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Abstract

For a bounded Lipschitz domain 2 C R" and a function ug €
WL(;RN) we consider the minimization problem

(P) /Q f(Vu) dz — min in up+ V?/ll(Q; RY)

where f: R™ — [0,00) is a strictly convex integrand. Let M denote
the set of all L'-cluster points of minimizing sequences of problem
(P). We show that the geometric relaxation of problem (P) coincides
with the relaxation based on the notion of the extended Lagrangian,
moreover, we prove that the elements v of M are in one-to-one corre-
spondence with the solutions of the relaxed problems.

AMS Subject Classification: 49
Key words: variational problems, linear growth, generalized minimizers, re-
laxation, functions of bounded variation

1 Introduction

In this note we are concerned with variational problems of linear growth
defined on spaces of vector-valued functions which are usually handled by
introducing a suitable relaxed version of the problem or by passing to some
dual variational formulation. There exist two — at least formally — different
approaches to a reasonable concept of relaxation, the first one being preferred
in connection with problems of minimal surface type, the second one occuring
in the theory of perfect plasticity. For experts in the theory of relaxation it
might be obvious that both points of view lead to the same result but we did
not find a rigorous proof in the literature and so we decided to sketch the
arguments in the present paper. R

To be precise, let us first fix our notation. In what follows {2 and (2
denote bounded Lipschitz domains in R®, n > 2, such that 2 € €. Given
boundary values uy of Sobolev class W (2; RY) we may extend ug to the

domain €} such that ug GVf/ll(ﬁ; RY) and let
(1.1) BV, (%RY) = {u € BV(%RY) : u = ug on ) — Q}

where BV (Q;RY) is the space of functions of bounded variation (see e.g.
[Giu] or [AFP]). Suppose that we are given a strictly convex (in the sense of
definition) function f: R™¥ — [0, 00) of linear growth, i.e. f satisfies

(1.2) alZ| —b < f(Z) < A|Z|+ B for all Z ¢ RV
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with some positive constants a, A, b, B and we further assume that f(0) = 0.
As a matter of fact the variational problem

(P) Ju] = /Qf(Vu) dr — min in up+ Vf/'ll(Q;RN)
in general fails to have a solution but from (1.2) it follows that the set
M = {u € BV(Q;RY) : wis a L'-cluster point of some
minimizing sequence to problem (’P)}

of generalized minimizers is non-empty. Next we recall the concept of the
“geometric” relaxation of problem (P) involving the Dirichlet boundary data
ug via the space BV, (Q;RY) (see (1.1)) which is discussed in the paper
[GMS)] of Giaquinta, Modica and Soucek. For functions w € BV (Q; RY) let

T [w, Q] = /fV“ ) dz + /foo(ws )d|sz|

where V%w denotes the absolutely continuous part of Vw with respect to
Lebesgue’s measure, V*w is the singular part of Vw, and f,, denotes the
recession function of f. Given these definitions, the lower semicontinuity

theorem of Reschetnyak (see [Re]) immediately implies the existence result
[GMS], Theorem 1.3:

THEOREM 1.1 There exists a minimum point for the problem
J [-,Q] = min in BV, (;R").
Let us fix some function w € BV, (€;RY). Observing
Viw L 0Q = (ug — w) @ v H"™ ' L 99,

v denoting the outward unit normal vector to 02, we may write

(1.3) Tl = [ 59 s +/f°°(lvs )dwsw'
+/an foo((uO—w)®u) dH"‘1+/§_Q f(Vug) dz,

and since the last integral on the right-hand side of (1.3) is constant we drop
this term and introduce the energy K: BV (Q;RY) — R,

(1.4) Klu] = /Qf(V“u) dm+[2fw<|gzz|> d|Veu|

+/m foo( (o —w) @) dH"




hence R
J [w,Q] = K[wq] + const
for any w € BV,,(;RY). Conversely, given u € BV (; RY), we let 4 denote
the extension via uy to the domain €2 and get
J 4,9 = K[u] + const.
The properties of the functional K defined in (1.4) are summarized in

