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Abstract

We consider integrands f: R*™ — R which are of lower (upper) growth rate s >
2 (¢ > s) and which satisfy an additional structural condition implying the convex hull
property, i.e. if the boundary data of a minimizer u: @ — RY of the energy [, f(Vu) dz
respect a closed convex set K C RN, then so does u on the whole domain. We show
partial C1%regularity of bounded local minimizers if ¢ < min{s+ %, 55} and discuss
cases in which the latter condition on the exponents can be improved. Moreover, we
give examples of integrands which fit into our category and to which the results of
Acerbi and Fusco [AF2] do not apply, in particular, we give some extensions to the
subquadratic case.

AMS Subject Classification: 49 N 60, 49 N 99, 35 J 45
Key words: regularity, minimizers, anisotropic growth

1 Introduction

As a model for our investigations we consider the anisotropic energy (in which 1+ |Vu/? can
also be replaced by |Vul|?)

q
s

(1.1) I[u]:/ﬂ[l—i—wu|2+(1+\8nu|2) 2 i

defined on suitable classes of vectorial functions u : @ — RY, where Q denotes a bounded
Lipschitz domain in R*,n > 2, and s,q € R are fixed exponents such that for the moment
2 < s < q. We are interested in the partial regularity properties of local minimizers of (1.1)
but unfortunately we can not refer to the paper [AF2] of Acerbi and Fusco since our energy
density does not decompose in the form “(1 4 |Vu[?)? + (1 + | u|?)3”. More precisely, the
subject of [AF2] are energy densities f which can be written as

F(Vu) = h(Vu) + Y ha(0au),

acl

where [ is a subset of {1,...,n} and h is an elliptic integrand of growth order s. The
functions h, are strictly convex and of growth order g, (to be defined in terms of D?h,),
2 < 5 < g, we refer the reader to Theorem 2.3 and Proposition 4.1 of [AF2] for a detailled
discussion.

By elementary calculations (see Appendix A) it is easy to see that in our example the
integrand f satisfies

§—

ZIUR < DPf(2)U,U) < AL+ |27 U

(1.2) A1+ 1ZP)
for all Z,U € R™ with constants 0 < A < A < co. Moreover, f can be represented as
(1.3) £(2) = g(|Z1|, o |Zn\), Z=(2,...,Z,) €K"Y,

where g is an increasing function of each argument.



DEFINITION 1.1 Let f: R — [0,00) denote a function of class C? satisfying (1.2)
with exponents 2 < s < q. u € WS{ZOC(Q;RN) 1s termed a local minimizer of the energy
Jw] = [, f(Vw) dz if and only if

a) f(Vu)de < oo VQ €Q and
QI

b) / f(Vu) dz < / f(Vv) dz
spt (u—v) spt (u—v)

V ve Wl (QRY), spt(u—v) €.

s,loc

Let us briefly recall the partial regularity results which are known to be valid for local
J-minimizers u in case that f satisfies condition (1.2).

i) In [PS] it is shown that there is an open subset 2y of Q such that |2 — Q4| = 0 and
u € CH%(Q; RY) provided we know

n
1.4 < mi { 1, —}
(1.4) g < min< s+ S

Note that [PS] do not require the second inequality of (1.2), they work with the weaker
upper bound (&) < C(1 + |£]?) which is a consequence of (1.2). We remark that the

restriction ¢ < s enters their arguments through the use of a lemma on Sobolev

functions due to Fonseca and Maly [FM], ¢ < s + 1 is needed for establishing the
Euler-Lagrange equation for local minimizers (see [PS], Section 2, Remark 1).

ii) Also partial C®-regularity of local J-minimizers has been established in the paper
[BF] in case that (let y = 2 — s in condition (1.8) of [BF])

2
(1.5) qg< 52 Ry
n

We remark that in [BF] also subquadratic growth is considered and that the left-
hand side of (1.2) can be replaced by a weaker estimate but then (1.5) becomes more
complicated. Condition (1.5) is mainly used to prove that the gradient of a local
minimizer actually belongs to the space Lf (Q; R*Y) for some ¢ > g, during the blow-
up procedure we just need g < s-"5 (if n > 3), we refer to Section 4 of [BF].

Since min{s + 1,52} < s22 (1.5) is less restrictive than condition (1.4) of [PS], in
particular, if n = 2, then (1.4) reads as ¢ < s + 1 and from (1.5) we get ¢ < 2s.
The purpose of our note is to improve both results with the help of the additional

requirement (1.3), precisely:

THEOREM 1.1 Let f: R*™Y — [0,00) denote a C*-integrand with (1.2) and (1.8), 2 <
s < g < oo. Then, any local J-minimizer which is locally bounded, is of class C* for any
0 < a<1on an open subset of Q with full Lebesque measure provided we impose the bound

2
(1.6) g <min {s+

n
S Y ifn>3
3’377,—2}’ an_ s

and q<§+s, if n=2.



REMARK 1.1 a) Clearly, at least for large n, (1.6) is less restrictive than (1.5), so

b)

d)

assumption (1.8) together with the local boundedness of the minimizer allows more
flexibility concerning the choices for s and q. If n is small, than [PS] and [BF] lead to
better results. Let us briefly comment on an other case for which (1.6) improves (1.5)
by the way extending the theorems of [BF] and [PS]. If we choose s according to

n—2 < < n
S o)
3 3
then it is easy to show that
42 PP
s+ = s+ =
3 h—g ST, 3’

which means that (1.6) reduces to the requirement q < % + s, and the latter inequality
is weaker than (1.5).

Condition (1.6) in the form q < s—"5 also occurs in the paper [Mal], where Marcellini

considers the scalar case N = 1 and shows everywhere reqularity of local minimizers u

assuming already that u is in the space W}, (Q). In [Ma2] Marcellini then uses (1.5)

to get the existence of a minimizer in W] (Q).

