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ANDERSON’S DOUBLE COMPLEX AND GAMMA
MONOMIALS FOR RATIONAL FUNCTION FIELDS

SUNGHAN BAE*, ERNST-ULRICH GEKELER, PYUNG-LYUN KANG
LINSHENG YIN**

ABSTRACT. We investigate algebraic I'-monomials of Thakur’s positive characteristic I'-function, by using
Anderson-Das’ double complex method of computing the sign-cohomology of the universal ordinary distribu-
tion. We prove that the I'-monomial associated to an element of the second sign-cohomology of the universal
ordinary distribution of Iy (T") generates a Kummer extension of the Carlitz cyclotomic function field, which is
also a Galois extension of the base field Fy (T"). These results are characteristic-p analogues of those of Deligne
on classical I'-monomials, proofs of which were given by Das using the double complex method. In this paper,
we also obtain some results on e-monomials of Carlitz’s exponential function.

0. Introduction.

Motivated by the purpose of calculating the indices of circular units and the Stickelberger ideal of a
cyclotomic number field, Sinnott [S] computed the sign-cohomology of the universal ordinary distribution
of Q by an inductive method. Galovich and Rosen [GR1] gave an analogous unit index formula in a
cyclotomic function field by using a result parallel to Sinnott’s on the sign-cohomology of the universal
ordinary distribution of I, (T'). To extend Galovich-Rosen’s formula for the unit index to a cyclotomic ex-
tension of a general global function field, Yin attempted to compute the sign-cohomology of the universal
ordinary distribution of such a field. He determined the Galois module structure of the sign-cohomology
conditionally by Sinnott’s inductive method, and thus obtained a conditional unit-index formula, see [Y1].
Soon later, Anderson [An] found a new method of computing in an identical way the sign cohomology
of the universal ordinary distributions, both for the rational number field and a global function field. He
introduced a certain double complex which is a resolution of the universal ordinary distribution. This
double complex enabled him to construct canonical basis classes of the sign cohomology. Das [Da] used
this double complex in the rational number field case for the study of classical -monomials and got a
series of results, which greatly illuminated the power of Anderson’s method.

In this paper, using Anderson’s double complex and following Das’ way, we study I'-monomials for
rational function fields. Thakur [Th] defined the I'-function in characteristic p and showed that it has
many interesting properties analogous to the classical I'-function. Especially, it satisfies a reflection
formula and a multiplication formula. Sinha [Si] used Anderson’s soliton theory to develop an analogue
of Deligne’s reciprocity for function fields. In the course he found that certain I'-monomials generate
Kummer extensions of cyclotomic function fields, a result which will be reproved below with the aid of
the double complex. In the paper [BGY], necessary and sufficient conditions for elements of the value
group of the universal distribution to describe first or second sign-cohomology classes are derived using
distributions. In the present article we get only the necessity of these criteria, but a little more information
about I'-monomials and e-monomials, which seem out of reach for the method employed in [BGY]. Using
I'-monomials we also find extensions of cyclotomic function fields, and these happen to be Galois even
over the basic rational function field.

We would like to emphasize the following technical points: Besides the double complex, there are three
main ingredients in computing the I'-monomials in Das’ paper, and these are used frequently. The first
one is the vertical shift operator. In the case of a rational function field there are more roots of unity,
which causes the definition of the vertical shift operator to be more complicated. The second one is the
I'-function itself, of which the reflection formula and the multiplication formula play important roles.
These formulae in the function field case have some extra factors, and thus one has to be more careful
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2 S. BAE, E.-U. GEKELER, P.-L.KANG, L. YIN
in applying them. The third one is a certain “ canonical lifting”, which fails to exist in the function field
case for ¢ > 3. This is due to the fact that here the definition of the double complex depends on the
non-canonical choice of a generator of the sign group. Thus we have to content with a “semi-canonical
lifting”, which still has nice properties, and is good enough for our purposes.

1.The Double Complex for F,(T).

Let K =T, (T) and A = F,[T], the rational function field and polynomial ring, respectively, over the
finite field ;. We choose a fixed generator v of J = F;. Let A be the free abelian group generated by
symbols of the form [a], where a € K/A. Let U be the quotient of 4 by the subgroup generated by all
elements of the form [a] — )" ,_,[b], where n is a monic polynomial in A, and U~ (resp. U") the quotient
of A by the subgroup generated by all elements of the form [a] — )", .[b], along with all those of the
form ), ;[0a] (resp. [a] — [ya]). The map a + [a] is the universal ordinary distribution on K/A. By
abuse of notation, we also call the group U itself the universal ordinary distribution on K/A. Further, J
acts on U in the natural way. Let H*(J,U) denote the sign cohomology group for U. It is known that
tor(Ut) ~ H'(J,U) and tor(U~) ~ H?(J,U)([BGY], Proposition 2.4). If a = 3" m;[a;] € A represents
an element in H*(J,U), we often write a € H*(J,U). It is clear from the context whether elements of A,
U, H'(J,U), or H%(J,U) are intended. We use gothic letters to denote elements of A.

Define
<E) B { 1, if a is monic

f

assuming that dega < degf and f monic. For a = >~ m;[a;] € A we define the degree m(a) of a by Y m;
and the internal sum 1S(a) of a by

0, otherwise,

I1S(a) = Zmz’<az’)-

Let f be the least common multiple of the denominators of the a; and let t € (A/f)*. We define a* by

at = Z mi[tai].
Let P be the set of all monic irreducible polynomials in A. We fix a linear order ‘<’ on P. Let
S ={[a,g,n] : a € K/A, gsquarefree monic polynomial, n an integer}.

