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Efficient Algorithms for the Regularization of
dynamic inverse Problems — Part I: Theory

U Schmitt and AK Louis
Institute for Applied Mathematics, P.O. Box 151150, Saarland University, 66041
Saarbriicken, Germany.

E-mail: schmitt@uum.uni-sb.de

Abstract. In this paper dynamic inverse problems are studied, where the
investigated object is allowed to change during the measurement procedure.
In order to achieve reasonable results, temporal e priori information will be
considered. Here, ”temporal smoothness” is used as a quite general, but for
many applications sufficient, @ priori information. This is justified in the case of
slight movements during a x-ray scan in computerized tomography, or in the field
of current density reconstruction, where one wants to conclude from electrical
measurements on the heads surface to locations of brain activity.

First, the notion of a dynamic inverse problem is introduced, then we
describe how temporal smoothness can be incorporated in the regularization of
the problem, and finally an efficient solver and some regularization properties of
this solver are presented.

This theory will be exploited in three practically relevant applications in a
following paper.

Submitted to: Inverse Problems

AMS classification scheme numbers: 34A55, 49N45

1. Introduction

This paper is devoted to the study of dynamic inverse problems, where the object
under consideration changes with time during the measuring process.

Starting point is a measuring procedure which needs a certain amount of time.
During this time span, single measurements are taken at time steps ¢;. Then, a
dynamic problem is described by operators A;, where ¢ is a temporal index. That
is, the linear operator A; maps the properties of an investigated object to the
measurements m; at time step t;.

Now two cases are considered:

e In the first case, the properties x of the examined object do not change during
the measuring process. Thus, we have to solve

A;xz=1y; forall 4.

This is called a static inverse problem.
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e In the second case, called dynamic inverse problem, the examined object is allowed
to change during the measuring process, and we have to solve

A;z; =y; forall 4. (1)

Examples for dynamic inverse problems are current density reconstructions based on
EEG/MEG measurements [1], dynamic electrical impedance tomography [2], process
tomography [3, 4] or x-ray CT where slight patient movements can be detected.

Due to the degree of freedom in (1) and the instability of the problem, a priori
information has to be considered to achieve reasonable and stable solutions of dynamic
inverse problems. This kind of regularization is done by assuming temporal smoothness
as a priori information and is considered by adding a penalty term

Z |lzit1 — 551”
i

(tiy1 — t;)?

in a suitable norm to the known Tikhonov-Phillips minimization task. An application
of this smoothness measure in the context of inverse electrocardiography can be found
in [5]. If we try to solve the corresponding minimization problem in a straight-forward
manner as in [5], we get to a linear problem which is extremely large and thus too
expensive to solve.

Our approach starts in the context of operators between Hilbert spaces and leads
to a quite general formulation of our procedure. Discretization, which is needed to
achieve implementable algorithms, is done as late as possible. Using this method
in part two of this paper, we achieve a new type of temporal CT (computerized
tomography) algorithm, which avoids direct discretization of the forward model.

In the following mathematical prerequisites will be supplied and two efficient
procedures for the solution of dynamic inverse problems are developed. These
procedures are formulated in terms of linear operator equations, which we will be
discretized by suitable projection schemes. Finally it is observed that in the case
of equidistant time steps these procedures are regularizations of the temporally
uncoupled respectively of the static problem, depending whether the parameter in
front of the penalty term Y ||z;+1 — @;||* goes to zero or to infinity.

The temporal inverse problem described above could also be tackled in a statistical
context, e.g. by using Kalman-Smoothers or Wiener Filters as proposed in [6].
Our approach introduced above is rather analytical and achieves superior results
concerning efficiency: statistical procedures have to consider covariance matrices for
each timestep, which are often expensive to compute and are ”too large” which affects
the efficiency of the procedure. A comparision of these two approaches based on a real
world problem, namely temporal impedance tomography, can be found in the second
part of this paper. There, we will notice a significant enhancement of speed.

2. The mathematical prerequisites

To set the stage, Hilbert spaces H and G; and linear operators A; € L(H,G;) are
considered. The operator A; maps the properties x € H of an examined object to
measurements y; € G;. The H and G; are equipped with norms || - ||z and || -
and scalar products (-,-)g and (-,-)g,. These space related indices will be omitted in
most cases if they are determined by their context. As the operators A; all together
are assumed to determine a static x sufficiently, the single A; are in most cases under-
determined. An operator A is called "under-determined” if
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e A is a matrix over K, which has more columns than rows,
e A maps from an infinite-dimensional Hilbert space to K", or

e A maps from a function space over a manifold to a function space over a less-
dimensional manifold. In the context of Sobolev spaces this can be stated as
A: H3(My) — H*(M,) and dim M; > dim M.

K means either the real field or the complex field.
These operators have the property that equations of the form AA*u = y are easier
or cheaper to solve (maybe numerically) than equations like A* Az = A*y.

Definition 2.1 Given A;,z,y; as above, z; € H, we call
A;x=y; forall ¢

a static problem, and
A;jx; =y; forall i

a dynamic problem.

For the further steps we need the following definition.

Definition 2.2 The Hilbert space sum Hy®---@® Hy, is the set Hy X - - - x H,, equipped
with the scalar product

<$7 y) = Z(mza Z/i)H,- :

The associated norm is defined accordingly.

Definition 2.3 An operator matriz is a collection of operators A;; : G; = H;,1 <
1 <n,1 <j <m. These matrices can be multiplied by

(A-B)ij = AixB;,
k

provided that the involved operators match. Addition of operator matrices is done
entry by entry. To such a matrix we can assign an linear operator

[A]5G1@“‘@Gm—>H1@“‘@Hn
by

m
([Alz)i = Aijz;.
=1
The next theorem is important for the following calculations
Theorem 2.4 The map A — [A] is an isomorphism between the set of operator

matrices and the set of the linear operators L(H1 ®---® H,,,G1 ®---® Gy,) according
to [A]o[B] =[A- B] and [4] + [B] = [4 + B].
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Proof: Most steps of the proof are easy. We only want to show that the considered
map is surjective: for a given operator B € L(H1 ®---® H,,,G1®---®G},) we define
the operator matrix

A;; = P,BE;
with canonical projections

P:H & ---®oH,— H;
and canonical embeddings

E;:H; - H ®---® H,.
Now it is easy to show [A] = B. -

This theorem allows to calculate with operator matrices and operators which are
assigned to operator matrices in the same way as with the well known matrices about
fields. This includes that block matrices can be multiplied block wise, see [7], and that
one needs not to distinguish between a matrix of operators and the assigned linear
operator.