Let us look at the example

fle.. &) =P+ 0+ &)E, &= (&...&) eRY,

with ¢ > 2. This integrand is covered by [AF2], and according to their results (n large)

1
(1.7) ¢<2+—

(G RY). In this case
thus Acerbi and Fusco obtain better results even

1s sufficient for partial regularity of local minimizers u € W21,loc
(1.6) reads (n large) q < 2+ =5,

without the assumption u € L2 (Q; RY) (which is not so restrictive since in our example

f satisfies (1.83), compare the discussion after Lemma 1.1).

Let in extension of (1.1)

1€ = (1+1€P+ D0 +1e®™)?,

acl

where I is a subset of {1,...,n} and2 < s < qq, a € I. Then (1.3) holds and (1.2) is
satisfied with ¢ = max{q, : o € I'}. Clearly the theorems of [AF2] can not be applied,
but we get partial regularity under condition (1.6). The same is true for the energy

FE) = (4P + ha(ll)

a€cl

if we choose hy of the form (1 4 t2)%/2 but with infinitely many linear pieces so that
ellipticity is destroyed (see [BFM]) which means that for Hy(€,) = ha(|€a|) we just
have the estimate 0 < D2Hy(€4) (U, Ua) < ca(l + |£a|?) T |Ua 2.
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Let us finally look at the integrand

FEr o 6) = Bu(&) + o+ Bal&n), (&) = (L+ &%, & eRY,

with exponents q, > 2. In contrast to [AF2] an elliptic part involving “the whole
gradient” is missing. We have

DfE)UU) > e é(mwr”“i? U2
> c|UP,
D’f(e)(UU) < c(1+[P)T |UP,

where ¢ := max{q, : k = 1,...,n}. Thus (1.2) holds for the choice s = 2, and
for n large Theorem 1.1 implies that bounded local minima are partially reqular if
qk<2+ﬁ, k=1,...,n.

e) We do not touch the question of everywhere reqularity in the vectorial case which
besides an appropriate ratio of ¢ and s also requires a structural condition of the form
f(&) = G(|g]), we refer to [Ma3] and [Bi2], where the interested reader will find further
references.

In order to finish our discussion on the various choices for the exponents s and ¢ and to
include the results of [BF| we reformulate Theorem 1.1 in the following way.

THEOREM 1.2 Suppose that all the hypotheses of Theorem 1.1 are valid but with (1.6)
being replaced by

(1.6)* g<2s, if n=2;

(1.6)** q<s:"5 and q < q ::maux{s—%%,S”TjL2 , if n>3.
Then partial CY*- reqularity holds for locally bounded local minimizers u.

In case n =2 or n > 3 together with ¢y = S"TJ“Z we can drop the assumption u €
LE (RN and also (1.8) is superfluous.

loc

Note that the last statement of Theorem 1.2 is a direct consequence of [BF|, Theorem 1.1,
with the choice y = 2 — s. Note also that the requirement ¢ < ¢q is sufficient to show
Vu € LIE(Q; R*™N) for some ¢ > 0 (see Theorem 3.1 below). With this information we get
partial C1®-regularity just assuming ¢ < s-%5. The local boundedness of u and condition
(1.3) do not enter the blow-up procedure.

Up to now we limited our discussion to the case 2 < s < ¢ in order to compare our
results to the ones of [AF2] or [PS]. To our knowledge anisotropic power growth with leading
exponent ¢ < 2 only occurs in [BF]: with the choice u = 2 — s in [BF], Theorem 1.1, we see

that condition (1.5) is sufficient for partial regularity. But in fact we have a stronger result:

THEOREM 1.3 The statements of Theorems 1.1 and 1.2 remain true if we consider ar-
bitrary exponents 1 < s < q (provided the other hypotheses are valid).



Thus we can also include models like
1+ n
FO =0+ + [l €= (&...&) e R,
with appropriate choice of € € (0,1) which are not covered by [AF2] or [PS].
Next we discuss our assumption (1.3) by showing that it is a kind of natural hypothesis
giving boundedness of minimizers. First of all we collect some consequences of (1.2).

LEMMA 1.1 Let f:R"™ —[0,00) satisfy (1.2) with 2 < s < q. Then we have:
i) f is strictly conver;
i) [(Z) < (1274 1);
i) |Vf(Z)] < (12771 +1);
w) V(Z): Z>cs3(|Z]° = 1),
v) f(Z) 2 cu(|Z]° - 1),
the estimates being valid for all Z € RV . Here ¢; denote positive constants.
Proof.

i) is a consequence of the first inequality in (1.2);
) follows from the second part of (1.2);
iii) compare [Da], Lemma 2.2, p. 156.
) We have
Vf(Z): Z= /1 D*f(tZ)(Z,Z) dt + V f(0) : Z,

and the lower bound in (1.2) give;) the result.

v) Convexity of f implies
1(2) > 122+ V£(Z/2) : 7/2,
and the claim follows from f > 0 together with iv).
U

LEMMA 1.2 Let ug € W} (Q;RY) satisfy J[uo| = [, [(Vug) dz < oo, where f > 0 is of
class C? with (1.2). Then the variational problem

(1.8) J[u] = min in uo+ VIO/SI(Q; RY)

has a unique solution.

Proof. Obviously inf {J[w] : w € ug+ Wofsl(Q; RV)} < oo, thus on account of Lemma 1.1,

v), any minimizing sequence {u,,} C uo+ W (£2;RY) is uniformly bounded in W} (Q;RY),
hence u,, —: u in W} (;RY). Convexity of f together with De Giorgi’s theorem on lower
semicontinuity proves that u solves (1.8). Uniqueness follows from strict convexity of f. O
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LEMMA 1.3 (convex hull property) In addition to the hypotheses of Lemma 1.2 assume
Im(ug) C K for a compact conver set K C RN . Then the solution u of (1.8) also satisfies
Im(u) C K.