We write |g| to denote the number of monic irreducible polynomials dividing g. We will define a double
complex SK as follows:

SKy,» = the free abelian group generated by the symbols [a,g,n] € S with m = |g|. The chain maps 0
and § of bidegree (—1,0) and (0, —1), respectively, are:

lg|

dla,g,n] =Y (1) *(la,8/pin] — Y [b,9/pi;7),

i=1 pib=a
where g = py -+ - pp, with p; < p; for i < j, and

(=)™ Y2y, g,n - 1], for n odd

6la, g,n] = { (-1)™([a,g,n — 1] — [ya,g,n — 1]), for n even.

Then it is easy to see that
92 =0, 62=0, and 60+ 96 =0.

Let (T'(SK),d + d) be the total complex of SK. We use the same notation SK for the total complex
when the meaning is evident.
Let SK' be the subcomplex of SK generated by the elements 3(a,n)[a, g,n], where

qg—1, ifa=0and n is even

Bam) = {

1, otherwise.

Then following the method employed by Ouyang in [Ou],§2.3, §3.4, we have:
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Proposition 1. Let U be the universal ordinary distribution on K[A. There exist canonical isomor-
phisms

H?(J,U) = Ho(Ho(SK, d),8) = Ho(SK, 8 + 6) = Ho(SK/SK,d + ),

and
HY(J,U) = H_,(H¢(SK,d),6) = H_;(SK,8 + §) = H_;(SK/SK/, 8 + 9).

Since
(-=1D)™(g—1)[0,g9,n — 1], if nis odd

5[0, g,m)) = { 0, if n is even,
and 9([0, g,n]) lies in SK/, we have:
Proposition 2. Given o squarefree monic polynomial g with |g| = i, we define
[0,9,—i] € SK;,—i/SK; _, for i even
e { [0,9,—i — 1] € SKi _i_1/SK, _;_,, fori odd,
Then the collection {kg; |g| even} (resp. {kg;|g| odd}) forms a Z /(q—1)-basis for Ho(SK/SK',0+0) (resp.
H_1(SK/SK,8+4)). The kg are referred to as canonical basis classes.

Define the vertical shift operator S : SKp, ., — SKp, 41 by the rule
q—2

S([aagan]) = (_1)\g| ZNi[’yia,g,n + ]-]7
=0

where N; = 7(‘1_1)(3_2”2 —i(g—1).

Remark. Let d = g.c.d.(%, g — 1). Then we could define a vertical shift operator S’ by

Sl([aag7n]) = (_1)|g‘ qiNiI[ryiaag7n + 1]7
i=0

where N| = NT In the case when ¢ = 3, S’ is just the same as that in [Da].
Define the diagonal shift operator Ay : SKen — SKin—1,n+2 associated with a prime p by the rule:

Ap(la, g,n]) =0,if p1 g.
If g =pips-- P with p1 < pz < -+ < Py
APT([a7ga n]) = (_l)m-l—n—?‘[a,g/phn + 2]

Then we get the following lemma, whose proof is exactly the same as in the classical case([Da], Theorem 4,
Theorem 5).

Lemma 3. i) S0 +0S = (¢ —1)? and S + S0 =0. Thus (0 +6)S + S(0+46) = (¢ —1)%.
Given a canonical basis class [0, g, —n] with |g| = n even, one can construct a representing cycle
C= @?:0 i,—1) Cn,—n = [Oaga —TL],

such that C; _; = Y nj[a;, g5, —i] with sgn(a;) =1 for i odd, sgn(a;) # v?~2 for i even, and no term of
the form [0, b, —m] except [0, g, —n] occurs, as follows:
Suppose that one has constructed C; _;. If

0C; —i = ij[aj,gj,—i],
then .
o (=1)"" YAaj)aj, 8,1 — 1], if 4 is even
TETT (i S ) T k(e g, 6,1 — ], if s odd

where sgn(a;) = v*(%).

We call C a semi-canonical lifting. Such a construction also works for canonical basis classes of H!
and for the boundary elements of SK.

For an element C of SK and a squarefree monic polynomial g, we let C{8} be the g-component, i.e.,
the part that includes those of the form [, g, *]. Following the same lines as Proposition 7 of [Da], we
have:
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Proposition 4. Let C' = @;4;=¢C; ; be a cycle in SK. For a fized monic squarefree polynomial g, write
C,%} e = 2 nilai, 8, — k). Then if £ —k is odd, we have

> nilai] € H'(J,0).
If £ — k is even, then
> nilai] € H*(J,U).

It is shown in [BGY] that a = Y m;[a;] € H%(J,U) if and only if Y m{a;) = > m;{ta;) for all
t € (A/f)*. We give another proof of the necessity of this using our double complex.
Proposition 5. Ifa =Y m;[a;] € H2(J,U), then > mi{a;) = > mi{ta;) for all t € (A/f)*.

Proof. Let C be a cycle in SK such that C = @®;4j=0C;, ;, Coo = Y ms[a;, 1,0] and (0 + 6)C = 0. Write
Cl,—l = Z ni[bi, Pi, —1]. Then

degpl -1
IS(0Cy,—1) = IS(AC; _y) an s
Also
S(6Co0) Zm, a;) Zmi(fyai) =15(0C1,-1),
and

IS(8Cy o) =Y milta;) — > my(yta;) = IS(9C; _,).

