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Abstract

Given an integrand f of linear growth and assuming an ellipticity
condition of the form

2 2\~ 5 v (2
D*f(Z)(Y,Y) > c(1+]|ZF) 2 |Y)? , 1<pu<3,

we consider the variational problem J[w| = [, f(Vw)dz — min
among mappings w: R* D Q — RY with prescribed Dirichlet bound-
ary data. If we impose some boundedness condition, then the existence
of a generalized minimizer u* is proved such that [, |Vu*|log®(1 +
[Vu*|?)dr < () for any ' € Q. Here the limit case u = 3 is in-
cluded. Moreover, if u < 3 and if f(Z) = g(|Z|?) is assumed in the
vectorvalued case, then we show local C1®-regularity and uniqueness
up to a constant of generalized minimizers. These results substan-
tially improve earlier contributions of [BF3] where only the case of
exponents 1 < g < 1+ 2/n could be considered.

AMS Subject Classification: 49N60, 49N15, 49M29, 35]
Key words: linear growth, minimizers, regularity, duality, BV-functions
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1 Introduction

Suppose we are given a smooth, strictly convex (in the sense of definitions)
integrand f: R®¥ — R of linear growth (compare Assumption 2.1 for details).
Then we consider the variational problem

(P) Jw] = /Qf(Vw)dx — min

among mappings w € ug+ WL(;RY) where Q C R" is a bounded Lipschitz
domain and wuy is of class W (€; RY).

One prominent (scalar) example is the minimal surface case f(Z) = /1 + |Z]?.
A variety of references is available for the study of this variational integrand.
With regard to the following discussion we just want to mention the mono-
graphs [GI], [GMS2] and the apriori estimates given in [LU2| and [GMS1].
The theory of perfect plasticity provides another famous variational integrand
of linear growth (the assumptions of smoothness and strict convexity however
are not satisfied in this case). Here we like to refer to the studies of Seregin
(see, for instance, [SE1]-[SE4]) and to the recent monograph [FS2].

In any case, on account of the lack of compactness in the non-reflexive Sobolev
space W{(£2; RY), problem (P) in general fails to have solutions. Thus one
either has to study suitable relaxations (possibility 7)) or we may pass to the
dual variational problem (possibility i7)).

ad 7): since the integrand f under consideration is of linear growth, any

J-minimizing sequence {u,}, U, € ug+ WH(Q;RY), is uniformly bounded
in the space BV (2; RY). This ensures the existence of a subsequence (not
relabelled) and a function u in BV (Q; RY) such that u,, — v in L'(Q; RY).
So we define the set M of all generalized minimizers of problem (P) via

M = {u € BV(Q; RN) . wu is the L'-limit of a J-minimizing sequence
from wuo+ VE/II(Q; RV)}.
ad i1): following [ET] it is possible to write

Jw] = sup  Uw,T), wEupt+ V(I)/ll (RY),
TEL®(GRN)

where the Lagrangian [(w, ) for (w,7) = (ug + ¢, 7) € (up+ I/f/f (4 RY)) x
L>®(Q; R*N) is defined through the formula

l(w,r) = /QT:dea:—/ﬂf*(T)dx = l(u0,7)+/97':V<,0d3:,

2



and where f* denotes the conjugate function of f. If we let
R: L*(Q;R"™) - R,

—00, if divr #0,
R(t) = inf lu,7) =

u€ug+Wi(4RY) l(ug,7), if divr =0,

then the dual problem reads as
(P*) to maximize R among all functions in L (Q; R"V) .

Although the set M of generalized minimizers of problem (P) may be very
“large”, the solution of the dual problem is unique. This is a well known
fact from duality theory (compare [ET]), a generalization (without imposing
any conditions on the conjugate function) is given in [BI]. Moreover, the
dual solution ¢ admits are clear physical or geometrical interpretation: in
the minimal surface case the dual solution corresponds to the normal of the
surface, in the theory of perfect plasticity we obtain the stress tensor. Let us
finally mention that (see again [ET])

inf J(u) = sup  R(7).
uEuo—H’?’% (RN TEL® (Q;R™V)

Next, some known results are briefly summarized.

i) In the minimal surface case it is possible to benefit from the geometric
structure of the problem (compare Remark 2.3). A class of integrands with
this structure is studied, for instance, in [GMS1] following the apriori gradient
bounds given in [LU2|. It turns out that generalized minimizers have (locally)
Holder continuous derivatives, they are unique up to a constant and the dual
solution o is of class C’loo’? forany 0 < o < 1.

i1) In the theory of perfect plasticity only partial regularity of the stress
tensor is known (compare [SE3]). Even in the twodimensional setting n = 2
we just have some additional information on the singular set (see [SE4]). As
an approximation, plastic materials with logarithmic hardening are studied,
i.e. the integrand under consideration is given by

f(Z) = [Z]1og(1 +|Z]).