THEOREM 1.2
i) The minimization problem

(ﬁ) K[w] — min in BV (& RN)
admits at least one solution.
i) inf Jw] = weBXI/I%Sf);RN) Kw]

weup+Wi(RY)
i) u € M <= u is K-minimizing.
We note that the proof of Theorem 1.2 is based on Theorem 1.1 together
with some minor adjustments of the arguments given in [Giu] for the minimal
surface case. A short outline will be presented in the next section.
In order to introduce the notion of relaxation via some suitable La-

grangian function (following the lines of Seregin [Se|, see [FS] for a complete
list of references, and of Strang and Temam [ST]) we observe

Jul=  sup  I(u,7) forall ue€ W} (Q;RY)

TEL®(Q;R?N)

where
l(u,7) = /7’ :Vu dz — /f*(T) dz, v € W (;RY), 7€ L®(Q;R™Y),
Q Q

is the Lagrangian, and f* denotes the conjugate function of f. Quoting [ET]
we remark that the dual problem to (P), i.e. the problem

R — max on L®(Q;R™),
(P*)
R[r] = inf l(u,T),
uEuo+Wi(QRYN)
admits a solution, moreover we have

inf Jw]=  max R[]
weuo+ W (RN) TEL(BReT)



For functions u € ug+ fof (;RY) and tensors 7 from the space
U:= {0 € L®(Q;R"Y) : dive € L”(Q;RN)}

it is easy to check that

l(u,T):/QdiVT-(uo—u) d:r—/gf*(T) dx+/97':Vu0 dz :IRU,T),

and the extended Lagrangian I(u,7) makes sense in case u € BV (Q;RY).
Finally, we use the extended Lagrangian to define

(1.5) J [w] :=supl(w,7), w € BV(QRY).

The next result is essentially due to Seregin (see, e.g. [Se], we just added the
fact that J-minimizers lie in the set M), but with the help of Theorem 1.4
below it can be reduced to Theorem 1.2.

THEOREM 1.3

i) The minimization problem

(P) j[w] — min in BV (Q;RY)
admits a solution.

i) inf  Jw]= inf Jw]

weug+Wi(QRY) wEBV(RY)
iii) u € M <= u is J-minimizing.

So, according to Theorem 1.2 and 1.3 problem (P) as well as problem (P)
is a suitable relaxed version of the original problem (P) in the sense that we
have the properties stated in i7) and 4i7). Now, in order to get a complete
picture of the situation, we formulate our main result.

THEOREM 1.4 On the space BV (; RY) the functionals K and J defined
in (1.4) and (1.5) coincide.

The rest of the paper is organized as follows: in Section 2 we give a short
proof of Theorem 1.2, in Section 3 we prove the identity J = K, and in a
final section we present a brief application of our results.



2 Proof of Theorem 1.2

Part 7) of Theorem 1.2 is an immediate consequence of Theorem 1.1 and the
definition of the functional K. For the minimal surface case, i.,e. N =1
and J[u] = [, /14 |Vu|? dz, i) is established in [Giu|, Proposition 14.3,
p.161. In the general case we first observe that we have K|[w] = J[w] for
w € ug+ W (Q;RY), thus
inf J > inf K.
uo+WH(RY) BVIES)

For the opposite inequality we use a lemma which in slightly different forms
occurs in many textbooks, see e.g. [Giu] or [AFP]. Unfortunately we could
not find an explicit reference for the statement given below.

