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Abstract

Let Q C R? denote a bounded domain whose boundary 05 is Lip-
schitz and contains a segment I'y representing the austenite-twinned
martensite interface. We prove

inf Vu(z,y))dzdy = 0
e Qw( u(z,y))dzdy

for any elastic energy density ¢ : R2 — [0, 00) such that ¢(0,41) = 0.
Here W(Q2) consists of all Lipschitz functions u with v = 0 on Ty
and |uy| = 1 a.e. Apart from the trivial case 'y C R x {a}, a € R,
this result is obtained through the construction of suitable minimiz-
ing sequences which differ substantially for vertical and non-vertical
segments.

AMS classification: 49, 74

Keywords: microstructure, martensitic phase transformation, elastic energy,
minimizing sequences, Young measures.

1 Introduction.

Let Q be a bounded domain in R? with a Lipschitz boundary 0€2. We denote
by I'g a portion of the boundary 02 defined as follows:

Lo:={(z,y) eER® |y=ar+b, =z¢€J[a,p]} (1.1)
Ty :={a} x [a, B], (1.2)

where a, b, a, 8 are real numbers. Let ¢ : R? — [0, 0c0) denote a Borel function
such that

The class W of admissible comparison functions is introduced as follows
W:=W(Q):={ueW"®(Q) : |uy/=1ae inQand u=0on [}.(1.4)

Then we would like to consider the minimization problem

I = inf/@(Vu(x,y))dmdy, (1.5)
ueW Jq
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more precisely, our goal is to calculate the number I with the help of
minimizing sequences. As a matter of fact (see for example Theorem 3) the
existence of minimizers can in general not be expected. Problem (1.5) is of
some physical interest. For instance, if we think of a model in martensitic
phase transformation, ¢ could be the elastic energy density of the martensite
with two wells (0,1) and (0, —1) representing the stress-free states of two
variants of the martensite. The portion 'y of the boundary of ) stands for
the austenite-twinned martensite interface and the boundary condition u = 0
on 'y refers to elastic compatibility with the austenitic phase in the extreme
case of complete rigidity of the austenite (see [B.J,], [B.J3] and [Ko.]).

Problems of this type have been considered by M. Chipot and C. Collins
but without the constraint |u,| = 1 a.e. ( see [C.] and [C.C\]). The con-
straint |u,| = 1 is introduced in the paper [K.M;] of Kohn and Miiller (see
also [K.M;]) where they discuss the behaviour of minimizing sequences for a
functional consisting of elastic energy plus surface energy on suitable spaces.
The main concern of our paper is to prove the following

Theorem : Under the above assumptions we have I*° = 0.

For this purpose we will construct minimizing sequences which represent,
according to the Ball-James theory, the microstructure and we will show
that they differ substantially for domains with oblique interface I'y and for
domains having a vertical interface I'y. This is in contrast to the observation
that both types of domains differ only by a simple geometric transformation.

Remark 1. When [y is parallel to the z-axis, i.e.

Lo := [o, B] x {b},

then the quantity 7°° is easily seen to be equal to 0. Indeed the function
u(z,y) =y — b belongs to W and Vu(z,y) = (0,1) so that

0< < / o(Vu(z,y))dedy = 0
Q

on account of (1.3).

Remark 2. It is sufficient to assume that the domain € is bounded with
respect to the y variable (see the proofs of Theorem 1. and Theorem 2.

below).

Remark 3. The functions forming minimizing sequences we will consider for
domains having oblique austenite-martensite interfaces have a finite number
of oscillations, hence they belong to the class

{u e W(Q) : |uy,| is a Radon measure with finite mass }
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which was introduced by Winter [W.]. On the other hand the minimzing
sequences we will construct for domains having vertical austenite-martensite
interfaces have an infinite number of oscillations. This is an expected result
due to Winter [IW.] who proved for rectangular domains that functions in
W have an infinite number of oscillations so that |u,,| cannot be a Radon
measure with finite mass. In fact, the statement of [W.], Theorem 2.3, is
misleading, he actually proved that his class By is empty.

