Universitat des Saarlandes

Fachrichtung 6.1 — Mathematik

Preprint

The Dirichlet problem in weight spaces

Darya Apushkinskaya and Alexander Nazarov

Preprint No. 46
Saarbriicken 2001



Universitat des Saarlandes

W e o
uuiuy
JUUL gy yy JUOL

uuuuuuy
uuuuuu
uuuuuuu
Ly \}

Fachrichtung 6.1 — Mathematik

The Dirichlet problem in weight spaces

Darya Apushkinskaya Alexander Nazarov

Saarland University St. Petersburg State University
Department of Mathematics Department of Mathematics
Postfach 15 11 50 Bibliotechnaya pl. 2,

D-66041 Saarbriicken, Stary Petergof

Germany 198504 St. Petersburg, Russia

E-Mail: darya@math.uni-sb.de E-Mail: an@AN4751.spb.edu

submitted: December 19, 2001

Preprint No. 46
Saarbriicken 2001



Edited by

FR 6.1 — Mathematik
Im Stadtwald
D—-66041 Saarbriicken
Germany

Fax: + 49 681 302 4443
e-mail:  preprint@math.uni-sb.de
WWW:  http://www.math.uni-sb.de/



AMS Subject Classification: 35J25, 46E35, 35B45, 35D05, 35D10
Key words: elliptic equations, Dirichlet problem, weight spaces

Abstract

The solvability of the Dirichlet problem for quasilinear elliptic
second-order equations of nondivergence form are studied in the weight
spaces.

§0. Introduction

In the present paper, we study the solvability of the Dirichlet problem for
quasilinear elliptic second-order equations of nondivergence form. In doing
so we assume that the right-hand side of the equation belongs to the weight
space L, such that the weight is equal to some power of the distance from a
point to the boundary of a domain.

The structure of the paper is as follows. In Sec. 1, we formulate the statement
of the problem and the main result. A priori estimates are derived in Sec. 2.
Finally, in Sec. 3, the existence theorems for solutions of the linear and
quasilinear problems are proved.

Throughout the paper, we use the following notation:

x = (z1,2") = (21,22, ...,2,) is a vector in R";

|z|, |2'| are the Euclidean norms in the corresponding spaces;

R ={z €eR": 2, >0}

QC{zeR":0<x <R} is adomain in R* with boundary 0%;

|©2| denotes the Lebesgue measure of ;

d(x) is the distance between a point z € Q and 0%;

By (2°) is the open ball in R* with center 2° and radius p;

I, ={z €R": [z < p, || < p};

I', is the part of 011, lying on the hyperplane z; = 0.

We adopt the convention that the indices 7, and j run from 1 to n. We also
adopt the convention regarding summation with respect to repeated indices.
D; denotes the operator of differentiation with respect to the variable z;;
Du = (D;u) is the gradient of u;

D%y = D(Du) is the Hessian matrix of u;

We introduce the following spaces:

C(€) is the space of continuous functions with the norm || - ||o;

C?(9Q) is the space of functions continuous in §2 together with their derivatives
up to the second order;



W2(2) (1 < p < o) is the Sobolev space with the norm

[ullwze) = [[D(Du)]

2 + ”u”P,Q?

where || - ||,,o denotes the standard norm in L,(2);
Ly .(a)(€2) is the weight space with the norm || - ||, )0, Where

llullp, @0 = || (21)* ullp0;

Ly, (o) (€2) is the weight space with the norm || - ||, (a),0, Where

lullp ()0 = 1(d())" ull,q;

\7‘,1)2,(&) (Q) is a set of functions with the finite semi-norm || D?u||, (a),0;

Vi(a) (Q) is a set of functions with the finite semi-norm || D?ul|p,(a),0-
It should be noted that the semi-norms || D?ul|,,(a),0 and || D*u|| ), become
the norms if u|gq = 0.

We set

f+ =max {f,0}, f-=max {-f,0}, osc f =sup f —inf f,
Q pS Q

and assume that ¢ > n and &(q) =1- 7.

We use letters M, N, C' (with or without indices) to denote various constants.
To indicate that, say, N depends on some parameters, we list them in the
parentheses: N(...).