Furthermore the known Kronecker product of matrices [7] can be extended in the
following way

Definition 2.5 Let M be a matrix in K®*™ and B an linear operator B : H — G.
Then the generalized Kronecker product M ® B is the operator

miaB - my B
M®B= :

mp1B -+ mp,B

The following properties are easy to show:
(M® A)(N®B)=(MN)® (AB)
(M A)™! =M 1gA!
(M ® B)* =M*® B*

Furthermore ® and + are distributive, ® is associative.
For simplifying the solution process of equations of the type
T
Y (Mg Az =y
i=1
in the special case that the A; are matrices over a filed K, the following theorem is
quite useful. First we have to give a definition:

Definition 2.6 Suppose z € K. Then define the rearrangement

1 Ti4n --- LTi4(m—-1)n

T2 T24n .-+ T2y (m—-1)n
Mat,(z) = X := .

In Ton PN Imn

Now the following theorem can be stated. The proof is easy and therefore omitted.



Dynamic inverse Problems — Part I: Theory 5

Theorem 2.7 Given M; € K" A, ¢ K™ 1 < 4 < T and z,y € K",
X = Mat,(z) and Y = Mat,(y), then the equation

D (M@ Az =y

i=1

is equivalent to the matrix equation

T
Z A XM =Y.
i=1
Equations of the type AXBT + CXD'T = Y are called generalized Sylvester
equations and can be solved much more efficiently than the equivalent Kronecker type
equation (A ® B+ C ® D)z = y; see [8].
For the further calculations we need another Lemma, it is about the solution of
the so called Tikhonov-Phillips minimization problem:

Lemma 2.8 Given linear operators A : H — G1,B : H — G2 between Hilbert
spaces H and G, G> respectively, such that B*B is positive definitive. Furhermore
let z € Hyy € G; and A € R XA # 0. The unique solution of the minimization task

|4z — y||*> + A?||Bz||* = min

can be determined by solving

(A*A+ NB*B)z = A*y. (2)
If we have the relation

B*BA = A*E (3)
for a positive definite E : G1 — G2, equation (2) is equivalent to solving

(AA* + XE)u=y (4)

and setting z = A*u.

Proof: Due to A # 0 the functional ®(z) = ||[Az — y||? + \2||Bz||? is strictly
convex. So this functional has a unique solution, which can be achieved by solving
D®(z) = 0 where D® is the Frechet derivative of ®. If we take into account that
DF(x) of F(z) = ||Az — y||? fulfills We define DF(z) h = 2(A*(Ax — y), h), we get
the linear equation stated above. The last statement is true because of

(A*A+ \2B*B)"1A* = A*(AA* + \2E)~L.

If A is under-determined, the last equation is easier respectivly cheaper to solve
than the first one.
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3. The procedure STR

In the following three procedures which can be used to solve dynamic inverse problems
under the consideration of temporal smoothness as a priori information are presented.
The first one, called normal equation approach, is not very efficient in the case of
under-determined forward operators. Therefore a more efficient procedure called STR
(=Spatio Temporal Regularizer) will be derived.

We start with linear operators A;,1 < ¢ < T, which map the dynamic solutions z;
to measurements y;. Further, it is supposed that the A; either are compact operators
between infinite-dimensional Hilbert spaces or are ill-conditioned matrices.

In order to solve the dynamic problem, we start with the minimization problem

T T
= Ai.'L'i — Y 2 + /\2 Z; 2 2 ”:EH_I — .’E,” — min. b}
+1—t;)
=1 i=1 [

Minimization of the first term forces comphance with the relation A; z; = y; for all
1. The second term is of the type ”spatial Tikhonov-Phillips-Regularization” and the
third term measures the temporal smoothness of the x;.
The following notations are introduced
H' =H®---®H (T times)
A =diag(4;) € [,(HT,Gl ®---®Gr)
Tz = (wl,...,xT)T c HT
Y =(y1,...,yT)T€G169---@GT
B =D®IgeL(HY, HT )

1 __1
ta—t1 ta—t

. S ¢ RTX(T-1)_

1 1
tr—tr_1 tr—tr_1

One could use other forms of D. For example, if we assume equidistant timesteps
t; =1, D = (=0; 41 + 20;; — 6; j—1):,; leads to second order temporal smoothness of
the Zi.

Now, the functional in (5) can be rewritten as

B(z) = [|[Az =yl + N||z]|* + *|| Bz||* — min.
As this functional is strict convex, a minimum exists, which is achieved by solving

D®(z) = 0. This derivative can be calculated according to the derivative occurring in
the proof of Lemma 2.8, and we get the normal equation

(A*A+X°T+ ’B*B)z = A*y. (6)

As the A; are under-determined this is a ”quite large” problem. Unfortunately the
technique used in the proof of Lemma 2.8 does not work here, a relation like (3) is
not valid in this case. Thus, another technique must be used to achieve an efficient
procedure, involving ”small” operators 4;A].

Starting point for an efficient procedure involving operator matrices with entries
A; A7 is the following minimization problem which is equivalent to (5): One solves

T T T-1
d) = Z |Aiz; — yil|* + A® Z Iz || + 2 Z |d;]]> = min  (7)
i=1 i=1 i=1
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in connection with the constraints

di = (@it1 — )/ (tig1 — ti). (8)
In order to solve the minimization problem above, these constraints are coupled
to the functional ® by adding a penalty term. That is, we get solutions z,, of

T T T
o (z,d) =Y Aiwi — il + A Y llail* + 42 Y lldill®
i=1 i=1 i=1

T

+a22

i=1

2
Tit1 — T4
di _——_—

— min 9)

tit1 — ¢
and achieve the solution z of (7), (8) by

= lim z,4.
a—0o0

If d; is scaled as d; = A\/p d;, and if the following notion is used
0= (51, . ,5T_1)T c HTﬁl,

the minimization problem (9) can be written as

[ o] (5)- ()

Mo

2

2
+ 22 — min.

x
é
This is a Tikhonov-Phillips problem which can be solved as stated in Lemma 2.8:

( i ) = M7 (Mo MZ + N2T) ! ( Y ) - 10)

In order to determine z¢, first the following equation

(MaM;+)\2I)(Z)=<g).

is solved. We have

MMz 4= | A oD 2T
oMo TS apar a2BB + 1) | TN
Thus, one has to solve
AA*u+ aAB*v + N u =y (11)
)\2
aBA*u + o*(BB* + EI)'U-F)\z'U =0. (12)
v can be calculated from (12) as
1 2 2 -1
v=—— (BB*—i— (A_2+A_2) I) BA* u. (13)
el JTERe
Substituted in (11), the following equation for u is achieved :
A2 a2\ T
A(I—B* (BB*+<—2—|——2)I) B)A*u+)\2u=y. (14)
T2

-~

N«
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N2 can be simplified to

Ne = (D" @ Iy) [(D @ Ig)(D'Iy) + (2—2 + 2—2) (It_1 ® IH)]_1 (D ®Iy)
= (D" ®Iy) [ (DDT + (2—2 + 2—2) IT—I) - ®IH] (D ® Ig)
~ .

