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Abstract

We consider the initial-boundary value problem for general linear discrete ve-
locity models appearing in kinetic theory. With time independent inflow boundary
data we prove the existence of a unique steady state and the exponential conver-
gence in time towards the steady state. The proof is based on the construction of
suitable multiplyers used in a weighted L2-norm.

1 Introduction

This note is devoted to show the exponential decay towards equilibrium for gen-
eral discrete velocity models (DVM) obtained from some kinetic boundary value
problems. The general DVM system we deal with reads

+Vf + A(z)f = 0, 0O<z<L,t>0,
( ,0) = fi(2),
£4(0.1) = gt (1.1)
f7(Lt) = g,

where f(z,t) = (fj(,t),j € J) is the kinetic phase-space distribution function.
Here and in the sequel we denote vectors in IR by bold face letters. We assume
that the discrete velocities v; € IR are strictly ordered v; < vjy1 with the finite
index set J C ZZ; moreover, v; > 0 for j >0 (ie. j € JT := JNIN) and v; < 0 for
j <0 (ie. j€J :=JN(=IN)). f* denote the restrictions of f onto the index sets
J*. fy is the given initial condition and g* are the prescribed time-independent
inflow boundary conditions.



The matrix V' = diag(vj,j € J), represents the discrete velocities matrix of the
free-streeming term and A(z), 0 < z < L is the interaction matrix (real valued,

square matrix of size |J|). From now on we assume the following hypotheses on
A(z):

A € Loo((O,L),BmX‘J'), piecewise continuous
AS = %(A + AT), A0S .— %(A _ AT) (H1)
A(z) > 0 Vzel(0,L)

In this paper we study the exponential decay in time of the solution f(z,t) of (1.1)
to its steady state f,, which is uniquely determined (as we shall prove) by the
boundary data. For A*(z) > AI with A > 0 this decay would of course be trivial.
Here we are interested in exponential decay that is induced by the outflux through
the boundary under the weaker assumption A°(z) > 0.
If the DVM includes the zero velocity we shall make another hypothesis on
A(z):
if0eJ letag(z) >0, Vze(0,L). (H2)

This is motivated by the following consideration: Assume that agg(zg) = 0 for some
Zg, first for a symmetric interaction matrix, i.e. A(z) = A%(z). A%(zo) > 0 would
then imply ag;(z0) = ajy(zo) =0 Vj € J. Hence, the equation for fop would then be
decoupled from the remaining system. And since fj is not convected (vy = 0) and
without decay by itself (agp(z¢) = 0 by assumption) no exponential decay would
be possible. In fact, (1.1) would then not even have a unique steady state. For a
general interaction matrix with ago(zo) = 0 the stationary equivalent of (1.1) would
be a differential-algebraic equation (DAE) of index 2 and the stationary boundary
value problem with fixed g* would be overdetermined (cf. [8], §4 of [1] for details).

We remark that (H2) does not permit to include vg = 0 as a discrete velocity
for a purely anti-symmetric interaction matrix.

Equations of type (1.1) appear in applications as velocity discretizations of vari-
ous kinetic models. The mathematical analysis of such discrete velocity models has
a long standing tradition (cf. [11, 17], e.g.).

Examples of kinetic models leading to DVM systems of type (1.1) are:

1. Vlasov-Fokker-Planck equation [6, 7, 9, 10, 20] for the distribution function
f(z,v,t) >0,z € (0,L), v € R:

Jft +ofs + dofo = BWf)y + 0 fou, (1.2)

where ¢ = ¢(z) is a given potential. The kinetic equation (1.2) represents the
evolution of the distribution of particles in phase-space subject to an external
force field ¢, and colliding with a surrounding “heat bath”. Here, 8 > 0
is the friction with the particles of the “bath” and ¢ > 0 is related to the
temperature of the thermal bath.

Typical velocity discretizations of the diffusion term in (1.2) lead to the sym-
metric part of the interaction matrix A*(z), while the force and friction terms
yield its anti-symmetric part A% (z).