Remark 4. The reader should note again that similar problems including
a surface energy term but replacing the Lipschitz functions from our class
W by functions from the space W12(2) were already studied in the paper
[K.M.1] of Kohn and Miiller.

The paper is divided as follows. In section 2 we consider domains with oblique
interfaces I'y and construct a minimizing sequence of (1.5) with elastic energy
going to zero. In section 3 we consider domains with vertical interfaces and
also construct a minimizing sequence of (1.5). As already mentioned before
the minimizing sequences are different for the two cases. In section 4 we
study the nonexistence of minimizers for the problem (1.5) and show that
the gradients of uniformly bounded minimizing sequences generate a unique
Young measure supported by the wells (0,1) and (0, —1).

2 Domains with an oblique austenite-martensite
interface.

In this section we assume that Iy is oblique, i.e. [y is given by (1.1). Without
loss of generality one can assume that a # 0, otherwise the infimum in (1.5)
would be equal to zero and it is attained (see Remark 1.). Then we have the
following theorem

Theorem 1. Let ¢ : R?2 — [0,00) be a Borel function such that (1.8) holds.
Then

I = inf = 0.
nf /Q ¢(Vu(z,y))dzdy = 0

Proof. For notational simplicity we let @ = 1 and b = 0, the general case

will follow with obvious modifications. Given § € (0,1) we divide the square
(0,6) x (0,9) as follows

Ag={(z,y) €eR? : 0<2<6 0<y

VAN
(RS

2

Py={(z,y) eR* : 0< <9,
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y <

N8
(VRIS
+
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)
Ay ={(z,y) eR® : 0<z <4, g+§§y§5}

and define a function u : Sp := R X [0,0] — R as follows

(y it (2,9) € AU (5,00) x (0,),
r—y if (z,9) € R,
u(z,y)=<6—y if (z,y)€ (600) x (L,6),

29

y—6 if (z,y) € AU (—o0,0) x (3,6),

NJI=]

\

A

Py

The function u is a Lipschitz function vanishing on Rx {0} and Rx {6}. Let
Sk =R x [0k,0(k+1)], k € Z,
and define v : R? — R via
u(z,y) = u(x — kd,y — kd) if (z,y) € Sk.
From our construction we deduce
luy| =1 a.e. in R, (2.1)

1 also satisfies

us| =0 ae inR\ ] P (2.2)

k=—o0



where Py, k # 0, has an obvious meaning. The Lebesgue measure of Py is

52
‘Pk| = o (2.3)

Note also that u vanishes on the diagonal x = y. Now the proof of Theorem
1 can be finished easily. Since ¢ is nonnegative and since the restriction of u
to €2 belongs to W one has

0<I*< /ng(Vu(x,y))dxdy. (2.4)

Let us denote by N := N(§) the smallest number of strips S, k € Z, that
are sufficient to cover the domain €). Therefore there exists p € Z such that

p+N—-1

> [ o(Vatey)dsay 25)

k=p

/s@(VU(x,y))d:vdy <
Q
Combining (2.1), (2.2) and (1.3) one has for every k € Z

| eute sty = [ o(Vuta,y)dady,

QNP

Observing
Vu(z,y) = (1,—1) on P

we deduce
| e(Vus(e.p)dsdy = (1, -DiR 0 2y
QNP
< o(1,~1)| Py (26)
Combining (2.5), (2.6) and (2.3) we get the estimate

/ng(Vu(x,y))dacdy < No(1, —1)5;. (2.7)

Note that
(N —1)6 < diam(f2),

where diam(2) denotes the diameter of Q. Since § € (0,1) one gets
N§ < diam(Q) + 1. (2.8)

Using (2.4)-(2.7) and (2.8) we obtain the final estimate

0 <I* < — (diam(2) + 1)p(1, —1),

N |



and since ¢ € (0, 1) is arbitrary one concludes that

I =0.

3 Domains with vertical austenite-martensite
interfaces.
In this section we assume that Iy is vertical, i.e. I'y is defined by (1.2).

