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Abstract
Given a class of strictly convex and smooth integrands f with lin-
ear growth, we consider the minimization problem [, f(Vu)dz —
min and the dual problem with maximizer o. Although degenerate
problems are studied, the validity of the classical duality relation is
proved in the following sense: there exists a generalized minimizer
u* € BV(2;RY) of the original problem such that o(z) = V f(V%u*)
holds almost everywhere, where V*u* denotes the absolutely continu-
ous part of Vu* with respect to the Lebesgue measure. In particular,
this relation is also true in regions of degeneracy, i.e. at points z such
that D?f (V“u* (x)) = 0. As an application, we can improve the known

regularity results for the dual solution.

AMS Subject Classification: 49N15, 49N60
Key words: degenerate problems, linear growth, duality, regularity

1 Introduction

The minimization problem
(P) J(u) = /f(Vu) dr — min in wuy+ I/;/II(Q;RN)
Q

with integrand f of linear growth is in general not solvable, even if f is
strictly convex and smooth. One way to overcome this difficulty is to pass to
the dual problem which admits a unique (see [Bi]) solution . This solution
may be interpreted for example as the normal to a minimal surface (see [ET))
in case f(P) = 4/1+ |P|?, or the stress tensor in the theory of plasticity as
studied in a series of papers by Seregin (see [FS] for an exhaustive list of
references and a precise definition of the energy density for this particular
case). The dual problem reads as
(P*) R(r) = inf l(u,7) — max in L®(Q;R™).
u€uo+Wi(RN)
If the standard scalar product in R™" is denoted by P : @, then the La-
grangian [(u,7) and the conjugate function f* are by definition:

l(u,7) = /QT:Vud:U—/Qf*(T)dx,
(u,7) € {uo+ Wi (QRY) Y x L= (Q; R™Y)

Q) = sup {P:Q—f(P)}’ Qe R .

PeRnN



The problems (P) and (P*) are related via (see [ET))
inf{J(u) DU € up+ VE/II(Q;RN)} = sup{R(T) DT E LOO(Q;]R”N)} ,

and — if we assume the existence of regular solutions u*, o of (P), (P*)
respectively — by the duality relation

(1.1) o(z) = Vf(Vu*(z)).

A second way to handle the lack of existence is to look for a generalized
minimizer of the original problem in BV (2; RV ), the space of functions with
bounded variation. If we now denote by u* a generalized BV -minimizer of
(P) in the sense that u* € M,

M = {u € BV(Q;RN) . wu is the L'-limit of a .J-minimizing
sequence from uo+ Wi (Q;RY)},

then (1.1) becomes
(1.2) o(z) = Vf(Vu*(z)) forall z€Qy,

where €2,- C € is the open set of all u*-regular points, i.e. u* is of class C*® in
some neighbourhood of = € €2,«. Equation (1.2) is established in [BF1] where
some special generalized minimizer is fixed. With this information arbitrary
solutions u* € M are handled using the relaxed minimax inequality (see, for
instance, [Se3|, [BF2]).

If we assume D?f(P) > 0 for all P, then, using the regularity results of
[AG], it is proved in [BF1] that u* is regular on an open set of full measure,
hence by (1.2) partial C%®-regularity in the usual sense is ensured for o.

If degenerate problems are studied, i.e. under the weaker assumption
D?f > 0, then the approach outlined above in general does not lead to
satisfying results. Let us sketch the two main problems by considering a
prominent example (compare [GMS]):

(1.3) F(P) = (1+|P\’“)%, k> 2.

On one hand, (1.2) is a quite vague statement since the regular set ,« may
be very small.

On the other hand, and this is even more restrictive since we are interested
in regularity results for o, partial Holder continuity of o for the integrand
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(1.3) at hand follows a priori only on [D%f(Vu*(z)) > 0] = [Vu*(z) # 0].
However, an intrinsic theorem should be formulated in terms of o, i.e. the
domain of partial regularity is expected to be

(1.4) [o(z) #0] D [V*u*(z) #0],
where the inclusion follows on account of (1.2) and of course is meant modulo
sets of measure zero. Here, to be a little bit more precise, V*u* denotes the
absolute continuous part of Vu* with respect to the Lebesgue-measure and
Véu* will be used as the symbol for the singular part.