This integrand is of nearly linear growth, and, as a consequence, a unique
solution of Problem (P) exists. The solution is known to be of class Cj;*
implying the stress tensor to be (locally) continuous (see [FRS], [FS1], [MS]
— generalizations are given in [FM], [BFM], [BF2)).
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i1) Considering the general situation of strictly convex, smooth integrands
with linear growth, singularities have to be expected (see [GMS1] for exam-
ples). However, partial C*“-regularity of one particular generalized mini-
mizer u* is established in [BF1]. This is done by proving u* to be a local
minimizer of a relaxed problem studied in [AG]. Finally, the duality relation
o = V f(Vu*) ensures partial C%*-regularity of the stress tensor.

iv) In contrast to the nearly linear logarithmic hardening, the idea in [BF3]
is to study a regular class of variational integrals with linear growth. Here,
on one hand, existence and regularity results are comparable to the minimal
surface situation. On the other hand no geometric structure conditions are
imposed.

As an example one may think of

f(2) = /0|Z|/Os(l+t2)'§dtds,

where i > 1 is some fixed real number. If, as a substitute for the geometric
structure, ellipticity is assumed to be “good enough”, i.e. if p < 1+ 2/n
is assumed, then Cllo’f—regularity of generalized minimizers (which again are
unique up to a constant) and local Holder continuity of the stress tensor are
valid.
Let us shortly discuss the limitation 4 < 1 + 2/n. Given a suitable regular-
ization ug, it is shown that

.

ws = (1 + \Vu(;\?)_“ﬁ

is uniformly bounded in the class Wy ,,.(Q2). This provides no information
at all if the exponent is negative, i.e. if 4 > 2. An application of Sobolev’s
inequality, which needs the bound p < 1+ 2/n, proves local uniform higher
integrability of the gradients.
In a similar way, the DeGiorgi type reasoning of [BF3] leads to the same
limitation on the ellipticity exponent pu.

The purpose of our paper is to cover the whole scale of u-elliptic integrands
with linear growth (as introduced in [BF3]) up to g = 3. This is the limit
induced by the minimal surface example (see Remark 2.3).

As an additional assumption, the boundary values uq are supposed to be of
class L*®(£2;RY) (with the approximation arguments of [BF1] w.lLo.g uy €
L>® N W} (;RY)). Moreover, a maximum principle is imposed:

ASSUMPTION 1.1 Let us denote the unique minimizer of

5 o
Jolw] = 5/Q|Vw|2dx+J[w], w € ugt W RY),
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d € (0,1). Then there is a real number M, independent of 6, such that
|| us|| Lo (mry < M |luo||poo(ryy
REMARK 1.2 Alternatively Assumption 1.1 may be replaced by

||u5||L°°(Q;RN) < K

loc

for some real number K not depending on . In this case no restriction on
the boundary values is needed.

REMARK 1.3 Of course there are a lot of contributions on the bounded-
ness of solutions of variational problems. Let us mention [TA] in the scalar
case, a mazimum principle for N > 1 is given in [DLM]. Let us also remark

that in the case of nonstandard growth conditions, a boundedness assumption
serves as an important tool in [CH] and [ELM].

Given some preliminary results on the regularization (see Section 3), we
exploit these hypotheses in the main sections 4-6 to obtain uniform apriori
gradient estimates for the sequence {us}.

In contrast to [BF3] we do not differentiate the Euler equation in Sections 4
and 5 by the way avoiding Sobolev’s inequality.

As outlined in Section 4, a generalized minimizer u* € WY, (€; RY) is found
in the first step (in fact, integrability is slightly better, compare Theorem
2.5). Thus, following [BF1], u* is a local minimizer of [V f(Vw)dz (see
Corollary 2.6).

It turns out that in the limit case y = 3 we have to stop at this point, i.e. full
regularity in the minimal surface case depends on the geometric structure of
the problem (again compare Remark 2.3).

However, if 4 < 3 and if some additional assumptions are imposed in the
vectorial setting, then Section 5 proves uniform local LP-integrability of the
gradients for any 1 < p < oo (see Theorem 5.1).

Once this is established, uniform local apriori gradient bounds for the se-
quence {us} are shown in Theorem 6.1. Here DeGiorgi’s technique is mod-
ified: since on one hand we benefit from Holder’s inequality, on the other
hand we have to check carefully that the iteration works (see the definition
of B3).

Finally, in Section 7, the proof of the main Theorem 2.7 is completed.



2 Assumptions and main results

The boundary values uy are supposed to be of class L>® N W, (Q;RY). As
mentioned above, the case ug € L® N W} (Q; RY) is covered with the help of
the approximation arguments given in [BF1].

The class of integrands under consideration is defined by

ASSUMPTION 2.1 There exist positive constants vy, vo, v3 and a real
number 1 < p < 3 such that for any Z € RN

1) feC*R™);
i) [V(Z)] < w;
iii) for any Y € R™ we have

w1+ 122 YP < DH2)YY) < v (1+12P) PP

REMARK 2.2 Assumption 2.1 implies the following structure conditions.

i) There are real numbers vy > 0 and vs such that for any Z € RN

VZ):Z > (14|27 — v,

where we use the symbol Y : Z to denote the standard scalar product
in RV,

i1) The integrand f is of linear growth in the sense that for real numbers
vg >0, vr, g > 0, vy and for any Z € R

vlZ|—v; < f(Z) < vslZ|+ .

i11) The integrand satisfies a balancing condition: there is a positive number
V1o such that

\D*F(2)||Z) < vio(1+ f(Z)) holds for any Z € R™ .