81. Statement of the problem
We consider the equation
—a" (x,u, Du)D;Dju + a(z,u, Du) =0 (1)
in the domain € and the Dirichlet boundary condition
u=0 on OQ. (2)

We assume that the matrix (a*) is symmetric, and the functions a* have
the first-order generalized derivatives with respect to all the arguments. We
assume also that the functions a” and a in Eq. (1) satisfy the following
structure conditions:



Vg < a¥(z,2,p) <vTE VEER, (AD)

la(z, z,p)| < plpl® + b(x)|p| + D(), (A1)
0a (x, z,p

pl | 2EEED oyl 21, (A2)

Pk

da" (x, 2, p) da' (z, z, p)

< ®(z), A3
T plp| + () (A3)
b, ® € Ly ) (Q) (A4)

for any x € Q, 2 € R, and p € R®, where v and u are some positive
constants.

Theorem 1. Let the following conditions hold:
(i)n<qg<oo,0<a<alg), 002 EVZ,(Q);
(ii) every solution ul")(-) € \73,(&) (Q) to the problem

7 (—a"(z,u, Du)D;Dju + a(z,u, Du)) — (1 —7)Au=0 in Q,

U|BQ = Oa

(3)
where T € [0, 1], satisfies the estimate
[ul ()l < Mo;

(i) of |2| < My, then conditions (A0), (A1), (A2), (A3), and (A4) hold,
(iv) the function a(-,z,p) regarded as an element of the space Ly ) (Q2) is
continuous with respect to (z,p).

Then the problem (3) has at least one solution U")(-) € V;’(a) (Q) for each

7 € [0,1]. In particular, u')(-) is a solution to the problem (1), (2).
§2. A priori estimates
Suppose that £ is a uniformly elliptic linear operator in {2,
Lu = —a”(z)D;Dju + b'(z) Du,
and v is an ellipticity constant. We introduce the notation b(z) = (b*(z)).

Step 1. MAXIMUM ESTIMATES

We start with the case where b; are bounded functions.
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Lemma 2. Suppose that a nonnegative function B € C?(Q) satisfies
1 R -
LBZ>|b|(1+1In— a.e. in K.
x1

Then any function u € \7020,(1)(9) such that u|aQ < 0 satisfies the estimate

Bllg+e 'R
w0 R o) oy (@)

where Q* = {z € Q : u(z) > 0}.

Proof. We introduce the function

L 0 u
ACINEEY A Y
Al

v

An elementary computation gives

L o
Lv> || (L) | ,(1),0 > Lu _—
T

Then applying the Aleksandrov maximum principle [A] to the difference u—v
in Q" we obtain u < v which implies (4). O

Lemma 3. Suppose that a nonnegative function B € C?(Q) satisfies
LB > |b| a.e. in €.

Then any function u € W2(Q) such that “|an < 0 satisfies the estimate

u < Np(n)

|Bllo + No(n, )R
S (L) e

Proof. This statement is proved by verbatim repetition of the proof of
Lemma 1.1 [N1]. O

Theorem 4. Let n < g < oo. Suppose that a nonnegative function B €
C?(Q) satisfies

LB> bl (1+1n5) ae in Q. (5)
T



Then any function u € ‘7;]2,(@((1))(9) such that u‘an < 0 satusfies the estimate

|B||ox + Na(n,v)R
v

u < N3(n) 1(£Lu)+

0(@(q)) v - (6)

Proof. The proof of this assertion is similar to that of Theorem 2.1 [N1].
The only difference is that we must use Lemmas 2 and 3 instead of Lem-
mas 1.3 and 1.1 from [N1]. O

We now turn to the case of unbounded functions bt.

Theorem 5. Letn < qy,q; < 00,0 =a(q1) —ay >0, and let R < 1.
Then there ezists a constant o = o(n,v,0) such that the inequality

||b||(I1,(a1);Q < o

implies the estimate
u < Co(n, v) R||(Lu) +]]go,(a(q0)), 00 (7)

for any function u € V2

wox(@(qo)) (§2) such that u‘an <0.

Proof. It sufficies to obtain (7) only for smooth Q CcC {0 < z; < R}.

Then the general case follows in the same way as Item 3 in the proof of
Theorem 2.1 [N1].