2. Wigner equation [22, 18, 1] for a given potential ¢:
wy + vwy — Odlw = 0, (1.3a)
with the pseudo-differential operator

Oy
2

Oy

) — ¢z — )| - (1.3b)

ol =i | oo+ >



The quasi-transport equation (1.3) for the (real-valued, but not necessarily
positive) Wigner function w(z,v,t) is a kinetic formulation of quantum me-
chanics, equivalent to the Schrodinger equation.

Alternatively to (1.3b), O[¢] can (formally) be expressed as a convolution
operator in v:

(©[¢lw)(z,v) = a(z,v) *» w(z,v), (1.4)
with

a(w,v) = \/gIm[e%Ux(fx—)v ¢)(2’l))],

where F denotes the Fourier transform. These two definitions of ©[¢] coincide
under some regularity and decay assumptions on ¢ (cf. [4]). One easily verifies
that ©[4)] is skew-symmetric in L?(IR,).
Due to the convolution form (1.4), reasonable velocity discretizations of O[¢|w
are of the form

(A(:I:)W)J = Zwkaj,k(:c), jE J.

keJ

Hence, the interaction matrix A(z), 0 < z < L is here skew-symmetric and
Toeplitz (cf. [1]).

3. The Wigner-Fokker-Planck equation [2, 3] describes quantum diffusion effects
and reads in the simplest case:

1
wy + vwy — Oplw = —Woo-

For these models both the symmetric and anti-symmetric parts of the inter-
raction matrix do not vanish.

This paper is organized as follows: In §2 we prove unique solvability of the
stationary boundary value problem, including the singular case when 0 is a discrete
velocity. Using a multiplyer technique the exponential decay of the transient solution
towards the steady state is then proven in §3 in the case 0 ¢ J. However, we include
a numerical test indicating that such an exponential decay should also hold in the
case 0 € J.

2 Unique steady states

In this section we shall discuss the well-posedness of (1.1) and its corresponding
steady state. By a standard perturbation lemma of semigroup theory [19] (1.1) has
a unique, global-in-time solution f € C([0,00), L?((0, L), R’!)), when assuming
fo € L?((0, L), R”!). To keep the notation simple we shall restrict ourselves here to
this space, but the results carry over to other LP—spaces.

The steady state problem of (1.1) for f = f(z) reads

Vi, + A(z)f = 0, O0<z<L,
£7(0) g, (2.1)
f-(L) = g .

Theorem 2.1 Let A satisfy (H1) and (H2). Then (2.1) with given boundary data
gt has a unique solution fy, € LZ((O,L),RM).



PRrROOF: The inhomogeneous boundary value problem (2.1) is equivalent to

VE, + Az)f =h(z), 0<z<L, (2.9
£1(0) =0, f~(L) = 0. '
Here h = —A(z)g — Vg, and g is a smooth continuation of the boundary data

(g,g7) to the phase-space (0,L) x J. If 0 € J we shall assume hy = 0, which can
be obtained by an appropriate choice of gg.

Case (a) - no zero velocity:

For 0 ¢ J the operator T = V9,, defined with homogeneous inflow boundary
data is clearly invertible and 7! is compact. Thus, by the Fredholm alternative,
the existence and uniqueness of a solution to (2.2) is equivalent to proving that the
homogeneous version of (2.2) only admits the trivial solution. Multiplying (2.2)
(with h = 0) by f' and integrating in z gives:

L

fT(L)VE(L) — £T(0)VE(0) + / f7(z)A(z)f(z) dz = 0. (2.3)
0

Note that £ (L) = 0,£1(0) = 0 and A*(z) > 0, which gives f(z) = 0 Vz. This is a

slight generalization of Theorem 3.6 in [1] and rather standard in transport theory

[14, 13]. Hence (1.1) has a unique steady state f,, € L2((0, L), R”!).