LEMMA 2.1 Let w € BV(Q;RY) and consider its extension

~ w  on €,
w = ~
uy on £ — Q.
Then there exists a sequence {wp,} in ug + CC (L RY) such that if m — oo
(and if we extend wy,, by uy to )

a) Wy, — @ in LY(Q;RY),

b)/A\/l-l—\Vme dac—>/A V1+ | Vw2
0 o

Assume for the moment that Lemma 2.1 is true, fix w € BV (Q,R") and
define {w,,} as above. Then, from Reschetnyak’s continuity theorem (see
[Re], compare also [AG], Theorem 2.1 and Proposition 2.2) we deduce

J@,Q) = lim Jjwm, Q)
m—00
hence K[w] = limy, o K[wp,q], and clearly

o+ WH(QRN)

which proves ii) of the theorem. Suppose that v € BV ({;RY) is K-
minimizing. We apply Lemma 2.1 with w replaced by u and get for the
corresponding approximating sequence {w,,} € BV ({; RY)

thus
w0+ W1 (RN)



on account of 77). Hence {wy,q} is a J-minimizing sequence which is of
class uo+ W,'(RY) such that wpe — w in L'(Q;RY). This implies
u € M. Conversely, consider v € M being the L!-limit of some .J-minimizing

sequence {u,} € uo+ W,H(Q;RY). Since K is lower semicontinuous with
respect to this convergence, we find

Klu] < liminf Klu,,] = liminf J[u,] = inf  J
Moo moos uo+WHORY)
and by 4i) u is seen to be K-minimizing. O

Let us now come to the Proof of Lemma 2.1. First we recall the
definition of the measure

Br— / V1+|Vu|?
B

where B is a Borel subset of () and u denotes a function in BV (Q;RY). We
let

(2.1) /B\/1+\vu\2 - /B\/1+|V‘1u|2 dz + |V°u|(B)

which is in accordance with the general concept of applying a convex function
to a measure (see [DT]). It is easy to see that assumption b) of Lemma 2.1
implies the weaker condition

/A|Vwm| dx—)/A|Vﬂ7|,
0 0

for example we may quote [AG], Proposition 2.2, with the choice F(P) := |P|.
It should also be noted that a version of our approximation lemma involving
condition b) occurs in [AG], Proposition 2.3. During the proof of Lemma
2.1 we replace (2.1) by the following equivalent representation which for
example can be deduced by applying [DT], Proposition 1.2, to the function

fo(P)=+/1+|P|?>—1. For v and B as in (2.1) we have
/\/1 FVa? = £n(B) - £
B
(2.2) + sup {/T:Vu+/A\/1—|T|2 dx}.
B Q

TECE (RN, |7|<1

For notational simplicity we restrict ourselves to the case when 2 = B; =
B (0) and © = By = B5(0), the general situation is reduced to this special
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setting via a covering argument, for details we refer to [B2]. Let us fix
w € BV (By;RY) and let

0]

(2) = { w(z), if |z <1,

uo(z), if |z| > 1,

where we agree to define w(z) = 0 for |z| > 2. For § € (0,1) close to 1 let

z

(2.3) vs(2) = (& — o) (5) +uo(2).

Note that vs(z) = ug(z) for |z| > §. For 7 € CP(By; R™Y), |7 < 1, we
deduce (7(z) := 7(42))

/ Vv5:7+/\/1—|7'|2dx
B> B>

/%;m+/ 17 da
B B%

2
é

51—n/ TP da —/ TP da
32 B%

_ /B 2 (65790 (4) = Vuolw)] - 7w dy = (1) + (1) = (11),

— 5n71

+5n—1

where

@ <o [ ViEaR,
&
‘(III)‘ < g, if § is sufficiently close to 1,

1
/\/1-‘7"26&6—5/ V1—|7|? dx
B2 B2

< (5-1) LY(By).

From the explicit formula (2.1) for the measure [ /1 + |V@|? (which ac-
cording to our convention we regard as a measure on R") and the properties
of @ (there is no mass of V@ on 0B;) we see

nm5n—1/ VIF VAP = / JIF VAP,
Bo By
5

511
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thus
/ V1+|Vus2 = sup{ Vous: T
BQ B2
+/ V1— |72 dx : 7 € C(By; R™), 7| < 1}
B>
< e+ (3-1) L(Bs) + 5”1/ V1+ |VD?