=(D'Q*D) ® Iy.
Then, (14) is equivalent to
AlIr®Ig — (D'Q*D) @ Iy A*u+ N u=y,
respectively
A((IT —-D'Q*D) ®IH>A*u+)\2u =y.
N————

So we define
C* = A(R* ® Iy)A™ = [r{; Ai 4]]

i,57
and

(Ca + ’\2IG1GB"'GBGT) u=y (15)
has to be solved. If we consider (13), an analogous calculation yields

v = —é [(Q°D) @ I] A*u.

Because of (10) one gets
% «[ u
(7)-m(2),

2*=A"u—-B*[(Q*D)® Ig] A* u
Finally, one gets the following procedure for calculating z: First solve

(Ca + ’\2IG163"'EBGT) u=y,

which supplies

then put
2% =[R*® Ig] A" u.
The last step to achieve a solution z of (7), (8) is to perform the process a — oo:
from (15) we get the equation
(C+ Nlgio-06r)u=y
with
C=lim C*=A(lim R*)A* = ARA*,

a—ro0 a—0o0
whereas
R=Ir-D'QD

2 -1 16
Q= (DDT + %IT_l) ) 1e)
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So one gets the solution z of (7), (8) by
z= lim 2% = (R® Ig)A" u. (17)

a—00

That is
T; = Z”’j A;uj
J

If the calculations above are summarized, we get the following procedure STR for
the solution of (5):

(i) Input: data y, spatial regularization parameter \, temporal regulariza-
tion parameter u.

(ii) Calculate @ and R according to (16)
A2 -

Q= (DDT + EIT—I)

R = IT — DTQD = (’ri,j)z’,j-
(iii) C is defined by

C = [T‘i,]’Az’A;]i’j.
(iv) Solve

(C + /\210169-"@GT) u=y.
(v) Finally, calculate the z; by

*
Ty = E ri,jAjuj.
J

In order to achieve efficiency, in a first step one calculates A;fuj for each
j and afterwards x;.

The procedure presented above involves "small” operators A; A} which leads to
the announced efficiency compared to (6). Statistical procedures as the Kalman-filter
which will be introduced in the second part of this paper, result in linear equations in
terms of A;C;Af. These are as ”small” as the operators in the procedure above but
are in most cases expensive to compute due to the size of the appearing C;.

As the linear operator C' may be an operator between infinite dimensional Hilbert
spaces, the procedure above is not an algorithm. In order to get an algorithm the
operator equation in step (iv) must be solved numerically for instance by a projection
scheme. In the next section it is explained how a projection scheme works, and then
how such a scheme can be applied in order to approximate the solution of the equation
in step (iv). In the end, an efficient algorithm for the numerical stable solution of
dynamic inverse problems is achieved.

4. Solving operator matrix equations by projection schemes

Here we give a short description how projection schemes work and how we can apply
them to the operator matrix equation emerging in procedure STR. More detailed



Dynamic inverse Problems — Part I: Theory 10

information about projection schemes, especially convergence theorems can be found
in [10].

Given are Banach spaces X,Y and a linear, continuous and injective operator
T : X — Y. The operator equation T'x = y is considered. In order to calculate an
approximative solution, one searches z; in an finite dimensional subspace X of X
such that

YTz = Uy for all ¥ €Y,

Here Y, is a finite dimensional subspace of Y*. If it is assumed that X, =
span{¢i,...,dn} and Y;* = span{ty,...,9¥n}, one gets zj as

n
zh =) oidi,
=1
where « fulfills
Th a =Yp-
Here (Th)i,; = ¢:iT¢; and (yn)i = iy.
Now, we can describe how to achieve a projection scheme in case of an operator
matrix 7' = [C]. We start from linear operators C; ; : H; — G; with Banach spaces
G;,H;,1 <14,j <n. The spaces H; are approximated by
As functionals in G; we have
(G)" = span{y; ;|1 < j <n;} C G
Now the operator equation
[Clf =g
with
[C]:ﬁ1x---XH@—>Q1 X - x Gy,

v

~~ ~~

H G
will be considered. Starting from the given subspaces H! and (G})", the subspaces
H" and (G*)" are constructed as follows. We define

i—1 i—1
pli,)) =Y m+j and q(,5) =Y m+j.
=1 =1

pmaps {(i,7)|1 <i <n,1 <j<m;} bijectively to {1...>m;}. ¢ has an analogous
property. Now one uses

Qq(i,j) =(0,..., ,0)

bij
~~
i—th place
as a basis of a finite dimensional subspace H" of H and
Ui, ) W1 -+ -5 Yn) = i (i)
as testing functionals in G*. In other words:
H" = span{®; |1 <1< Ym;} and (G*)" =span{¥;|1 <1< S n;}
are chosen.
Finally, the matrix D as a discretization of [C] and B; ; as a discretization of C; ;
are constructed. That is

D;;=9;[C]®; and (Bi;)ki=%irCi;jdj-
Then we have
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Lemma 4.1 The discretization D of [C] can be constructed from the discretizations
B; ; of C; ; by block wise compounding.

Proof: We have
Dp(’i,k),q(j,l) = lIJp('i,k) [C]Qq(.’,l) = lI"p(»i,k;) (Cl,j¢j,l; C2,j¢j,la s Cn7j¢jyl)
= YikCijbj1 = (Bij)k,-
||

Now we know how to solve step (iv) in the procedure STR numerically, and we
get an efficient algorithm for the solution of dynamic inverse problems.