Case (b) - zero is a discrete velocity:

Now we shall reduce the second case (0 € J) to the previous one. For 0 € J
Equation (2.2) is a DAE, and due to (H2) its index is 1. By using the (homogeneous
— since hg = 0) algebraic constraint (line 7 = 0 of (2.2)) and (H2) we can eliminate
the variable fy from (2.2):

We define the regular elimination matrix M (z) € IRI'1*|/! with the elements

(Sjk:; jed ke j,

mjk(z) = 1 J=k=0, (2.4)
~so@ . e J k=0
a00(@) ’ J y R=1,

with the index set J := J \ {0}, and N := |J|. Multiplying (2.2) from the left by
M (z) yields (note that MV =V, M h = h):

Tf + A(z)f =h(z), 0<z <L,
{ £5(0) =0, £ (L)=0, (25)
where A(z) = M(z) A(z). Because of (2.4) we have
ajo(z) =0 VjeJ, (2.6)

and hence the N differential equations in (2.5) for the variables fi»J € J are de-
coupled from the one algebraic constraint.

Let B(z) € RY*Y be the system matrix of this decoupled ODE-system, ob-
tained by canceling row j = 0 and column j = 0 of the matrix A(z). We shall now
show that B*(z) > 0 for any fixed z € (0,L): For I € RN we define

1Im=(T OTT‘ M(z)=( zi‘ .
( J+’ ; J—) (‘T) ( J+’ 05 J—)
Hence we get:
_ _ I AT
1" A@z) 1=(17 J+,0,1T‘J_) M(z)-M Y(z)-A(z)-| o | =17 -B(z)-1, (2.7)
1,



where we have used (2.6).
Therefore we also obtain

iT.B(z)-1=1"-4%z)-1>0 VvieR",

and the decoupled ODE-subsystem of (2.5) satisfies (H1). According to case (a)
this subsystem admits a unique stationary solution f(z) = (f;(z), j € J) and the
remaining component fo(x) is obtained from the algebraic constraint. |

3 Exponential decay in time

After having established the existence of a unique steady state f,(z) we now turn
to our main result - the exponential decay of f(¢) in case 0 is not a discrete velocity.

We first point out that the particular case J = J* (v; > 0 for all j) is trivial
since the solution with homogeneous inflow data becomes identically zero in finite
time T' = L/v;. This is based on the fact that the solution is transported out of the
domain with at least velocity v1. The analogous result holds in the case J = J~
(v; < 0 for all j).

Theorem 3.1 Let fy € L*>((0, L), R"”!) and assume (H1) and 0 ¢ J. Then
I£(2) = fooll2 = O(e ™)
for some X > 0.

The key point of this theorem is that we only assumed A°(z) > 0 in (H1). So
the exponential decay is only due to mass transport out of the considered interval
(0, L). Under the stronger assumption A*(xz) > AI exponential decay with the rate
A would of course follow from a trivial energy estimate.

The idea of the proof consists in introducing a weighted space Li(O,L) with
the positive weights ¢(z) = (p;(z),j € J) (in WH*(0, L)) to be constructed. This
method was first used for a 2-velocity model by M. Tidriri in [21]. We subtract from
(1.1) equation (2.1) for the unique steady state f. Hence, we shall consider in the
sequel only homogeneous inflow data, i.e. g™ = 0, g~ = 0 and hence f,, = 0.
Proof: With the diagonal matrix ®(z) = diag(y;(z),j € J) we define the norm in
Li as

I£]|7, = < ®f,f >,

where L
< £l f? >=/ > fifids
0 jes
is the standard L?-inner product.

Part (a) - decay estimate:
We first take the inner product of equation (1.1) with ®(z)f and obtain after an
integration by parts:

1d 1

§£<f,‘1)f>—§ <f,V(0,Q)f >+ < Af,of > < 0, (3.1)
where we have used f1(0) = 0,f (L) = 0, and ¢;(z) > 0. The key part of the
proof will be to construct the weights ® and a diagonal matrix B(®,z) with the
properties:

0<c <ypj(z) <co, Vi,V (3.2)



1
—5 <EV(%Df > + <A@)f of > > <B@,x)f.f> Ve R’ (3.3)
B(®,z) > \® for some A > 0. (3.4)

We remark that c¢i,c2, A will be independent of j,z,f. Once we have proved (3.3)
and (3.4), one trivially obtains from (3.1):

1d
—— < f of A<E,of > < 0,
2di <TI, > +ALT, <
and hence

I£@®)lly < e Mfollp, t>0.