REMARK 1.2  a) From the paper [DLM] we deduce

sup [u'| <suplugl, i =1,..., N,
Q Q

thus u € L®(;RY), if ug is bounded. In case of (1.8) this is a trivial observation
since we may use comparison functions like v = (@(ul),u2,...,uN), where m =
supq |ug| and

m, t >m
O(t) = t, -m< t <m.
—m, t < —m

Then |0qv| < |Oqu| and (1.3) implies v = u.

b) Lemma 1.3 motivates the study of locally bounded local minimizers in Theorem 1.1.
It should however be noted that our proof of Theorem 1.1 does not work if we just
consider solutions of class L{2.(Q; RY) and impose the growth condition (1.2). In the
next sections (1.3) will be an important tool.

Proof of Lemma 1.3. Let m: RY — K denote the projection onto K which satisfies
Lip(r) = 1. From Lemma B.1 below we deduce |0,(7 o u)| < |Q,ul, « = 1,...,n, thus
(v:i=mo u)

g(|81U|, Tt |anv|) < g(|alu|, SRR |anu‘)

So v is minimizing which implies v = u. U

The rest of our paper is organized as follows: in Section 2 we discuss some (appropriate)
local approximation, Section 3 contains the proof of uniform higher integrability of these
approximations under the condition ¢ < s + %, and in Section 4 we use this result for
obtaining Theorem 1.1 via a standard blow-up procedure which works in case ¢ < s, if
n > 2. The subquadratic case is briefly considered in Section 5. In Appendix A we discuss
our example (1.1), in Appendix B we give a short proof of the chain rule inequality needed

for Lemma 1.3.

2 Local approximation

We use a standard approximation procedure which in different situations also occurs in [FS],
[ELM1], [ELM2], [MS], [Bil], [BF] or [BFM]. ;From now on assume that all the assumptions
of Theorem 1.1 are valid. Let r > ¢ and define for § > 0

f5(©) =61+ €12 + f(£), E€R™.

W.lo.g. let Byg(0) € Q and consider the mollification u. of our local J-minimizer u. Let

Ve,s € U+ W} (Bag;RY) denote the solution of

(2.1) Js[w] == fs(Vw) dx — min in u.+ I/IO/TI(BQR; RY).
Brr



According to [GM], Theorem 5.1 (note that (5.3) of [GM] holds on account of r > q), we
have Vv, 5 € Ljs,(Bag; R™), moreover (see e.g. [CA]) Vv, 5 € Wy ,,.(Bar; R*Y). The stated
initial regularity of v, s is crucial for our calculations in Section 3, therefore we can not use
the local regularization with exponent ¢ as we did in [BF| (compare Remark 3.1). Anyhow,

Lemma 2.1 below is also true for » = g. With the choice

1

o l4el+ IVl 5,0 ey

d=14(¢e)

we define v, = v 5,) and f; = fs(e)- The minimality of v, implies

f(Vve) dz < ﬁ(VvE) dx < ﬁ(VuE) dx

Bagr Bar Bagr

and from Jensen’s inequality we deduce

Next we claim
(2.2) (5(5)/ (14 |Vu?)2 dz < ¢ (R)Ve
Bagr

with ¢(R) independent of €. For the proof we observe that by definition of §(¢) the left-hand
side of (2.2) is dominated by ¢(R)paii=r, @ := [p, [Vu.|" dy.
Case 1: If z < %, then

-1 -1
1+ < 1++/¢ < 1++/¢ —5+\/E§e+\/ég2\/5.

1+22+e ! = 1422+ = 14e!  e+1

Case 2: Consider the case z > —-. Using 1 +2% > (1 +2)* we obtain

1
+x 1+2x < 2 < g
1+224+e! = 1422 — 142 — =z

< 2V,

and (2.2) is established.
Putting together the various estimates we get

(2.3) F(Vv,) dz < fo(Vv,) dz < fo(Vu,) dz < / F(Vu) dz + O(e).

Bagr Bagr Bar Bar

From (2.3) and the growth of f (see Lemma 1.1, v)) we deduce

(2.4) /B Vo |° dz < ¢ ( f(Vu) dx) < 00,

Bar
and using v, —u, €W, (Bzg; R") together with uniform bounds on ||u.||w1(s,y), (2-4) implies
(2.5) |vellwi(Bor) < comst < oo

7



independent of ¢. Let 4 € W}(Byr) denote a weak limit of some subsequence of {v.} which
exists by (2.5). By De Giorgi’s theorem

(2.6) f(Vu)dz < liminf f(Vve) dz,
Ban N
thus [ f(V4) dv = [, f(Vu) dz on account of (2.3). Therefore % is J-minimizing on
u+ fosl (Byg; RY), strict convexity implies & = u. Altogether we have:
LEMMA 2.1 With the notation introduced above the following statements are valid:
i) |vellwisypmyy < const < oo;

i) v — uin W} (Bag; RY);

e—0

i)  supp,. |v.| < suplu| < oo;
Byr

w) ) [p, 1+ Vv |?)2 da — 0;
v) fBzR f(Vv.) dx = fBzR f(Vu) dx;

vi) [, Fo(Vv,) dx — Is,, f(Vu) dz;

Proof. i) and ii) are obvious, iii) follows from the maximum-principle Lemma 1.3. ad v)
and vi): we recall & = v and get from (2.6)

f(Vu) dz < lim iOnf f(Vv,) dz,
E—r

Bsp Bar

whereas (2.3) implies
lim sup f(Vv.) dz < limsup fo(Vo) dz < f(Vu) dz,
e—0 Bar e—0 Bog Bsg

thus we have v) and vi). Subtracting v) from vi) we finally obtain iv). O

3 Uniform local higher integrability of the solutions of
the approximative problems

Keeping our notation from Section 2 we want to show that the solutions v, of problem (2.1)
(with the choice 6 = d(¢)) satisfy

(3.1) sup V' dx < ¢ (p) < oo
0<e<1 JB,

where ¢ is some exponent bigger than ¢ and p denotes a radius less than 2R. In former papers
(see e.g. [FuM], [BF], [BFM] and the references quoted therein) we used the differentiated
form of the Euler-Lagrange equation associated to (2.1) together with a Caccioppoli-type in-
equality to show that some power of |Vv.| belongs uniformly in ¢ to the space Wy (Ba,), hence

8



by Sobolev’s embedding theorem the uniform local integrability of |Vv.| can be increased to
a power t > ¢ provided g < S"T“ is true.

