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Abstract

We consider certain decomposition fields in extensions of F, (Z) by
the Carlitz module and give formulas for their genera and numbers
of rational places, suitable for automatic computations. By extensive
calculations we found some function fields which have more rational
places than the known examples of the respective genus.

AMS Subject Classification: 11G20, 11Y40, 11R58
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1 Introduction

In the last years the interest in the maximal number of points of a curve of
genus g over the finite field IF, has vastly increased. One is interested in the
number

N,(g) := max { #C(F,) | C smooth, absolutely irreducible, } .

projective curve of genus g over F,

On the one hand there are different upper bounds for N,(g). The most
famous one is the Weil-bound

Ny(9) <q+1+1[29V/q] -

On the other hand for every pair (¢, g) one can get a lower bound for N,(g)
by constructing a curve of genus g over F, with enough rational points. An
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overview of the different methods is given in [GV00]. There the authors
give tables for ¢ = 2,4,8,16, 32,64,128, 3,9,27,81 and g < 50 of the best
known results at that time. These tables are regularly updated and can be
found in [GVNet]. To construct function fields with many rational places we
have used methods of type II in the numbering of [GV00]. That means we
used methods from class field theory based on Drinfeld modules of rank one.
Thereby we followed the strategy of A.Keller in [Ke01] and used her formulas
on the genus of special types of function fields. A more detailed deduction
of these formulas can be found in [KeNet]. In most cases we cannot give the
exact number of rational places in our function fields but we are able to give
lower bounds.

2 Cyclotomic Extensions of K

First we introduce some notations closely following [Ke01]. Let p € N be a
prime, F, a finite field with characteristic p, K = IF,(Z) the rational function
field in Z, and L a finite extension of K. For a finite galois extension M|L and
a place p of L, the number of places of M over p is denoted by r(p, M|L),
e(p, M|L) denotes the ramification index, and f(p, M|L) the residue class
degree.

Definition 2.1 Let n € F,[T] be a monic polynomial. Then there exists a
unique factorisation of n in irreducible polynomials, namely:

S
- T
n_llpu”a
v=1

with s,r, in N and p, € F,[T] monic, irreducible and pairwise different
polynomials of degree > 1. We write for short

d, :==deg(p,), q = qd;L :
n, = pr my, = n, and ¢(n) = #(F,[T]/(n))" .

In the whole article we won’t distinguish between an element f € F,[T] and
its class f +n-F,[T] in F,[T]/(n). The correct meaning will always be clear
from the context. Note that for deg(n) > 2 different polynomials of degree
one remain different in F,[7/(n).

To every polynomial n of IF,[T] we associate a polynomial p, € F,(Z)[X] by
the following rules:

Definition 2.2 1. pp(X) =ZX + X9,
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2. pri(X) = pr(pri-1(X)),
3. pirg(X) = pr(X) + pg(X) for all f,g € Fy[T]

4. per(X) =c-pr(X) forall ceF,.

We define K(n) as the splitting field of p,(X) over F,(Z) and call n the
conductor of the extension K(n)|K. In other words, K(n) is obtained from
F,(Z) by adjoining the n-torsion of the Carlitz-module p (cf. [G0o96, chapter
3]). We denote Gal(K (n), K) by G(n).

Hayes proved in [Ha74] the following fundamental theorem on the structure
of these extensions:

Theorem 2.3 1. The extension K (n)|K is galois and abelian with Galois
group G(n) = (F4[T1/(n))".

2. Let n = p" be a primary polynomial, then the extension K(n)/K is
totally ramified in p = (p) and unramified in all other finite places

q#p, qF oo.

3. Let K(n) be the fived field of the embedding F; — (F,[T]/(n))*. Then
the place oo of K is totally split in K, (n) and any place of K, (n) over
oo is totally ramified in the extension K(n)|K,(n).

4. Let n be the product of s primary factors in F,[T]. Then K(n) is the
compositum of the fields K(ply), v=1,...,s, and all these K(p¥) are
linearly disjoint.