1. Let ¢ = co. Then the assumptions of Theorem 5 mean that
b(z)|(z) " <o a.e. in Q.

Thus, for B =z In £ we have

EB}%—|b| <1+lnﬁ>>1<1—gx‘1§ <1+ln£>) a.e. in (.
X X1 X1 14 X1

We note that the inequalities

] <1 +1In E) < C(OR° < C(6)

i

v

500 We obtain

are true on the segment [0, R]. Hence for o =

LB > |b| (1 +1n E) a.e. in Q.
x1
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Then (7) follows from (6).

2. Let qo,q1 < oo. In this case, it sufficies to establish (7) for smooth
coefficients and smooth functions u, and then use the passage to the limit.
We define B as a solution of the boundary value problem

LB = |b| <1+1n5>53 in Q, Bl,,=0.
x1

The solution B satisfies the inequality (5) from Theorem 4. Consequently,
the estimate (6) for ¢ = ¢; and u = B gives

B<N, 18]

B N.R
N3” llo + N4 C
1%

| Bllo + NuR
f q1,(a(q1)),2

< (5)R6“b”qh(a1),ﬂ

<270 1) + NuR) ®)

Taking o = , from (8) we get

2N C0)
|Bllo < N4R.

Then the estimate (7) again follows from (6)

3. Finally, let ¢y = 00, ¢; < .
For sufficiently large finite ¢ from Item 2 it follows that

u < CoRl|(Lu) 4]

. _n 1
a.@@)2r < CoR[|(£u) 1 lloo 1) 00 (inf [#']) "¢ |22
Now passing to the limit as ¢ — oo we obtain (7) for ¢gg = 00,q1 < c0. O

Step 2. HOLDER ESTIMATES FOR SOLUTIONS

Hereinafter, we suppose that
n < g < oo, d=2a(q) —a>0.

Lemma 6. Let p < 1. Then for any 1 €]0,1] there exist positive con-
stants o1 = o1(n,v, £1,6) and € = e(n,v, B1) such that for a function u €
V(f(a(q))(ﬂp) N C(IL,) the conditions




mmply
u > (1= pB1)k — Ns(n,v)p| (Lu)-|lo@@)m, in e (9)

Proof. Without loss of generality, we assume k£ = 1. By change of the scale
we transform II, into II;. In the new coordinates we have

L = —a" DD + pb' Diti = p*(Lu)  in Iy, (10)

where u(x) = u(px), a¥(x) = a¥(px), etc.
Define a barrier function v as

—1\?
v =1- P (P0) -

and set IT =TT, N {z; < 25}
From the assumptions of Lemma 6 it follows that

Yp—u<0 on Ol L < Ng(n,v)plb| in I,

and

a@)11 < [[#bllg@)m = £°[Ib

||pb| qa(a)anp < 0-1' (11)
Suppose that o; < o, where 0 = o(n, v, ) is the constant from Theorem 5
(with g9 = ¢; = ¢). Next, applying Theorem 5 to the function ¢ — @ in II
and using (11) and the evident relation

(L) g, aeg),m = oll(Lw) - lg,@ig)),m,

which followed from (10), we obtain
u(z) = (z) — N7(n,v)pl|(Lu)-

Since ¥(0) = 1, we may choose ¢ = ¢(n, v, ;) such that II, C IT and ¢ >
1—p1/2inII.. Then, taking o, sufficiently small and returning to the original
variables, we get (9) from (12). O

lg.a(e))m, — Ng(n,v)or in IL. (12)

Theorem 7. Let py < 1. Suppose that u € Vq?’(a(q))(ﬂpo) NC(I,,) is a
function such that

lul < My in 11, u=0 on I,
and

| (2,u, Du)D;Dju| < p|Dul’ + b(x)| Du| + ®(x)  in T,

7



where
b€ LyIly), @€ Ly (Ip),

(a¥(z, z,p)) is a symmetric matriz satisfying the inequalities (A0) for any
ze€ll,,z€eR, peR".
If, in addition,

”b”q,(a),HpO < 01,

where o1 = 01(n,v,1/2,§) is the constant from Lemma 6, then the estimate

p\"
osc u < O (—) Vp < po
I, Po

is valid with some v, = y1(n,v) €]0,1] and C; > 0 depending on the same
arguments as v, as well as on p, My, and ||®||¢ @)1, -

Proof. This statement is deduced from Lemma 6 in the same way as
Lemma 2.2 [AN1] is deduced from Lemma 2.1 [AN1]. O

Step 3. BOUNDARY ESTIMATES FOR THE GRADIENT

Before passing to estimates of the gradient on the boundary, we formulate
several auxiliary statements. The first statement is concerned to the inte-
rior estimate for the gradients of solutions of elliptic equations. The second
statement deals with the estimates for functions satisfying a linear ellip-
tic inequality with specific type singularities. Finally, the third statement
is devoted to a special decomposition of functions belonging to the weight
space Lg (q)-

From now on we make the additional assumption: 0 < o < @(q).

