condition.

In terms of anisotropic integrands with (p,q)-growth (recall (2) of the
introduction and let ;. = 2 — p), the main assumption of Theorem 1

reads as
n+2

)
n

g<p

(a)

and if (a) holds, then there is no need to impose L*®-bounds on the
solution. Hence, at first sight one may wonder about the case

24+p< p—n 2 (b)
n
since then the hypothesis ¢ < 2+p occurring in Theorem 2 implies (a),
thus the results of Theorem 2 holds without an additional boundedness
condition. But (b) is equivalent to p > n, hence, by Sobolev’s embedding
theorem, boundedness becomes no restriction at all.

With iv) it is clear that Theorem 2 extends to the case where (4 — p) is
replaced by

2
max{él—,u, (2—,u)n+ }
n
Note that, if A—p < (2—p)(n+2)/n, then 2—p > n, in particular p < 1
and f is at least of growth rate s = 2—p (see the short discussion leading
to formula (15) below). Hence, in this case we may apply Theorem 1
to obtain Theorem 2 (without imposing condition (7)).

We do not dare to state a conjecture on sharpness. Nevertheless, the
linear growth example of [Bil], [BF5], the previous remarks iii) and
) and a detailled comparison with the known results (recall the above
mentioned references) at least show that our results are reasonable and
consistent.



Ezample. Let us shortly discuss an example which emphasizes the essential
improvements obtained by Theorem 2. Let Z = (7, Z,) € RN x RFIN,
1 < k < n. Moreover, suppose that we are given exponents 1 < p < g < 2
and

[(Z2) = A +1ZP)% + 1+ 23

In this subquadratic case (by elementary calculations) the estimate
1+ 128 TV < D2 H(Z)(V,Y) < AP

is seen to be the best possible one. As a consequence, no regularity results
are available from Theorem 1 if p is close to 1 — even if (¢ — p) becomes very
small. Hence, with the trivial assumption 2 < p+2 (let ¢ = 2, p = 2 — p),
Theorem 2 really provides some completely new results.

A final theorem covers the anisotropic vectorial case in two dimensions.

Theorem 3 Let n = 2, and consider 1 < s < g < oo such that (4), (5), (6)
hold with i = 2—s. Then, if g < 2s, the solution u of problem (P) is smooth
on 2.

Ezxample. In particular we get regularity in case
f(Vu) = |Vul]® + (1 + |1u]?)?
with ¢ € (2,4).

Remark 3 Note that the assumption q < 2s of Theorem & formally coincides
with the “(s, u, q)-condition” of Theorem 1.

Remark 4 In Theorem 1 — Theorem &8 we concentrated on the case of in-
tegrands having superlinear growth so that the existence of minimizers in
appropriate Orlicz-Sobolev spaces is easily established. However, it should be
noted, that it is also possible to discuss u-elliptic integrands of linear growth
(see [BF2], [Bi2]) or even anisotropic problems of mized linear/superlinear
growth ([Bi4]). Of course then one has to look at suitable generalized mini-
mizers from the space of functions having bounded variation (see [BF6] for
three formally different approaches leading to the same set of generalized min-
imizers). For a short overview of the regularity results in the case of linear
growth problems we refer the reader to [BF5].



3 Some remarks on the proofs

A complete proof of Theorem 1 already appeared in [BFM] and [BF1]. The-
orem 3 essentially relies on a lemma due to Frehse and Seregin (see [FrS)])
and is published in [BF4]. The first claim of Theorem 2 is contained in [Bi3]
(compare also [Bil]).

In our paper we concentrate on the general vectorial setting and give a
rigorous proof of the higher integrabilty assertion (8) of Theorem 2. This is
done by refining some of the ideas given by Choe ([Ch]) and by combining
this with a more appropriate Caccioppoli-type inequality. Note that we do
not impose the restriction f(Z) = ¢g(|Z|?) as considered in [Ch], where also
the constraint ¢ < 1 + p is taken as a further assumption.

Remark 5 Having established (8), the partial reqularity result will then be
an immediate corollary following the ideas of [BF1]. In fact, we observe that
the blow-up arquments of [BF1] remain unchanged once a Caccioppoli-type
inequality and higher local integrability of the gradient are wverified. Some
more details are outlined in [BF3], here we just note that the way of requ-
larizing the problem (which will slightly differ from [BF1]) is irrelevant since
these ingredients are formulated in terms of the solution u. The restriction

q<(2—u)% if n>3 (%)

1s due to the needed properties of the auxiliary functions 1, introduced in
[BF'1] (compare also [FO]). Since our boundedness condition does not im-
prove the Caccioppoli-type inequality, which in turn is the basis of the dis-
cussion of Py, we can not expect to get rid of assumption (x).