By
8§

and therefore (since € > 0 was arbitrary)

limsup/ 1+ V2 < / V1+ | Vw2
BQ BZ

51

From vs — @ in L'(By) together with the lower semicontinuity of [, /1 + |- |2
we infer the opposite inequality.

So, for € > 0 given, we can find § close to 1 such that the function v = vy
from (2.3) satisfies

v(z) = up(z) for |z] > 0, v —w| dz < ¢,

B>
/ \/1+|Vv|2—/ V1+ | Vw2
32 B2

(2.4)
< e.

Let (...)” denote the mollification of a function with respect to a smoothing
kernel w,. With v from (2.4) we let

w, = up+ (v —1up)”,

i.e. w, equals up + the mollification of the scaled function z — (@ — ug)(%).

We have (v — ug)?(2) = 0if |2| > J + p, and if we assume p + 6 < 1, the
function (v — ug)? is of class C§°(By; RY). Moreover, we deduce from (2.4)

(2.5) lw, —w| de < 2eif p < p(e,d).
B>

Using the inequality

/ A/ 1+ |Vw,|? dz < / V14 |Vor2 de + |Vug — Vug| dz
B> B> By



it suffices to discuss

/ V14 |Vor2de = sup{/T:VU”dx—i—/ 1— |72 dx:
B, B, B,
7 € CP(By; R™Y), || < 1}.

Let us fix a smooth tensor 7 with compact support in Bs. Recalling v = uy
for |z| > 0 and |Vv|[(R" — By) = 0 we get

/T:Vv”d:r:/T”:Vv:/ 7" : Vu,
B> By B4y

hence (observe 7 € C§°(Bayp; R™Y), |77 < 1)

/T:va—i-/ 1—|7]2 dz
32 B2
:/ Tp:Vv—i-/ 1—|TP|2dx+/ 1—|7]? dx
Bay, Botp By

- / V1= ] da
Bay,
< / 1+ V2 + / V1—|1]2de — / V1 —|r°|? dx.
Bay, B> B

2+p

As remarked above it is immediate (see (2.1)) that

lim V14 |Vo)?2 = / V14 |Vul2
B>

pl0 Ba+p

Since P — /1 — |P|?, |P| < 1, is concave, Jensen’s inequality implies

[ VimFPd — [ TP
By

B>+p

g/ 1—\T|2dx—/ (\/1—|T|2)”dx.
B> Ba+p

Finally we have



[ = [ ([ e ar) IR o
- /. (/ o) dy) VTP da
- /32+p(/32wpx— mdx) dy
< [ (it wa,

and we get

/\/1+|VUP|2 v < VIV,
B>

Ba+p
hence for p < p(e, )

2.6 / 1+Vw2d:v§25—|—/ 1+ [Vo|?
(2.6) Bz\/ [Vw,| 32\/ Vo

Now let ¢ = = € N, and calculate 6,, 1 1 according to (2.4). The sequence
Pm = Pm(0m) is defined such that (2.5) and (2.6) are true. Let wy, 1= w,,,.
Our construction implies W, — Uy € CP(By;RY), (2.5) gives w,, — w in
L'(By;RY), and from (2.4) and (2.6) we deduce

limsup/ V1+ |Vw,|? dz < / V1+ | Vw2,
B>

m—ro0

the opposite inequality being a consequence of lower semicontinuity. This
completes the proof of Lemma 2.1. O

3 Proof of Theorem 1.4

Under the assumptions concerning our integrand f we have

LEMMA 3.1 The conjugate function f* is essentially smooth, i.e. f* is a
proper convez function and for D := int (dom f*) we have

a) D is non-empty.
Moreover
b) f* is differentiable throughout D and

¢) lim; o [V f*(Q;)] = 400, whenever {Q;} is a sequence in D converg-
g to a boundary point Q of D.
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Proof of Lemma 3.1. As a convex and finite function on R*V, f is con-
tinuous (see [Ro|, Corollary 10.1.1, p.83). For a proper convex function,
closedness is the same as lower semicontinuity ([Ro|, p.52), hence in partic-
ular f is closed. As a strictly convex function f clearly is essentially strictly
convex, thus we may apply Theorem 26.3, p.253, of [Ro] to see that f* is
essentially smooth. O

REMARK 3.1 From the linear growth condition (1.2) it follows that dom f*
is a bounded set, compare e.g. [DT], Section 1.2, moreover f* > 0 and

£+(0) = 0.