Proof. ad 4): replace f by f: R"Y — R,
f(Z) = f(Z)=VFf(0):Z forall ZeR"N.

A partial integration gives a real number ¢ such that we have for all w €

Jw] = /Qf(Vw)dac—/QVf(O):dex = Jw]+c.
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Thus minimizing sequences and generalized minimizers of .J and .J respec-
tively coincide, and w.l.o.g. Vf(0) = 0 may be assumed. This implies by
Assumption 2.1 i77)

1
ViZ): 7 = /O%Vf(OZ) Zdo

- / D*f(02)(2,7) do
(2.1) 0

2
2

|Z | df

1
> Vz/ (1+6%12)%)
0
12| .
= 1/2|Z\/ (1+ %) "2 dp,
0

i.e. Vf(Z): Z is at least of linear growth and %) follows.

ad i7): the upper bound is immediate by Assumption 2.1 47). Proving the left-
hand inequality we observe that (2.1) gives V.f(Z) : Z > 0 for any Z € R*Y.
W.l.o.g. we additionally assume f(0) = 0 to write (using 7))

f(2) = /050 (62) do

Vi(02):07d6

> %[ (1+@) —V5],

hence i7) is clear as well.
ad 7i7): this assertion follows from i) and the right-hand side of Assumption
2.1 iii). u

(V4
H\

A comparison of the minimal surface integrand with the above definition
provides the following

REMARK 2.3 The minimal surface example f(Z) = \/1+ |Z|? satisfies
Assumption 2.1 with the limit exponent ;w = 3. On the other hand, there is
much better information on account of the geometric structure of this exam-



ple, in particular we have

Y : Z)?
o |yp- WD o vy
1+ 2] 1+|Z|
Co ‘ ‘2 (Y : Z)2
VIt 27 1+ |22

forall Z,Y € R* with some real numbers cy, c;.

Given an integrand satisfying this condition, Ladyzhenskaya/Ural’tseva ([LU2])
and Giaquinta/Modica/Soucek ([GMS1]) then use Sobolev’s inequality for
functions defined on minimal hypersurfaces (compare [MI] and [BGM]) as
an essential tool for proving their reqularity results.

Finally, the vectorial setting NV > 1 needs some additional

REMARK 2.4 Suppose that N > 1 and that Assumptions 1.1 and 2.1
hold. This is sufficient to prove a higher integrability result for generalized
minimizers — even in the limit case p = 3 (see Theorem 2.5 and Corollary
2.6).

The main theorem in the vectorial setting however is obtained for integrands
[ with some additional “special structure” in the sense that

(2.2) f(Z2) = g(|1Z) forall ZeR™W

with g: [0,00) — [0,00) of class C*(R).
Note that (2.2) is not needed to prove a mazimum principle (compare [DLM]).
As an immediate consequence, (2.2) gives

o*f
0z}, 02}

(2) = 49"(12) 22 +29'(12]7) 67 bap -

In addition to (2.2) we impose some Hélder condition on the second deriva-
tives: there are real numbers o € (0,1], K > 0 such that

(2.3) D2f(2) - D*(2)| < K|Z-2Z]".
Now let us give a precise formulation of the results.

THEOREM 2.5 If N > 1 and if Assumptions 1.1 and 2.1 are supposed to
be true in the limit case p = 3, then there is a generalized minimizer u* € M
such that



i) Viu* =0, i.e. Vu* = V%*, where the absolutely continuous part of
Vu* w.r.t. the Lebesque measure is denoted by V®u*, the singular part
by Veu*.

i1) For any Q' € Q) there is a constant ¢(') satisfying

/ Va'| log? (1+ [Vu'P) de < o) < oo.
QI

In [BF1] the behaviour of generalized solutions is studied on suitable balls,
which means that no mass of Vu* is concentrated on the boundary of these
balls. As a result the following Corollary immediately is verified.

COROLLARY 2.6 The generalized minimizer u* given in Theorem 2.5 is
a local minimizer of the functional [, f(Vw) dz.

A slight improvement of the ellipticity condition yields:

THEOREM 2.7 Suppose Assumptions 1.1 and 2.1 to be true with j < 3.
In the case N > 1 we additionally impose (2.2) and (2.3).

i) Each generalized minimizer u € M is in the space C*(;RY) for any
0<a<l.

i) The dual solution o is of class C%*(Q; R™) for any 0 < a < 1. More-

over, o has weak derivatives in the space L7 (Q; R*™).

i1i) For u, v € M we have Vu = Vv, i.e. up to a constant uniqueness of
generalized minimizers holds true.

REMARK 2.8 Although we concentrate on generalized minimizers, the (lo-
cal) continuity of the dual solution is needed to obtain iii) from i). The fact
0 € Wi, (Q; R™Y) is well known (compare [SE1], [BF1]) and just mentioned

LJloc
for the sake of completeness.