5. The procedure STR-C

In some applications, e.g. current density reconstruction, the operators A; are not
depending on i, that is A; = Ag for all i. In this case, the operator C is
C= [’I‘@jA()AS] =R® (AOAS)

If Ay additionally is a matrix of size n x N we get according to Theorem ?7, equation
(17) and the relation A* = IT® A the following procedure STR-C (’C’ means *Constant
operator’):

(i) Input: data y, spatial regularization parameter \, temporal regulariza-
tion parameter y.

(if) Calculate @ and R according to

% -
Q= <DDT + EIT1>
R=Ir-D'QD.
(iii) Solve the generalized Sylvester equation
(AgA5)UR + N°U = Mat,(y) =: Y.
(iv) Calculate
X = AJUR,

and get z; as the i-th column of X.

The Sylvester type equation in (iii) can efficiently be solved by methods provided
in [8].

6. Some remarks about efficiency

Now the costs of the three approaches ”normal equation” (6), STR and STR-C will be
compared. We start from matrices 4; € R**Y and T time steps.

According to [7] the direct solution of a m X n system needs 2n®/3 FLOPS.
According to [8] the costs for the solution of the Sylvester type equation in procedure
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STR-C can be bounded by 25(n +T)2 FLOPS. The step (iv) in STR and STR-C needs
2Tn(T + N) FLOPS in each case.
If we assume n = 64, N = 5000,7 = 100, we get

e a total cost of 2/3(NT)® FLOPS, if we use the normal equation approach.
Considering the given numbers, this is 8.3 - 1016 FLOPS.

e a total cost of 2/3(nT)® + 2T'n(T + N) FLOPS in the case of procedure STR.
Based on the numbers given above, this is an amount of 1.75 - 10'! FLOPS.

e a total cost bounded by 25(n + T)® + 2T'n(T + N) FLOPS for the procedure
STR-C, which makes 1.76 - 102 FLOPS.

So we see, that the procedures STR and STR-C are really efficient compared to
the "naive” normal equation approach.

7. Regularization properties of the procedure STR

As the solution z provided by the procedure STR depends on A and p, it can be
written as = xg7(\, 1). In the following, the processes y — 0 and p — oo will be
considered. One additional assumption is t;41 = ¢; + 1 for all ¢, so that D has only
entries 1 and —1. Other constant increments can be put into the parameter p.

Now matrix R* = R®(\/u) = R (p) will be analyzed.

Before we start we need the following lemma. See, e.g. [9]:

Lemma 7.1 In the case of t;;; —t; = 1 the Matrix DDT € RT~U>(T—1) has normed
eigenvectors u, with

2
(u,), = Tsin(”“Tﬂ) 1<pv<T—1
and corresponding eigenvalues
Au=4sin2(‘2‘—;) 1<pu<T-1.

Theorem 7.2 We have
lim R>(p) = (dij)i,

p—00

and

ey (1
i R (p)_(T>ij'

Proof: It is R®(p) = It — DT (DD + p?Ir_1)~'D. Thus, the first statement
follows from
(DDT 4 szT—1)71 — p72(p72DDT + IT—I)il-
Due to Lemma 7.1 the eigenvalues of DD do not vanish, so the matrix DD is
regular. Thus, we consider

M :=lim R®(p) = Ir — D" (DD")7'D. (18)

p—0

The matrix M has the properties MDT = DM = 0, thus m;; = m; 41 and
m;; = Miy1,5. S0 we can conclude that M is a matrix with constant entries. In
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order to calculate this entry, we analyze (DT XD);; with X = (DDT)~!. Due to
Lemma 7.1, X can be written as

T-1
_ -1, T
X = E Ay Uply, -
p=1

If we consider (DTXD)l,l = Z1,1 — T1,2 — T21 + T2 together with Lemma 7.1 and
the representation of X given above, we get

o= (LR ) () )
1,1 = 57 2 ™ - 2 7r 2 ™
2T = sin® (&%) sin® (&%) sin® (&%)
If we write the sin function in terms of exponential functions, and if 22 — y2 =
(z + y)(z — y) is applied successively, we arrive at
T-1
(D'XD),, = ——
Together with (18) one gets
T-1 1
My,=1--——===
( )1,1 T Ta

which proves the second statement of the theorem.
|
For further interpretations of the limits of g1 (A, 1), two operators describing the
temporal uncoupled problem and the static problem according to the linear operators

A; are introduced.
The operators are

Al Al
Astatic = and Auncoupled = ..

AT AT
Then solving Ag;aricx = m provides the static solution ¢ € H of A;x = m; for all i ,
and solving Ay ncoupiea® = m provides the temporal uncoupled solution z = (z;); € H T
of A; x; = y; for all 7.

First lim,_,o, 57 (A, 1) will be analyzed. Due to Theorem 7.2 and step (iii) of

STR we get u by solving

1
([TA,A’;] + /\2I> u=y,

which is the same as

1 *
(TAstaticAstatic + )\2I> u=uy.

If we set v = /T this is equivalent to
(AstaticAstatic + AN°TI) v =1y.

The last step in procedure STR delivers a vector zg7r with T constant entries

*
static

1
Tk = z TA;U] = A:tatz’cv 1 S k S T.
J
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For stating the next theorem the Tikhonov-Phillips operator
T, modey = minarg { || Amoder — yl|* + A||z||*} mode € {static,uncoupled}
= Arode (Amode Amoge + AI) Ty
and the projections
Py(z1,...,27) = T8 1<k<T

are introduced. The projections are needed, because zg7 is a vector of size T' with
constant entries.

Theorem 7.3
uli_g;o Py(zsT(A 1) = T)\\/T,statz'c ) 1<kLZT

lim lim Py(zsr(A ) = Aztatic Y 1<k<T

A—0 p—o0

Proof: The first statement was proven above. The second statement follows from
regularization properties of the Tikhonov-Phillips operator, see [10, 11]. -

Now lim,_,o 2s7(A, i) is studied. Again, Theorem 7.2 shows that step (iii) in
STR is equivalent to solving

(A A7 + NI u;=y; forall i
and z is calculated by

x; = Aju; forall ¢
These two steps can be written as

(AUHCOUPlEdA:ncoupled + /\2[) u=y,
followed by

T = AlncoupledV-

So we get
Theorem 7.4
l{ll% .'L'ST()\, N) = Tk,uncoupled Yy

lim lim ZUST()\a N) = Azncoupled Y

A—0 p—0
Proof: Again, the first statement is proven above. The prove of the second
statement is done in the same way as in the proof of Theorem 7.3. -

So, one can say, that procedure STR delivers regularizations of the static as
well as the uncoupled problem, depending on the limiting process of the temporal
regularization parameter u. STR produces a balance between the two extremes
?static” and ”uncoupled”.