Here we show (3.1) by assuming that ¢ < s + % which for s < % is less restrictive than
g < s™2. The main idea (originating in [Bil]) is that due to the uniform local boundedness
of |v| (see Lemma 2.1, iii)) we may use test vectors of the form n?v.(1 + |Vv.|?)? in the
Euler-Lagrange equation for (2.1), where « is some number > 0,7 denoting a cut-off function
with sptn C Bag, and estimate |v.| just by a constant. The result will be a uniform bound

of the form (3.1). More precisely, we have:

THEOREM 3.1 Let the assumptions of Theorem 1.1 hold with (1.6) replaced by

78+_

n+2 2}
5]

(3.2) g < max {s

Then (8.1) is true for some t > q, in particular we have Vu € Lt (Q;R™Y),

loc

Proof. W.lo.g. we may assume that s®2 < s+ 2, otherwise the claim follows from [BF],

Lemma 3.4 (note that the arguments from [BF] also work for the approximation considered
here or replace our sequence {v.} by the sequence {v.} from [BF] by the way leading to the
same result that Vu is in L], (Q; R"Y)). We also like to remark that in the case s > s+ 2

n
the statement of Theorem 3.1 remains true if we drop our assumption u € L (; RY), also
the structure condition (1.3) can be removed (see again [BF]).

Let a > 0,n € C°(Bagr),0 <1 < 1,T. = 14|V, |? and recall Vo, € Lf;’cﬂWiloc(Q;R"N)
as well as
(3.3 lodliemm) < e(B) < oo

In what follows ¢ always denotes a positive constant independent of £ whose value may
change from line to line. Moreover, we write 6 = §(¢) for the parameter defined in Section
2. From

V/(Vv.): YV F?vs) dz =0

Bagr

we deduce

Vi.(Vo.) : Vo, r2 ndr = — V(Y. : 20V ® v, 2 dz
(3.4) Bar Brr
— | Vi(V):nPv.®@ V() dr = —A—B.

Bsgr

By Lemma 1.1, iv), we see

left-hand side of (3.4) > c/ rzte n® dz + 05/ n? 127 gy
Bsp Bsr

(3.5) )
—c/ n’Te2de—céd| n? 122 gy,
Bar Bar



We have by Lemma 1.1, iii)

3.3

(3:3) N N
-4 £ / V(o) 7 V| TF de
Bor
< c/ Vo[ TE |Vl do + 0/ 0|Vl TE do
B2R B2R

e 5/ T8 (14 [Vo2) [Vo.| n|Vn| da
Bsr

IN

Lir—14a
c/ 214 3|Vl dz + ¢ 5/ "7 V| da
Bsr

Bar

sta L _sta
N C/ Tt g |V T2 g
Bsr

+
)_r4a

rta Lr—1+4a
+c 5/ r.* n |Vn rzt dz,
B:zr

and by applying Young’s inequality to the last two integrals and by absorbing terms on the
right-hand side of (3.5) we arrive at

lista Lirt4a
/ 772F§(+)dx+5 772F§(+)da:
Bar

Bar
< Lr—2+a —14a—te
(3.6) < c/ n*T2 d:r+c5/ n? Fg( o )d:v—l—c/ |Vn? r! e A
Bar Bar Bar

r—l+a—1t2

+c (5/ \Vn|® T: > dx +c[- Bj.
Bar

Let us discuss |— B|: using |V(T2)| < ¢ T? ?|V,|, Lemma 1.1, iii), and (3.3) we find
(summation w.r.t. p=1,...,n)

Lig+a— Lr4a—
~B| < c/ rz* ”n2lv2vsld:c+c5/ P22 |V, | de = T, + T,
Bagr

Bagr
771 — C/ F? ‘VQUE‘ FE(Q+04_2)_S% ,'72 d.’Z'
Bagr
(1.2) cha1t
< ¢ D? f(Vv.)(8,Vve, 0,Vve)n’ dac—i—c/ n°Te ? dx,
Bog Bagr
r=2 L to_92)_r=2
T, = 05/ To* |V, D275 2 g
Bar
22 o2 2 2 e
< ¢d L2 |V |*n®dz + ¢o 2 n° dx,
Bsp Bsgr
hence
-Bl < ¢ DQJA”;(VUE)(@VUE,@MVUE) n* dz
(3.7) Bar
—|—c/ L AR R PR 27t g2 dg
Bsr Bsgr



From Lemma 3.1 below we get

/ N2 D?[.(Vv.) (0, Ve, 8, Vv.) dz < | V2,0 / D £.(Vv.)||Vo.]? do
Bsgr

spt Vn

A [

spt Vn

IN

(ré +or%) da.