To finish this section we fix some notation.

i) With a slight abuse of notation, constants are denoted by ¢ without
being relabelled.

ii) We take the sum w.r.t. repeated Greek indicesa = 1,...,n and w.r.t. re-
peated Latin indicesz=1,..., N.

iii) We always assume that z, € Q and that B,(zo) € € is satisfied for
each ball under consideration.



3 Regularization

As mentioned above, Problem (P) is approximated in the following way:
consider for any ¢ € (0,1) the functional

J o
Jslw] = 5/ [Vw|?dz + Jw], w € upt+ Wy (QRY),
Q
and denote by us the unique solution of

(Ps5) Jslw] — min, w € up+ I/f@l (RY).

Letting f5 := &| - |> + f, observe that the minimality of us implies J;(us) <
J(j(UO) S J1(’LLO), hence

(3.1) /Qf(;(Vu(;) dr < ¢

follows for some real number c¢. Moreover, by the definition of wug,
(3.2) / Vfs(Vus) : Vodz = 0 forall p eW, (GRY).
Q
With the notation o5 = V f5(Vus) we may assume on account of (3.1) that

o5 —: 0 in L?(Q; R™) as § — 0, and following [BF1] it is easily seen that

LEMMA 3.1 i) The sequence {us} is a J-minimizing sequence. Hence,
the L'-cluster points of {us} provide generalized minimizers in the
above sense.

it) The limit o of the sequence {05} mazimizes the dual problem (P*).
Next, a preliminary lemma (nevertheless an essential tool) is proved.

LEMMA 3.2 Suppose that Assumption 2.1 is true and that we have (2.2)
i the case N > 1.

i) There is a real number ¢ > 0 such that for any s > 0, for any n €
Ce(2), 0 <n <1 and for any 6 € (0,1)

/ D? f5(Vug) (0, Vus, 0, Vus) Tin? dx
Q
< c / D? f5(Vug) (0yus ® Vn, Oyus @ Vi) s dx
0

where we have abbreviated I's = 1 + |Vu;|2.
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it) Letting A(k,r) = As(k,r) = {z € B.(w) : ['s >k}, k> 0, there is a
real number ¢ > 0, independent of 6, such that for any n € C§°(B,(zo)),
0<n<1andforanyd € (0,1)

/ T, |VIs2n? da
A(k,r)
< c / D?f5(Vus)(e; ® Vi, e; ® V) (Ts — k)* dz .
A(k,r)

Here e; denotes the j™ coordinate vector.

REMARK 3.3 Following the proof of Lemma 8.2 we see that (2.2) is not
needed for assertion i) if s = 0.

Proof of Lemma 3.2. ad i): Using the standard difference quotient tech-
nique it is easily seen that u, is of class W3,.(Q; RY).

Moreover, since | D?fs] is bounded, V f5(Vus) is of class Wy, (€; R™) with
partial derivatives (almost everywhere)

67 (Vf5(Vu5)) = DZfJ(VUJ) (87Vu5, ) , Y= 1, Loy

Now, given ¢ € C°(Q;RY), we take d,¢, v = 1,...,n, as an admissible
choice in the Euler equation (3.2). A partial integration implies by the above
remarks

(3.3) / D?f5(Vug)(0,Vus, Vo) dz = 0 forall ¢ € C°(RY),
Q

and, using standard approximation arguments, (3.3) is seen to be true for all
o € W3 (;RY) which are compactly supported in Q. Next we cite [LU1],
Chapter 4, Theorem 5.2, in the scalar case and the Uhlenbeck/Ural’tseva
estimates (see [UH], [UR], we refer to [GM], Theorem 3.1) if N > 1 to see
that us € W, (5 RY). As a consequence, ¢ = 1? dyus 'y with 7 given
above is admissible in (3.3) (recall the product and chain rules for Sobolev
functions). Summarizing the results we arrive at

/ D? f5(Vus) (8, Vus, 0, Vus) Ty’ d
0
(3.4) ts / D2 £5(Vus) (8, Vs, yus @ VT3) T3~ i da
Q
=2 / D? f5(Vug) (04 Vug, yus ® V) nl's dx .
Q

11



In the scalar case N = 1 the second integral on the left-hand side can be
neglected on account of

1
D2f5(vu¢5) (37VU5, 87u5 ® VF(;) = 5 D2f5(vu,5) (VF(;, VFJ) 2 0 a.e.

In the vectorial setting N > 1 we first consider the case s = 0. Then the
second term on the left-hand side trivially vanishes without any additional
assumption (compare Remark 3.3). If s > 0, then (2.2) is needed: given a
weakly differentiable function ¢: Q — R, and letting f5;(Z) = g5(]Z|?) we
obtain almost everywhere

D? f5(Vug) (05 Vus, Oyus @ V1)
= 4g1dau 0, 00u’ g0yl Opth + 2 gh O, Ol Dy Dptl
= 2970, |Vus|* 00 gt 0, ul + g 0| Vus|? Dat
= 2¢70,T505v 0 uldpul + g5 0515 Dath
1 0*fs

FERERACA

1
= 5 D2f5(VU5) (€j ® Vw, €; ® Vr(s) .