One last remark: The limiting processes in Theorems 7.3 and 7.4 can not be done
in an arbitrary way. For example if we proceed (A, u) = (0,0) by (A;, u;) = (a/i,1/i),
we get the matrix R (\; /i) = R*®(a) and the result of the procedure STR does not
converge to Af yor A

1.
static uncoupled Y.
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Abstract. In the first part of this paper the notion of dynamic inverse problems
was introduced and two procedures, namely STR and STR-C, for the efficient
spatio-temporal regularization of such problems were developed.

In this part the application of the new methods to three practical important
problems, namely dynamic computerized tomography, dynamic electrical
impedance tomography and spatio-temporal current density reconstructions will
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which show the quality of the methods and the efficiency of the solution process.
A comparison to a Kalman-smoother approach will be given for dynEIT.
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1. Introduction

In the first part [1] of this paper we introduced the notion of dynamic inverse problems
and developed two efficient procedures for spatio-temporal regularization, namely STR
and STR-C. We will now give a brief repetition of the key facts appearing in the first
part.

Starting point is a measuring procedure which needs a certain amount of time.
During this time span, measurements are taken at time steps ¢;. A dynamic problem
is then described by equations A; x; = y;, where 7 is a temporal index, i.e. , the linear
operator A; maps the properties z; of an investigated object to the measurements y;
at time step ;.

Since the operators A; are under-determined in most cases, the degree of freedom
in A;z; = y; is very high. Due to this fact, and due to the ill-posedness of these
equations, we consider the a priori information ”temporal smoothness” which is
introduced as follows: in order to achieve a solution with the desired properties we
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expand the well known Tikhonov-Phillips minimization task with an additional term
which measures the total variance of the x;. Thus, we solve

T T )
Ty — T _
d(z) = E | Aizi—yil*+2° E |22 ||+ 2 2 H — min .(1)
i=1 i=1 i v ?

If we introduce

1 __1
ta—t1 tgi—tl L
ts—t2 T tz—t2

c RTX (T—-1)

1 1
tr—tr—_1 tr—tr_1

the efficient solution of this minimization task is given by the following procedure
named STR [1]:

(i) Input: data y, spatial regularization parameter A, temporal regulariza-
tion parameter u.

(ii) Calculate @ and R

A2 !

Q= (DDT + EIT_l)

R = IT — DTQD = (Ti,j)z',j-
(iii) C is defined by

C =[ri;AiAjli;-
(iv) Solve

(C + )‘216'169"'696"1") u=y.
(v) Finally the z; are calculated by

*
T; = E 'I‘z',jAj’LLj.
J

In order to achieve efficiency, in a first step one calculates Aju; for each
j and afterwards x;.

As this procedure is formulated in terms of operator equations, which may
map between infinite dimensional spaces, one needs a discretization scheme for their
numerical solution. See [1] for further information.

If the linear operators A; are identical for all time steps and if these operators
are matrices, one can enhance the efficiency by using the following procedure STR-C:
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(i) Input: data y, spatial regularization parameter A, temporal regulariza-
tion parameter u.

(if) Calculate @ and R according to
X2 -
Q= (DDT + _2IT—1>
w
R=Ir-D'QD.
(iii) Solve the generalized Sylvester equation
(AgAYUR + N2U = Mat,(y) =: Y.
(iv) Calculate
X = AJUR,

and get x; as the i-th column of X.

The equation in step (iii) is an equation of Sylvester type, an efficient solution
algorithm can be found in [2].

2. Dynamic computerized tomography

In the following the problem of dynamic computerized tomography (dynCT) will be
studied. We will describe how procedure STR can be applied and some numerical tests
will be carried out. An overview of the mathematics of computerized tomography can
be found in [3, 4, 5].

2.1. Application of procedure STR

dynCT is a linear problem which will be formulated as operator equations between
infinite dimensional Hilbert spaces.
We consider parallel geometry, i.e., the forward problem is described as follows:
First
Ls,w)={reR?|s—z-w=0} wesSs>0

is defined. Thus, L is a line orthogonal to w with distance s to the origin. The Radon
transform R is then defined by

R:L*(Q) — L*([-1,1],8")
Rf(s,w) :/L(s’w)f(x)dzv:/Qé(s—x-w)f(a:)dx

and

Rif(s) = Ro, f(s) = Rf(s,wi)
according to w; = (—sin®;,cos6;)" , 1 <i < T, and Q = {z|||z|| < 1}. We assume
that the 6; are equidistant, 0 < 8; < 27. So R; maps the density f; of the scanned
object at a time ¢; to the measurements at this point of time. Due to the variation of
0 during a fixed period of time, we get a dynamic problem.
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In order to apply the procedure STR to this problem, we have to determine the
weights r; ; as described in step (ii) of STR. As the angles are equispaced, we assume

1 -1
1 -1

1 -1
Now, R = (r; ;) can be computed as described in step (ii) of STR.
Then, we have to consider the operator
C = [T',,]AzA;]
with A4; = Rg, = R;. So C maps from (L*([-1, 1]))T to itself. It is easy to show that
Rig(z) = g(z - wi).
That is, R} extends the function g on the detector to a function on the object 2, such

that R?g is constant along lines L(s,w;). Due to geometric invariances of the Radon
transform [4] we have

RiR; = R(i—j) moa TRo

and if we define

C; = RiR}
[C] can be written as
[C] = [ri,; C(i—j) mod T) (2)

If we want to solve step (iv) in STR numerically by a projection scheme, we discretize
the C; and weight and compound the emerging matrices according to Lemma 4.1 and
(2) to a discretization of [C].