Let L(c) := {Q € R*" : f*(Q) < c}, c € R We claim that the definition
(1.5) of J can be rewritten as

j[w] = sup {T(w,T) : 7 € C®°(Q; R™Y),
(3.1) 7(z) € L(c) on Q for some ¢ = ¢(1) € R}, w € BV(Q;RY).

Let us fix some point @y € D and a function w € BV (Q;R"). For ¢ > 0 we
choose 7 = 7. € Y such that

j[w] — T(w,T) < e,

in particular we may assume that 7(x) € dom f* a.e. For a sequence )\, €
(0,1), Ay = 1 as k — oo, we then let

T = (]_ — /\k)QO + )\kT.

Since g belongs to the interior of dom f*, we can find an open ball B around
Qo compactly contained in D. Let C denote the union of all segments P7(zx)
with P € B. Clearly C is contained in the convex set dom f*, and any point
Q@ € Qo7(x) — different from 7(x) in case 7(z) € ddom f* — belongs to the
interior of dom f*, thus 7 (z) € D for almost all z and any k. Next we prove
the existence of numbers v, > 0 such that

(3.2) dist (7%, 0dom f*) > v, for all k € N
almost everywhere. Let
1
e = g min{dist (B, ddom f*), (1 — A\;)rad (B)}.

Case 1.
dist (7(z), 0dom f*) < g.

11



Then
dist (7% (x), 0dom f*) > |m(x) — 7(x)| — dist (7(z), ddom f*)

> (L= X)|7(@) = Qo — &,

and
|T(x) — Qo| > rad (B),
since 7(z) € B would imply

dist (7(z),0dom f*) > dist (B,0dom f*) > e

contradicting our assumption in Case 1. Thus

—_

dist (74(z), ddom f*) > (1 —Xg) rad (B) —ex > = (1 — \) rad (B).

\)

Case 2.
dist (7(z), ddom f*) > e.

By the choice of ¢ the open ball B’ of radius ¢, around @)y belongs to D, the
same is true for the ball B” of radius ¢ centered at 7(z). Let Z denote the
union of all segments PQ with P € B, Q € B". Clearly Z C int (dom f*)
and it is immediate that the distance of the segment Qy7(z) to ddom f* is
bounded below by &, hence dist (Tk(ac),adom f*) > eg. This implies (3.2)
with Yk = €k-

Remarking that Kj := {Q € dom f* : dist (Q,0dom f*) > ~} is a
compact set contained in int (dom f*), continuity of f* on int (dom f*) implies
the existence of a real number ¢; such that f* < ¢, on Ky, and from (3.2)
we deduce

(3.3) Tk € L(c;) almost everywhere.

From
[ () < (1= ) f"(Qo) + A f"(7)

and the choice of 7 we get

Ww, ) > X lw, )+ (1= X) (= |Q[f*(Qo) + /QQO : Vg dz)

> Me(J[w] =) + (1= ) (= 191£(Qo) +/QQ0 : Vg dz),

therefore

(3.4) J [w] < 2+ 1(w, )

12



for all k£ > 1. Let us fix such an integer k. In order to verify our claim (3.1),
we apply a modification of the approximation Lemma A.1.1 of [FS] to the
tensor o := 7. This is necessary since it is not clear that the construction
provided in [FS] preserves condition (3.3).