Summing over t = 1,7,...,7972, we get 0, which implies that 3" n;(¢%*8?: — 1) = 0. This in turn implies

that
Z mi(tai) = Z m; (vta,)
Then (¢ — 1) Y mifa:) = 3=, .0™mi = (¢ — 1) 3o mi{ta;). Hence

D omilai) = milta).
This finishes the proof. d

Corollary 1. Leta = Y m;[a;] € H*(J,U). Assume that a; # 0 for every i. Then q — 1 divides > m;.
More generally, if m is the coefficient of [0] in a, then ¢ — 1 divides > m; — m.

Corollary 2. Let a = > myfa;] € H*(J,U). Let C be a cycle in SK such that C = ®;4;=0Ci;,
Co,o = Y_m;[a;, 1,0] and (0 +6)C =0. Let

Cr—1 =Y _n;lbj, pj, —1].

Then Y njdegp; =0 mod (¢ —1).
Proof. It is shown in the proof of Proposition 5 that I1.5(dCp ) = 0 and

degFJ -1

601 71 ZTLJ ]

But 4 71 =d mod (¢ —1). Hence we get the result. O

2. Algebraic Gamma Monomials.
Thakur([Th]) defined some I'—function in characteristic p. We change Thakur’s definition slightly by

the formula 1
riz) = [[ (HE) :

ﬂ€A+

where A is the set of all monic polynomials in A. Then our I'(z) is just II(z) of Thakur. Let & denote
the fundamental period of the Carlitz module, which is unique up to a factor of Fy, and e = ec the
Carlitz exponential. This I'-function has the following nice properties.
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Theorem 6. ([Th] Theorem 6.1.1, Theorem 6.2.1)
Reflection formula:
H I'(6z)

oe
Multiplication formula: For §f € A, of degree d we have

H r( z+a _ﬁ,(qd—l)/(q—l)((_]_)df)qd/(l_Q)Rd(z)F(Z),

acA
deg a<d

where Rq(2) = [ldega<d(z + a).

amonic

Let Qa(2) = [laega<a(z + a). Then Qu(yz) = Qq(z) and {5 Ra(v'z) = —Qa(z). We also wirte

a0
Q5 = Qdegs and Ry = Ryeg -

For a € K/A we write {a} to denote the representative of a such that |a|cc < 1, where || is the
absolute value at oo = (). For each a = Y~ ms[a;] € A, we define the I'-monomial, e-monomial, and

r-monomial, respectively, by

v

T(a) = 7% [[T({a:}) ™,
e(a) = H e(fa;)™,

a; #0

a; #0
Here e(a) can be thought of as the analogue of a classical sine-monomial. By abuse of notation, we also
write (3 nifas, %, %]) to mean I'(>_ m;[a;]). This notation will be also applied to e- and r-monomials.
In what follows a € K/A always means that a = {a} unless otherwise stated. It is known that I'(a)
is algebraic over K if a € H?(J,U)(see [Th]). Moreover, Sinha([Si]) has shown that I'(a) generates a
Kummer extension of Kj for a € H*(.J,U). We will give another proof of this fact in §4, using the double
complex. The first step is the following weaker version.

Theorem 7. Let a =) m;la;] € H*(J,U). Then
I‘(a)(q_l)2 =e(a)”! mod K*.
In fact, T'(a)?~! = *~/re(a) for somer € K*.

Proof. Tt is easy to see from the deﬁnitions that

b p7_1] ZN tb7170 Z [’Y bp+u7170])7

and

deg u<degyp
and
55[&, 1) 0] = (q - 1) Z[’Yiaa 17 0]7
since > " N; = ¢ — 1. Then from Theorem 6 we can see that
q—2 g1
_ g4 _(a=1)(g=2)+2 i i
(*) L(28[b,p,=1]) = (=1)% ™" Qy({b}) = (H Ry (v {b})> ;
=0
where d = degp and
(4 rosta 1,0 = (£F9)"
SR )
Now follow the proof of Theorem 6 of [Da], using the relation (¢ — 1)2C' = (8 + §)SC for a cycle C. O
Remark. Let the notations be the same as in the proof of Proposition 5. Since ) njdegp; = 0

mod (g — 1), it is easy to see that q—,llnp;” lies in Kj, the f-th cyclotomic function field, where f is the

least common multiple of the denominators of the a;’s. Thus
—1)(g—2)+

(a=1)(g=2)+2
P(@)"" =[] (Qp, ()™ @ mod Kj.
But it is shown in [Si] that T'(a)?"! itself lies in K;. We will come to this later.
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Proposition 8. Let a = Y m;[a;] € H?(J,U). Then, with notations as in Proposition 5, Thus we have

— gte(b)(q—l),

e(at)
for some b € U and 6, = £1.

Proof. Let C = ®;4;-0C;,; be a cycle in SK such that Co o = Y. m;[a;,1,0]. Then C — C* is a boundary.
Let B = ®;1j=1B;,; be a chain in SK such that (8 + §)B = C — C*. Note that

deer_1 1

6(0[0,]3,0]) =p= H (_1) a1 e(_)q—l’

degu<degp p
monic
and
e(dla,p,0)) =1, ifa#0,
since e is a punctured even distribution, and that e(d[a,1,1]) = —e(a)?~!. Thus we get the result from
:((:t)) = 6(631’0)6(63(}’1). O

Remark. 1. Proposition 8 is the analog of the fact that

in the corresponding classical situation ([Da], Theorem 11). But the constant §; may be different from 1
as the following example shows. This §; will play a crucial role in constructing Galois extensions of Kj
using I'-monomials. It is not difficult to see that 6 is only dependent of the cohomology class of a, and
that 0t1t2 = 0{1 0{2.