Without loss of generality we let a = 0. Indeed, if a is different from 0, let
us denote by €, the following set

Qa = {(.’L‘ —(J,,y) ‘ (.I,y) S Q}

Then
u € W(Q) <= v € W(,)

where v is defined in €2, by
v(z,y) = u(z +a,y).

Obviously we have

/Q o(Vu(z,y))dedy = / o(Vo(z, y))ddy,

a

therefore

inf /Q(p(Vu(x,y))dxdy: inf /Qcp(Vv(x,y))dxdy.

uEW(Q) vEW(Qg)

Now we have:

Theorem 2. Consider any Borel function ¢ : R2 — [0,00). Then, if (1.2)
and (1.3) hold, one has

I* := inf =0.
o /Q ¢(Vu(z,y))dzdy = 0



In order to prove Theorem 2. we will need some preparatory lemmas in which
we slightly refine the construction of Kohn and Miiller (see [K.M;]). First

1
we define a function v : [0, 1] x [0, 5] — R by

4

Y, if 0<y<zH

v(z,y) =q 8L —y, if TH Iy

Then we extend v to [0, 1] x [0, 1] antiperiodically by letting

v(z,y), if (z,y) €1[0,1] x [0, 3]

v(z,y) =

—v(z,1—y), if (z,y)€][0,1] x [}, 1].

Note that 7 is a Lipschitz function such that

Uy =1 ae,

v(z,0) =7(z,1) =0,
and
vi(z,y) = 0if (z,y) ¢ S,

the set S := 57 U S5 being defined as follows

:L‘+1< <x+3

Sy = {(:U,y)E[O,l]X[O,lH ) Y= 3 }7

5—x 7T—x

Sy == {(z,y) € [0,1] x [0,1] | g SYS }.

Obviously

1
Vﬁ(ﬂ?,y) = (Za _1) in Sla

Vﬁ(ﬂ?,y) = (_i: _1) in 521

(3.1)

(3.2)

(3.4)

(3.5)

(3.6)

(3.7)



and using (1.3) and (3.1)-(3.7) we get

1 1
| [ etostadsay= [ o(vota g)dody + [ o(99(,)dzay,
0 0 S1 Sa
that is
o 1, 1 1
P (Vo (z,y))dedy = 7 (p(7,—1) + ¢(=7,—1)). (3.8)
0 Jo
Due to (3.2) we may extend U periodically with respect to y by letting

v(z,y+1)=v(z,y), (x,y)€[0,1] xR

Notice that 7 also satisfies

7(0,y) = =7(1, 2y). (3.9)

N | —

Now let us define the function w : [3,1] x R — R as follows

w(z,y) =02z —1,y). (3.10)
We finally let u : [0,1] x R = R,

400 1
Z Ew(Tx, QZy)X[#,%](x) if 1z €]0,1]
u(z,y) = { =0 _—
0 if T = 0’
where x;_r_ 1, denotes the characteristic function of the interval [57, o).
[21+1 521} - :

Then we have the following lemma
Lemma 1. Let u be the function defined by (3.11). Then u is a Lipschitz
continuous function such that

luy| =1 a.e. in[0,1] X R, (3.12)

u(z,0) = u(z,1) =0 for all z € [0, 1].

Proof. Due to (3.9) the functions

2t+1 727]

k
1 . )
Ziw(sz,Q“y)X[ ()



are continuous and converge uniformly to u in ]0,1] x R. Therefore u is
continuous in |0, 1] x R. Since the function w is bounded and

limx; 1](.’L‘) = 0,

20 a5
we get

lim u(z,y) = 0.