LEMMA 3.2 Suppose that o € U satisfies o(x) € L(c) for some c € R.
Then a sequence o, € C®(Q;RY) exists such that

i) Om — O a.e. and in LY R™Y) for all t < oo;
it) dive, — dive in L"(Q;RV);

) Om — O in L®(Q;R™Y);

i) om(xr) € L(c) forallz €Q, meN

Proof of Lemma 3.2. We use a construction due to [A], p.170. Since 0%
is Lipschitz, we can cover 0{2 by open sets Vi, ..., V, such that after rotation
V; takes the form

Vi={z e R" : |(z1,...,2p1)| <71, |20 — gj(21,...,201)| < by}

where g; is a Lipschitz function. Moreover, we have
Ty = gj(:cl,...,xn_l) = $€8Q,
0 < zp,—gj(z1,...,2p1) < hj = z€Q,
0 > z,—gi(x1,...,2021) > —h; = &0
Let V; denote an open set such that V5 C  and
(s
Qcl v
j=0
Finally, we consider a partition of the unity {¢;}, i.e. ¢; € C°(Vj), 0 <
p; <1, Z;:o @; =1 on ). Consider a fixed index 7 > 1. Let for 6 < 1

5 | o(z+ben) ¢ (z), zEQNV],
o; () '_{ 0, reQ-V,.

J

Note that 03-5 = 0 near the upper boundary part of Vj, the same is true near
the “vertical boundary parts” which follows from the support properties of
¢, and appropriate choice of 6. If w, denotes a smoothing kernel, we let

13



T
0% () = w,* [gpoa + Z aﬂ (z), = € Q.
7j=1
Assuming again the standard representation of the neighborhood V; we get
apraila) = [ wly—a) oy den) ) do

and for p small enough depending on § we see that for y € B,(z),z € Q,
the point y + de, belongs to €, and w, * a?(x) is well defined. Clearly
w, * 07 € C°(QR™Y) and
Wy * af-?a? in L7(Q; R™Y) for all p < oo,
p.
moreover (see [A], 1.16 Lemma, p.18)

ag J_LO) o’ in LP(;R™) for all p < oo.

We further have for z € 2
div (wp ¢ 0})(2) = a, [l = 2)ouly + Seii(0) dy
= [[Gusor) (v =) aly +0e0) 1(0)
= [u) (4= = ) 0ult) 95y — Gen) dy

- - / (Batoy) (y = & — Sen) 7ay) 0y — Sen) dy,
By(z+dern)

and since it is sufficient to consider x € 2NV}, we see that the integration is
performed over the ball B,(z + de,) € €. Moreover, y — w,(y — = — de,,)
has compact support in this ball, thus

div (w), * og)(m)

= [ - = ben) [divatu)es (s = den) + o) Versly — 5] dy
By (z+den)

= / wp(y — x) [div a(y + den) @;(y) +o(y + 5en)V¢j(y)} dy
and as above
div (w, * ag)? divo(- +dey)p; + o(- + de,) Vo,
p

in L"(Q; RY). The right-hand side converges to
dive ¢ +0 Vy;

14



in L"(;RY) as 6 | 0. So, if we first fix a sequence 6,, | 0, we find a
sequence p,,, depending on J,, such that the convergence properties i) and i7)
hold for ¢™ := g%=#m_ The boundedness of ||o™ || e(qznv) implies o™ = &
in L>®(; R™Y) for a subsequence and some tensor & € L®(Q; R*Y) but i)
shows ¢ = o. It remains to prove iv). Jensen’s inequality applied to the
measure w,(z — -)L" gives

@) < [ole-ur <€000+Z o?) (v) dy

and if we recall the definition of ag we see that f* is evaluated on the convex
combination

eo(y)o(y) + Z 0i(y) o(...)

where o(...) has an obvious meaning for j = 1,...,7. Our assumption
o € L(c) a.e. then implies

£ (Spoo + XT: 0?) (y) <e,
j=1

i.e. 0% € L(c). O
Let us now return to inequality (3.4). Lemma 3.2 gives the existence of
a sequence {7k tmen in C®(Q; R*N) with values in L(c;) and such that

Hw, Tmg) —s U(w, ),

m—00

where

|5 dx — [ £ do

follows from 7, — 74 a.e. together with the level-set property, hence we
deduce from (3.4) the inequality

j[w] < 3¢ +7(w,7m,k)

at least for m > 1, and (3.1) is established.