From now on we assume that the general hypotheses of Theorem 2 are valid.
We then consider a ball Bg(zy) € Q and an e-mollification (u)¢ of u, where
¢ > 0 is chosen sufficiently small. Moreover, for any § € (0,1) let

[(2) = f(2) +5(1+ |2, ZeR™,

with some exponent ¢ > max{2,¢}, and denote by v. = v.s the unique
solution of the Dirichlet problem

Js[w] 3:/ f5(Vw) dz — min, w € () py(a0)+ Wi (Br(20); RY) . (Ps)
Br(zo)

Then, if § = 6(¢) is chosen sufficiently small (see [BF3]), the main properties
of the regularizing sequence {v.} are summarized in



Lemma 1 With the above notation we have

—

Ve € Wolo,loc N WZ%loc(BR(xO); RN);

—e

i ||U5||WA(BR($O);RN) < ¢ < 00, where the constant ¢ is independent of €;

iii)  v. — u in W} (Bgr(z0);RY) and a.e. as e — 0;

1v

)
)
)
) sup |vs| < sup |u| < oo;
Br(zo) BRre(wo)

V) 5(5)/ (14 |Vv.))?dz — 0 as e — 0;
Br(zo)

vi) / f(Vve) dx — f(Vu)dz ase — 0;
Br (o)

Br(wo)

vii) /B - foe) (V) dz — f(Vu)dz.

Bg(zo)

Proof. The proof is quite standard and outlined, for instance, in [BFM],
[BF1], [BF3] or [Bil]. Let us just give two comments: first, since the
regularization is done w.r.t. the exponent ¢ > max{2, ¢}, the discussion of
asymptotically regular integrands (compare [CE] or the generalization given
in [GM], Theorem 5.1) immediately yields i). As a second remark, we like
to mention that the structure condition f = g(|Z1],...|Z,|) with g as above
provides the convex hull property (see [BF3] for a detailled proof), hence iv)
follows from the boundedness of ug. Note that once iv) is established, we
no longer make use of the L*°-bounds w.r.t. uy and the structure condition
imposed on f. |

Given Lemma 1 it is obvious that (8) follows from our main

Lemma 2 With the above stated hypotheses, for any k € (¢,4 — p) and for
any ball B,(xg), r < R, there is a constant c just depending on the data, on
SUPBR(xo)|(4)?| and on v and K, such that

/ Vo |"dr <c¢<oo.
Br(mo)

Proof of Lemma 2. In the following we abbreviate f. = f5.), moreover we
always take the sum w.r.t. repeated Greek indices y =1,...,n and w.r.t. re-
peated Latin indices 7 =1,..., N.



By definition, v, is a solution of the Euler equation
/ V£ (Vv.):Vodr=0 forall ¢ € C(Bgr(zy);RY),
Br(zo)

and on account of Lemma 1, i), we may differentiate this equation (taking
O, as test function and performing a partial integration) with the result

/ D2f5(Vv5)(57Vv5, Vp)de =0 forall ¢ € C5°(Bgr(xo); RY). (9)
BR(CEO)

Given a smooth cut-off function 7, standard approximation arguments prove
%0, v. to be admissible in (9) and, as a result, we obtain the Caccioppoli-type
inequality

Lemma 3 There is a real number ¢ > 0, independent of €, such that for any
n € C§°(Br(0)), 0<n <1,

/ D?f.(Vv.)(8,Vve, 0, Vv, )n® dz
BR(.’,C())
< c/ | D? f.(Vv.)| [V V| da .
BR(SE())

Proceeding with the proof of Lemma 2 we fix x as given there, hence it is
possible to define

¢+p—4<a=rk+p—4<0, (10)
where the negative sign of « ensures that

0<a::2+a—g<2+%::a'. (11)
Note that we may suppose w.l.o.g. that |«/| is sufficiently small in order to
obtain the positive sign of o. Alternatively, we observe that in the case of
a negative sign the second integral on the right-hand side of inequality (17)
below is trivially bounded.
By (11) we may choose in addition k£ € N sufficiently large satisfying