In our paper, a generalization of the classical duality relation (1.1) is
established for almost all z € Q: we leave the regularity of u* as starting
point and prove by arguments from measure theory and by an approximation
Lemma of [BF1] that there is a generalized minimizer u* € BV (;RY) of
Problem (P) such that

o(z) = Vf(V*(z)) for almost all z €,

where the degenerate situation D? f > 0 also is covered (compare Assumption
2.1). Coming back to the above example, we see that in fact equality (again
modulo sets of measure zero) holds in (1.4) and analogous results of course
are true in the case of more general degenerate integrands. As an application,
an intrinsic regularity theorem for the dual solution ¢ can be formulated just
in terms of o and the data, independent of u* (compare Corollary 4.2 for
details).

2 Preliminaries

Throughout this paper {2 C R" is assumed to be a bounded Lipschitz domain
and the integrand f under consideration satisfies

ASSUMPTION 2.1 The function f is smooth, strictly convex and of lin-
ear growth in the following sense:

i) f e C*(R"™W R).
i) f(P) >0 for allP e R"™, P #0, and f(0) = 0.

iii) f((l - AP+ )\Q) < (1=XNf(P)+Af(Q) for all P # Q € R*N and
for all 0 < A < 1. Suppose further that there is a real number M such
that for all P, Q € RN

1

1+ |PJ?

Moreover, strict inequality on the left-hand side is assumed if P, Q) # 0.

0 < D*f(P)(QQ) < M Q1.



w) There is a real number A such that |V f(P)| < A for all P € R™.

v) For numbers a > 0 and b € R we have f(P) > a|P|+b for all P € R*V.

REMARK 2.2

i) Of course ii) is supposed without loss of generality and the model inte-
grand considered in (1.3) satisfies iii).

i1) Qy« is a subset of the non-degenerate points satisfying

1
Ve — P|dx + lim / \Véu*| = 0,
r—0 Br(l')

lim
70 |B,(2)| JB, () | B, (z)]

for some matriz P € R™ such that D*f(P) > 0 (see [AG] and [BF1]).
Hence we have V*u* = 0 almost everywhere on the complement €.
of Qu«. However, this provides no results at all because no topological
information on €. is available. Moreover, the singular part Vu* is
not necessarily vanishing on €X..

Notice that by strict convexity and by the Theorem on Domain invariance
(see, for instance, [Sch], Corollary 3.22, p. 77) V f is known to be one-to-one,
hence an open mapping and Vf: R*Y — Im(Vf) := Vf(R") is a homeo-
morphism (compare [Bi]).

A powerful tool for the analysis of (P) and in consequence of (P*) is
the d-regularization: assume in the following without loss of generality that
the boundary values ug are of class W (Q; RY) (see [BF1], Remark 6.3, for a

natural extension) and consider for any 6 € (0, 1) the perturbed minimization
problem

(Ps) Js(u) = g/Q|Vu|2dx+/Qf(Vu) dr — min in ug+ fozl(Q;RN).

Denote further by us the unique solution of (P;) and let
(2.1) o5 = 6Vugs+ Vf(VU5) .

Then the Euler equations for (P;) read as

(2.2) /05 :Veodxr = 0 forall ¢ Eﬁ/QI(Q;RN).
Q



Moreover, there is a real number ¢ > 0 satisfying
Js(us) < Js(wo) < Ji(wo) < ¢,
and it follows immediately that
o5 —: O In LQ(Q;RN) as 6 >0,

Next, following the ideas of Seregin [Se2], it is proved in [BF1] (see Lemma
3.1) that o maximizes the dual variational problem (P*). The proof also
shows that us is a J-minimizing sequence and that

(2.3) 5/|Vu(5|2dx — 0 as §—0.
Q

Finally, on account of (2.2), it is not hard to prove that (again see [Sel],
[Se2], [Se3] and [BF1])

(2.4) 105wy @mnny < c¢(2) for all open subsets € 2,
hence, passing to a subsequence (which is not relabelled), we may assume by

(2.3) and (2.4)

7) os(z) — o(z) for almost all z € Q,
(2.5)

it)  0Vus(z) — 0 for almost all z € Q.

