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1 Introduction

For a bounded Lipschitz domain Q C R*, n > 2, and a function uy € W} (;RY) we
consider the variational problem

Jw] = /Qf(Vw) dz — min  in ue+ I/ffll(Q;RN) , (1)

where f: R" — [0,00) is a strictly convex integrand of linear growth, i.e.
alZ|—b< f(Z)< AlZ|+B forall ZeR™W (2)

holds with suitable constants a, A > 0, b, B € R. Clearly (1) fails to have solutions in
general, therefore we introduce the set

M = {u € BV(Q;RY) : u is the L'-limit of some
J-minimizing sequence {ux} C ug+ I/ffll(Q; RN )}

of generalized minimizers of problem (1). It is well known that the elements u of M
naturally occur as minimizers of suitable relaxed versions of problem (1), precisely (see
[11] or [7]) we have: let

/fVa d:v+/foo |V5 d|v5w|

foo((wo —u) @ v) dH" ', w e BV(QRY),
)

where v is the outward unit normal to 0L, f, is the recession function of f, and V*w and

V*w denote the regular and singular part of Vw w.r.t. the Lebesgue measure, respectively.
Then

e K[w] — min in BV (Q;RY) has at least one solution;
° inf J= inf K;
wWi(@Ry)  BVERY)

e 1 is K-minimizing < u € M.

It should be noted that there exists a formally different approach to relaxation based on
the notion of a suitable Lagrangian (see [20] and [17]): let

L(w,/i):/div;{-(uo—w)dx—/f*(/ﬁ)dx+//{:Vuodx,
Q 0 Q
weBV(Q;RY), kel :={oeL®R"Y): divee L"(QRY)},

AMS Subject Classification: 49N60, 49N15, 49M29, 35J
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where f* is the conjugate function of f. We introduce

J[w] = sup L(w, o)
oeU

as relaxation of J to the space BV (Q;RN), but in [7] we showed that K and J coincide
on BV(Q; RY).

In our note we like to investigate the regularity properties of generalized minimizers
u € M. To this purpose we assume in addition to (2) that f is of class C?(R""). Then,
according to [2], we know Vu € C%*(Qy; R™Y) for any 0 < o < 1, where g is an open
subset of Q with full Lebesgue measure, provided we have D*f(Z)(Y,Y) > 0 for any
Z,Y € R*Y, Y # 0. Another regularity result concerning the scalar case N = 1 is
established in [10]: generalized minimizers u € M are smooth in the interior of 2 if f
satisfies a minimal surface type ellipticity condition. In order to get rid of this quite
restrictive assumption we introduce the class of p-elliptic, linear growth integrands.

Definition 1 Let f € C?(R™N) satisfy (2) together with
\Vf(Z) <M <oo forany Ze€R"™W . (3)
Then, we say that f is p-elliptic for some number > 1 iof and only if
ML+[2P) 5P < D2 F(Z)(V.Y) < AL+ [2P) 2y P (4)
holds with positive constants X\, A and for all Y, Z € RV .
Remark 1 It is easy to show that (8) and (4) imply (2).

In Sect. 2 we will give a list of examples satisfying (4) for any given number p > 1.
From now on we restrict ourselves to the scalar case N = 1, the reader will find further
comments concerning vectorial problems in [3].

Let us first recall some recent results on the regularity of generalized minimizers.

Theorem 1 ([6]) Consider an integrand f as in Definition 1 and assume p < 1+ 2/n.
Then we have:

i) M cCY(Q) forany 0 < a< 1.
ii) If u, v € M, then there is a real number ¢ such that u = v + c.

So the strong assumption p < 1+ 2/n implies regularity together with uniqueness up to a
constant. Unfortunately the condition on pz becomes more and more restrictive if n — oo.
But we can compensate this effect by considering good boundary data.

Theorem 2 ([4]/) Suppose that ug € L*°(Q2) and let the assumptions of Theorem 1 hold
for some < 3. Then i) and ii) of Theorem 1 continue to hold.