For the discretization of C; we start from angles

i~ 1
=2~ 1<i<T

T
and N detector elements at
_2j—1-N
T TN
such that s; = —1 and sy = 1. If we now use pointwise linear basic functions ¢y
on the detector, defined by ¢r(s;) = 0, and point collocations 9, = J,,, we get a

discrete version C; € RV*N of C; by

(Ci)ju = ¥iCit = (RiRg i) (s5)-
That is, one has to extend the ”hat”-function ¢; to the object €2, such that the
extension is constant along lines parallel to the x-axis. Next, one has to calculate the

line integral of this function along the line L(s;,w;). See figure 1. In detail: first, we
have to calculate the points

p1 = L(s;1,w0)NL(sk,wi) p2 = L(s;,wo)NL(sg,wi) p3 = L(si41,w0)NL(sk,ws)-(3)
Then, we determine linear functions a; such that

ai(p1) =0 ai(p2) =1 as(p2) =1 az(ps) = 0.
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L(sk e ) detector
- Ol s,
P, 1
Rko(q - / p2 \ S (q
v 0
- Si+1
P
Q

Figure 1. Calculation of the entries of C;

Now

(Ci)ea = /:2 o1 (z) dz + /p3 o (z) da.

1 P2

Further, we have to consider several subcases: the points p; may be outside the object,
the points p; may not exist, or the linecuts in (3) may be whole lines, not just points.
These are technical details which are handled accordingly.

Step (iv) of STR now delivers vectors u; and corresponding piece wise linear
functions @; = 3, (us);6;-

In order to complete the implementation of STR we have to compute step (v)
as follows. First we divide [—1,1] into n points z; = 2251 such that 2; = —1 and
zn = 1. Then we construct a grid G,, by

Gn = {(ziazj) | 1<4,5< n}

The resulting dynamical solutions f; of R;f; = g; will be computed according to step
(v) of STR in points p € G, N Q by

filp) =D i (Ryag)(p) = Y rijity (p - wy)-
J J
In order to evaluate this formula in an efficient way, we first compute functions U; on
G, by
Uj(p) = u;(p - wy)
and then compute the sum

filp) = ZH,J‘UJ’(P)-

To summarize, we get the following algorithm
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(i) Input: data g, spatial regularization parameter A, temporal
regularization parameter .

(ii) Starting with D, A, 4 compute @, R according to
X2 -
Q= (DDT + EIT_1>
R=1Ir—D"QD = (ri)i-

(iti) Compute matrices (C;);1 = ¥;Citor = (RiR§di)(s;). Then, C is
compounded according to

C= (Tz',jé(i—j) mod 7) € RNTXNT,
(iv) Solve
(C+ Nnr)u=g.
with u = (u{,...,ur)" and g = (g{,...,97)".

(v) Discretize [—1,1]? using a grid G, and compute

U;(p - wj) ifpe QNG,,
Us(p) = {0] ’ else.

Compute @;(s) by linear interpolation of u;.
Finally, the solution of dynCT is achieved by

filp) = Z rg Ui (p)

with p € G,,.

Step (iv) in this procedure corresponds to a linear system on the detector and
step (v) is a weighted and discrete version of the backprojection R*ii;, see [5, 4].
If we had used step wise constant functions on the detector and functionals

w(f) = / M fa)da,

S1—1/2

we would have got a dynamic version of the direct algebraic method as proposed in

[4].

2.2. Numerical Tests

We will see two numerical tests based on the procedure STR applied to dynCT.

The design parameters are as follows: We used a 300 x 300 grid for reconstruction,
that is n = 300. Further, we had 87 angular positions, which means we considered
T = 87 time steps. The detector is divided into 81 points, which means N = 81.
We determined A = 0.01 and g = 1.0 by experimentation. The data were generated
analytically, no noise was added.

The two dynamic objects, that will be studied, have the same structure, see
figure 2. The circular objects are static and the emphasized ellipse is dynamic.
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Figure 2. The structure of the considered dynamic objects. The numbers
describe the density of the objects, the highlighted ellipse is the dynamic part
of the object.

2.2.1. First Example The first example considers the case of slight patient motion:
the examined organs behave statically up to time step 44 and the ellipse lies on the
right side. Then, from time step 45 on, the ellipse lies on the left side, the other organs
do not move. The object and the according reconstructions are shown in figure 3. At

12 23

12

44 55 33

76

@ w
mm mm mp

Figure 3. Dynamic object number one and reconstructions. In the left part
one can see the original dynamic object, in the right part the reconstructions are
depicted. The numbers above the single pictures are the corresponding time steps.

the beginning and at the end of the scanning process the quality of the reconstruction
is quite good, in the neighborhood of timestep 43 the reconstructions are blurred and
show slight artifacts. Nevertheless one can see the underlying dynamics.

2.2.2. Second Example In this case we examine a dynamic object where the size of
the ellipse increases from time step one to time step 87. This corresponds to a CT
at the human heart or to a CT of the lung during inhalation. The object and the
according reconstructions can be seen in figure 4.
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1 12 23

mm mm uN
< a 8
o]

Figure 4. Dynamic object number two and reconstructions. In the left part
one can see the original dynamic object, in the right part the reconstructions are
depicted. The numbers above the single pictures are the corresponding time steps.

2.2.3. Discussion As we have seen the described method is able to reveal dynamics
in a scanned object. The reconstructions are afflicted with artifacts which correspond
to the weak a priori information we considered. Nevertheless, the method is able
to distinguish between pathological findings (which should appear in reconstructions
belonging to all time steps) and motion artifacts (which are supposed to appear in
reconstructions according to few time steps only). Reconstruction procedures which
deliver only one picture do not have this property. Thus, a practical application of
our method is imaginable.

3. Dynamic electrical impedance tomography

Electrical impedance tomography (EIT) tries to determine the conductivity inside a
given object based on electrical measurements on the objects surface. For applications
see [6, 7, 8, 9, 10]. Article [11] gives an extensive survey of EIT.

EIT is based on a non-linear ill-posed problem that can be interpreted as a dynamic
problem, which we will name as dynEIT in the following. In the first section we will give
some preliminaries and we will apply the procedure STR to the problem of dynEIT
by linearization of the underlying problem. In a second section we will give some
numerical tests which we will compare to a known procedure based on so-called (fixed
interval) Kalman-smoothers.

3.1. Application of the procedure STR

The electrical measurements addressed above consist of measured voltages based on
injected current patterns. Due to the variation of the currents from time step to time
step, one can interpret EIT as a dynamic problem dynEIT. We assume that the time
steps are equispaced.