REMARK 2.3 Having established (2.4) and thus (2.5), i), we make no
further use of the upper bound for D*f stated in Assumption 2.1, ).

Passing to another subsequence and observing that Js(us) is uniformly bounded,
a L'-cluster point u* of us is fixed in the following:

usg —5: ut € BV(QGR™) as § 0.

3 Main Theorem

With this notation, in particular with subsequences {us}, {05} given as
above, our main theorem reads as follows.

THEOREM 3.1 The unique solution o of the dual problem (P*) satisfies

o(z) = Vf(V**(z)) for almost all z € Q.



REMARK 3.2 [t remains an open question whether o = V f(V®u) holds
for any generalized minimizer u € M.

The proof of Theorem 3.1 requires the construction of “large” sets of
uniform convergence according to

PROPOSITION 3.3 There is a measurable function v: @ — R, and
for any € > 0 there is a compact set K € ) such that:

i) os =0 on K, o(x) ¢ Olm(Vf) forallz € K;

ii) 6Vus =20 on K;

iii) Vus =2 v on K;

i) The restriction of v on K is a continuous function;
v) |- K| <e.

REMARK 3.4 In the following it is obvious that we can restrict to the
consideration of Lebesque points of o and Vu*, respectively. This is always
assumed as a general hypothesis.

Proof of Proposition 3.3. Let us first define

vi(z) = limsup—uj(z), i€ {1,...,N}, j€{1,...,n},
50 0%

which by definition is a measurable function with values in R.

Now fix £ > 0. The uniform convergence stated in i) & i) on a compact
set K € Q with |Q — K| < ¢/2 follows on account of (2.5) and Egoroff’s
Theorem. Setting N = {z € Q : o(z) € dIm(Vf)} it was proved in [Bi]
that [N| = 0. So, choose an open set U D N with |U| < /2. Then
K := K — U is a compact set such that i) & i) are true and in addition K
satisfies v).

Next observe that we have on K as 6 — 0

(3.1) Vf(Vus(z)) = os(z) —6Vus(z) — o(z).

If 2o € K is fixed, then o(z¢) ¢ 0Im(V f) implies that there is a constant
p = p(zo) such that for all § sufficiently small

dist<Vf(vu5(x0)),alm(Vf)) > ).



In other words, we have for all § sufficiently small
Vf(Vug(zo)) € C = {Q € Im(Vf) : dist(Q, OIm(Vf)) > p}.

Since C is compact and since Vf is a homeomorphism, (V f)_l(C’) is com-

pact, in particular (V f)fl(C’) is bounded and as a consequence

(3.2) limsup |Vus(z)] < oo forall z € K.
d—0

With (3.1) and (3.2), the pointwise convergence of Vus(z) on K is obtained
since V f is one-to-one. Egoroff’s Theorem then establishes iii) on a “large”
compact set K C K, without loss of generality on K. The proof of iv) is an
application of Lusin’s Theorem and the Proposition follows. |

Given Proposition 3.3, we now come to the Proof of Theorem 3.1. Fix
¢ > 0 and choose K according to the proposition. Since K is measurable,
the Lebesgue-Besicovitch Differentiation Theorem yields

B.(x)N K
(3.3) lim [Br(z) O K| = 1 for almost all z € K.

r>0 | By ()]
It is also known that for almost all x € Q there exists a matrix P € R

such that

1
lim |\Vu* — P)|
r=0 | By (z)| B(w
1
:= lim / |\Ve* — P|dz + lim [Viu*| = 0.
r0 \Br(x)\ By(2) =0 [Br(2)| /5, (2)

Let us first consider the case P # 0, i.e. = is a non-degenerate point. Going
through the lines of [BF1]| we observe that the duality relation as claimed in
the theorem holds in this case (see in particular (6.6) of [BF1]). Thus we
have to study the case

(3.4) Vu*| = 0.

lim
r=0 IB( ) S,

Observe that (3.4) implies

(3.5) Texe / (Vo)

I
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In fact, on account of the continuity of f and since f(0) = 0, we may fix a
real number A > 0 and find £ > 0 such that |P| < x implies f(P) < A. With
K as above we obtain

1 a, *
v a el A L
< limsup f(V“u*) dz

r—0 |Br(x)| By (z)N[| Vou*|<x]

+ lim sup / f(V™) dr
r0 |Br($)\ B, ()N Vou* | >4] (Vi)

Here the second term on the right-hand side vanishes by the linear growth
of f and by (3.4): for some real numbers ¢, ¢, > 0 we have

lim sup f(Va®) dx
r—0 ‘B( )| By (z)N[|Veu*|>k] ( )
< ¢y limsup —— V™| da
r—0 | Br(z)] B, (z)N[|Veu*|>K]
1
+c¢y lim sup ——— ldz = 0.