2. It is known that sin : Q/Z — C*, a — 2sinn{a) is an even punctured distribution. If one uses this
fact, then the proof of Theorem 11 of [Da] can be simplified as the proof of Proposition 8 above.

Example. Let ¢ =3,a = [TL—H] - [%], and t = =T + 1. Then

6(3) _ 6(7~TT(7}+1)) _ —e(ﬁ' 1 )2
e(at) e(ﬁT(TT_Jrll)) T(T+1)"’

since X = e(7 gp7yy) satisfies the relation \* + (T —1)A* +1 = 0.
If t = —1, then

Thus ¢ changes as t varies.

Theorem 9. Let a = Y my[a;] € H2(J,U). Let § be the least common multiple of the denominators of
the a; and let t € (A/f)*. Then
I'(a)
K.
T(at) <

Proof. Let the notations be as in the proof of Proposition 8. Let B1,o = Y_ ¢;[c;,p;j,0]. We may assume
that B is a semi-canonically lifted chain. Then the denominators of c; divide f. From the proof of
Propositon 9, it suffices to show that I'(0B1,9) € K. It can be easily checked that

2o tjdegpj

4
T(0Byo) = (-1)" ot [[p;" mod K.

The extension K ( “{/[[((—1)de&®ip;)%) is abelian over K, and ramified only at the primes over p; and
0o. But since */(=T)? € F,( *{/—%), we see that *={/[[((—1)derip;)li € K;. O

Similarly, if a and a’ represent the same class in H?(J, U), then ;((:,)) € K;.
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3. Criterion for H'(J,U).
One can follow the proof of Proposition 12 of [Da] to get:

Lemma 10. Let b =Y my[b;] € H'(J,U). Then for all i, b; # 0.

Lemma 11. Let b = > m;[b;] € H'(J,U), representing any canonical basis class of H'(J,U) indexed
by a monic squarefree polynomial divisible by at least three primes. Let C = ®;1;=1C; ; be a cycle such
that Co,1 = > m;[bi, 1,1]. Assume that no term of the form [0,p,0] appears in C1 9. Then

ZmiEO mod g — 1.

gieEP_1 _

Proof. Note that IS(9[b,p,0]) = 1 = degp mod (g—1) for b ¢ A. Now follow the proof of
Proposition 13 of [Da]. O
It is shown in [BGY] that b € H'(J, U) if and only if |r(b)| = |r(b!)|s for any t € (A/f)*, where f is
the least common multiple of the denominators of the b;. Here we give another proof of the necessity of
this using the double complex. In this way one can get some more information about the e-monomials.

Theorem 12. Let b = m;[b;] € H*(J,U) and let | be the least common multiple of the denominators
of the b;. Then
7)o = |r(b")]co,

for all t € (A/f)*. Furthermore, we have more information about e-monomials in the following special
cases:

First case: If b represents a canonical basis class of H'(J,U), indexed by a single irreducible polyno-
mial, then e(b)24~1) = ¢(b)2(e=1 =1 and e(b)e(b') ' € .

Second case: Let b represent a canonical basis class of H*(J,U) indexzed by a monic squarefree poly-
nomial divisible by at least three primes. Let C = ®C; ;41 be a cycle such that Co1 = Y my[b;, 1,1].
Assume that no term of the form [0,p,0] appears in Cyo. Then e(b') € F; for any t € (A/f)*.

Proof. The first statement follows by linearity from the two special cases, since |r(b)|e = |e(b)|co. Let
C = &C;,_i+1 a cycle such that Co 1 = > m;[b;, 1,1].
First Case: Let 1 = [0,p,0]. Then we know that e(—9C} ) = e(—9C} ) = p. Thus

e(6Co,1) = e(6C5 1) = p.

However, e(6Co1) = (—1)>™ie(b)?™" and e(6C§ ;) = (—1)>™e(b')?~!. Then the result follows from
the fact that oe(b) = e(b?).

Second Case: In this case e(0C1,0) = 1. Then the result follows in the same way as the first case, by
using Lemma 11. |

Remark. Theorem 12 is the analogue of Theorem 14 of [Da]. Again if one uses the fact that sin is an
even punctured distribution, then he gets that w = ,/p in the first case of Theorem 14 of [Da] too.

4. Kummer Properties.

In this section, we use the semi-canonical lifting to show that I'(a)?™' € Kj, where a = Y n;[a;] €
H?(J,U) and f is the least common multiple of the denominators of the a;. For this we need the following
Lemma.

Lemma 13. Let p(resp. q) be a monic irreducible polynomial of degree d (resp. €). Then we have
Hdeg a<dte®
a#0

g—1
d e
i a = p? (1—(1 )
) (Hd;go:llfchq(p)) P 1_[degb<db1_[degc<e‘

b0 0
ii) Forbe K\ A, we have

H HQq(0b+a): H Qq(ﬂb—l—a)

dega<dfeJ p deg a<d p
monic a0

— pqe(l—qd)M
Qd(b)Qe(%)
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Hence

£) qqd(qefl)

Qa(0)Qp(3) [Taego<e ngJQ,,( by pele?-1)°

monic

Qp(0)Qq(3) aegaca [Tpes Qa(f
b
q

Proof. For i) we have

qg—1
deg a<d deg a<d
monic a#0
H a+ bp
deg a<d deg b<e p
a#0 b#0

For ii) we have

0b+a b+a
II II@ = J] @

dega<dfeJ deg a<d
monic a#0
Then a similar computation as in i) will give the result. (|