Choosing ¢ = I's we see that in the vectorial setting the second integral on
the left-hand side of (3.4) is non-negative as well. In any case we obtain for
any € > 0

/Q D? f5(Vus) (05 Vus, 0, Vus) T30’ dz
< ¢ /Q [D2f5(Vu(s)(87Vu5, 87Vu5)] %nl‘f
: [D2 F£5(Vus) (8515 ® Vn, Byug @ vn)] g I? dz
< c{a /Q D? f5(Vus) (8, Vus, 0, Vus) Ty dz
+e ! /QDQfJ(Vu(;) (0yus ® Vn, 0yus ® V)3 d:v} .

If ¢ is sufficiently small, then we may absorb the first integal on the right-hand
side and 1) is proved.
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ad ii): This time we choose ¢ = n? d,u; max [F(; — k, 0}. Moreover, given a
measurable function w: 2 — R and writing w™ = max[w, 0], we recall (see,
for instance, [GT], Lemma 7.6, p. 152) that for w € W, (Q)

Vw if w>0
+ _ M)
V' = {0 if w<o0.

Then the same arguments as before prove ¢ to be admissible in (3.3):
/A(k ) D? f5(Vug) (67VU,5, 87Vu¢;) (Ts — k)n? dz
(3.6) + /A . )D2 f5(Vus)(0,Vus, 0yus ® VL) n® da
= -2 /A(k ) D?f5(Vuy) (&YVu(;, 0,5 ® Vn) n(Ts —k)dz.

Here the non-negative first integral on the left-hand side is neglected and the
second integral is estimated as above:

1

- / DQf(j(VUJ) (ej &® VF(S, €; ® VF5) 7’}2 dx
(37) 2 A(k,r)

< /A . )D2 f5(Vuz) (8, Vus, 8yus; @ VL) 0 d .
According to (3.5), the right-hand side of (3.6) satisfies almost everywhere
(3.8) D*f5(Vus) (0, Vus, ,us @ V) = % D?f5(Vus)(e; ® Vn,e; @ V) .
(3.6)—(3.8) imply with the Cauchy-Schwarz inequality
/A(k | D?f5(Vus)(e; ® VL, e; ® VL) n? da
< ¢ {6 /A(k | D? f5(Vug) (ej ®Vls,e; ® VF(;) n* dx
el /A L DY) (6@ Vs © V) (T = K dx} |

hence 1) is proved recalling Assumption 2.1 4i7) and chosing £ > 0 sufficiently
small. |

13



4 Higher integrability in the limit case y =3

In this section we consider the limit case 4 = 3 and prove local uniform
integrability of |Vus|log®(1 + |Vus|2) by the way establishing Theorem 2.5.
Here the discussion of the vectorial setting does not depend on additional
conditions (compare Remark 2.4).

THEOREM 4.1 Suppose we are given Assumptions 1.1 and 2.1 in the limit
case p = 3. Then for any Q' € Q there is a real number c(2') — independent
of & — satisfying

/ (Vus| log® (1 + |Vug?) dz < ¢(Q) < oo.
QI

Proof. This time we have to show that ¢ = us w? 7%, ws = log(Ty),
n € C§°(Bar(x0)), 0 < p <1, n =1 on B.(z9), is admissible in the Eu-
ler equation (3.2). Since condition (2.2) is dropped in this section, we now
refer to the discussion of asymptotically regular integrands given in [CE]; a
generalization is proved in [GM], Theorem 5.1. As a result, us is seen to be of
class W3 5. N W, 106(€; RY) which proves ¢ to be admissible. Alternatively,

we could replace w; by a suitable truncation ws s and prove Theorem 4.1
passing to the limit M — oo.

With the above choice, the Euler equation reads as

/ Vf(Vus) : Vuswin® dac—i—(i/ \Vus|* win® dx
Ba; (o) Bay (o)
(4.1) = —/ VI(Vus) : us @ [Vwin® + Vi w;| da
327(580)
—6 / Vus i us ® [Vwin® + Vn’wj] dz.
B27‘($0)

Remark 2.2 7) proves the left-hand side of (4.1) to be greater than or equal
to

(4.2) / [1/4 IZwin® — vswj 772] dx + 6 / \Vus>w2n?dz.
By, (z0) Ba, (z0)

14



Since |V f| and |us| are bounded, we find an upper bound for the right-hand
side of (4.1) (using Young’s inequality with € > 0 fixed)

1 _1
rhs < c/ 0 [51“(? wi+e71T;? |Vw(;|2} dx
Bar(w0)

+c(r) / wi dx
By, (]:0)

(4.3)
+05/ n? [5|VU5|2w§ +e7t |Vw5|2] dx
Ba,(z0)
+c(r)é |Vus| w2 dz .
By, (IO)
Clearly [, . widzandd [y .\ |Vuslwfdz are uniformly bounded w.r.t. 0

(compare (3. 1)) Hence (4.1)- ( ) imply after absorbing terms (for & suffi-
ciently small)

[ T
(4.4) Br(®0)

SN

1
widr < c[l—i—/ L, 2 |[Vws|*n® dx
BQT(IO)
+(5/ \Vws|*n*dz| .
B2r($0)

Given (4.4) observe that a.e.