The next result concerns the limit case yu = 3:



Theorem 3 ([/]) Suppose that we are in the situation of Theorem 2 with = 3. Then
there is a generalized minimizer u* € M such that
i) Vour = 0.

ii) For any Q' € Q we have

(V| In®(1 + |[Vu*[?) dz < oo .
QI

iii) u* is (up to a constant) the unique solution of the problem

/ f(Vw)dz + [ foo((up —w) ®v) dH" ' = min in W}'(Q).
Q [2/9]

Note that from iii) of Theorem 3 we deduce that the relaxed problem
K[w] — min in BV(Q)

admits a solution in W} ().

The main concern of our paper is to emphasize the role of the limit exponent u = 3.
To this purpose we first extend Theorem 3 to integrands with an additional smooth z-
dependence (Sect. 3), in a second step we construct an example which shows that we
can not go beyond the limit case 4 = 3 in Theorem 4 below. This strongly indicates
that Theorem 3 is sharp in the sense that also in the xz-independent situation studied in
Theorem 3 there exist generalized minimizers which are not of class W} if we replace the
exponent p = 3 by some slightly larger number.

2 Examples of p-elliptic integrands

i) Let us start with the most prominent example: the minimal surface integrand f(Z) =
1+ |Z|? satisfies Definition 1 with the limit exponent p = 3. However, there is much
better information on account of the geometric structure of this example, in particular
we have

T VT gE| < DY)
Co |Y|2 (Y : Z)2 (5)

< = _
= 1+ 2P 1+ |ZP
for all Z, Y € R® with some real numbers ¢y, cs.

Given an integrand satisfying this condition, Ladyzhenskaya/Ural’tseva ([13]) and Gi-
aquinta/Modica/Soucek ([10]) then use Sobolev’s inequality for functions defined on min-
imal hypersurfaces (compare [15] and [9]) as an essential tool for proving their regularity
results.



ii) We fix u > 1, let

go(r):/ /(1+t2)_%dtds, reRy,
0o Jo

and consider @,(Z) = ¢(|Z|). By direct calculations it is easy to see that @, is an p-
elliptic integrand of linear growth in the sense of Definition 1, in particular (4) is satisfied
with the optimal exponent u.

If we choose = 1, then we obtain an integrand of nearly linear growth which, at least
for large |Z|, behaves like | Z|In(1 + | Z|).

If 4 = 2, then the explicit representation reads as

1
Py(Z) = |Z| arctan | Z| — iln(l +1ZP) .

In the limit case p = 3, it is easy to perform the integrations and the minimal surface
example is exactly recovered.
#ii) On account of the above observation we need to give some examples with limit ellip-
ticity p = 3, with linear growth and which are not of minimal surface structure in the
sense of (5).
A somehow technical example can be constructed by considering the function @, for some
fixed 1 < p < 3, where we now “destroy” ellipticity by inserting “linear pieces” (compare
the construction of integrands with (s, u, ¢)-growth given in [8]). Then, on one hand, the
inequality on the right-hand side of (5) is no longer valid. On the other hand, we have
degenerate ellipticity and by adding some minimal surface part we get an “u = 3”-elliptic
energy density which is not of minimal surface type.
We did this piecewise construction for the following reason: the Ansatz f(Z) = g(|Z])
automatically leads (more or less) to the minimal surface structure. In particular, if
Z 1Y € R* and if f is of linear growth, hence ¢'(t) — ¢ as t — 400, then
!

D), Y) = LY (1 12
if |Z| is sufficiently large.
Nevertheless, there exists a different natural class of examples where the above structure
is lost: the idea is to replace |Z| by the distance to a convex set by the way obtaining a
variety of interesting energy densities. Let us just sketch a very easy example in the case
n =2, Z = (21, 22). Denote by C the upper unit half disc, i.e. C ={Z: |Z]| < 1, 2z > 0}
(for the sake of simplicity we neglect a smoothing procedure at the edges). Note that the
distance function p(Z) := dist(Z, C) coincides (up to the constant 1) in the upper half
plane (for |Z| > 1) with |Z|. Now let

[(Z) =1+ p%(Z) .