5. Let O(n) be the integral closure of Fy[Z] in K(n) and X a primitive
root of p,. Then
O(n) = (F,[Z])[A] -

6. T, is the full constant field of K(n)|K.
Proof: In [HaT74].

Remark 2.4 The theorem shows that the splitting fields of p, have many
of the properties of the cyclotomic fields over Q. Therefore they are called
cyclotomic extensions of the rational function field. The field K (n) is the
analogue of the mazrimal real extension of Q which is contained in the cyclo-
tomic extension. The integral closure O(n) could be compared with the ring
of integers Z|(m] for some primitive m-th root of unity .

In the same paper Hayes also proves the following theorem:
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Theorem 2.5 Let P(T) € F,[T] be a monic irreducible polynomial, n €
F,[T) monic and ged(n, P) = 1. Then the Artin symbol of the place P(Z) -
F,[Z] in Gal(K(n), K) is the map given by pp. So after identification of
Gal(K(n), K) with (F,[T]/(n))* the Artin symbol of the ideal P(Z)-F,[Z] is
the class P(T) + nF,[T].

Remark 2.6 (i) Note the use of the indeterminates T' and Z in the theorem.
(ii) In the definition of the polynomial p, in 2.2 we could put pr(X) =
ZX +aX? with an arbitrary element o € Fy. By choosing o = 1 we get that
the Artin symbol of the ideal P -F,[T) is the class in F,[T]/(n) of the monic
generator P but not of some scalar multiple of P.

3 The subfields

We will take a closer look at some subfields of K (n)|K. From now on we
make the following assumptions:

deg(n) >2, ¢>3, ged(T*-T,n)=1.

The case ¢ = 2 was already treated in [Ke0l]. We take the following six
subgroups of Gal(K (n), K):

Subgr := {{1},(T),(T, T — 1), F,,(F,, T),(F,, T, T — 1)} .

Because of our assumptions these are actually subgroups of G(n) = (F,[T]/(n))*
and F; # {1}. For every H € Subgr let K(n)” be the corresponding subex-
tension of K (n)|K, S(n, H) the set of all places (finite and infinite) of K (n)?
of degree one over K and g(n, H) the genus of K (n)".

4 The genus of the subextensions

For n € F,[T] and H € Subgr, A.Keller gives explicit formulas for g(n, H)
in [Ke01] and [KeNet]. For the convenience of the reader we will state them
below. The formulas 4.3 and 4.4 are not in [Ke01] but in [KeNet].

We use the notation of Definition 2.1. Let f € F,[T] be a monic polynomial
prime to 7" and 7' — 1. We define G(f) := (F,[T]/f)* and

GT(f): #<T>G(f), €T,+(f):: #(TvE‘Z)G(f)v
éerra(f)= #(T)apnN{T-1)ay), erra(f)= #(T,T-1)qp,
éT,T_1,+(f)§= #(T, T-1 >G(f) N ]F;, ET,T_1,+(f)2= #<T, T—l, ]F; >G(f)a

and for s =1 we put é,(m,) :=1 and e,(m,) := 1.

4



Genus Formula 4.1
1 q— 2 z TGy, — Ty, — 1
1H=1+4+- -2+ — d,—— | .
o1 =1+ Jolo) (24 24 30 )

Genus Formula 4.2

sn) = 1+ 5 (a1 - 1- 4 (b 222 4 antg ) )

fors=1 and

o)) = 1+ s (s (1) = 1= 5 | 22 @) - )

+
5
3
N\
o8
<
IS
S
5
S
L
N————

with
_ ) o[ e e
au(KT(n)) - eT(m,,) 1+(qu 1) (; q, eT(mupg)) q, .
Genus Formula 4.4
_ 1 1 [o(n)
o T EY = 1+ s (s -1 5 [ 2 g2
+ Z (p(mu)du ) aV(KT,-l—(n))])
with
_ er,+(n) . - a—lM -l
aU(KT,+(n)) - eT,+(m,,) + (qv 1) (; q, 6T,+(mypg)> q, -
Genus Formula 4.5
_ 1 T KGO )
gl (7= 1) = 14— (ot (1) =1 [ 22 ) - 1)
+ Z o(my)d, - aV(KT,T—l(n))] ) )
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with

ry—1

€ _1\n e _(n
U/V(KT,T—l(n)) = Ll() _ qliufl + (qy . 1) Z qgilLl()

err—1(my) — e 1(mypg)