We come back to a € H2(J,U), for which we want to calculate I'(a)? 1.
First case: Let a = a,q be semi-canonically lifted from the basis class [0, pq, —2]. Then it is easy to

see that b
a
Cl,fl = Z [E;qa_l] - z [a:pa_l]'

deg a<degp deg b<degq
monic monic

We need to compute I'(0SC1,—1). Let d = degp and e = degq. Then

L(0SCi,-1)

[laeg a<a(—1)%97 Qo (&)~
b
q

(a—1)(g—2)+2
2

— monic

[Taeg b<e(=1)%p" Qa(3)~

monic

*\q—1
oa=arz mod (K¥)
2

pqdq —1((4—1)(4—2)+2 -1) )

— * q_

=0 ea?-1 —1 (a—1)(q—2)+2 mod (K )
g% (-1

a?(a®=1)(a=2)
2

=0 mod (K*)1!
qe(qd—Zl)(q—2) ( ) ’

for some 6 € J by Lemma 13, i). But comparing the signs of second and third lines, we must have § = 1.

Thus
-1 _ [P *
T(ayg)!™" = q—de(apq) mod K*.

We read off that ['(ayq)?™" € Kpq.

Second Case: Let n > 4 be even. Let C' = ®Cj; _; be the semi-canonically lifted cycle of the basis
class [0,g,—n], where g is a squarefree monic polynomial divisible by n irreducible polynomials. Let
Co,0 = Y_milai,1,0] and a = )" my[a;]. Express Co o = ZC’{M% and C{pq} = > n;[b;,pq, —2]. Note
that b; ¢ A. We have

C{pq} znz [bzaq: Z [bi+a7qa_2]

deg a<degp p

—Zm [bi,p, —2] — Z [bi:bapa_Q]

deg b<degq
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Then the contribution to Cy ;1 from CZ{"J_“% is

b;+a b;
an’ <bi>[bi7q7_1]_ Z [—7q7_1]_ <bi>[_7qa_1]
deg a<degp p p

monic

b;+b b;
_Zn’i <b’i>[b’i7p7_1]_ Z [ 7p7_1]_<bi>[_7p7_1]
deg b<degq q q

Now let b = b":“, with a monic, dega < degq. First we need to find the term [%,p,—l] from
[%,p, —1] for any 8 € J. Note that [0b,p, —2] lives in dC>, _s. So if [6b;, pq, —2] lives in Co,_2, we are
done. If [6b;, pg, —2] does not appear in Cy 5, then b = <€ and [¢, p, — 2] lives in Cy,_5. Then ¢ = %,
and b; = 2+ Thus

c1 + v+ gqc = 0a; + 6u + Ora.

Then we must have ¢; = fa;, since they are the only terms with absolute value less than 1. Because we
can find v’ and ¢’ such that

v’ + qc’ = Gu +tb,

the term [“Tw,pt, —2] can be obtained from [c;, pqr*, ], and this will give the term [Lq‘*“,p, —1] in
Ci,-1.

In conclusion, we see that

b; +a
p

D=|ia-1- 3 |

deg a<degyp
monic

b;
) 5_1 ] a_]-
9, —1] [p q, —1]

bi+b b;
- [b’iap7_]']_ Z [ 7p7_1]_[_7p7_1]
deg b<degq q q

appears in Cq,_1 for b; with (b;) = 1. Now applying Lemma 14, ii), we have
[(0SCy,—1) € (K*)1™t.

Hence I'(a)?! = e(a) mod K*. We summarize these calculations in the following Theorem, which is a
refined version of Theorem 7.

Theorem 14. Letn be an even positive integer. Let C = ©C; _; be the semi-canonically lifted cycle from
the basis class [0,9, —n], where g is a squarefree monic polynomial divisible by n irreducible polynomials.
Let a = )" m;[a;], where Coo = Y m;[a;,1,0]. ThenT'(a) € Ky. Furthermore,

i) If g = pq, then

i) If n > 4, then

[(0SCy, 1) € (K*)7™' and T(a)’ ' =e(a) mod K*.

Remark. In fact, one can show that in Theorem 15, ii), even I'(a)?~! = fe(a), for some @ € J as follows:
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The contribution to Co,o from D is

2k _b+'yu 2] Zkb+'yqu
Dop== 3 Y30+ 3 YN0
degu<degp k= 1£>0 degu<degp k= 1£4>0
monic monic

q—2 k-1

ok ¢
+Z Z Z szy (Hb:qn)wtvqu,l,o]

f€J degu<degp degv<deggq k=1 £>0
monic monic

q—2k—1 q—2 k-1

{—k £ Zlc
D I ) D DD D) D =N,

deguv<degq k=1 £>0 degv<degq k=1 £>0
monic monic

q—2k—1

i—k £
-y % ¥ ZZ[V (9b::)+7¥w,1’0]_

fcJ degu<degp degv<degq k=1 £>0
monic monic

By a tedious computation one can see that
’I‘(Do’o)q_l = F(GSD)

Then

q—1
F(a)(q_1)2 = I‘((SSCO,O)F(OSCL,l) = 1“(6501,,1) (%) = e(a)q_l.
Corollary 1. Let n > 4 be an even integer. Let a = Y m;[a;] represent the basis class [0, g, —n] with
|g| = n, not necessarily a semi-canonical representative. Then

I'(a)!™! =e(a) mod K*.