Thus v is a continuous function on [0, 1] X R. Now let (z,y) €]0,1] x R. Then
there exists 2 € N such that

1 1

T e [ﬁa?]:

and therefore
1 . .
u(z,y) = iw(ZZx, 2'y). (3.13)

Combining (3.1) and (3.10) one easily gets (3.12). Using (3.13) and (3.10)
we see that

1 , 1 .
u(z,0) = iw(sz, 0) = Eﬁ(THm - 1,0),

hence
u(z,0) =0

on account of (3.2). On the other hand we have
L _ i1 i
u(z,1) = ?V(Q x—1,2%
and since 7 is 1-periodic with respect to y, this implies by (3.2)
L_ it
u(z,1) = 51/(2 z—1,1)=0.
]

Lemma 2. Let u be the function defined by (3.11). Under the above as-
sumptions we have

| [ etvute.dsdy = oG, -1+ o5, 1)

Proof. First, let us calculate



1

21 1
I; ::/ dx/ dyp(Vu(z,y)), i€N.

By definition we have

I, —/ da:/ dyp(wy (2, 2y), w, (2'z, 2'y)),

2i+1

and using (3.10) we get
1

I; —/ d:r/ dyp(20, (27 2 — 1,2%), 7, (2 x — 1,2%)).

2t+1

By a change of variables we get

I _ -
Ii: 222._1_1/0v d_f]j/o dy(p(2l/$(.’1),y),yy(xay))a

and the periodicity of 7 wih respect to y implies

1 1 1 _ _
I = it / / o (205(z,y), Ty (2, y))dzdy,
0 0

1 1 1 . _
I = 2i+1/ / P(V(z,y))dzdy,
0 0

~()\1, )\2) = (2)\1, )\2)
Applying (3.8) to ¢ we get

so that

where

/ / (VU(z,y))dzdy = i[gﬁ(l, —1)+ @(—Za —1)],
thus . - .
|| etvrte ety = 3l -1+ p(=5,-1)

Therefore we arrive at

I = s5le(G,=1) + o(—3, =D)L,

and since

[ [ o(vutepydady = il

10



we finally deduce

bt 11 1
p(Vu(z,y))dzdy = 7lo(5, —1) + (=5, —1)]
0o Jo
which completes the proof of the lemma.

]
Proof of Theorem 2. Let § € (0,1) and define v : [0,6] x R — R by
rescaling the function u from (3.11), i.e.
T Y- ko
R
where k € Z. The function v is extended to [0, +oo[xR via

v(z,y) = ou( )y if (x,y) €10,0] x [k6, (k+1)6],  (3.14)
v(z,y) =v(b,y) if (x,y) € [d, +oo[xR.

Notice that v is a continuous function vanishing for z = 0. We can further
extend v to a continuous function defined in R? by reflection :

U(.’L’,y) :v(—x,y) if (x,y) E] —O0,0[XR-
It is clear that v is a Lipschitz function such that

v,/ =1 ae in R (3.15)

v, =0 if |z >4. (3.16)
We denote by (Rj)kez and (Sk)rez the following rectangles and strips

Ry = [=0,8] x [k6, (k +1)6], Sp = R x [kd, (k + 1)d].

Ry

S

So

11



Let N = N(J) denote the minimal number of strips which are sufficient to
cover the domain 2. Since the restriction of v to €2 belongs to W, one has

Ims/szw(Vv(x,y))dﬂﬁdy-

There exists p € Z such that

p+N-1

/ o(Vu(z,y))dzdy = Z / o(Vo(z,y))dzdy.

QﬂSk

Using (1.3), (3.15) and (3.16) we get for k € {p,p+1,...,(p+ N —1)}

/Q (Ve y))dady = / o(Vo(z, y))dady,

QNRy

so that

p+N-—1

/ o(Vo(z,y))dzdy < Z / (Vo(z,y))dzdy. (3.17)

Obviously
/ o(Vo(z,y))dedy = I, + I,
Ry,

where I; and I, denote the following quantities

5 (k+1)6 0 (k+1)d
I, = / / o(Vo(z,y))dzdy, I, == / / o(Vu(z,y))dzdy.
0 Jko —6 kb

From (3.14) we deduce

(k+1) (k+1)0 y— ko
I, = / dx/ dyp(Vou(z,y)) / dﬂ?/ dy(p(Vu(— —));
s 55 )

and after a change of variables we arrive at

e /0 1 /O ' o(Vulz,y))dedy.