Lemma 8. Let py < 1. Suppose that u € 17112,(06)(1'[;,0) NC(IL,,) is a function
such that
lu| < My in 11

and v satisfies Eq. (1) in I1,,.

Suppose also that for any x € Il,,, z € R*, p € R" the functions a¥(z, z, p)
have the first-oder generalized derivatives with respect to all their arguments,
and conditions (A0), (A1), (A2), and (A3) hold with b, ® € Ly 4)(I1,,)-
Then there ezists A = A(n,v,q,0, u) > 0 with the following property: if the

ball By, ), (x*) does not intersect OI1,,, and

Po>

os¢c U < Wy,

BZ’{/Q(x*)



then
A
|Du(z*)| < Ng (z*)"' | osc ul . (13)
By, (0%)

Here Ny and wq are positive constants depending on n, v, q, §, i, ||b||q,(a),np0,
and ||®([g,(a),11,, -

Proof. Consider g; < ey and set 5 = M= f;:qa) It should be noted
also that according to eﬁn1t1on n -+ 51 < q. ﬁi ile Holder inequality, for
any function f € Ly (q)(Il,,) and p* < 3= we have

q—n—¢ej

—aq(nter) a(nter)
||f||n+51,BZ*(w*) < ||f||(I,(a),B;L* (z*) / T, @n=el o
B2, (z*)

N
1 gyt (0%) ™% | B (&) 50
1
()™ Nao(n)[].fllg.@).11,, - (14)
This means that in BJ. (z*) the statement of Theorem 2.1 [LU1] is valid and
hence (13) is actually proved (for b = 0; the case b € L, ., can be treated

similarly); it sufficies to write out explicitly the dependence of the constant
C occuring in the theorem mentioned on the parameter p*. U

<
<

Lemma 9. Let r > n, let u € W2(II;) N C(1,), and let u|r, = 0.
In the cylinder 11; we define an operator

L = —a¥(z)DiD; + [b}(x) + bi(x)] D,
whose coefficients a¥ = a’*, bi, bi, are measurable functions,
vnf? <a¥(@mn; <v'nf? Ve ell, neR,
by € L,(II), |ba(z)| < (z) 'F in I, F>0, B€]o1].
Suppose also that
(Lu)(z)| < ®(z) + () *H  in I, ®eL, (), H>DO0.

Then there exists a positive number R = R(v, 3, F') such that the following
estimates are valid

uz) < Nip in Ilg/s, (15)
x1
osc u@) < Nigp™ Vp < R/4 (16)
o, @



Here vy = vy(n,v, B,a(r)) €]0,1[, while the positive constants Nio and Ni3
depends on the same arguments as v, as well as on F', H, R, supy, U, ||b1||rm;,
and || @]y,

1/B
Proof.Consider R < min ¢ 1, B(B+1)y . To prove (15) and (16) it suf-
14F

ficies to apply successively an elliptic versions of Lemma 3.4 [AN3] and
Lemma 4.5 [AN3] to the function u. The first application gives us (15),
while the second one gives (16). O

Lemma 10. Let pyg < 1, let e1 be the same constant as in the proof of Lemma
8, and let 5y = 221 €0, 1].

g—n—ex
Then for any function g € Lg a)(I1,,) there erist g1 € Lypic, (I1,,) and g, €
Leoo,(1-5,)(I1,,) such that

9(r) = g1(z) + g2(),

and
g1lln+e1,m,0 + [192llo0,(1-62),11,5 < 2[|9llg,0),m,, - (17)

Proof. Without loss of generality, we assume g > 0 in II,,. We set
gi1(z) = (9(x) — a7 's) 92(z) = g(x) — g1 (),

where 3¢ is a positive parameter to be specified later.
It is obvious that

[192l00,1-82),11,, < 7+ (18)
Moreover, due to the Holder inequality it follows that