1
\Vw(;|2 <

cC—— D2 2
- 1+\Vu5\2‘ vl

thus we may use Assumption 2.1, 77), with 4 = 3, Lemma 3.2 (letting s = 0
and recalling Remark 3.3) as well as Remark 2.2 ¢4) and (3.1) to obtain the
final result

1 [ _1
/ Mwide < ¢ 1—|—c/ (F(;z +5) F61|D2u§|2772dac]
BT(Z‘O) L BZT(:EO)

1+¢ / D? f5(Vug) (&YVu(s, 87Vu5) n? d:v]
L B2r (wO)

IN
o

IN
o

1+ ¢(r) / \sz,;(Vu(s)|Wu5\2dx] < c.
L Bar (o
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5 [P—estimates in the case y < 3

From now on we concentrate on the case u < 3. Moreover, we impose some
additional structure in the vectorial setting N > 1 (compare Remark 2.4).
Then it is possible to modify the arguments of Section 4 such that the results
obtained there may be iterated. This gives uniform LP—estimates in the sense
of

THEOREM 5.1 Suppose that p < 3, that we have Assumptions 1.1, 2.1
and that (2.2) is satisfied. Then for any 1 < p < oo and for any Q' € Q
there is a constant c(p,Y), which does not depend on §, such that

| Vs o meny < c(p, Q) < 0.

REMARK 5.2 As an immediate consequence a generalized minimizer u* €
M is found which is of class W, ,,.(S5RY) for any 1 < p < oo,

Proof. Fix a ball B,,(zo) € Q and assume that there is real number oy > 0
such that (uniformly w.r.t. 6)

1+2o¢0 1+a70
(5.1) Iy de+9 Iy 2 de < c.
By (wo) By, (wo)

Note that by (3.1) this assumption is true for oy = 0. Next define o =
ap + 3 — p and choose ¢ = u(sF? n?, € C(Br(70)),0<n<1,n=1on
Biy/2(20), |Vn| < ¢/ro. As outlined in the proof of Lemma 3.2 u; is of class
Wioe VWt 16c (4 RY), hence ¢ is admissible in (3.2) with the result

Jloc

| rus) Vustiitdn+s [ (VuP T da
Bro(z‘o)

BTO(I())
a—1 @
(5.2) < c(a) / L% |Dus|n®dz + c(@)§ L2 |D?us|n? dx
BTO (-750) B’I‘O (-TO)
a atl
+c/ LZ|Vn?ldx +cd [s% |Vn?ldx.
BTO ($0) B’I‘O (wO)

Here Assumption 1.1 and the boundedness of V f (compare Assumption 2.1
i1)) are already used. Analogous to the previous section, the left-hand side
of (5.2) is estimated with the help of Remark 2.2, 7):

Ita a
l.h.s. > 1/4/ [s? n*dx — vs / Iy n* dx
By (z0) Bro(z0)
+9 F;Jr% n*dx — 6 F(? n’dzx.
BTO (.:60) B’I‘O (550)
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The right-hand side of (5.2) is handled via (fix € > 0 and use Young’s in-
equality)

14+a

_lfa
r.h.s < c/ n2[5F52 +e7'l; 2 F?_1|D2u5|2] dx
370(5”0)
lta _lta
—l—c/B ( )[6F52 7+ e T, 2 TGVl da
79\ L0
2 pite | —1pTl% a2, (2
+C(5/B ( )77 [51“5 +e Ty F5|Du(5|]dx
9\ L0
45 2 _—1p~1=% plte 2
+c<s/B ( )[5F5 s VS T 2
o\ L0

Hence, absorbing terms, (5.2) yields

2 d a
5 r+0 [y ?dx
B, /2(%0) B, /2(%0)

a—3
< c[/ L% |D?us|? dx
BT()(‘TO)

+/ T,” |Vnldz +/ TZ 2 dx]
BTO (1‘0) B’I‘O (J“O)
+ 0(5[/ nQF(?_l | D?us|? dx
BTO(JJ())
+/ T? |Vn[2do +/ T2 p? dx]
BTO (EO) B’I‘O (-’EO)
3 6
= c» Li+cs)y I
=1 =4

Starting with Iy, we recall that by definition y + a — 3 = ap > 0, thus
Assumption 2.1 i7i) and Lemma 3.2 7) give

(5.3)

9 B 9 9 pta=3
L :/ nP52|DU5|F52 dx
Bro(z‘o)
< e / D2 §5(Vus) (8, Vs, 8, Vus) Ty P do
Bro(wo)

< c(ro)/ [F(?-i-(s] F};JFTO dr < ¢,
BTo(wO)

where the last inequality is due to Assumption (5.1). An upper bound (not
depending on §) for I3 is found since we may assume w.l.o.g. that p > 2.
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This clearly proves I, to be bounded independent of § as well. Studying I,
let us first assume that o < 2. Then, again by Lemma 3.2 1)