According to Lemma 2. we get

1= le(5 1) + ol 1)

w5

12



In a similar way we deduce

b=2lp(k ~1) + g5, 1)

and therefore

[ eTutesdy = Glo(G 1) + (-3, -1)

Using (3.17) we get the bound

62 1 1
[ o(To(ap)dedy < N p(g,~1) + o5, -1)
Q
and as in section 2 we obtain

0< 1% < (diam (2) +1)3le(5,~1) + p(—5, ~1),

thus
I*® =0.

4 Nonexistence of minimizers and Young Mea-
sures

In this section we assume that ¢ satisfies in addition to (1.3)
(p()\l, )\2) =0 if and Ol’lly if ()\1, Az) = (0, :f:].) (41)

We have the following Poincaré type inequality Lemmma 3. Consider a do-

main Q as in section 1. Then, for any function u € WH®(Q) such that u = 0
on 'y, we have

uz, )\ dedy < C(Q) / (e, y)dady (42)

Qo Qo

where C(Qq) is a constant which only depends on Q. In case (1.2) Q can
denote any rectangle in 0 with one vertical boundary part contained in Ty,
in case (1.1) we can choose an appropriate parallelogram or triangle.

13



Proof. Let us first consider the case where Iy is vertical, i.e. (1.2) holds.
Then there exists (b,¢) € R x R such that

(a,a+e)x (b—e,b+e)CQor (a—e,a) X (b—¢g,b+e) CQ

and
{a} x (b—¢€,b+¢) C T,.

Assume that we have

(a,a+¢)x (b—e,b+e¢) CQ,
and set for simplicity

Qo= (a,a+¢)x (b—¢,b+e).

The general case can be handled similarly. Let (z,y) € Qg and consider
u € W(Q) such that u = 0 on I'y. Then

U@wﬁ=wxw—uwwﬁ=/zu@wﬁ

so that . e
o) < [ uatldr< [ ey

and in conclusion
a+¢e a+e
/ lu(z,y)|dx < e/ luz(t,y)|dt.

14



By integrating with respect to y we obtain (4.2). Now consider the case
where Iy is defined by (1.1). Without loss of generality we may assume that
a is positive and that the triangle

A={(z,y):zo<z<z0+6, axo+b<y<azr+b}

belongs to Q with boundary part {(z,y) : ¢ < z < zo + ¢, y = ax + b}
contained in Ty. Let (z,y) € A and choose u € W1*(Q) such that . = 0 on

I'y. Then
y—>b

Y) = /zb us(t, y)dt

u(z,y) = u(z,y) — ul -

a

and therefore

lu(z, y)| < /mb g (t, y)|dt.

e
This gives

To+e€ y — b To+€ xo+e€
|, i< @ore =220 [ juaepldr<e [ )

and after integration with respect to y we get (4.2) for the triangle. Clearly
the same argument can be applied to the region 20 = AUR where R denotes
some domain as in the figure above.

Lemma 3 implies the following theorem

Theorem 3. Assume that ¢ : R? — [0,00) is a Borel function such that
(1.8) and the following weaker version of (4.1) hold

(p()\l, )\2) =0= )\1 =0 (41)’
Then the problem
I* := inf / o(Vu(z,y))dzdy (4.3)
veEW (e}

cannot attain its infimum.

Proof. Let u € W(Q2) such that

/ng(Vu(:v,y))dxdy =0.

JFrom (4.1)" together with u € W(Q2) we deduce

Vu(z,y) = (0,£1) a.e. in €,

15



and Lemma 3 implies that u(x,y) = 0 on an appropriate subdomain € of
Q. This contradicts the fact that

luy| =1 a.e. in Q.

Therefore the problem (4.3) cannot attain its infimum.

In the sequel we will study the behaviour of minimizing sequences of the
problem (4.3) using the theory of Young measures.