Proof. Let C = @C; ; be the cycle such that Coo = > msfa;,1,0], and C' = ©C; ; be the semi-
canonically lifted cycle of the class [0, g, —n]. Then there exists a chain B = @B, _;11 such that (0+0)B =
C — (C'. Then

85(01,_1 - C{,—l) == 65(832,_1 + (531,0) == 6S(5B1,0,

since 3S = —S0 and 8% = 0. Now it is easy to see from (*) that T'(8S4[b,p,0]) € (K*)9 1. Hence
[(8S8Cy, 1) € (K*)?71, since we know from the proof of Theorem 15 that T'(dSCj ;) € (K*)?~". Then

. —1)2 e(a) 71
the result follows from the relation I'(a)(9=1)" = T(8SC},_1) <T(a)) . O

It is not hard to show that in case i) above, we have ,/‘;—Z € Kyq. Thus the following holds.

Corollary 2. Ifa =) m;[a;] € H*(J,U), then ['(a)?"* € Kj, where § is the least common multiple of
the denominators of the a;.

5. Galois Properties of K;(I'(a))/K.

Let a = Y m;[a;] € H%(J,U), and let § be the least common multiple of the denominators of the a;.
In this section we consider the extension K(I'(a)) over K. Let C' = ®Cj _; be a cycle in SK such that
Co,0 = >_m;[ai, 1,0]. Let v be an element of K such that

~—

v? ! =T(8SC;, 1) and T(a)? ! = v%.

Let o be an element of Gal(K /K) whose restriction to Kj is o, where K is the separable closure of K.
Then .
L(a) \~ v
= —fie(b)??
(JI‘(a)) ov w(b),

where 6 and b are given in Proposition 9. Hence (ar((a))) € Kj if and only if %6 = 1.

~—
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Example. We keep the example after Proposition 8. Let o € Gal(K/K) restrict to o_741 on Kr(141)-
Then % = —1 and 6; = —1 as we saw in the example in §2.

On the other hand, let 7 be an element of Gal(K/K) which restricts to o_; on Kr(r41)- Then % =1
and §_; =1 as we saw in the example in §2. Thus Kr(r41)(I'(ar(r41))) is Galois over K.

We know from Proposition 5 that e(a) and e(a') lie in K ;r , the maximal real subfield of K;. Hence
the signs of e(a) and e(a') make sense. Then

sgn(e(a)) = H 02 mi{0~ a;) — (_1)2 m,-(ai-)_
oeJ

Similarly we have

Therefore

Now let B = ®B;,_;41 be a chain such that (8 + §)B = C' — C*, and assume that B is semi-canonically
lifted. Let Bo,1 = >_n;[b;, 1,1]. Then it is easy to see that sgn(e(b)9~') = (—1)2", where b = 3" n,[b;].

Since B is semi-canonically lifted, we know that :((;)) = fie(b)?~1. Hence ; = (—1)=".

Lemma 15. 6; = sgn(T'(0B1,0)77").
Proof. Tt is easy to see that sgn(T(9[b,p,0])4t) = (—=1)4°8%. Write B1 o = Y. lx[ck, Pk,0]. Then

sgn(T(0B1o)" ") = (=) Z e,

Since B is canonically lifted, IS(6By,1) = IS(Bo,1) = Y. n;. Since C represents an element of H2(J,U),
IS(Co — Cfo) = 0. Also we see that IS(dB10) = 3 ort=L¢,. Since B0 + 6By, = Coo — Clo,

q
> qde:i’;_lék + Y n; =0. But

qdeg Pe 1
Thus
Zﬁk degpy = an mod 2,
which implies the result. O

Remark. As we saw in the proof of Theorem 14 that v? € K, — = %1, which makes sense since we
know that 6, = +1.

In what follows, we assume that g is odd. We have the following analog of the classical Gauss lemma,
whose proof is exactly the same.

qde8 P _1
2

Lemma 16. Forp € A irreducible and a prime to p, let (%) be the quadratic symbol, i.e., (%) =a
Then for t prime to p, we have
t
-] = (=1,
()=

where n = #{a : monic,dega < degp, sgn({%}) ¢ IB%}

As in [Da), to show that UFF((E‘;)

and a represents [0, g, —n], where g is a product of n distinct irreducible polynomials and n > 4 is an
even integer. Also it is easy to see that if a and a’ represent the same canonical basis class of H2(J,U),
then
I(a')
€ K;.
oT(a) ~ '

€ Kj; it suffices to consider the two cases that a represents [0, pq, —2]

I'(a)
ol(a)

€ K; if and only if
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First Case: a represents [0,pq, —2]. Suppose that C = Cyo + C1,1 + C2,_2 is a cycle such that
a =) n;la;], where Co o = )" nifa;,1,0]. We may also assume that C is canonically lifted. Let d = degp

and e = degq. Then from the proof of Theorem 14, v = ,/g; mod K*. By Lemma 16 we have

1: i ‘ i d:(_l)dl\’z—i-eNl
ov  \p/ \4q ’

Ny = #{a : monic, deg a < degp,sgn({%‘}) ¢ 2},

where

and
N, = #{a : monic,dega < degq,sgn({:—a}) ¢ ]Fg}

Now By _1 =0 and

a b
Cla_l = Z [_7q7_1]__ Z [_7p7_1]'
a,monic p b,monic q

deg a<degp deg b<degq

For each a (resp. b) in the sum, there exists a unique a’ (resp. b’) with dega’ < degp (resp. degb’ < degq)
and i(a) (resp. j(b)) such that

a't N b't .
Oty @8 (esp. {20y — i) 0y
{p} L (resp {q} Y q)

It is easy to verify that

i(a)

{ 0 mod 2, ifsgn({%}) eF

1 mod 2, otherwise

A similar formula holds for j(b). Thus
Y i(@)=N; mod2 and ) j(b) =N, mod 2.