1
_ n4e n+teq
||g1||n—|—gl,np0 = (/ (g(az) — x‘ls? 1;{) 1 dﬂ?)
g

1 [e]
q (n+eq1)(1-62)
< ( [ # (gte) - xi“z)qd:r) ( / xﬁ"*““””dx) o
g g

—(n+e1)(1-46 o) (1=03)
< lllocerm, ( /g zymen %) , (19)

where G = {z : g(z) > 2J* '5}. On the other hand, we have

10



1/q
oo, > ([ 22 (ota))" o)
g
1/q 1/q
%< / dott=Dg ) =%< / a:l_(n+61)(1—52)dx) . (20)
g g

Combining (19) and (20) we obtain

oaaser iy <5 (gl T ). (1)

Now choosing s = ||g]|¢,(a),1,,, and adding (21) and (18) we immediately get
the desired estimate (17). O

Theorem 11. Let the assumptions of Lemma 8 be valid. Suppose also that
ulr,, = 0, and

[1bllg,(@),11,, < 01, (22)
where o1 = o1(n,v,1/2,8) is the constant from Lemma 6.
Then the following estimates are valid:

sup |Du| < Oy, (23)
Tpo/a
73
osc Du < Cs ( ) Vp < po/8. (24)
Tp Po

Here vz = v3(n, v, q, 6, 1) €]0, 1], while the positive constants Co-Cs depend on
the same parameters as 3 as well as on po, Mo, ||bllg,(a),1m,,5 and ||@|lg,(),m,, -

Proof. It sufficies to establish (23) and (24) for smooth functions u, and
then use the passage to the limit.

By Lemma 10 we can decompose b and ® into the sums b; + by, and ®; + P,
such that (17) is fulfilled for these decompositions.

In accordance with Theorem 7 and Lemma 8, we have the estimate

|Du(z)| < Nug ()M ! in TI,,,

where \; = A\y1, and the constant Ny, is determined by the known parameters
listed in the statement of the theorem. There is no loss of generality in
assuming that A\; < do, where s is that constant from Lemma 10. Hence in
I1,,/2 the inequality (A1) can be rewritten as follows:

la(z, u, Du)| < (bl(x) + by(2) +Z(x)) \Du| + &1 (z) + ®o(z),  (25)

11



where /b\(x) = uNyy (xl))‘l_l.

Arguing in the same way as in Theorem 3.1 [AN2], from (25) we find

|Lu| < ®,(z) + Bo(z)  in Ty, (26)
where
L= —ag,(x)D;D; + |b, () + by() | Diu,
gy (@) = a’(z,u,Du),  [by(2)| <bi(w),  |Ba(a)| < bo() + b(x).
Obviously,

bzia (I)l € Ln+s1(Hpo)a (27)
and the inequality (17) leads to the estimates

[ba(2)] < (20)™ " [1ballos,1-82),1m,, + HN13] (28)
(@2 ()| < (@)™ [ Pellooa-2)1,- (29)
Relations (26)-(29) and the condition u|r, = 0 show that Lemma 9 with
F = [[1balloo,(1-62),11, + #N14] , H = [|®|oo,(1-62),11,,
can be applied to the function u. This application gives us (23), and (24)
for any p < pr = min{py/8, Ro/4}, where Ry := R(v, A1, F') is the constant

from Lemma 9. In the case p; < p < po/8 we estimate the oscillation of Du
on I', as follows

P\ o\
osc Du < 20y < 20, (—) <03 <—>
Ty P1 Po

73
with Cy = 2C, (g—f) . 0

Step 4. ESTIMATES FOR THE GRADIENT NEAR THE BOUNDARY

Theorem 12. Let the assumptions of Lemma 8 and the condition (22) be
valid, let Ry be the same constant as in the proof of Theorem 11, and let
Rl = min {po, Ro}

If, moreover, ulr, =0, then for x* € llg, /3 such that the ball B;LI/Q(QU*) does
not intersect Ollg, ;3 we have the following estimate

[Du(z*)| < Cy (30)

12



Here Cy is the positive constant depending on n, v, q, 0, U, ||b||q,(a),np0, and
12 1lq. (@), -

Proof. Consider p = ””2—1 and define in B} the function v(z) = @. We
shall have established (30) if we obtain for v the estimate for the gradient
which does not depend on p.