Now we use (3.7) and the latter estimate to rewrite (3.6) in the following form:

1 ST 1 TTQo
L+, = / 772F§(+)dx+(5/ 772F§(+)d:r
Bsp Bagr

qg—1l+a—t*

c/ T2 dx+c||vn||§o/ r!  d
Bagr spt V7

_1-3 q
+c/ it ' 2da:—l—c||V77||go/ I dz
Bar

spt Vn

IN

(3.8)
lip_924q r_142a
+cé 772F§( > )dx+0(5||V77||Zo/ T2 e gy

Bar spt Vn

+c 5/ F§+a_1n2 dz + ¢ 8]V, / T2 dz
Bsgr spt Vn

8
1=1

It is immediate that Kj5 is bounded by K. Obviously Ky < 711 + ¢(7, R) for any 7 > 0, and
the first term on the right-hand side can be absorbed into I;. Let us assume o < 2. Then
KG < Kg and

K; < ¢tl + ¢ (7,R)

on account of 1(r +2a —2) < i(r+ ). Choosing 7 small enough, we may absorb ¢ 71,
into I. Next we choose a ball B, ,(zy) € Bag and take = 1 on B;(z) such that n = 0 on
Bor — By p(x0) together with |[Vn| < %. Finally, we like to control K5 in terms of K, which

is possible if
s+«
g—1+a—

q
- 2’
i.e. we have to require at this stage
(3.9) a < 24+s5—¢q

(implying o < 2 on account of s < ¢). Returning to (3.8) and exploiting the latter consid-
erations we get

lisha Lirta
/ 12 gp 45 Tzt gy
Bi(zo)

Bi(zo)

1 25 a
1 +/ Iz (Gat2a=2-9) 1o + p_2/ 2 dx
Bi4p(z0) Tt,p(%o)

+5 ,0_2/ Fg dx , ﬂ,p(.’lfo) = Bt—|—p(x0) — Bt($0).
Tt,p(20)

(3.10) < ¢(R)

11



Let ap =0, 0041 = —q+s+1+ %ak. Since our assumption on the ratio of ¢ and s implies
g <s+1, wesee ap > 0for k > 1. It is easy to check that oy < ag41, moreover (3.9) is
satisfied for the sequence ay. We have a := limg_y00 ap = 2+ 2(—q + s), and if we want to
have s + ay, > ¢ we need our hypothesis ¢ < s + %

Next we fix ¢* € (¢, + ) and calculate k£ € N such that oy + s > ¢*. Given radii ¢, p
and a center zo we apply (3.10) with o = oy and p replaced by £ and get

/ P2t g 45 / p2r+er) g
Bi(zo) Bt(xo)

l8 (77
gc(k,R)ll—l—/ P§(+k1)d:v+p2/
BIH'%P(CL‘O) T

t,%p(®0)

I8 de+6 p2 / e dx].

, (o)

In the next step we use (3.10) with ¢ replaced by t + p/k and p replaced by p/k and for the
choice o« = oy;,_;. The final result is after iteration

/ Fé(s+ak)dx + 5/ Fg% (re) dx
Bg(zo) Byi(zo)

+/ édm—l—p_Q/ F%dx+5p_2/ T2 dz|.
Biyp(Z0) Tt,p(z0) Ty,p(z0)

In the last two integrals we may use Holder’s inequality to get

(3.11)
<c(k,R) |1

p—z/ Fs% dz < c(R) p_7+/ ra+ar) gy ’
Tt,p(z0) Tt,p (o)

p_z/ I?de < c(R) p_:’—l-/ [2(rten) gy
Tt,p(w0) Tt,p (o)

with suitable positive exponents 7,75. By Lemma 2.1 the quantity |, Bus F% dz is bounded

by a local constant ¢(R), therefore, filling the hole in (3.11) (add ¢(k, R) (fB F2 (s+es) o4
1 rTo . . .

(5th($0) (e dz) on both sides) implies (for some 3 > 0)

Lista 1
/ Fg( +ag) dx + 6/ 62(7"1'0‘19) dx
Bt (zo) B¢(zo)

1 ST 1 T
c(k,R)[l—i—p_’B} +06 / 2%t g 4 5 pzirtos) dx]
Bitp(%0) Bitp(0)
with © < 1 not depending on ¢. From [Gi], Lemma 3.1, p.161, we get (Bg = Bg(0))
1 ST 1 TTQ
(3.12) / pzetes da:—i—é/ 12" 4z < ek, R)[1+ R,
Bpr Bg

where the local constant c(k, R) involves positive powers of R and the bounds for supgp, , |ul,
i) B,/ (V)dz. Recalling the choice of k we have shown (3.1) for the exponent ¢ = ¢".

Note that our calculations just requlred r > @, no further restriction on r is needed.
Having established (3.1) we get Vu € LL (Bog; R™) since Vv, —: W in LY (Bayg; R™) but
on account of Lemma 2.1 ii) we must have W = Vu. g

During the proof of Theorem 3.1 we made use of

12



LEMMA 3.1 There is a real number ¢ > 0 such that for all n € C§(Bz2r),0 < n <1, and
for all Q € R™™ we have

/ 0 D2J(V.) (0, V., 0,Vv.) do
(3.13) Bon

< eVl / D*F (V)| [V — QP de.
spt Vn

Proof. Here we just need to know that f > 0is C* with 0 < D*f(Q) < A(1 + Q%)=
for some ¢ > 2. Then, if f, is our regularization with exponent r > ¢, v, is still of class
W 1oe VW3 100 (Bar; RY) (see [GM]) and we may differentiate the Euler equation for v, with

00,loc

the result
DZfE(VUg)(auVUg, Vo)dx =0

Byr

for any ¢ with compact support. If we let ¢ = 7%9,(v. — Qz), then (3.13) follows with
elementary calculations. U

REMARK 3.1 In contrast to our arguments from above the proof of Lemma 3.1 in [BF]
requires much more work which is caused by the regularization with exponent r = q. On the
other hand, higher integrability of Vu is established in [BF] under stronger hypotheses and
with a completely different argument working in case r = q once having proved Lemma 3.1 of
[BF]. Of course we could also choose some exponent r > q in [BF] trivializing Lemma 3.1.
But then we have to take care of additional §-terms occuring in the proof of [BF], Lemma
3.4, which can be handled under the assumption r < s(n + 2)/n. Recalling that in [BF] we
require for the anisotropic case p = 2 — s, ¢ < 2 — p + s2/n, it is immediate that we can
choose an admissible exponent r € (q,s(n + 2)/n).