We are mainly interested in the points Z = (0,22), 22 < 0, |22| > 1: it is immediately
verified that in this case

D?f((0,22))(e1,e1) = 0,
D?f((0,2))(easea) = (1+[0%((0,2)))) 2 = (1+ 22,
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where e;, i = 1, 2, denotes the i"* unit coordinate vector. In particular we observe that
the minimal surface structure is completely destroyed on account of the degeneracy of
C. This of course induces degeneracy of f as well. The first way of obtaining u-elliptic
integrands with linear growth evidently is to change the geometry in a suitable way. We
prefer a simple and more anisotropic idea: let (for |Z| > 1)

T((Z1,Z2)) = %Zl+p((z1’z2))’

f((21,z2)) = \/1+7'2(21,z2)).

Then there is a positive constant ¢ such that

cMZ| < 7((21,22)) < | Z|

for all |Z| sufficiently large, and if 2z, < 0, |23| > 1, then we obtain in both coordinate
directions e;, = = 1, 2, with suitable constants c;

D2 ((0,22)) (ei, €5) = ci(1+ [7((0, 22)) |*)~

[V]5S)

Summarizing the properties of f we see that this function is of linear growth and satisfies
the p-ellipticity condition with limit exponent y© = 3. Moreover, f does not satisfy
the minimal surface ellipticity condition (5), and there is no chance to get something
analogous: given the points (0,2) as above, both eigenvalues of D2f ((0,29)) grow like
(1+ 1272,

3 Smooth z-dependence

Now we are going to prove that Theorem 3 remains valid if we admit an additional smooth
z-dependence of the energy density f. This will enable us in the next section to discuss
the sharpness of our results. To be precise, let us suppose that we now have

Assumption 1 There are constants ci,...,c; such that for all x € Q, for all P, U,
V eR" and for anyy=1,...,n

i) the variational integrand f = f(x, P) is of linear growth in P, uniformly w.r.t. x, i.e.
alP| b < f(r,P) < AP+ B

holds with constants which are not depending on x;
ii) f(z, P) is of class C*(Q2 x R") and any of the derivatives occurring below erist;

iii) [Vpf(z,P)| < ey



iv) (14 |P]?)3|U> < D3 f(z, P)(U,U) < es(1+ |P?) 2 |U;
V) |a7va($’P)| S C4;

vi) |0,0,Vpf(z,P)| < cs;

vii) |0,D}f(z, P)(U, V)| < ¢s| D3 f (, P)(U, V)| + \U||V]|.

1+ \P|2

Remark 2 Maybe, assumption vii) needs some brief comment: if we want to include
integrands of the type f(x, P) = g(a(x)P) with some scalar function « in our consider-
ations, then we can not expect that 0,D%f and D% f define equivalent bilinear forms on
R"™. However, the admissible pertubatzon on the right-hand side of vii) in particular is
weak enough to be verified for the counterexample of the next section.

The z-dependent variant of Theorem 3 then reads as
Theorem 4 Theorem 3 remains valid also for energy densities satisfying Assumption 1.

Proof. We follow the lines of [4] (see also [3]) and start by letting
) o
Js[w] = 5/ Vw|? dx+/f(x,Vw) dz, weug+ Wy (), 6€(0,1).
Q Q

Here and in the following we may assume in addition that uy € L N W3 (Q2), the well
known approximation procedure needed to handle the case ug € L™ N W} (Q) is outlined,
for instance, in [5]. Next, let us denote the unique solution of the variational problem

Jslw] = min  in we+ I/f/; (Q)

and abbreviate f5(z, P) = $|P[>+ f(z, P). Then the main properties of the regularization
{us} are summarized in

Lemma 1 i) The reqularizing sequence {us} is a J-minimizing sequence from ug+ Wi (Q);

ii) there is a real number ¢, independent of 6, such that
5/\Vu(;\2dx§c, /|Vw|dx§c;
Q Q

iii) us is of class W3, N W, 15.();



iv)
/ Vefs(x,Vus) - Vodxr =0 for all ¢ € C°() ;
Q
v) for all p € C§°(Q), v =1,...,n, we also have
/ D% f5(x, Vus) (0, Vus, V) dz + /(&vaf(;)(x, Vus)-Vedr =0,
Q Q

where ii)-v) are valid for any 6 € (0,1).