Extend next the function w € BV (2; RY) via ug to a function @ defined
on ) and consider a tensor o € C°(Q;R™Y), o(z) € L(c) for some ¢ € R.
Then

[diva- (ug — W) dx—/f*(a) dx+/a : Vug drz = l(w,0)),
Q Q

Q

15



hence

Jw] > sup{/Adiva-(uo—ﬁ)\) dx—/gf*(a) d:c+/QU:Vu0 dx :

Q

o€ CP(QR™), 0 € L(c) for some ¢ € R}.

Conversely, fix 7 € C®(Q; R*™), 7 € L(c) for some ¢, such that
Jw] < l(w,7) +e.

A modification of Lemma 3.2 yields a sequence {7,,} € C(‘)’O(Q;R"N ) such
that 7., € L(c) and

Tm — T in L'(;R™) and a.e. for all ¢ < oo,

divr,, — div7 in any space L*(Q;RY), s < oo,
T 5T in L=(Q; R"N).
To be precise, we use the notation from the proof of Lemma 3.2, in particular,
we recall the definition of T]‘?, j=1,...,r, which are now tensors of class C'°.
Clearly the definition of 7 () makes sense for points « such that z+de, € Q,
i.e.
_5 S Tp — gj(wla .. ’xn—l)a

so that

7']‘.5 € COO(V} N [— 0 <z, — gj(:cl,...,xn,l)]).

Let ( )
; 1, z€eVi, x, —gi(x1,...,2,_1) > 0,
e

0, T € ‘/;', Ty — gj(331, cee 7:1:”1—1) _g’

with suitable functions ¥} € C5°(R*), 0 < ¥J < 1. The function ) 77 is of
class C3°(Q; R™Y) and WJ 9 = 70 on Q. Finally we let

™ = ot + Z o) T]‘-s € CF(Q;R™).
j=1

Then, as ¢ | 0, the desired convergence properties of 79 on € are immediate,
moreover (observe oo+ 5, W ¢; < 1onQ, f*(0) =0) (%) < @of*(1)+
> i Wi f*((...)) < con Q. As a consequence we end up with the formula

Jw] = sup{/ﬁdivo-(uo—@) dx—/gf*(a) dx—i—/QO:Vuo dx :

o€ CP(LR™), o € L(c) for some ¢ € R},
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and we may use integration by parts to get for any w € BV (Q; RY)

Jhu] = sup{/ﬂa:V@—/Qf*(a)

(3.5)
o € CP(Q;R™), ¢ € L(c) for some ¢ € ]R}.

Clearly, a smoothing argument shows, that in (3.5) the space C5°({; R™)
can be replaced by CO(Q;R™). Let us fix w € BV(Q;RY) and a tensor
o € CO(Q; R"™) with the property o € L(c). Then f* oo is of class L'(Q).
Conversely, let us assume that f* o o is integrable on 0 implying o(z) €
dom f*. Then, using the arguments presented after the proof of Lemma 3.1,
we can construct tensors oy := (1 — A\;)Qo + Ao as before which we multiply
by some function € C%(€), 0 < n < 1, n = 1 on a neighborhood of .
Then the tensors 7, := 7oy, are of class C2(Q; RY) and

) = fA(A=n)0+nok) < nfor) <

provided oy € L(c;). We have

:Vw = [op:V — [o:Vu,
Q Q k—oo Jo

on {2 we estimate

0 < fim) = fon) < (1=M)F(Qo) + A" (0)
< max {f"(Qo), f*(0)} € L'(9),

/Qf*(Tk) dx — /Qf*(o) dx

follows from dominated convergence and f*(7,) — f*(0) a.e. on Q. Alto-
gether we find