Genus Formula 4.6

o (T =15 = 14— (gl ) 1= 5 [ -2

err-1,4(n

()
I
—

v=1

+ > elmy)d, - au(KT,T1,+(n))]) ,

with

y—1 _
1) @ terro(n)
err—1,4(Mupg)

err-1+(n
ay(Krr_1+(n)) = LJF()) e

er,r—1,+ (mu o1

5 The number of rational places

For a place p of K(n)#|F,(Z) we define the place p of K as

-~ [ pnF,[Z] , p finite
pe= { 00 , P infinite
and _ ~
Ny = {p € Si(n, H) | e(p, K(n) K) = 1, # oc}
Ny :={p € Si(n, H) | e(p, K(n)|K) = 1,p = oo}
Ny :={p € Si(n, H) | e(p, K(n)|K) > 1,p # oo}
Ny := {p € Sl(naH) ‘ e(ﬁ,K(n)\K) > 1a~ = OO}

These sets are pairwise disjoint and S;(n, H) decomposes in
Sl(n,H) :N1UN2UN3UN4 .

Now we analyse the size of the sets N;. Since ¢ > 2 we get by Theorem 2.3
that N, is the empty set. Furtheron we get by 2.3 and 2.5

AN, = > [K(n)" : K]

€l ,n(r)2=a#0,(T—a)eH
= #{a€F, | n(2)ema #0, (T —a) € H} - [K(n)" : K]
= #{a€F,|(T—a)e H}-[K(n)”:K].



For N, we have

#N, = #{peSi(nH)|ep,Kn)K)>1,p=occ}
' #{pe Si(n,H) | p=o0}
[K(n)" : K]

b

e(co, K (n)"| K)

and so by Theorem 2.3 we get

L [KwT K mH
#N, = % , otherwise

So we get an explicit lower bound for #S;(n, H).

Definition 5.1 Let H € Subgr, n € F,[T], ged(T? — T,n) =1, deg(n) > 1.
Then

#(Nl) ’ H

— {1}5 <T>’ <T=T - 1>
= kv | uln

Fy, (B, T), (Fs, T, T — 1)
By the previous arguments we directly get the following lemma:

Lemma 5.2 Let H € Subgr, n € F,[T], ged(T? — T,n) = 1, deg(n) > 1.
Then

(K ()™ :Fy(2)]-#{(T — ) € G | (T -~ ) € H},
if H = {1}a <T>7 <T’T_ 1>

r(n,H) =
[K(n)" :F(Z2)]- A+ #{(T — ) € G | (T — a) € H}),
if H =T, (F,T),(F;,T,T - 1)
Proof: Clear by the preceding arguments. U

In some cases we even have equality between r(n, H) and #5S;(n, H).

Lemma 5.3 Let H € {F; ,(F;,T),(F;, T,T-1)}, n € F,[T'] monic, deg(n) >
1, ged(T? — T,n) = 1. Then we have

r(n,H) = #5S1(n, H) .

Proof: There are no zeros of n in F,. So by Theorem 2.3 the set N3 is empty.
O



6 Results

The above formulas have been derived and written down since they are suit-
able for automatic calculations. By extensive computations for ¢ = 4, 8, 16,
32,64, 3,9,27, 5,25 we got the following results which beat those given in
[GVNet].

There are lots of symmetries in our construction and so we got the same
results for quite a lot of different conductors n. We always give the smallest
one in lexicographical order.

If there is no entry in the tables [GVNet] resp. [ShNet] for a pair (F,, g), we
only mention results that beat the Drinfeld-Vladut bound. That means that
the number of rational places is greater than g- (/g — 1). This bound seems
poor for small g, and so we especially got many results for Fy5, because
there are a lot of gaps in the corresponding table. For some values of ¢
(¢ = 4,32,64) we didn’t get any new result.