0l < / D? f5(Vus) ((%Vu(;, (%Vu(;) n* dz
Bro(wO)
< c(ro)/ [Fé_% —}-(5] Isdx < c.
BTO(IO)

In the case o > 2, Lemma 3.2 i) gives

§I, < / D? f5(Vus) (9, Vus, 8, Vuy) Ff i da
Bro(zO)
< ¢(ro) / [F;% + 5} F;+%71 dr < c,
BTO(CL‘())

where we once more recall (5.1) and observe that § —1 = (ag +1—p)/2 <
ag/2. This condition trivially bounds 675 and 615 independent of ¢, and we
have proved with (5.3): suppose that (5.1) holds for some given 7y > 0 and
g > 0. Then there is a constant, independent of ¢ such that

Itag+3—p 1420%3—p
(5.4) / Ly, 2 dx+5/ Iy’ * dz < c.
BTO/Q(.CCO) Bro/?(wo)

We now claim that for any n € N there is a constant ¢(n), independent of 6,
such that

(8=p)
Ly20e)

1+n(3—p)
(5.5) / Ly, 2 d:c+5/ L' dx < c.
B, /2n (o) B, an (o)

In fact, as mentioned above, oy = 0 is an admissible choice to obtain (5.5)
from 5.4 in the case n = 1. Next assume by induction that (5.5) is true for
some n € N. Then we may take ag = n(3 — ) in (5.1) and (5.4) establishes
(5.5) with n replaced by n + 1, thus the claim is proved. Obviously this
implies Theorem 5.1. |

REMARK 5.3 If we omit condition (2.2) in the vectorial setting, then
analogous arguments prove higher integrability up to a finite number 1 < p(u).
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6 Apriori gradient bounds

In this section the DeGiorgi type arguments, outlined for example in [BF3],
are modified: on one hand, given Theorem 5.1, we benefit from Holder’s
inequality. This decreases on the other hand the exponent of iteration (see
definition of 3). Nevertheless it turns out that Lemma 6.3 still is applicable
to obtain

THEOREM 6.1 Consider a ball Bg,(zo) € Q. With the assumptions of
Theorem 5.1 there is a local constant ¢ > 0 such that for any 6 € (0,1)

Vsl oo (B o mnny < c
Before proving Theorem 6.1 we recall the definition
A(k,r) = {x € B.(zg) : T's > k}, B.(z0) €2, k>0,
and establish the following result.

LEMMA 6.2 Fix some xg € ) and suppose 0 < r < R < Ry such that
Bgr,(z0) € Q. Then there is a real number c, independent of r, R, Ry, k and
0, satisfying

/ (Ts — k)a-1 dx
A(k,r) ) .
C 2n—-1 ® 2n—1
e (] v [ rgal™
(R—r)n1 [/A(k,R)( ’ ) A(k,R) b

Proof of Lemma 6.2. Recalling the notion w™ of Section 3, Sobolev’s
inequality yields with n € C§°(Bgr(x)), 0 < n < 1, n = 1 on B,(xy),
V| < ¢/(R =),

(6.1) .

n

/ (s — k)T dz < / (T — k)] o
A(k,r) Br(zo)

n

<ol [ |Vins-#) ]
(6.2) L J Br(zo)
<[ hn-n)fa]”
L JAk,R)
< c-If%l—FI;%l}.
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Here we have

i [/ |V77|(F5—k)dx}
A(k,R)
< [/ |V77|2(F5—k)2d:c] . [/ 1dx] .
A(k,R) A(k,R)
< #[/ (I’J—k)Qda:} . [/ ldx} o
(R—r)»1 [Jaw,Rr) A(k,R)

thus 1! is seen to be bounded from above by the right-hand side of 6.1.
Estimating I, Lemma 3.2 47) is needed with the result

n

_n n—1
It = [/ n\VF(g\dm}
A(k,R)

' %ﬁ ® %n—l
[/ n’ |VLs[°T; ° dx] [/ 2 d:v]
A(k,R) A(k,R)

S C [/ DQf(s(VU5) (ej X V?], €; X V’I]) (F(s - k)2:| o
A(k,R)

x [ / r? dm] .
A(k,R)

gl ere] 1]
(R—7)»1 [Jag,pr) A(k,R)

hence (6.2) proves the lemma. [

IN

We now come to the Proof of Theorem 6.1. Consider the left-hand side
of (6.1): for any real number s > 1 Hélder’s inequality implies

/ (F5—k)2dx=/ (L5 — k)™
Alk,r) A(k,r)

1
[/ (T5 — k)™ dx} S
A(k,r)

@ |

(D5 — k)75 da

IN




Hence, on account of Theorem 5.1 there is a real number ¢, (s, n, Bg,(zo)),
independent of 9,

s—1

1 §— 1 _ s
c1(s,m, Bry(z0)) := sup [/ F;’I(Q ”l)da:] < o0,
Bp(20)

>0

such that

8

(6.3) /A N (s — k)’ dz < cl(s,n,BRo(xo))[ /A ( (F(;—k)"nlda:]

k,T)

Studying the right-hand side of (6.1), we fix a second real number ¢ > 1 and
applying Holder’s inequality once more it is seen that