The semi-canonical lifting gives

i(a)—1 ' 3(b)—-1

a b
Bl,0= Z Z ['Yk_7q70]_ Z Z [’yk—,p,O]-
amonic k=0 p bmonic k=0 q
deg a<degp deg b<degq

Now we easily see that
sgn(T(8B1,0)?7") = (—1)#Nte,

which implies the wanted result Urlffg) € Kj in the first case.

Second Case: a represents a canonical basis class indexed by a squarefree polynomial divisible by at
least four distinct irreducibles.
The following result can be regarded as an analogue of Proposition 15 in [Dal.

Proposition 17. Let b = Y my[b;] € H'(J,U). Assume that b represents a canonical basis class of
HY(J,U), indezed by monic squarefree polynomials divisible by at least three monic irreducibles. Let C
be a cycle in SK such that C = @®i4;=0Ci j, Coo = >_.m;[b;,1,0] and (0 + 5)C = 0. Assume that no
term of the form [0,p, —1] appears in C1 _1. Then for each t coprime to the least common multiple of the
denominators of the b;, we have

[T sontibith™ = [ son(pip™.

Proof. From Theorem 12, we know that e(b) € K*. Thus e(b') = o(e(b) = e(b) and further sgn(e(b))
sgn(e(b')). Since >-m; =0 mod (¢ — 1) from Lemma 11, we get the result.

o
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Given C = Y n;[*,*,%] € SK, the total sum is defined by T'S(C) = > n;. We also define some
operators as follows.
t:[a,* %] = [a',*, %],
I:[a,*,k]— {a)[a,x,k—1] for k odd,
k(a)—1
J :[a,*, k] — Z [y =@, %,k —1] for k even,
1=0

where «(a) is defined by sgn(a) = v*(»). Note that JI = 0.

Let a € H?(J,U) represent a canonical basis class kg indexed by a monic squarefree polynomial divisible
by at least four irreducible polynomials. Let C be a cycle obtained by the semi-canonical lifting of k4. Let
t be prime to g. Then C' — C* = (8 + 6)B for some chain B. Again assume that B is a semi-canonically
lifted. Our aim is to compute sgn(T'(0B;,)9 ") = (—1)X7d8Pi where By = 3. n;fa;, p;,0]. So we
only need to consider the parities of the total sum of Bl{’po"}. Let Cp,—r, = [0, 9, —n]. Then we have

Cn—l,l—n = IaCn,—n

Cpnio—n = JOIOCy _p
Crs3—n = 10JOI0C,, _p = I0JOC_11—n = IOCn_32n
Bn1s-n=J(I—tI8)Cp _p
Bn—s3—n = I(JOIO — tJOIO — DJIO + 8JtIO)Ch.—n
=I(JO —tJO — 8J + 8Jt)Cn_1.1-n
Bn_sa_n = J(I0JO — tIDJO — DIJO + OIJ + DIDJ — DIOJt)Cp_1.1-n
= (JOIt — JtI8)Cn_22_p + JOLJOE + JOIOJF

By = (JOIt — JtI0)Cs, _5 + JOLJOE' + JOIDJF',

for some chains E, F, E', F' € SK. To show the sgn(T'(0B1,0)9~") = 1, it suffices to prove that T'S(B1,0) =
0 mod 2.

Lemma 18. We have

TS((JAIJda,par, —3))PH) =0 and TS((JOIBJI[a,pgr,—3]))P}) =0

Proof. We define (b) by sgn(b) = v*(*). Then up to +1 we have

k(a)—1

(0la,pa,~2) = 30 (7 @ +ra,p, —1] - [y a/q,p, 1))
k>0
q—2k—-1

- > 2> b e+ /e, -1l

degv<deggq k=0 1>0
monic

k(a)—1

(6‘][0'7 P, _2]){P} = Z ([W_K(a)—i_kaa p, _1] - [W_H(a)—i_ka/qa p, _1])

k>0

- > [ *a+0)/q,p,-1].

degv<deggq
v#0
(IJ@[G,, par, _3]){pq} :K’(U’) ([’Y_H(a)aa Py, _2] - [’Y_H(a)a/ta p4q, _2])

- > Z ka4 +0) /¢, pg, 2]

degv<degt k=1
monic
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(IaJ[aa par, _3]){pq} :H(a) ([,y—n(a)a’ pq, _2] - [V_H(a)a/ta pq, _2])
k(a)—1

- > > (@ a+ o) /r,pg, -2

degv<degt k>0
monic

We thus get
—1)(q —2)(¢%87 - 1)
TS(J8[a, pq, =27 = + ((q
(J0[a, pg, —2]**7) e 1)
qdegt -1
71000, pae, 30 = & (w1 ).
— degt __
TS(1J8[a, pqr, —3] P} = + ((q 2)q(q_ : 1))
degq _
TS(10.J[a, pae, ~3]) = = (”(a)%) ,
—_ degq _
TS(1J0[a, par, 3] = + ((q 2)q(q_ : 1))
Therefore T'S(JAIJd[a, pqr, —3]{*}) = 0 and T.S(JBIDJ[a, pqr, —3]P}) =0 0

Now we need to consider JOItC5,_» and JtI0Cs _o. We first consider JtI0C>, 2. We know 10C5, 5 =
Ci,—1. By Lemma 11, Y n; =0 mod (¢ — 1) if CP’_}I =Y n4[a;, p,—1]. Since Ci,_1 is semi-canonically
lifted, (a;) = 1 for every i. Then by Proposition 17, [], sgn({ta;})™ = ][, sgn(a;)™ = 1. Thus
> nik({ta;}) =0 mod (¢ — 1). Therefore

TS(ICP ) =Y ni(k({tai}) —1) =0 mod (¢ —1).