Proof. For i) we observe that the additional z-dependence does not affect the correspond-
ing arguments of [5] (compare [18] for the case of integrands depending on the modulus
of the gradient). Alternatively, we can follow the reasoning outlined in [10] which is
based on Reshetnyak’s lower semicontinuity theorem (see [16]). Claim ii) is immediate
by Js[us] < Jslug] < Ji[ue] and the linear growth of f, iv) is the Euler equation for us
which implies iii) by Theorem 5.2, Chapter 4, of [12]. With the higher integrability and
differentiability given in iii), we finally may differentiate iv) to obtain v). [ |

Next we state the main

Lemma 2 Suppose that the hypotheses of Theorem 4 are valid and let {us} be given as
above. Then, for any domain Q) € S, there is a real number ¢(Y') — independent of 6 —
such that

|Vus| In*(1 + |Vug)?) dz < ¢() < 0o
Q/

Proof. Let us abbreviate I's = 1 + |Vus|?, ws = In(I;) and fix some ball By, (z9) € €.
Given n € C§°(Bar(20)), 0 <1 <1, n =1 on B,(x), we conclude from Lemma 1, iii),
and from standard density arguments that ¢ = usw3n? is an admissible choice in Lemma
1, iv), hence

/ Vef(x, Vus) - Vu(;w(?nQ dz +6 |Vu,5|2w§772 dz
Ba, (550)

Ba, (550)

= —/ Ve f(z, Vus) - us [Vwin® + Vn'wy] dz
BZT($O)
—6 / Vus - us [Vwin® + Vn'w;] dz . (6)
BZT($0)

Note that the equations iv) and v) of Lemma 1 remain unchanged if we replace f(z, P)
by fuo := f(z, P) — Vpf(x,0) - P. Moreover, without changing the constants co—c7, the
inequalities iv)-vii) of Assumption 1 are valid with f replaced by f,,. Finally, we find a
positive number ¢; such that iii) of Assumption 1 holds uniformly w.r.t. zo for any f,, as
above. As a consequence, we may assume w.l.o.g. that Vpf(zo,0) = 0. This implies by
Assumption 1, iv),

td P .
Vi (20, P) - P :/ o (20,0P) - P d0 > c2|p\/ (140t dp
0 0
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thus, recalling Assumption 1, v), we may choose r sufficiently small such that for all
x € BQT (.T())
Vef(z,P)-P>c(1+|PP)2 —¢ (7)

holds for some real numbers ¢/, ¢ which are not depending on z. Inequality (7) implies
that the left-hand side of (6) is greater than or equal to

1
/ [C'Ff win? — c"wgnQ] dx + 5/ \Vuswin® dz . (8)
Ba,(z0) B2r($0)

Since |V f| and |us| are bounded, we find the following estimate for the right-hand side of
(6) (using Young’s inequality with & > 0 fixed)

1 1
rhs < c/ n? [5F52w§ +5_1F5 2|Vw5|2] dz
BZ’I‘($0)

+c(r) / wj dx
Bs; (-’EO)

+c<5/ 7’ [5|Vu(5|2w§ + 6_1\Vw5|2] dz

B2T($0)

+c(r)6/ |Vus|ws dz . 9)
B2r($0)

Clearly [ B (z0) wj dz and § [ B (z0) \Vugs|w? dz are uniformly bounded with respect to

d (compare Lemma 1, ii)). Hence (6), (8) and (9) imply after absorbing terms (for e
sufficiently small)

1 _1
/ [Pwidz < c[l —i—/ Ty 2 |Vws|®n? dx
B, (zo) Bzr(-'L'O)
+5 / Vg2 dx] . (10)
B2r(ﬂ70)

Given (10), we observe that a.e.