If we require f to satisfy (1.2), then the left-hand side of (3.13) gives an upper bound for
/ 0’ |Vhe|>dz, he = (1+ |Vu.]?)5,
Bar
and if we take @ = 0, then (3.13) implies

/ P2 Vh.?dz < c||vn||§o/ (0 + oT%) da.
Bagr

spt Vi

If we are in the situation of Theorem 3.1 we see from (3.12) that the right-hand side of the
latter estimate is bounded by a local constant ¢(R), thus

he —: h in Wy, (Bzg) as € = 0

loc

for some function h from this space.
The next lemma can be found for instance in [FO], [Bi2] or [BF].

LEMMA 3.2 We have h = (14 |Vu[?)i as well as

Vv, = Vu a.e. on Bg ase — 0.

13



Proof. Asin [FO|, Lemma 4.1, or [Bi2], Proposition I11.4.3, we show that

1

(3.14) / / D*f(Vu+t(Vv, — Vu)) (Vv — Vu, Vo, — Vu) dtdz — 0 as e — 0.
BrJo

In fact, the only modification needed for getting (3.14), is to recall that

5(5)/ T?dz — 0
Br

e—0

which follows from Lemma 2.1. Thus we have (3.14), ellipticity implies Vv. — Vu a.e., in
particular, b, — (1 + |Vu|?)7 a.e., so that we have the formula for the limit function h. O
Finally, we state a limit version of Lemma 3.1.

LEMMA 3.3 With the notation introduced above we have

(3.5 [ vkl ds < cval [ D (V)| (Ve - QP ds
Bar

spt Vn
for anyn € C3(Bag), 0<n <1, and all Q € R*V.

Proof. We can follow [BF], Lemma 3.6, we just have to check (see [BF], formula (3.8)) that
in our case

lim inf / \D2F(V0.)| V. — Q[ da
spt Vn

e—0

< liminf/ |D?*f(Vv.)| Vv, — Q| da.
spt Vn

e—0

But since
D2 (V)| [V — Q2 < | D2F (V)| Ve — Q2 + ¢8() (1 + | Vue|?) = [Vve — QP2

the claim follows from our former observation that 6(¢) || By FES dx — 0 for any radius R’ <
2R. The rest of the proof is exactly the same as in Lemma 3.6 for [BF], in particular we also
make use of the fact that by (3.12) |Vv,|? is uniformly bounded in L}"(Bsyz) for some 7 > 0

loc

(compare (3.12) where obviously the radius R can be replaced by any number R' < 2R). O

REMARK 3.2 Note that u is a continuous function provided that n = 2 orn = 3. In
the two-dimensional case this is a consequence of Theorem 3.1. In general, we observe
that h € Wy,,.(Q) implies Vu € LMD RN by Sobolev’s embedding theorem, and

loc
continuity of u follows if s > n — 2.

4 Blow-up and partial regularity

Let the assumptions of Theorem 1.1 hold. If B,(x) is a ball in 2, we introduce the excess of
our local minimizer v w.r.t. this ball

E(z,r) = ][ Vu — (V) g, |* dy + ][ \Vu— (Vu), .| dy
Br(x) B (z)
which on account of Theorem 3.1 is well-defined. Here B, (z) and (), denote the mean

values of the corresponding quantities. As usual partial C“-regularity follows from

14



LEMMA 4.1 Fiz a number L > 0. Then there is a constant C,(L) such that for every 0 <
T < § there is an e = e(L,T) satisfying: if B.(z) C Bgr(xo) for some fized ball Br(z) €
and if we have

(Vu)zr] < L, E(z,r) < e(L,7),
then

E(z,7r) < C.(L)7° E(x,r).

Here the ball Br (o) can be replaced by any subdomain Q) € 2, and the restriction B,(z) C &
s needed in order to apply our local estimate from Theorem 3.1.

We argue by contradiction: assume that L > 0 is fixed and that for some 7 € (0, i) there
are balls B, (zm) C Br(zo) such that

(V) apirm| < L, E(Tm,mm) =2 A2, — 0

but
E(Tm, Trm) > C, T2 N2,
with C, to be determined later. With a,, = (¢)4,, 1, Am = (VU)g,, ., We let
1
Um(z) = —— [u(xm + Tm2) — am — TmAmz|, |2] < 1.
AT

From our assumptions we get

][|Vum|2dz + )\gn_Q][|Vum|qdz =1,

Bl Bl
(4.1) ][\Vum — (Vtm)or|? dz + %2 ][ Vi — (Vtm)or|?dz > C.7°,

B, B,

and after passing to subsequences we find

f

A, — A in R,
Uy —7 4 in WQI(Bl,RN),

AV, — 0 in L?(B;;RY) and a.e.,

_2
Am Vi — 0 in LI(ByRY).