/0 Vw — /f ) dox = hm {/QT]CZV@—/Q]C*(TIC) d:c},

hence
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and (3.5) implies

Jw] = sup{/Alﬁa:V'&?—/f*(a) dz : o€ CY(Q;R™),
Q

Q

ﬁooeme}
(3.6)

v

sup{/Alﬁa:Vﬁ}—/Af*(a) dx : OECS(Q;R"N),
0 )
foaeL%Q},

the inequality being a consequence of f* > 0. Consider a tensor ¢ which
realizes the first supremum up to given ¢ > 0. Then we let n, € C3(Q),
0 < n <1, such that g, =1 on 2 and 7, — 1g. Let oy := nxo. Observing

/Alﬁak:VﬂF = /A1§U:Vﬁ?, /Af*(ak) d:r—)/f*(a) dx
0 o 0 Q

(note: 0 < f*(o%) < mif*(0) < f*(0), o — 1go) we get

[IQO:V@—/f*(O) dr < 6+[190k:V@—ﬁf*(ak)dx
o) 0 0 0

for k£ > 1, and the suprema in (3.6) coincide. This leads to the final repre-
sentation formula

Jw] = sup{ 1go0: Vi — [ f*(o) dx: o€ CO(RY),
(3.7) /Q /Q

ﬁoaeLWQ}

being valid for any w € BV (£; RY). Now the right-hand side of (3.7) can be
identified with [DT], Proposition 1.2: the right-hand side equals

Vi
fV%3m+/x”< A)dV%L
Lovdy aos [ 1o (o) ava

the first integral being equal to fQ f(Vew) dz and the second integral may
be decomposed as fQ cet fm ..., the boundary integral being given by (see
[AFP], Theorem 3.77, p.171)

/ foo(— (w — ug) ®1/) dH" 1,
00
hence J[w] = K[w] for all w € BV (;RN). O
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4 A Uniqueness Theorem

In [B1] (compare also [B2]) the following class of variational integrands with
linear growth is discussed: there exist positive constants vy, vy, v3 such that
for any Z € RV

i) fe€CHR™Y);
i) |VH(Z)| < v

ii3) for any Y € R™Y we have
v (14+12P) VP < DF(D)V,Y) < v (1+]2P) 2 VP

Note that this provides a generalization of the minimal surface case where
one benefits from the additional geometric structure. It turns out that just
conditions 7)—iii) (plus some natural boundedness assumption) lead to a
solution u* such that

weM = {ueM:ue W, (R} = MO (QRY).

,loc

Here we give a clear interpretation of the set M'. To this purpose consider
the variational problem

(P) / F(Vw) do + / Fol(to = w) ® v) dH™ = min in W (LRY).
Q o0
Then the set M’ precisely gives the solutions of problem (P’) and these

solutions are unique up to a constant.

THEOREM 4.1 Suppose that the variational integrand [ satisfies our gen-
eral assumption and assume there exists u* € M'. Then we have

i) The elements of M' are solutions of problem (P') and vice versa.
it) The set M' is uniquely determined up to constants.

Proof. ad 7). On account of the K-minimizing property of u* € M’ and
since V*u* = 0, the representation of K clearly implies that uv* € M’ is a
solution of (P'). Conversely, consider a solution v* of problem (P’) and a

J-minimizing sequence {u,,} from ug+ W;'(;RY). The minimality of v*
gives

K[v*] = /Qf(VU*) dz + . foo((ug —v*) @v) dH™ ' < /Qf(Vum) dz,
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and ¢) follows from Theorem 1.2, 43) 7ii).

ad 4i): to prove uniqueness up to a constant, we just observe that fu
is convex, whereas f is strictly convex. This immediately gives Vu* = Vu**
almost everywhere and for any two generalized minimizers uv*, u** € M’,

hence Theorem 4.1. 4
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