0 [ Br(@)] S, @nvew >4

The remaining term is bounded from above by A, which is an arbitrary fixed
positive number, thus the claim (3.5) is proved.
With (3.3) and (3.4) we define a set G satisfying |K — G| = 0:

Gk = {x € K : (3.3) & (3.4) hold true or o(z) = Vf(V“u*(x))} .

REMARK 3.5 Let us give a short comment on this definition. Consider
the set of all x € K such that (3.8) holds. Then we have to distinguish
between the cases “P = 07, i.e. (8.4) is true, and “P # 0”. As already
mentioned, in the second case the duality relation is proved in [BF1], in
particular |K — G| = 0.

According to this remark, we fix & € G satisfying (3.3) & (3.4) and recall
the fact that f achieves its absolute minimum at P = 0, hence 0 = Vu*(Z)
and 0 = Vf(0). Then we claim that

(3.6) o(@) = 0 = Vf(0) = Vf(VWu'(2)),

which immediately yields the theorem by passing to the limit ¢ — 0.



To prove (3.6) assume by contradiction that o(Z) # 0. We now claim
that there is a real number v = (&) > 0 such that for all § sufficiently small

(3.7) 7 < [Vus(#)].
To verify (3.7), let 7 = |o(2)| and choose §y > 0 sufficiently small to obtain
for all § < ¢

l05(3) — ()] < g and |0 Vus(3)| < %

This gives for all § < d

(3.8) VF(Vus(@)] = |os(@)] = [0 Vus(@)] > .

If it is supposed in contradiction to (3.7) that there is a sequence {d,}, 6, — 0
as n — oo, such that

Vus, () — 0 as n— oo,
then the continuity of V f yields
Vf(Vus, (2)) — Vf(0) = 0 as n— oo,

which is excluded by (3.8), hence (3.7) is proved.

By Proposition 3.3, 4i7), it also follows that v < |v(&)|, thus, by continuity
of v on K, there is a real number p; > 0 such that By, () € © and such
that for any p < pg

% < |u(z)| forall z€ B,(3)NK.

Finally, setting x = /4 and recalling the uniform convergence stated in
Proposition 3.3, #ii), we decrease dy — if necessary — and arrive at
(3.9) k < |Vus(z)] forall z€ B,(2)NK, 0<p<po,
and for all § < dy.
REMARK 3.6 If in the sense of measures
(3.10) |\Vus| — |[Vu*|
would be known, then the compactness of Fp(i") N K would imply
k|B,(2) N K| < limsup|Vus|(B,(2) N K)
6—0
< |Vu*|[(B,(&) N K)

and passing to the limit p — 0 a contradiction would follow from (8.4) and
from the density relation (3.3).



Hence we have to establish an appropriate substitute for (3.10), where we
use the “minimality” of {us} as additional information. To this purpose let
us introduce for any Lipschitz domain Q C €2 the following relaxation.

DEFINITION 3.7 For allw € BV (;RY) the functional J(w; Q) is given
by

J(w; Q) := inf{lim inf J(wg) : wp € CHLRY), wy, = w in Lloc(Q;]RN)} .

k—o0

Moreover, a representation formular due to Goffman and Serrin is needed

(see [GS]).
PROPOSITION 3.8 The representation formula

[ [ (2 v

18 true for allu € BV(Q; RY), where f., is the recession function of f defined

by
fo(X) = limsup f(tX).

t—+o0

As usual, the absolutely continuous part of Vu with respect to the Lebesgue
measure is denoted by V®u, the singular part by V*u and V°u/|V®u| is the
symbol for the Radon-Nikodym derivative.