Arguing in the same way as in the proof of Theorem 11 we find that Lemma
9 is applicable to u. Observe also that B} (z*) C Ilg,/2. Hence the inequality
(15) is valid and, consequently,

|U| < N15 in B?,

where Ni5 = Nis(n, v, u, 6, My, ||¢||q,(a),n,,0)-
Observe also that the function v satisfies the equation

—a"(x,v, Dv)D;Djv + a(x,v, Dv) =0 in BY,

where @ (z,v, Dv) = a¥(px + z*, pv, Dv), a(x,v, Dv) = pa(pz + x*, pv, Dv).

Moreover, for any z € By, z € R', p € R" conditions (A0), (A1), (A2) and
(A3) are transformed respectively as follows:

vIC]” <@ (x,2,p)G¢ < VTP VCERT, (A0)
a(z, 2,p)| < filpl* + b(@)|p| + (), (A1)
0a (z, z, ,
p| % <p for |p|>1, (A2)
Pk

94 (z, z, p) 0 (z, 2,p)| _ - -
< &(z), A3
D at), 4 SEEED] 4 ) (43)

where i = pp < p, b(z) = pb(pz + 27), B(x) = p®@(px + z*).
In addition, the simplest computation, in view of (14), yields

~ _€1
[®ln+er,87 = Pt [|@lnter, Brar)

< P N |||

@1, < Niol|®llg,),m,,

where £, and 0; are the same constants as in the proof of Lemma 8.
Analogously, we have

[Blln-er,mp < Niollb

|qa(a)7Hp0 °

Therefore all hypothesis of Theorem 2.1 [LU1] are valid for the function v in
B?. Application of this theorem gives us

|[Dv||p,, < Cu,

1/2

13



which immediately leads to (30). O

Theorem 13. Assume py < Ro, where Ry is the same constant as in the
proof of Theorem 11. Let the assumptions of Lemma 8 and the condition (22)
be valid. If, moreover, u|pp0 =0, and

|Du| < My in 11,
then for x,y € 11,,/3 we have the following estimate
| Du(z) — Du(y)| < Cs|z — y[™, (31)

where v, €]0, 1] and Cs > 0 depend onn, v, q, 0, po, My, Mj, ||b||q,(a),np0, and
”q)”q,(a),ﬂpo-

Proof. It is obvious that for any = € II,,, |2| < My, |p| < M; conditions
(A1), (A2), and (A3) take the following form:

a(x, 2,p)| < uM} + b(z) My + B(z) = B3y (w), (A17)
da” (z, z,p)
=2 <, A2
e 1 (A27)
aaij(x,z,p) aaij(x,z,p) x
< = . ”
S| PR <k (e = By ). (49

We consider the function w(z) = u(z) — z1Dyu(0). It is evident that w
satisfies the equation

—a" (z,w, Dw)D;Djw + d@(x,w, Dw) =0 in I,
where

@ (z,w, Dw) = a" (2, w, Dyw, D'w)
= aij(x, w + .’ElDl’U(O), Dlw + D1U(0), D'w),
a(z,w, Dw) = a(z,w, Dyw, D'w)

= a(z,w + 1 D1u(0), Dyw + Dyu(0), D'w).

Decomposing (/15{1} and <,I\>{2} in the same way as in the proof of Lemma 10 we
see that w satisfies the assumptions of Lemma 9 (with b%(z) = b%(z) = 0).
Hence the inequality (16) with u replaced by w is true. Therefore, taking
into account that

lim ™) _ pw(o) =0,

z—0 i[,'l

14



we get
lw(z)| < (#1)7? Nig in T, (32)

where the constant Nig > 0 is determined by the known parameters listed
in the statement of the theorem. There is no loss in generality in assuming

that v, < nfrlgl, where £ is the same constant as in the proof of Lemma 8.

Now we consider z* € II, /5 and define in B} for p = %1 the function v(z) =
w(%tf*). First of all we obtain for v the estimates for the gradient which do
not depend on p.

From (32) it follows that |v| < Ny in B}. Observe also that the function v

satisfies the equation

—a"(z)D;Djv+a(r) =0 in B},
where oy g
a’(z) =@’ (pz + 2%, p" v, p* D),
a(z) = p'a(px + x*, p 0, p7 D).