Our calculations are based on a so-called complete electrode model which is
proposed in [12]. The outstanding quality of this model is studied in [13]. It is
formulated by the following equations

div(eVu) =0



Dynamic inverse Problems — Part II: Applications 9
/ a—dS =1 1<I<L
61

|aQ\Ue, =0

on

Here, L is the number of electrodes, I; is the injected current at electrode e;, Uj is
the measured voltage at this electrode, o is the conductivity distribution, u is the
electrical potential inside the examined object 2, z; is a so-called contact impedance
at electrode e; and n is the outward normal at 0f).

This equation can be solved by converting it to a variational equation which can
be solved by a finite element method (FEM), see [14, 15, 16, 13]. The uniqueness of
the solution induces a non-linear operator in form of a real valued matrix

T:(pJIl) = U

Here p = (p;); and ), p;X; is a discretized version of p = 1/0. U is a vector of the
measured voltages. X; are characteristic functions of elements A;.
In order to consider EIT as a dynamic problem operators

At(p) = T(pa It):

are used which are linearized in p° as follows:
Ae(p) = A (p°) + 1(p%) (p = p°) + o(llp = £°II)

The matrix J;(p°) can be computed using the stiffness matriz of the underlying finite
element method, see [14, 15, 16]. p° € R can be estimated from the data according
to [14, 15, 16]. In the following, p° is either a real number, or we identify p° with the
vector p°(1,...,1). The length of this vector is arbitrary.

Starting point for the solution of dynEIT are T measurement vectors U; =
(Ur)i,1 <k < L,1<i<T together with the minimization task

2(p) = 14(p) = UIP + X Y _ llp = #°II> + #*[|Bpl|* — min
t

<u+z,a@> ., = Ui 1<I<L.

with the notions

p = (pl [ ’pT)
U= (Ul ’e T)T
A= dlag(At)
I —I
I -I
B =

If we now use

J(p) = diag(Ji(pt))

and approximate A iteratively by linearization we get the following Gaufl-Newton type
iteration

"t = minarg, {[14(p) + (o)) (p = p*) = UII> + X’llp = 2°II* + ull Boll*} -
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The upper indices are iteration indices. It has to be pointed out, that this minimization
problem can not be tackled by the procedure STR due to the spatial regularization
term ||p — p°||. If we want to use procedure STR, we have to introduce u = p — p° and
ul = p' — p°. If we consider Bu = Bp we get the iteration

w™* = minarg, {||J(p")u — (U + J(p")u’ — A(p"))|* + N[lull* + || Bul|*}

respectively

p't = p° + minarg, {[|7(p")u — (U + J(p")(p" = p°) = A(p")II” + N [lull* + p*|| Bul|*} .
This iteration has now the right mode so that STR can be applied.

3.2. Numerical Tests

For the testing of our proposed method we used synthetic data calculated by a FEM
using 1968 elements for the discretization of the unit disc. Further we used L = 16
electrodes and T' = 16 current patterns. For the discretization of the resistivities p* we
used a coarser mesh with 492 elements. The examined object is drawn in figure 5. The
background has the resistivity 40012, the inclusions 200€2. p° was estimated [14, 15, 16]
as p° = 396€). This object reflects the rise of a bubble in a three dimensional tube
through a two dimensional plane. In the following we will compare our method with a

& @ * .
Figure 5. The examined dynamic object.

so-called (fixed interval) Kalman-smoother approach. According to [15, 17], we choose
the identity matrix as regularization operator. Further details can be found in these
two references. For the theory of Kalman-smoothers see [18].

It should be pointed out that in the reconstruction results the contrast was
modified in order to achieve meaningful images.

3.2.1. Noiseless data We will now present three different recomstructions: our
proposed method with one iteration, see figure 6, our proposed method with two
iterations, see figure 7, and the Kalman-smoother method, see figure 8.  All
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regularization parameters where chosen by experimentation. The reconstructions of
the Kalman-smoother have a slightly better quality as the reconstructions achieved
by one iteration of our procedure. The quality after two iterations is again enhanced.
More iterations do not result in improved reconstructions. After the precalculation
of J(p°), the Kalman-smoother needs about 80 seconds on a Pentium-II-CPU, one
iteration of our method needs about one second and two iterations need 60 seconds.
The leap in the running time between one and two iterations is caused by the
calculation of the linearization J(p') in the second iteration of our procedure which
depends on the result of the first iteration and thus can not be precalculated. The
memory usage of the Kalman-smoother is about 80 times higher than the usage of our
iterative method.

L - - »

- @ ® ®

Figure 6. Reconstruction after one iteration of our procedure based on noise-free
synthetic data. A = 0.001, u = 0.0055.

3.2.2. Noisy data Now we superpose our synthetic data with uniform noise in the
range [—0.025 - max |U|, +0.025 - max |U|]. The reconstructions can be seen in figures
9 and 10. Again, the Kalman-smoother reconstructions seem to have a comparable
quality as the results of our approach. According to the results in 3.2.1 one further
iteration of our procedure leads to slightly better reconstructions.

3.3. Discussion

We have seen that our iterative approach based on STR leads to reconstructions
with a satisfying quality. The quality seams to be comparable to the quality of the
reconstructions gained by the Kalman-smoother.

There is one important difference between the two approaches which has an
impact on the practical use: the Kalman-smoother is controlled by three parameters,
the STR approach only needs two of them. As we have already mentioned, the Kalman
approach is significantly slower and has a much higher memory usage.



Dynamic inverse Problems — Part II: Applications 12

» w

Figure 7. Reconstruction after two iterations of our procedure based on noise-
free synthetic data. A = 0.014, x = 0.005.

® - ® L

@ ® ® ®

Figure 8. Kalman-smoother reconstruction based on noise-free synthetic data.
According to [15, 17] we used a = 0,a1 = 30, a2 = 0.00001.

It should be annotated, that there is another approach called fized-lag smoothing
[19] which has less memory consumption than the (fixed-interval) Kalman-smoother

used here.
The extended Kalman filter studied in [20], is an analogue to our Gaufl-Newton

approach. This method is supposed to work better than the Kalman-smoother in
certain cases.
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4 ¢

=
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Figure 9. Reconstruction after one iteration based on noisy data. A = 0.02, u =

o
=)
N

Figure 10. Kalman-smoother reconstruction based on noisy data. @ = 0.08,a1 =
30,a2 = 0.08.

4. Spatio-temporal current density reconstructions

Current density reconstructions (CDR) appear in the field of inverse source
localizations. Here, one tries to determine electrical activity in an object by electrical
measurements on the surface of the object.