Finally, using (3.2) proves the assertion:

_ C:
I£(t)]2 < e *t,/gnfonz, t>0.

Part (b) - construction of B(®) :
We split the matrix A(z) into its symmetric and skew-symmetric part: A = A%+ A%.
First we shall derive an estimate of type (3.3) pertaining to A°. We have

<A, Of >= - < (A’ + PA°)E, £ > > p(®) <f,f>,

N | =

where (®,z) € IR is the smallest eigenvalue of 1(A°(z)® + ®A4*(z)). Due to hy-
pothesis (H1) we have u(I,z) > 0, where I is the identity matrix. Let us define the
diagonal matrix D*(®,z) := (u(®,z) — p(I,x))I. Then we trivially have

< A%, of > > < D*(®)f, f > VE. (3.5)
Moreover, D*(I,z) = 0 and D*(®,z) is globally Lipschitz in ®, independent of z.
The last assertion is a consequence of Weyl’s theorem [16] (page 198) that gives
1
[1(@1) = p(®2)] < p(S(A%(21 = B2) + (21— D2)A%)) < [[A°[[[[@1 — 2o

in any matrix norm (p denotes the spectral radius).
Next we shall derive a similar estimate for A% = (¢;;) :

L
< AYE Bf > = / Zcij(w)fifj[(f’i(m)_‘Pj(x)]dx
0 iy
1 [ 2 2
> —5/0 S e @) 11 (@) — 3 @) (F2 + £2) da
1<j
= —<D™(®)f,f> VI, (3.6)
with

, 1
D (®, ) = diag | 5 _lcij(@)||ei — oil
jedJ

As before we have D% (I,z) = 0 and D*(®, z) is globally Lipschitz in &.
Finally we choose the diagonal matrix B as

B(®,1) = —%V(ach) + DD, 1) — DU (®, ),

which satisfies (3.3) and B(I,z) = 0.



Part (c) - construction of ®:
Let the diagonal matrix ®(z) be obtained as the solution of the non-linear ODE-
system for the ¢;(z), j € J:

{ B(,

o(3)
for some (small enough) A > 0. We remark that (3.7) has a unique (global-in-z)
solution ®,(z) since D*(®,x), D*(®,z) are globally Lipschitz in & and A(z) is
piecewise continuous. Hence, ® is Lipschitz continuous in = and piecewise C'. Also
®) depends continuously on A. Since &g = I, ,(z) will be strictly positive and
satisfy (3.2) for some A > 0 small enough. This finishes the construction of ®
verifying (3.2)—(3.4) and the proof of the theorem. |

:) 0, 0<z<L, (37)

Nl »e+

Remark 3.2 The case in which 0 is a discrete velocity cannot be concluded with
the same procedure as in the previous theorem. Let us illustrate this for the case
in which A is symmetric, positive semidefinite and singular. Then, the algebraic
constraint due to the zero velocity in eq. (3.7) reads simply p(®) = Ao with A > 0
and @o(z) > 0. However, under our previous hypotheses on A, the general inertia
theorem [15, Theorem 2.4.10] asserts that u(®) < 0 for any diagonal matriz ®.
Therefore, the algebraic constraint is never satisfied. Hence, the above method does
not extend to cover the case 0 € J.

To finish our discussion we consider numerically a specific example including 0 as
a discrete velocity. As we shall see below there is numerical evidence of exponential
decay towards the unique steady state in this situation.

Example 3.3 We consider the 3x 8 system (1.1) with velocities V = diag(—1,0,1)
and interaction matriz A = (a;;) with a;; = 1 for any i,5 € {—1,0,1} and homo-
geneous boundary conditions, i.e., f1(0) =0, f_1(L) = 0. We use upwind 2-point
finite differences in the x-direction and explicit Euler in time. Finally, in Figure 1
we compare the L?-norm of the computed solution with a fitted exponential function:
g(t) = 0.4xexp(—0.915¢). For large times (t > 50) g(t) and || f(t)||2 coincide almost
ezxactly.
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