P
[/ rzet dm] )
A(k,R)

o=
S s

/ Tide < |A(k,R)|
A(k,R)

Similar as above, one defines

t—1

bt Tt

co(t, pty Bry(Tg)) = sup [/ Lyt dac] < 0
0>0 BRQ(zO)

to obtain

o=

)23
(6.4) / P¥dr < eyt 1, Bry(20)) |A(k, R)|1
A(k,R)

Summarizing the results we arrive at

(63) n
/ (Ts—k)’de < ¢ [/ (D5 — k) dx]
A(k,r) A(k,r)

1
8

(6.1) FatTs
< —f [/ (D5 — k)? da
(R—r)n-1s LJA®,R) 1
1l n 1
(6.5) « [/ rfde|
A(k,R) 1
(6.4) c ,  ]EEeTs
S 1 [/ F5 — k) dx
(R—r)n=—Ts LJAk,R)
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As the next step, define for £ and r < R as above

/ (Ts — k)’ dz,
A(k,r)

alk,r) = |A(k,7)|.

T(k,T)

With this notation (6.5) reads as

Cc

@ =

3
@ =
[

D[

_n_
n—1

N[

(6.6) T(k,r) < [T(k, R)} [a(k, R)} n-1

n

(R—r)n—1

o |-

Given two real numbers h > k£ > 0, we now observe

a(h,R) = / dr < / (Cs — k)% (h — k) 2 da,
A(h,R) A(h,R)

thus h > k > 0 implies

(6.7) a(h,R) < —

< mT(lﬂ, R) .

With (6.6) and (6.7) it is proved that for A >k > 0

C 1 n 1 1 n 11
T(h,r) < —— |7(h,R)|?" "¢ — |T(k, R)[ 2"t
( ) (R_fr‘)_n—1§ [ ( )] (h_k)—n_lzz [ ( )]
e a——— LG
(R_r)n_lz (h_k)n_lzz

If s and ¢t are chosen sufficiently close to 1 (depending on n), then it is

achieved that . . )
n
— — 114+ - = > 1.
2n—1s [ +t} b

With this choice of s and ¢ we additionally let

n 11 1
- >0, ~v:= n - > 0,
n—1s

o = -
n—1st

hence the following lemma, stated for example in [ST], Lemma 5.1, p.219,
may be applied.
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LEMMA 6.3 Assume that ¢(h,p) is a non-negative real valued function
defined for h > kq and p < Ry. Suppose further that for fixed p the function
is non-increasing in h and that is non-decreasing in p if h is fired. Then

C
PP S G R

[k, R)])®, h>k>ky, p<R<Ro,

with some positive constants C, o, > 1, v, implies for all0 < 0 < 1
gD(lf()—Fd,R()—O'R()) = 0,

where the quantity d is given by

oa+p)B/(B-1) [@(kOa RO)} -

@ =
oY R}

This lemma yields
7(d, Ry/2) = / (Ts—d)’de = 0,
A(d,Ro/2)

and, as a consequence,
(68) F5 S d on BRO/Q(QS()) .

Here the quantity d is uniformly bounded w.r.t. § if and only if there is a
constant (independent of ¢) such that

7(0, Ry) = /B ( )nga: < c.
Ry (T0

This fact is proved in Theorem 5.1 and the apriori estimate Theorem 6.1
follows from (6.8). [

7 Proof of the main theorem

Once Theorem 6.1 is established, Theorem 2.7 follows exactly as outlined in
[BF3]. Let us first sketch the main arguments to obtain local C*-regularity
for weak {us}-cluster points u*: recall Corollary 2.6 which implies the Euler
equation

/Vf(Vu*):Vgodx = 0 foral g€ Cy(HRY).
Q
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In the scalar case N = 1 we argue with the standard difference quotient
technique and, since u* is Lipschitz, it follows that u* is of class W22 1oc (G RY).
Then, letting v = J,u*, one arrives at

/sz(Vu*)(Vv,Vgo) dz = 0 forall ¢ €Cy(QRY)
Q

(compare (3.3)), where the coefficients azi2éfZg (Vu*) are uniformly elliptic on
Y € Q. Theorem 8.22 of [GT] finally proves Hélder continuity of v.

In the vectorvalued case an auxiliary integrand f is constructed following the
lines of [MS]. As a result, Theorem 3.1 of [GM] may be applied since we also
have imposed the Holder condition (2.3). Thus C'®-regularity is proved in
the vectorial setting as well.

Next consider the dual solution o. As it is proved in [BF1] or [BF3|, the
duality relation

o = Vf(Vu*) foraa. z€Q

holds true for any weak cluster point u* of the sequence {us}. Since these
cluster points are known to have (locally) Holder continuous first derivatives,
o € C%(Q; R™) is immediate.

Uniqueness of generalized minimizers up to a constant is shown in Section
5 of [BF3] — the idea is due to [SE4]: a suitable variation of o is seen
to be admissible on account of o € C%*(Q; R*Y). This, together with the
uniqueness of o, yields

Vu = Vf*(o)

for any generalized minimizer v € M, and Theorem 2.7 is proved. |
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