\

Following [EV] or [BF], Proposition 4.2, (and [Bi2], Proposition III. 4.7) we see that 4
satisfies

D*f(A)(Vi, Vp)dz = 0 Vo € Co(By;RY)

B
and since this linear system is elliptic, we have the Campanato inequality

(4.3) ][ ‘va—(va)oﬁ‘zdx < O 2

B,

15



for some absolute constant C*. Let C, = 2C*. Clearly (4.3) is in contradiction to (4.1) if we
can improve the convergences stated in (4.2) to

Vi, — V4 in L?

loc

(4.4) , (PR,

Am Vi, — 0 in LY

loc

(Bl, RnN)

The first statement in (4.4) follows from Proposition 4.3 in [BF], “case ¢ > 2, p =2 — 57,
for the second one we follow Proposition 4.5 (ii) from [BF|, where the case p =2 —s < 0is
the relevant one. With

U = 0 |1+ A + An V)T = (14 |An )
(compare formula (4.18) in [BF]) Lemma 3.3 implies
(45) sup [Cnllwiin, < elp) < oo

for any p < 1, thus we can follow the arguments presented in [BF] after (4.20) to see that
in case n > 3 (4.5) implies (4.4) provided 2 < 2% je. ¢ < s-"5. If n = 2, no further

o - n—27 n—2
restriction is needed. U

We finish this section by adding some comments on the two-dimensional case.

PROPOSITION 4.1 Let n = 2 and consider an integrand f: R*N — [0,00) of class C?

Just satisfying (1.2) with exponents 2 < s < q such that ¢ < 2s. Consider a local minimizer
u € W (G RY). Then there is an open subset Qg of 0, whose complement is of Hausdorff-
dimension zero, such that u € C*(Qg; RY) for any 0 < a < 1.

REMARK 4.1 For the definition of the Hausdorff-dimension we refer to [AFP]. In fact
we have Qg = € but the proof requires different arquments which will be presented in a
subsequent paper.

Proof. According to Theorem 1.2 partial regularity holds in our situation, and, by Lemma
4.1, a point xy belongs to )y if and only if

limsup |(Vt)gyr| < oo and E(zo,7)—> 0.
r—0 r—0

We recall inequality (3.13) from Lemma 3.1 in which we choose @ = 0. Using (1.2) we
deduce

/ (1 + |Vo.[2) 7| V20,2 de
Bsr
<c||Vn|% / 5(e)(1 + |Vv.|?)? dx +/ \D?f(Vv,)| |Vv.*dx ¢,
spt Vn spt Vn
and by Lemma 2.1 together with our L%-estimates from Theorem 3.1 we see
/ (1 + Vo) V20 Pz < efn) < oo,
Bir
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and s > 2 implies a uniform local bound for V?v, in L?. Lemma 2.1, ii), immediately gives
u € W3 1,(Bar; RY), and since Bog was arbitrary, we have u € W3, (Q;RY). Finally, we
recall n = 2 and apply Sobolev-Poincaré’s inequality to see that E(x,r) — 0 as r — 0 for
any point z € Q. Thus z € Q is a singular point if and only if limsup,_, |(Vu),,| = oc.
But according to [Gi], IV, Theorem 2.1, these points form a subset of Hausdorff-dimension
Zero. U

5 The subquadratic case

Up to now our considerations covered the case 2 < s < ¢, next we analyze the situation
for arbitrary exponents 1 < s < ¢ and sketch the necessary adjustments which actually
reduce to some formal remarks. First of all we observe that Lemma 1.1, iv), is also true for
exponents s € (1,2), for example, we may quote Lemma 2.1 of [AF1]. By the same reasoning
we obtain the upper bound Lemma 1.1, i), for exponents ¢ < 2. Neither the definition of
local minimizers nor the results of Lemmas 1.2 and 1.3 are affected by the choices for s and q.

ad Section 2. If ¢ > 2 and 1 < s < g, then f5 is defined as before with any exponent r > q.
Again we have

5.1 V.5 € Wy o R™) N LY.
s 2,loc loc

If ¢ < 2, then we may choose r = 2 still getting (5.1) on account of [GM], Theorem 5.1
(with the choice m = 2). Clearly, Lemma 2.1 does not depend on the choices for s and gq.

ad Section 3. Due to (5.1) we still have the identity
/ Vi (Vo.) : V(nZFE%vE) dr = 0 YVa>0,
Bar

and with the same calculations as before we obtain Theorem 3.1. Lemma 3.1 requires no
changes, and for Lemma 3.2 and Lemma 3.3 we can either quote the proofs of Proposition
3.5 and Lemma 3.6 of [BF| with y := 2 — s or - for a more detailled exposition - the proofs
of [Bi2], Proposition 111.4.3 and Lemma II1.4.4 (letting 4 = 2 — s). Again the information

d(e) fBR 2 dx — 0 as ¢ — 0 is needed which is contained in Lemma 2.1.

ad Section 4. The corresponding version of Lemma 3.1 can be found in [BF], Lemma 4.1,
where in case ¢ < 2 the excess function F(z,r) takes a form different to the one considered
here. Anyhow, the general situation 1 < s < ¢ is completely discussed in [BF], Section 4,
leading to the condition ¢ < s, if n > 3, which is sufficient for the blow-up procedure.

A Appendix
Let f(&...6) = (1 + €[+ h(gl))% with A(€1) = (1+ |&1[2)F for exponents 2 < 5 < g. We
have

s—2

DOWUU) = S[1+IP+he)] * {20UP + D*hig) @, 1) |

+§ 8;2[...]%_2{25 : U+Vh(f1)'U1}2,

(A.1)
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and since the second term on the right-hand side of (A.1) is > 0, we deduce on account of
D?h(&)(Uy,Uy) > 0 the estimate

(A-2) s|UJ* (1 + [¢[%)

< DAfE)(U,D).

In (A.2) we can not replace 32;2 by a larger exponent which is seen by choosing & = U; =0
in (A.1) and by considering large values of |£|. In this special case |D?f(£)| can be controlled
from above and from below by [£[*72. In order to obtain an upper bound for D?f(£)(U,U)
we observe )

VAE)| < c(L+ &), |D*h(&)] < c(1+ &)+
where ¢ denotes various positive constants depending on the different parameters. From
(A.1) we deduce:

8—2

T lapiy

DO < e [1+]EP+ 1+ 6]
(A.3)
52 12
e | el a s apiiy
Since s > 2, the first term on the right-hand side of (A.3) is bounded from above by

c(L+E2)5 T -1+ [EP) T =c (14T

which has the desired growth.
Next we discuss the second term by first observing

L) g ariem=) <[] e asap) = cas.