For every ¢ the conductor ran through those of the lexicographically first
100 000 monic polynomials, which are prime to 72 — T". The bound is quite
arbitrary. Except for ¢ = 25 we got our results for conductors from the first
40 000 monic polynomials.

The finite field F, is represented as F,[u]/P with a monic, irreducible P €
I, [u] of degree [F, : F,]. In the tables I stands for the index [K (n)? : F,(Z)],
g for the genus g(n, H), r for r(n, H), b gives the lower bounds and ub the
upper bounds from the updated tables in [GVNet] from June 19, 2001. If the
value of r meets the upper bound it is printed in bold letters. This occurs in
just two cases. The value of r is framed if H € {F;, (F;,T),(F;,T,T — 1)}
and ged(n, 79— T) = 1. In these cases r is the exact number of rational
places of the subfield K (n)® by Lemma 5.3.

q’

+udT + (u + 1)

p=2
IFy ‘ P ‘conductor n ‘ H ‘ I ‘ g ‘ lb ‘ r ‘ ub
Fg |uw+u+1]|T°+uT*+ (F;, T, T —1) |42 47120 | 126 | 161
+17 + (u? + 1)1+
+(u? +u)T + (u? +1)
Fig | u* +u+1|T"+T?*+ (u? +u)T+1 | (F;,T,T —1) | 51 | 50 | 225 | [255| | 291
Fig | u* +u+ 1| T+ uT? +u?T?+ (F:,T,T—1) | 45| 34| 161 | 180 | 213




p=3

IFy ‘ P ‘ conductor n ‘ H ‘ I ‘ g ‘ lb ‘ r ‘ ub
I3 — T°+1 (F;,T) 1619 28 | 32 | 32
Iy - T3+ 273 +2T% + T +2 (F;,T) 88|15 | 16 | 18
F3 - T 472 2 (F:,T) 20 | 32 | 38 48
Iy - TS+ T +T? +1 (F;,T) 32149 63 67
Fy - T+ 2T +1 (F:, T, T —1) | 13|42 | 48 59
T u?+1 TS + T4 + T2+ (F;, T,T—1)| 7 |12] 55 [56] | 63
+ul +1
Ty w?+1 | TS+ (u+1)T*+ 273+ | (F;,T,T —1) |20 |31 | 101 |[120]| 127
+2uT? + (u +1)T+
+(2u? + 2u)
For | ud +2u+ 1T+ T+ (2u? + 1) (F;,T) 52 [ 50 [ 299 | 312 | 416

There are no tables for characteristic 5 in [GV00] and [GVNet]. So we have

used the tables from [ShNet].

P=¢=35
conductor n ‘ H ‘ I ‘ g ‘ lb‘ T ‘ ub
T4+ 37? +2 (F;,T) 12| 8 [22] 24 | 29
T4+ 273 + 2T + 4 (F;,T) 169 26| 32 | 32
TS5 +4T2% + 1 (T) 12120 — | 36 | —
T +T*+ 213 +T +3 (T) 1218 — | 24 | —
T3 +3T* +2T% +2T? + T + 4 (F;,T) 3229 |56 64 | 73
T6 +1 (F;, T, T —1) | 16 | 25 | 52 | 64 | 66
TS +2 (F:, T,T —1) | 24 | 45 | 88 | [96] | 104
TS + 373 + 37>+ T+ 4 (F:,T,T—1) | 12| 19 | 45 | [48] | 54
TS + 473 + 1 (F:,T,T—1) | 14|26 | — |[42]| -
T6 + 374 +37T% + 1 (F;, T,T—1) |25 |44 | — | 75 | —
T6 4+ 3T + 4T3 +3T2 + 1 (F:,T,T —1) | 18 | 22 | 51 | [54] | 60
TS +T5+2T% + 4T% + 2T + 4 | (F:, T,T — 1) | 12 | 15 | 35 | [36] | 45
T +T5 + 3T* 4 3T + 4 (F:,T,T—1) | 22|40 | — | [66]| —
T" +4T° +3T* +T? + 2T +3 | (F;,T,T—1) |25 |50 | 70| 75 | 113

conductor n ‘ H ‘ I ‘ g ‘ lb ‘ T ‘ ub
T? + 3T + (u+4) (T) 2419 | — | 2 | -
T? + (u+4)7T + 2u (T) 24 [ 11| — | 96 | —

continued on next page




continued from previous page

T3 +1

T3 + (u+2)