Vws|? < ¢ 5 (V2us|*

1+ |Vu5|
thus we may use Assumption 1, 7v), with the result
F% 2dr < 1 -3 1102, 12,2
swidr < c|ltc I 2 +0) 15 [Viug|™n” dz (11)
B (z0) Ba, (z0)
< c[l + c/ D? f5(Vus) ((%Vu(;, 87Vu(5)772 dx] )
Ba, (z0)

Here and in the following we always take the sum w.r.t. repeated Greek indices v =
1,...,n. Now, Lemma 2 is proved once we have found a uniform bound for the right-
hand side of (11). To this purpose we observe that the starting integrability of us is

8



good enough (recall Lemma 1, iii)) to take ¢ = n?d,us, n as above, as an admissible test
function in the differentiated Euler equation v) of Lemma 1 (of course we again need some
standard density argument). As a result we obtain

/B ( )D%fg(x,Vu5)(87Vu§,87Vu5)7)2 dz
2r\Z0
= —Q/B ( )D%f(;(a:, Vus)(0,Vus, V)no,us dz
27 (Z0
—2/B ( )(87VPf5)($,VU5)'87U(5V7777 dz
- /B @), Vi) 0,Fug
2r(Z0

= I+I+1II. (12)

By Assumption 1, v), we have

|| < 0(77)/ |\Vus| dz < ¢,

Ba, (-TUO)
whereas the first integral on the right-hand side of (12) is handled with Young’s inequality
for € > 0 sufficiently small

Il < s/ ( )D%f(;(x,VU5)(87VU5,87VU(5)772 dz
B, (zo

+eet \D% fs5(z, Vus)||[Vn|? | Vus|? dz .

Ba, (550)

Here the second integral on the right-hand side is uniformly bounded, the first one can be
absorbed on the left-hand side of (12), hence it remains to find an upper bound for III.
We perform a partial integration to obtain

i = / 0,0,V pfs)(z, Vus) - Vusn® dz
By, (z0)
—I—/ (0,D% f5)(z, Vug) (0, Vus, Vus)n® dz
B2T($0)
+/ (0,Vpfs)(z, Vus) - Vusd,n? dx
Ba, (z0)

=: I + I, + III5 .

Assumption 1, vi), shows that |III;| is bounded independent of ¢, the uniform estimate
for |III5| again follows from v) of Assumption 1. Finally, for the consideration of |[IIl,| we
make use of Assumption 1, viz), which, together with Young’s inequality, gives for ¢ > 0



(note that the y-derivative of the d-part vanishes)

|III,| < c/ \D% f(, Vu(g)((%Vu(;,Vu(s)hf dz
B27‘($0)

+c/ (14 |Vus[2) 1 Vus| | Vusn? dz
B2T($0)

IN

ce/ D3 f(z, Vus) (0, Vus, 0, Vus)n® dx
BZT(-TO)
+ce™? / D% f(x, Vus)(Vug, Vus)n? dz
B27‘(‘T0)
+C€/ (1 + |Vus|?) "2 |V2usn? dz
B27‘(z0)
e / (1+ | Vg ?) =3 [Vus 22 da - (13)
B27‘(‘T0)

Note that, on account of the ellipticity Assumption 1, 7v), the third integral on the right-
hand side is estimated by the first one which in turn is absorbed on the left-hand side
of (12). The remaining two integrals on the right-hand side of (13) are handled with the
linear growth of f and Lemma 2 is proved. [

Since the regularization {u;} is a J-minimizing sequence (recall Lemma 1, i)), each L'-
cluster point u* is a generalized minimizer which satisfies on account of Lemma 2 the
higher integrability claimed in Theorem 4. Once higher integrability of the gradient is
shown, the last assertion (concerning uniqueness) can be taken from [7] and the proof of
Theorem 4 is complete. |

4 A counterexample to Theorem 4 in case u > 3

We proceed with an example on the sharpness of Theorem 4. The idea originates from
[10], Example 3.2, where the authors restrict themselves to the one-dimensional situation.
We follow the proposal of Giaquinta, Modica and Soucek and give a rigorous proof that
the arguments extend to higher-dimensional annuli 2. What is more, the example given
in [10] is degenerated which is not the case in the modification outlined below. As a
consequence, we precisely can verify the assumptions of Sect. 3 with the exception that
we now have p > 3.