Moreover, condition (A0) is transformed into (A0’) with a* defined in (33),
while conditions (A1”), (A2”), and (A3”) take the following forms:

(33)

‘a(m’ Z,p)| < &){1} (CC),

aa’ (‘/‘Eizﬁp)‘ </,l:,
Opy,
85” ($, Z,p) 86Z]($, Z,p) F
<o ;
0z ’ 0xy, 2}(2)

where 5{1}(16) = ,01’72:1;{1}(/03: + z*) and 5{2}(:5) = p1</1\>{2}(p:v +a*) .
The simplest computations, in view of (14), yield
||(I){1} ||n+51,Bf‘ = pm*’ﬁ ”(I){l}”n-l—ahBﬁ(m*)
P R RTIES e
< Nygpr+er 7 ||‘I>{1}||q,(a),n,,0 < N10||(I){1}||q,(a),n,,0;
| @23 ||nter,Br = prer ||(I>{2}||n+sl,B;‘($*)

_f1 SR ~
< Niop™ | @4allg ()11, < Niol| g2y

qa(a)anpo °

Hence we can apply Theorems 4.1 and 4.3 from [LU2] to the function v,
which yields

[Dv(2)| < Niz,  [Du(z) = Do(y)| < Nigle —y[7, 2,y € Bijp,  (34)

where the positive constants 7, Ni7, and Nz are determined by the known
parameters listed in the statement of the theorem.
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Furthermore, we note if z,y € Il,,/s and |z — y| < $ max{z1,y1} then the
second estimate in (34) leads to (31) with y4 = 7.
Otherwise, |z — y| > 3 max {z1,y:1}. In view of the first estimate in (34), for
x € 11,3 we have

|Dw(z)| < Ny7 (1) .

Consequently, we obtain

|Du(z) — Du(y)| < |Dw(z) — Dw(y)|
< 2Ny7 (max {zy,y1 })™ < 22 Ny |z — y|™.

So, in either case, we have (31) with 74 = min{%,y,}. This completes the
proof. ]

83. The solvability of linear and quasilinear
Dirichlet problems

Theorem 14 Let 1 < p < 0o,and let o € }—%, 2 — % [ Suppose also that the

coefficients of the operator L satisfy the following conditions:
a? € C(Q), [b|€Ly@(),

where

and @ = max{a(p) —¢,0},

_ | max{n,p}, if p#n
b= n+6’ Zf p=n,

while € is a small positive number.
If, in addition, 09) € V%,(E)(Q) then for any f € Ly () (2) the boundary value
problem

Lu=f m €,

35
o = 0 (35)

has a unique solution u € V?),(a) (Q).

Proof. By the Holder inequality and the embedding theorems (cf. Theo-
rems 10.1 and 10.4 [BIN]) one can verify that the assumption |b| € L &) ()

provides the inclusion b*Dju € Ly, (a) () for any u € V2 ().

Moreover, the condition 02 € gfg @) (2) guarantees that the assumption on
|b| is invariant under straightening the boundary 0.
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Using the coercive estimate for a model problem in the half-space, which
follows from Theorem 7.6 [N2], and standard methods (partition of unity,
straightening the boundary 0f2, freezing coefficients, and reduction to the
canonical form) we obtain the following inequality

It is well known that the problem (35) with smooth coefficients b’ is uniquely
solvable for any smooth function f. So, the inverse operator £7! is defined
on everywhere dense set in the weight space L o) (2). The estimate (36)
shows that this inverse operator can be continuously extended on the whole
space L, () (€2). .

Now approximation the non-smooth coefficients b by smooth functions fin-
ishes the proof. O

| D?ullp,(a),0 < Nig(n,p, @) (|| Lu

s+ lullp..0) - (36)

Proof of Theorem 1. The obtained a priori estimates (Theorems 5, 7,
11, 12, and 13) permit us to prove this assertion by a standard argument
based on the Leray-Schauder fixed point principle (Theorem 10.1 [LU2]) and
results on the solvability of the linear Dirichlet problem (Theorem 14). O
This work was supported by the Russian Foundation for Fundamental Re-
search (grant No. 99-01-00684).
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