With this notation the sequence {us} is modified as outlined in [BF1].
There it is proved that we may choose for almost any p as above a sequence

{wm} C uo+ WHQGRY), Wy, := Wi p,,(3), satistying
i) Wy — v in LY RY) as m — oo;
i) Win|oB,, (&) = UjoBs,(2))
i) liminf I (@) = inf I = J(u*; Boy(2));
'L"U) wm|Bp(£) = uam‘BP(;ﬁ)'

Here {us, } denotes a subsequence of {us} and we have abbreviated
o I: W} (Bs,(2);RY) =R, I(w) := / f(Vw)dz,
B2p(A)

e K = {w € W} (Bsy(2); RY) : wiop,,@) = u"‘asz(i)} .
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REMARK 3.9 Let us also give some comments on this construction: 1)
and ii) are explicitely stated in Lemma 7.1 of [BF1]. If |Vus| —: u in the
sense of measures, then p has to be chosen such that

H(OBo(#) = 0 = |Vu'|(9Bu(2))
Assertion iii) is proved in the formulas (5.1) and (5.2) of [BF1]. Finally,
iv) is immediately verified following the proof of [BF1], Lemma 7.1.

Now convexity of f and Assumption 2.1 77) imply the existence of a real
number J > 0 such that f(P) > ¢ whenever |P| > k. Hence we deduce from
(3.9) and iv)

¥ < f(Vi,) forall ze€ B,(z)NK

and for all m € N. This yields (recall f > 0, see iii) and Proposition 3.8)

K N B,(#), 1 / ]
d < lim inf f(V,,) dx
By (2)] By, ()] et ), f (V)
1

= —inf] = — J(u*; By, (&

G ERGTE S GRS
1
— — f(vau*)dl'
|B2p(37) ‘ By, (&)

1 Viu*
foo (*) d|Viu*|.
1By @) Jpy ™ wow]) 4V

Both sides of (3.11) are independent of m and we may now pass to the limit
p — 0. By the density assumption (3.3) it is seen that

K N B, (i
(3.12) li 9 150 Bol2)]

N P
p=0 - |Byy(2)|

whereas on account of (3.4), (3.5) and the boundedness of fy

=0 | [Bap(2)| J oy (a)
1

VS
- dvs*
Bl Sy (o) @ “'}

Thus, (3.12) and (3.13) contradict (3.11) and Theorem 3.1 is proved. [

lim { 1 f(Veu*) dz
(3.13)
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4 Application to Regularity Theory

We finish this section with a short application of Theorem 3.1 to regular-
ity theory: the u*- and the o-degenerate sets are identified modulo sets of
measure zero and, as a consequence, an intrinsic regularity theorem for o is
obtained for the degenerate problems under consideration. To this purpose,
consider u* as given above and let

Qe = {x €Q: Vu*(z) = O},
and Qs .= {xEQ: o(z) :Vf(O)ZO}.

Then Qg and Q¢ are well defined on the complements of sets of measure
zero. For a more precise definition one has to consider Lebesgue points of o,
Veu* respectively where the singular part V*u* should vanish. Since V[ is
one-to-one Theorem 3.1 implies:

COROLLARY 4.1 With the above assumptions there exists a generalized
manimizer u* € M such that

deg deg _ deg deg .
Qe — Q| = |Qi -] = 0.

On the other hand, as proved in [BF1], u* is on almost any ball Br(zo) € (2
a local J-minimizer and the regularity results of [AG] imply: there is an open
set Qg C Q — Q5 such that for any 0 < o < 1

w e Ch (@ RY) and |(Q- Qi) - = o0,

By Theorem 3.1 (in fact (1.2) is sufficient), the dual solution ¢ is known to
be of class C%* on ¢, Now observe that again by (1.2) and since Vf is
one-to-one the inclusion €2 C 2 — 29°¢ also holds true. Applying Corollary
4.1 we get the following partial regularity result for o.

COROLLARY 4.2 If f is given as above and if o denotes the unique so-
lution of the dual variational problem (P*), then there is an open set

Q™ CQ—Q
such that for any 0 < a < 1:

oceC™ (@7 RY) and |(Q-0w) -0
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