The general setting is the following: let n = 2 and |z| = /22 + 22 = r. We fix some
positive numbers 0 < p; < po, p:= (p2 — p1)/2 and choose

Q:z{xERQ:p1<r<p2}.
Moreover, a: 2 — R is defined by

alr) = 1491 = ol

10



where the positive parameter +y is chosen later on (see (18)). If £ > 2 is fixed, then the
energy density under consideration reads as

1+ a(r)|P|F)% if |P £,
f(x’P):f(r’P):{gz(r,P)( 0 if }PI 2 £

Here h(r, P) is chosen such that f(z, P) is strictly convex, non-degenerate in P and such
that f(z, P) of class C*(Q x R?). For an explicit construction we may consider

f(P) =

- (1+|P)% if |P| > e,
h(P) if [P < e,
together with the Ansatz
M(P)=a+b(1+|P)T + [P,

where a, b and ¢ are suitable constants and | > k. The requirement that f is of class
C?*(R?) in particular implies

k—2—|eff
b — 1 k%*Zl l27% k—I >0
(L +[e[*) e (1 + [e[")" e T 0
| T kyi—2 k 115_2—|<‘5|]C
c = Sl +[el)* (1+\6l)—(1+|6|)7k_2_|€|l 0.

We then let 2 (r, P) := h([a(r)]"/* P). Finally, the choice of the second parameter 0 < ¢ < 1
will be made in inequality (26) below.

Theorem 5 With the above notation, the variational problem
J[w] := / f(z,Vw)dz - min  in ug+ I/f/II(Q)
Q

does not admit a generalized minimizer v € M of class W} () if ug is supposed to satisfy
uo(p1) = —a and uy(p2) = a for a constant a > 0 sufficiently large (see (29)). Here and
in the following — with a slight abuse of notation — we write u(z1, x2) = u(r) whenever u
is merely depending on |z|.

Remark 3 i) Note that the ellipticity exponent of f is given by u=k+1> 3, hence we
really obtain an example on the sharpness of our results.

ii) Moreover, it should be emphasized that the boundary values uy may be chosen as a

function of class C*(9Q).

Proof. Assume by contradiction that v € W(Q) is a generalized minimizer. Then the
proof of Theorem 5 splits into three steps.

11



Step 1. First of all we note that by the symmetry of the problem and with the obvious
meaning of notation (after introducing polar coordinates) we have

v(r, ) = w(r) . (14)

In fact, consider the regularization {us} of Sect. 3 which clearly satisfies us(r, ¢) = us(r)
since for any real number ¢, the function us(r, ¢ + o) is Js-minimizing with respect to
the boundary values uy as well. Hence, uniqueness of minimizers proves the claim for u;.
Next, consider a L!-cluster point u* € M of the sequence {us}, in particular we have
u* = u*(r). It was already mentioned above that there is an open set 2y of full measure
such that u* € CH%(Q). As an immediate consequence (see [5]) we obtain

o=Vf(Vu*) in Q.

Moreover, following an idea of [19], a minimax inequality is proved in [7] (compare [3] for
some additional details) which implies

o=Vf(Vw) in Q
for any generalized minimizer w € M, hence
Vu* =V = Vw =V in Q.

This, together with v* = u*(r) and v € W} (), immediately gives assertion (14).
Step 2. We next claim that v takes the boundary data ug in the sense that the trace of v
on 0f2 is just ug, i.e.

v(p1) =—a and wv(p) =a. (15)

In order to prove (15) we consider the comparison function

) —vle)—a p o< T < p,
“’(”—{v(r)—v(m)m P T <

and assume by contradiction that (15) fails to be true. If we observe that
folr,P)=at()|P|, p<r<p,, PeR,

then we obtain
Klw] = / f(r, Véw) dx —|—/ d|\Viw| . (16)
Q 8B,(0)

Here we used the fact that V*w is supported on 0B,(0) and that w takes its boundary
data uy on 992. From [1], Theorem 3.77, p. 171, one gets

VewLdB,(0) = (v(p1) — v(ps) + Qa)é—‘ dH' .