T <2k —2.
O-I

Now, given n € C§°(Bgr(2y)), 0<n <1,n=1on B,(z), |Vn| <c¢/(R—71),
we introduce the function I', = 1+ |Vu,|? and recall the starting integrability

10



i) of Lemma 1, thus v, is smooth enough to perform the following partial
integration

/ |VUE\2F2+Q_;E772kdx = —/ Uf;-V[VviFiJra_;En% dx
BR(J:()) BR(;E())

< c/ |V205|Fi+%n2kd:v
BR(CE())

3ta—p
2

—|—c/ I, ?* =V d .
BR(SL‘())

Here we already made use of the fact that v. is uniformly bounded. If a
positive constant M is fixed, then the left-hand side is immediately estimated
by

/ \Vv5|2fi+a_gﬁn2k dx > c/ F?a_;&n% dzx
Br(zo) Br(zo)N[|Vve |2 M]

> c/ F?L%n% dx — c(M),
BR(mo)

therefore the starting inequality reads as

/ F§+Q_5E772kdx < ¢ 1+/ |V21)E|Fi+a_;ﬁn2kdx
BR(:E()) BR(CL‘())

3ta—p
+/ L. 2 7' \Vnlde (12)
BR(:L‘(])
=: c{1+I+II}.
At this point we like to emphasize that the choice (10) of « gives

a—u K
2 =—>
+ 2 2

N |

(13)
Next, for v > 0 sufficiently small, Young’s inequality yields a bound for IT
I < ~ / T2F 2k gy
Br(zo)

LS R S ST I (14)
BR(CE())

a=u -1 o
S ,Y/ P§+ 2un2k d.’E + cfy 2/ I\i+ 2 ,’,’2/6—2 d:L‘
Br(z0) (R—r1) Br(zo)

11



Note that the first integral on the right-hand side of (14) may be absorbed on
the left-hand side of (12), whereas the second one remains uniformly bounded:
in fact, if g > 1, then (2 — p)/2 < 1/2 and the claim is trivial (recall the
negative sign of ). In case u < 1 we assume w.l.o.g. that V f(0) = 0 (replace
f by f(Z) = f(Z) — V£(0) : Z) and that f(0) = 0. As a consequence,
assumption (5) yields

/ D*f(2)(02)(Z,Z)d0 > a|Z|* " —

for some real numbers a > 0, b. The equality on the left-hand side in partic-
ular shows that Vf(Z) : Z > 0, and we may proceed by estimating

1
f(Z)> VfOZ):0Zdi > ci|Z|* " — ey (15)
1/2

for some other constants ¢; > 0, co. Thus f is at least of growth rate 2 — p,
whenever 1 < 1, and Lemma 1, vi), proves our claim in this case as well.

Hence, Lemma 2 is established once an appropriate estimate for I is
found. To this purpose we observe (again v > 0 is sufficiently small and
Young’s inequality is applied)

I < ’y/ F;%\V2vg|2n2k+2dx+’yl/ F2+a— S22 gy
BR(J,‘()) BR(J:())
=: ’}/Il + ’)/_112 . (16)

Using Lemma 3 together with Lemma 1, v), one obtains

I < / D?£.(Vv.)(8, Vo, 0,V.) (1) da
Br(xo)

< c/ |D2f5(VUE)‘|Vv5|2772k|V77|2da:
BR(SL‘())

c g t
—— L2n?* dx + 6(e) / L2n?* da
(R—r)? { /BR(wo) Br(zo)
< ¢ 14 / g n*de b .

N (R - T)Z Br(zo)

As a result, (16) yields (recalling (13))

I< a0 5 1+/ F§+%n2kdaﬁ +7_1/ F2+a_5772k 2dx. (17)
(R - T’) Br(zo) Bpg(zo)

12
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Choosing v = 9(R—r)? with 4 > 0 sufficiently small, the first integral on the
right-hand side of (17) may also be absorbed on the left-hand side of (12),
hence it remains to find a bound for the second one. Here, the negative sign
of o and, as a consequence, (11) and our choice of & come into play. For
4 > 0 sufficiently small we get with a final application of Young’s inequality

;5/—1(R o 7')_2/ P§+a_%772k_2 dx
Br(zo)

< cw(R—rV{a/B( )r§+a_2’in2kdx+7cﬂ|BR(xo)|}.
R\ZO

Absorbing terms by letting ¥ = v'4(R —7)?, 1 > +' > 0, Lemma 2 is proved.
|
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