Case 1: In the case § > 2 we have

af < c(L+[ERIED A+ = c(1+ [T
Case 2: If 7 < 2 then let us first assume in addition that
) L+ €2 < (1+]&a)%
Dropping 1 + [¢[* in a, we get
a < (14 |6P2)6E2 B < c(1+]&)% Y,

hence v -2
af < c(l+]af)2™ < cQ+[E) 7.

Next let

(b) L+ [ef? > (1+ g%

q
s

Dropping (1 + [£1])+ in «, we get
a < (1+¢P)22
For § we use our assumption (b) and get
B < c(1+[gP), thus af < c(1+]€?)3™ < c(1+[EP)*.

Altogether we obtain inequality (1.2) for the above example. It should be noted that the
exponent ";—2 occurring on the right-hand side is optimal.
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REMARK A.1 With similar arguments we can show the validity of (1.2) for the first
example from Remark 1.1 d). Moreover, it is an easy exercise to check (1.2) if we modify
the first example in Remark 1.1 d) by letting

fo) = (7 + Y0+ 6%)?

acl

for some index set 0 #1 C {1,...,n} and exponents 2 < s < g, q:= max{q, : a € I}.

B Appendix

Here we give a proof of

LEMMA B.1 Let v € WHQ;RY) for some 1 <t < oo and consider a Lipschitz function
®: RY — R*. Then ® owv is in the space W} (S;RF) together with

(B.1) 0a(® 0v)| < Lip(®)|0av

, a=1,...,n.

REMARK B.1 In the paper [Me] the following weaker version of (B.1) is established (as-
suming t > 1)

(B.2) |V(@ov)| < VELip(®)|Vvl,

but (B.2) does not imply the statement of Lemma 1.3.

Proof of Lemma B.1: From [MO], Theorem 3.1.9 we get ® o v € W}(Q; R¥) and
(B.3) Oa(Powv) = DP(v)(0av)

for any v € W}!(Q;RY) provided the Lipschitz function is in addition of class C'. From
(B.3) we deduce the estimate

(B.4) |V(®ow)| < ||D®|_ |Vl

Clearly (B.4) is weaker than (B.1) since ||D®|| is of order vk Lip (®).
Let us first consider the case t > 1. Given v € W} (_Q; RY) we also suppose that @ is a
C' Lipschitz function and choose a sequence v,,, € C*°(Q; R"Y) such that

U — v in WHQ;RY) and a.e. on .

We have (1 < a <n)

Oa(® o vp)(z) = lim % ((D (vm(z + teq)) — @(vm(x))) ,

t—0

0a(® 0 v)| < Lip (D) D0ty
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From (B.4) or (B.5) we deduce

supHV(@ovm) < 00,

LY(9Q)

and
()| < Lip(®)[va] + |2(0)

gives

supH@ovm < 00,
m

LH(Q)

thus (t > 1) ® o v,, —: w in W}(Q;R*) at least for a subsequence. Passing to a further
subsequence we see ® o v,, — w a.e. on 2, thus w = ® ov. Consider B,(z) C €2 and observe
that V(® o v,,) — V(® ov) in L}(Q; R™*) implies

/ 0a(®ov)|dz < liminf / |0a(® 0 vy,)| dz
Br(z) B, (z)

m—0o0
(B.5)
< Lip (®) lim inf / |0atm|dz = Lip (@) / |0a| dz,
M0 JBr(2) Br(2)
therefore
][ aa(éov)‘dac < Lip(®) ][ Ouv| dz,

B, (z) B, (z)

and we have (B.1) in case t > 1 and ® € C' N Lip (RY;R¥).
Next we assume that ® is merely Lipschitz. If ®, is a mollification of ®, we have

Lip(®.) < Lip, (®),®. — & uniformly

as € — 0, moreover ®, ov — ® ov in L(;R¥) and a.e. The case considered before implies

(B.6)

(%((I)Eov)‘ < Lip (®.) |dav|,

O,v| dx.

thus (t > 1) ®.0v — ®owv in W}(Q;RF). Semicontinuity of the norm gives as before
(B.6)
][ Ba( o v)‘ dz < liminf ][ 0. (®. o v)‘ dz < liminfLip (®,) ][
E—r E—r
B, (z) B (z) B, (z2)

Summing up Lemma B.1 is established in case t > 1. For completeness let v € W} (Q; R")
and consider a Lipschitz function ®: RY — RF. Let v, € C*(Q;R"Y) such that v,, — v in
WH(Q;RY) and a.e. Clearly ®(v,,) — ®(v) in L'(Q;R*) and a.e., thus ®(v) € BV (Q;RF)
and

V(@ 0v)|(2) < lim inf/ |V(® 0 vy,)|d % Lip (®) lim /|va\ dx = Lip (®) / |Vl dz.

m—0o0

Observe that in x we used (B.1) for the sequence {v,,} which is in any space W}(Q;RY),
t > 1. By the same reasoning we get for any ball B,.(z) C Q

V(@ ov)|(B:(2)) < liminf/B()‘V(Q)ovm)‘dx

m— 00

< Lip(®) lim |Vun|dz = Lip(®) / (V| dz.
) By (2)

m—0oQ B, (Z
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Applying the Besicovitch derivation theorem (see [AFP|, Theorem 2.22, p. 54; choose v =

Vo (v), p=|Vuv|- L") we deduce V(®ov) € L}(Q;R™) and |V(®owv)| < Lip (®)|Vv|. This
is Lemma B.1 in the limit case ¢ = 1 provided we replace V by d, in the above calculations.
[l
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