Thus, (16) may be rewritten as
Klu = [ £:9"0) da + 2mplulp) = o(pu) + 2]
< / flr, Vo) dz + 27r,0(|v(p1) + a‘ + |v(p2) — a‘) : (17)
0

12



Now choose v sufficiently large such that for ¢t =1, 2

p

m<1. (18)

Then we obtain

/fer d:v—i—Zoz% / lug — v(p;)| dH = K[v],

9By, (0)

hence the desired contradiction since the characterization of K as stated in the introduc-
tion remains valid with an additional smooth z-dependence.

Step 3. Now we make use of the Euler equation for the generalized minimizer v which
takes the standard form since v is assumed to be of class W/ (), i.e. we have

/ Vef(r,Vv)-Vypdz =0 forall ¢ € C;(Q) . (19)
Q

In particular, this is true for test functions ¥ = 9(r) € C§(p1,p2)). In the following
the derivative w.r.t. r is denoted by “"”. Then, again using polar coordinates, Vv =
(cos v, sin pv) and with the notation Vp f(r, Vv) = g(r, |9|)Vv we obtain from (19)

/ / r, [0|)opr dr dp =0 for all 3 = o(r) € CL((py, p2)) -

As a consequence, there is a real number A € R such that for all » € (p1, p2)
g(r, |o))or = X (20)

With the representation

T, |0|) = (1

we have to distinguish two cases.
Case 1. If || < ¢, then using the formulas for b and ¢ we immediately see that g(r, |0]) <

cle[¥~2, in particular
A
AL o (21)

g(r, [o)r —

o)) a2 i o)
“a(n)|o] 2 + 2ca(r)]Eif [of

I

N\._. +

> €
< €

e> o=

for some positive constant c.
Case 2. 1If |9 > ¢, then (20) implies by elementary calculations (note that |A| > 0 in the
case at hand)

_k
[ FamT 4o T = (A fr) T (22)
Observe that, as a consequence of (22),

(IAl/7)" < alr) . (23)
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Now, again with some simple computations, (22) gives

(1A/r) =
ak (m — (I\/r))

Summarizing both cases we have the formulas (21) and (24), respectively, for |v|.

We then choose Ay > 0 sufficiently small such that (24) (which is independent of the
parameter € > 0) implies |0| < 1 and assume that |A| < Ag. Then, by (21) and (24) we
see that |0| < 1 for all r € (p1,p2). On the other hand, v takes its boundary data and
v(r) is of class W((p1, p2)), hence v(r) is an absolutely continuous function and we may
write

0| = (24)

Ealld

1 1 [ _
a = 3lo(p) = o(ea) < 5 [ o) ar < 2 (25)
p1

This gives a contradiction if ¢ is sufficiently large and we may assume |A| > \q which was
chosen independent of . Hence, if Case 1 holds true, then (21) yields

£ > c|Aol , (26)

and we choose ¢ sufficiently small such that this is not possible. Once it is established
that Case 2 holds for all € (p1, p2), we obtain from (23)

Al < inf ok (r)r. (27)

r€(p1,p2)

Moreover, (24) gives the right representation and using (23), (27), « > 1 and k£ > 2 we
estimate

1 2—k
_ QFG-1) QF(E-1)
ol < LS .
ot (o — (A1) (a1 = (IN/r) )

< [oﬂc+1 — (7"_1 Teinf [ozl/k(r)r])kfl] =: [h(r)}_% . (28)

=
£

E

(/71 ’92)

Here we first note that h(r) is independent of A, in particular h(r) does not depend on
the boundary values ug given in terms of a. Moreover, h(r) > 0 is evident by definition.
Finally, the zeros of h(r) are of finite number and simultaneously (by (18) interior) minima
of h(r). Thus, with Taylor’s formula we see that

h(r) =~ c(r —r9)® near the zeros ry of h(r) ,

and that we may choose a < co such that

/p2 [h(r)}_% dr <a. (29)

P1

This proves the theorem since (28) and (29) contradict (25). [
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Remark 4 Let us again concentrate on the regularizing sequence {us} with L'-cluster
point u* as studied in Sect. 3. Then it is not difficult to locate sptV*u* in the situation at
hand. To this purpose denote by po,;, i = 1,..., M, the minima (of finite number, lying
in the interior of (py, p2) by (18)) of the function ok (r)r on (p1, p2). We then have