One field of application is the study of neurological activity in the human brain,
by means of electroencephalography (EEG) measurements on the heads surface. Focal
epileptogenic discharges [21] or sources, underlying somato sensoric evoked potentials
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(SEP’s) can be localized [22].
An overview of the broad field applications is given in [23] and [24]. Comparable
techniques can be applied to the human heart, see [25].

4.1. The forward model

The fundamental equation governing the interaction of electrical sources j and the
electrical potential ® is the Poisson equation in connection with a Neumann boundary
condition

div(eV®) = divj in Q
(oV®,n) =0 at I'=09Q.

Here, o is the conductivity tensor and the open and bounded set 2 describes the
geometry of the head. n is the outward normal at 9Q. We define I'y C 92 as the
measurement surface. Then, the electrical measurements are obtained as ®|T'.

In order to achieve a discrete forward model, the current in the object Q is
discretized as a fixed number of dipoles, located at points p; € 2,1 <14 < N, and point
collocation at the measurement points are used. It is assumed that the measurements
are taken at points &; € T'g. The set {p; |1 <i < N} is called influence space.

If we name the kth unit vector in R® as &g, and if we set e;r as a dipole in p;
with moment €, that is e; ;, = dp,€x, j can be discretized by

N 2
Jj= Z Z Ol kN €k
i=1 k=0

The forward model of CDR is the so-called leadfield matriz. Depending on the
geometrical model of the head, this matrix can be computed by analytical formulas
[26, 27], boundary element methods [28] or finite element methods [29]. A fast forward
solution in realistically shaped anisotropic FE head models is described in [30]. In [31]
methods were described how 2 and especially tensor valued o can be determined
non-invasively and individually through multi-modal magnetic resonance imaging.

The leadfield matrix maps a current distribution j described by a vector a to
the electrical measurements by m = L a. For details see [23]. The determination of
a is typical for the CDR methods in contrast to dipole fit methods, where only some
few dipoles explaining the measured data are determined through an optimization
procedure, see [32].

The data are given as functions of time, as provided by an EEG. Most existing
CDR methods use separate time slices of voltage measurements without temporal
coupling of neighboring time steps. Due to the physiologically motivated a priori
information of temporal smoothness, it makes sense to use our procedures in order to
achieve stability in the presence of noise. As the leadfield matrix is independent of
the time, we use procedure STR-C.

4.2. A simple volume conductor model

The setup of the model is as follows: a two-dimensional influence space consisting of
a 10 x 10 grid with a length of ten arbitrary units per side centered at (5.5,5.5,0) is
considered. Nine sensors are placed in a planar array above the grid with center at
(5.5,5.5,2), see figure 11. We use constant conductivity o in R®. Thus, the leadfield
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Figure 11. Sketch of the model.

matrix is obtained by

1 71 —pja

L: s —_— 'wl Pyl

v aro [|r; — p;lI?

I — L Ti2—Dje

WY dro (e — B
1 r;3—p;

Lw_”N _ i,3 — Pj,3

dmo ||ry — pj|I*
Here r; € R? is the position of the ith sensor, p; € R? is the position of the jth
gridpoint.

Two equally oriented dipoles with moment (0,0,1)7 at 2 = 3,z = 8 both at
y = 5 are placed on the ten by ten grid, see figure 11. A Gaussian dipole-strength
time series is assigned to each dipole by

a(t) :qoexp{_w}

w

with peaks at time slice ¢, = 5 (dipole 1) and ¢, = 9 (dipole 2) and a width of w = 2.5.
See figure 12.
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Figure 12. The activation curves of the dipoles.



Dynamic inverse Problems — Part II: Applications 16

4.3. Numerical Tests

In the following we will compare the results of STR-C and temporal uncoupled
Tikhonov-Phillips regularizations [27]. The latter means, that j; is computed based
on

ap = minarg, [|L o — yl|* + A*|a|?

for each time step ¢t and data y;,1 <t < T. In order to improve the signal to noise
ratio for the uncoupled case, we used a Savitzky-Golay filter of order 3 and length 5,
see [33, 34].

For the following reconstructions we used synthetic data which were superposed
by uniform noise in the range [—0.3 max; |y¢|, 0.3 max; |y;|]. This noise range is typical
for EEG measurements.
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Figure 13. Temporal uncoupled reconstructions. A2 = 2.0.
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Figure 14. Reconstructions based on STR-C. A2 = 2.0, u? = 1.5.

In figure 13 we see the result of the temporal uncoupled Tikhonov-Phillips
procedure, in figure 14 we see the result of STR-C. In the left half of these figures
the current density ||j(p,t)||rs for each of the 16 time steps ¢ is shown. The small
boxes mark the exact positions of the dipoles. In the right half, the reconstructed
activation curves are shown.
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4.4. Discussion

As one can see, our approach STR-C yields reconstructions with a smaller localization
error and a more exact activation curve. Furthermore, the two dipoles are better
separated. Thus, the a priori information of temporal smoothness leads to higher
robustness against noise in the data.

For a systematic comparison of these approaches, based on an exactness measure
for the localizations and a correlation measure for the activation curves, see the joint
work [35].

If we compare our methods with the work of Brooks as proposed in [36], we start
from the same model introducing temporal smoothness, but yield an immensely faster
algorithm which has a significant impact on the clinical usability.

5. Conclusion

As shown the procedure STR is suited for the regularization of a large class of dynamic
inverse problems. It was applied to dynCT which is modeled by operators between
infinite dimensional spaces. Here, we could develop a procedure which is able to
distinguish between pathological findings and motion artifacts.

Further dynEIT was studied, which is formulated by finite dimensional non-linear
operators. Here, linearization lead to a practical algorithm. This algorithm provides
reconstructions with a quality comparable to the reconstructions gained by so called
Kalman-smoothers. In contrast to this Kalman approach which depends on three
regularization parameters, our procedure only needs two such parameters which has an
impact on the practical use of these procedures. Further our procedure is significantly
faster and has less memory usage.

The last application to Electroencephalography source localization, namely
stCDR, proved that the a priori information of temporal smoothness leads to an
algorithm with higher robustness against noise than a known procedure based on
temporal uncoupled Tikhonov-Phillips regularization. Further, the reconstructed
peaks and the reconstructed activation curves are more accurate.

Although the used a priori information of temporal smoothness is quite general,
STR leads in general to reconstructions which give an insight into the temporal
behavior of the examined objects. In all applications the efficiency was outstanding.
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