T3+ (u+3)T +2

T3 +T% + 27 +2

T3+T?+ (u+1)T + (2u+1)
T3 +4T% + (u+2)T + (2u + 1)
T3 +uT? + T +2u

T3+ (u+1)T?+ (3u+3)T+ (u+4)
T3+ (u+1)T% + (du+4)T + 3
T3+ (u+2)T?+(2u+4)T+ (2u+1)
T3+ (u+3)T% +1

T34+ (u+3)T%+(3u+2)T+(2u+1)
T3+ (2u+1)T?+ (3u+2)T+ (3u+
3)

T4+ 3T + (u +3)

T+ (u+4)T + 3u

T4 +4T? + (2u + 4)T + (u + 3)
T4 +uT? 4+ 4

T + (u+ 1)T? + (2u + 4)

T+ (u+3)T? + 2u+1)T + 4
T* + (u+4)T? + (3u + 3)

T+ (u+4)T? + (u+2)T + (4du+4)
T+ (2u+ 1)T? + 3T + (3u + 1)
T + (2u + 3)T? + 3u

T* + (2u + 4)T? + (4u + 2)

T+ (2u+4)T? + (2u+1)T+ (du+
1)

T+ (2u+4)T? + (3u+1)T + 3u
T442T3 4 (2u+4)T? 4+ (2u+3)T+
(Bu+1)

T + 373 +T? + 2uT + (4u +4)
T* + 373 + 3T% + 2uT + (u + 1)
T44+3T3 4 (2u+2)T% 4 (3u+4)T +
2u

48

42
72
16
24
24
48
18
48
24
24
60

39
24
13
26
48
48
15
48
24
50
48

24
60

48
48
72

19

31
28

15
14
39
16
29
20
21
37

38
26
12
25
47
43

33
27
48
35

18
49

41
45
46

126
144
120
144
240

56
156
120
104
130
192
240

120
200
192

120
240

288
192
216

Remark 6.1 The most time and space consuming part of the calculations
was to determine the span (I, T — 1) < (F,[T]/(n))*. For the calculation of
the genus we just need the cardinality of (T, T — 1), which is easy computable
by #(T,T—1) = W without knowing (T, T —1) explicitly. But since
we have to know the elements in (T, T — 1) to calculate #{(T —a) € F,[T] |
(T —a) € (T, T — 1)}, we have to generate the subgroup anyway.
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Remark 6.2 Especially the first example for Fs and the second one for Fs
1s interesting, because they realize the upper bound for genus 19 resp. 9.

7 Conclusion

By the Drinfeld-Vladut bound
Nq(9)

lim sup —~
g—0o0

S q_1:

with equality if ¢ is a square. But by a result in [Fr92] for every sequence
of abelian extensions (L;|K);ey with lim; ,o[L; : K| = oo and the same
constant field I,

tim #5150 _
holds. Therefore,subextensions of the abelian extension K (n)|K are asymp-
totically bad for the construction of curves with many rational places. But
our calculations show that in small cases (n small) there is nevertheless a
good chance to get interesting examples.
Furthermore, the choice of our six subextensions is quite arbitrary. We chose
the subgroups generated by T and/or (T — 1) and/or F; to make sure that
the corresponding places decompose completely in the corresponding subex-
tensions, which yields a good chance to get many rational places therein.
Since operation Z — aZ +f with a € Fy, § € F, is 2-transitive on the finite
rational places of F,[Z], the choice of the two rational places T and T'— 1 is
inessential. But we could choose any other subgroup U of (F,[T]/(n))* to get
interesting results, for example subgroups generated by 7,7 — 1 and some
other polynomials of degree one. It is not clear which subgroups U would be
good choices. For such a subgroup U we would have to calculate an explicit
formula for the genus of K(n)V (in our examples this was done by A. Keller
in her master thesis) and then count #{(T' —a) € F,[T] | (T —a) € U}.
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