M
spt Viu™ C UaB,,M(o) :
i=1

In fact, the sequence of radially symmetric functions {us} = {us(r)} yields a minimizing
sequence of the one-dimensional energy (Q =1 = (p1,p2))

Jilw] = /I £, [ (r)|)r dr

with respect to W (I)-comparison functions w(p;) = —a, w(ps) = a. In this sense, u*
provides a generalized Jr-minimizer. Now we again extend the ideas of [10] and let 7,
u; denote the Lebesgue-decomposition of u* in absolutely continuous and singular part,
respectively. Moreover, Corollary 3.33, [1], p. 140, on the decomposition of functions of
bounded variation defined on intervalls allows us to choose v(r) € W{(I) such that for
almost all r € 1

o(r) =ay(r) and  o(p1) = u(p1) -
Next let v(r) differ from 0(r) just by additional jumps at the points py,; such that

1 M
1')5(’/’) = M Z(Spo,i /qu )
=1

where 0,,, denotes the Dirac-measure centered at py;, i =1,..., M. Note that

/Iu;;(t) dt+/lu: = u(p2) —u(p1),

[0 dt+( / u)%f [ = oo = vl

also implies v(pa) = u*(p2). Thus we obtain
/f as(r rdr—i—/loz%(r)r dlay|(r)
< [ 1l dr+ [t doo)
< [ sl dr+rer(13}g2)a?(r)r [l < ww

and our claim is proved. |

15



Remark 5 Although u* as discussed above is not of class W1 (Q2) and although we do not
know whether u* is of class C*® on the complement of sptV*u*, we might conjecture that
there exist analogous examples in the case p = 3 providing W} -minimizers of

/ f(Vw)dz+ [ foo((uo —w)v) dH* " — min,
Q o9

which are smooth on the complement of a finite number of interior spheres. However,
if solutions of this kind exist, then they are caused by the non-convezity of Q). In fact,
consider a smooth convex domain €0, assume that n > 2, N =1, and suppose that there
is a W} (Q)-solution which is of class C** near the boundary 9. Then, on account of
the uniqueness of solutions (up to a constant), we apply Hilbert-Haar arguments (com-
pare [14]) to see that the singular set is empty. In this sense, as the typical behaviour,
singularities must concentrate near the boundary.

Remark 6 In order to show rigorously that our reqularity theory breaks down if u > 3,
we have to ensure that the enerqy density f studied in Theorem 5 satisfies Assumption 1

(of course now with ellipticity exponent i = k+1). Here it is clearly sufficient to consider
(P eR")
f(Py=@+PF)E, k>2,

and to study Assumption 1 w.r.t.
f(z,P) = f(a(z)P), a(z)=1+]s)F,

whenever |P| > 1 and x € B1(0) C R*. To this purpose we first observe that direct
calculations yield in the case |P| > 1

D*f(P)- P = (1+|P|*)s2(k — 1)|P|*~2P (30)
and, as a direct consequence,
ID*f(P)(P,U,V)| < ¢| D*f(P)(U, V)| + ¢(1 + [PP)~ 5 U ||V (31)

for all U, V € R*. For the discussion of f we just have to verify v), vi) and vii) of
Assumption 1, where v) immediately follows from (30). Now note that for 1 <~y <n and
|P|>1

0,0,Vpf(z,P) = 0,0,0(2)V f(a(z)P)
+20,a(z )DQf(a(x)P) Po,a(x)
(

+a(z)D? f(a(z)P)(P, P) [8,a(z)]’

+a(z)D?f(a(z)P) - P,0,a(zx) =: ZIZ- :
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Clearly I, is uniformly bounded and the same follows for Iy and I, from (80). I3 is
estimated with the help of (31)

D f@P)IP.P)| < —|D*fo@)P)(a()P.P)

k
2

< ¢|D*f(a(@)P)||P| +e(1 + P72 <,

hence we have vi). Finally vii) is established by observing

&YD?Df(x,P)(U, V) = 204(x)87oz(a:)D2f(a(:c)P)(U, V)
+[a(z)]*D*f(a() P) (P, U, V)d,a(x)

if we once more recall (31). [ |
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