Next we consider JOItCo _o. Write Cz{?_q% = Y mjlaj,pq,—2]. Then Y mj[a;] € H?(J,U). Thus
d>omji{{ta;}) = > mj{a;) = > mj(ya;). But since C5 _» is semi-canonically lifted, there is no term like
[a, pq, —2] with sgn(a) = v4~2. Hence Y m;(ya;) = 0. Now ItC’;,{q% = > m;{{ta;})[{ta;},pq,—2]. Asin
the proof of the Lemma 18, we have
(¢—1)(g—2)(¢g"" 1) (g—1)(g—2)(¢"8% — 1)

2(¢—-1) 2(q—1)

TS(J@[b, pyq, _1]) =

Thus

_ degp _ ,deg
T8(JO1Cs™ ) = (3 m;({ta;})) L 2(2;(3 0 )

We conclude that sgn(I'(0B1,0)?" ") = 1, which concludes the second case before Proposition 17.

Combining the two cases we finally get:

Theorem 19. Let q be odd, let a = > m;[a;] € H2(J,U), and let | be the least common multiple of the
denominators of the a;. Then K(T'(a)) is a Galois extension of K.

We know from Proposition 8 that FK;( “~y/e(a)) is a Galois extension of K, where F is the (¢ — 1)-th
extension of Fy. But in the second case we get more.

Theorem 20. Let a € H?(.J,U) represent a canonical basis class indexed by a squarefree polynomial §
divisible by at least four distinct irreducibles. Then K;( *~y/e(a)) is Galois over K.
Proof. Since ;6(2) = :((:)) = 6ie(b)?7 !, for some b, K;( *{/e(a)) is Galois over K if and only if 6; = 1.

Thus the result follows from the proof of Theorem 19. O

Suppose that n > 4 is even and that g is a monic squarefree polynomial divisible by n primes. Let
a € H*(J,U) be the semi-canonically lifted representative of [0, g, —n]. We keep the same notations as in
the proof of Theorem 19. Then for any t prime to g, we have

_I‘(BBl,O)qflr(Bg, )1 qet ((at)
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But we know from the proof of Theorem 19 that 6, = 1 and I'(0B1 ) € K. From the Remark after
Theorem 14, we further know that I'(a)?~! = fe(a). Thus we see that

[(@h)? ! = #s7 e(al),
for some s € K*. Combining with the Remark after Theorem 14, we have the following stronger version
of Theorem 14.

Theorem 14°. Let n > 4 be an even positive integer. Let C = ®C; _; be the semi-canonically lifted
cycle from the basis class [0,9,—n|, where g is a squarefree monic polynomial divisible by n irreducible
polynomials. Let a =) m;[a;], where Co,o =Y mj[a;,1,0]. Then

P(a)i~! = fe(a),
and
T(ah)? ! =957 te(al),
for some s € K* and 6 € IF,.
Now we will give an example where K;(I'(a)) is not abelian over K.

Example. We assume that ¢ = 3. We can easily compute that the cycle C = Co0 ® C1,_1 @& Ca,_2 is
the semi-canonically lifted cycle of the canonical basis class [0, T(T + 1), —2], where

Co,—2 =1[0,T(T +1),-2],

1 1
Cl,—l = [T,T + 1, —1] - [T—H,T, _1],

T-1
Co,0 = |

1
——1,0] = [==—~,1,0].
’ T+1 -0l [T(T+1)’ -0l

Thus
1 T-1

ar(rn =771 [T(T T 1)]'

A simple computation gives

T  e(#£7)
D(arrs)’ =\ 5 — e = U
T+1 e(ﬁ%)

using the relation T'(ar(ry1))? = [(65Co,0)[(0SC1,—1). Here we used the vertical shift operator S’ as in

the Remark after Proposition 2. Let ¢ = or_1 and 7 = 6_741. Let A = e(ﬁ). Then we can check
that

Z-x, o), and — =1
ou ou oTU

Let

Ve =A vy =X and v, =1.

Let 77 € Gal(K;(T'(a))/K) be the lifting of n € Gal(K;/K) such that v,n/u = y/u. Then as in the proof
of Proposition 19 of [Da], using the fact that \* + (T'— 1)A\%2 + 1 = 0, we get 67 = — — 76 on \/u.

Remark. It would be interesting to know whether K(I'(a)) is abelian over K if a represents a canonical
basis class indexed by a monic squarefree polynomial divisible by at least four irreducibles. In the classical
case this is verified by Das, [Da] Theorem 21, with the aid of a theorem of Deligne(Theorem 7.18(b) of
[De],Theorem 19 of [Da]), which is beyond the reach of this paper. If one disposes of an analogue of this
theorem, then one can easily how, with the aid of Theorem 14’, that K;(T'(a)) is abelian over K if a
satisfies the above conditions.
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