Theorem 4. Let Q denote a domain as in Section 1 with the additional
property that (4.2) is true with the choice Qo = ). Assume that the function
0 : R? — [0,00) is continuous and satisfies (4.1). Let (uyp), be a minimizing
sequence of the problem (4.3) such that

[Unoos [(tn)zloe < C (4.4)
where C s a constant independent of n. Then
U, — 0 uniformly in €. (4.5)
Moreover, the sequence of gradients (Vuy), defines a Young measure (Vx)xea
on R? which is given by

1 1 .
UVx = 55(0,_1) + 55(0,1) a.e. in €2 (46)

where ¢,, is the Dirac mass at the point w.
Proof. By (4.4) there exist u € WH*(Q) and a subsequence of (uy), that
we also denote by (uy)n, such that

U, — u uniformly in €2

and
Vu, = Vu in L®(0)? weak - * .

Now the bounded sequence of gradients generates a Young measure on R?(see
[P.]) in the sense that there is a probability measure vx on R? and a sub-
sequence of Vu,, such that for any Carathéodory function F on € x R? one
has

F(X,Vu,) — [ F(X,\)dvx(\) in L®(Q)* weak - * . (4.7)

R2

16



Using (4.7) with F' = ¢ and exploiting the fact that (u,), is a minimizing
sequence one gets

/Q o(Vup)dX — 0 = /Q /R (N ()X,

It follows that
/ ©(N)dvx(\) =0 a.e. in Q,
R2

hence
Supp(vx) C {(0,£1)} for a.e. X € Q, (4.8)

where Supp(vx) denotes the support of vx. Therefore there exists a measur-
able function a such that

0<aX)<1forae X €
and
Ux = O[(X)é(o,_l) + (1 - Q(X))é(o,l). (49)

The choice F(X, (A1, A2)) = || implies

/ |(tun)e|dxdy — / |A1]|dvxdxdy = 0,
Q o Jr2

the last equality being a consequence of (4.8). On the other hand by lower
semicontinuity we have

liminf/ \(un)m\dxdyZ/\um|d:cdy
" Q Q

so that

/ |ug|dzdy = 0.
0

Now our assumption concerning €2 gives u = 0. Since 0 is the unique limit
point of (u,), one obtains (4.5). Moreover, for any disc D C Q

Vu, = u in L®(D)? weak -x
implies

/ (tn)ydzdy — 0
D

17



therefore (consider F/(X, (A1, A2)) = xp(X)Ag in (4.7))

/ / Aadvx (\)dX = 0.
D JR2

/ (1 -2a(X))dzdy =0,

From (4.9) we deduce

and since D is arbitrary, we get a(z) = 5 a.e. This proves (4.6).

Remark 5. Our assumptions on {2 are true if we consider a rectangle or a
parallelogram and if [y is just one of non-horizontal boundary parts of €2.

Remark 6. If we want to have the convergence stated in (4.5), then we are
forced to consider the situation described in Remark 5. For example, let
Q:=1[0,1] x [0,1+¢€], Ty := {0} x [0, 1].
With § = L, m € N, we define v, according to (3.14) on [0,4] x [0,1]. On
[0, 1] x [0, 1] we let
Um(7,y) = vm(6,y),
and on [0,1] x [1,1 + £] we define

Um(z,y) =y — 1 (4.10)

which is a function of class W(£2). Clearly

/Qgp(va(x,y))dxdy = /01 /01 (Vg (z,y))dzdy — 0

when m goes to infinity. Thus the sequence (v,,), is a minimizing sequence
which does not converge uniformly to zero on the whole domain 2. Note also
that the sequence of gradients of v,,, generates a Young measure (11x) xeq such
that

1 1
px = 5001 + 500y for a.e. X €[0,1] x [0,1],

and
Mx = 5(0,1) for a.e. X € [0, 1] X [1, 1+ 8].

If we let vy, (z,y) = 1 —y in (4.10) we obtain again a minimizing sequence
such that
px = 0(o,—1) for a.e. X €[0,1] x [1,1+ €]

and therefore we have no uniqueness for the Young measure.
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