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Abstract

In this note fractional representations of multipliers on vector-
valued functional Hilbert spaces are used to give a proof of Arve-
son’s version of von Neumann’s inequality for m-contractions on the
unit ball. We prove a commutant lifting theorem for operators on
the classical Hardy space over the unit ball in C". As applications
we obtain interpolation results for functions in the Schur class, we
deduce a Toeplitz corona theorem on the unit ball, and we give a sim-
plified definition of Arveson’s curvature invariant for n-contractions
with finite-dimensional defect space. In the final part we describe a
solution of the operator-valued Nevanlinna-Pick problem with uniform
bounds on uniqueness sets in the unit ball.*

1991 Mathematics Subject Classification: Primary: 47A13; Secondary: 47A57,
30E05, 46E22.

A commuting tuple T" € L(H)™ of bounded linear operators on a complex
Hilbert space is called a spherical contraction if Y "  T7T; < 1g. It is well
known that the direct analogue of von Neumann’s inequality for spherical
contractions fails in dimension n > 1. It was shown by Drury [18] and Arveson
[7] that, for any integer n > 1, there is a spherical contraction T' € L(H)"
and a sequence of polynomials pi(k > 1) in the unit ball of H*(B) such that
the sequence (||pk(T)||)ken is unbounded. Indeed one can choose T as the
adjoint of the standard n-shift studied by Arveson in [7].

The supremum norm of a polynomial p on the unit ball B in C* can be
regarded as the norm of p as an element in the multiplier space H*(B) of
the classical Hardy space H?(B) on the unit ball. In [18] Drury shows that
von Neumann’s inequality remains true if the supremum norm is replaced by
the multiplier norm of p on the reproducing kernel Hilbert space H(B) given
by the positive definite kernel K : BxB — C, K(z,w) = (1—(z,w))~". More
precisely, the inequality ||p(T7)|| < [|p(S)|| = ||[p(S*)|| holds for all polynomials
p in n variables if S denotes the standard n-shift, i.e. the tuple consisting of
the multiplication operators with the coordinate functions on H (B).
According to Arveson a commuting n-tuple T = (T1,...,T,) € L(H)" is
called an n-contraction if its adjoint 7% = (17,...,T;) is a spherical con-
traction. Let A C L(H(B)) be the algebra of all polynomials in Sy, ..., S,.
In [7] Arveson extends the above von Neumann inequality by proving that,
for each n-contraction 7" € L(H)", the map

A — L(H), p(S)+~ p(T)
*Paper partially supported by the National Science Foundation Grant DMS 9800666




defines a completely contractive representation of A. In the papers cited
above the proof of von Neumann’s inequality is based on dilation results for
contractions on the Euclidean unit ball which can be seen as generalizations
of the Sz.-Nagy-Foias dilation theory [34] to the multivariable case.

Let £ be a given Hilbert space. In the present paper we use fractional
representations of multipliers on the vector-valued functional Hilbert space
H(E) = H(B) ® € to give a direct proof of von Neumann’s inequality. We
prove a commutant lifting theorem for operators on the classical Hardy space
H?(B,£) over the unit ball. We apply our results to prove interpolation re-
sults for functions in the Schur class, to deduce a Toeplitz corona theorem
on the ball, and to give a simplified definition of Arveson’s curvature invari-
ant for n-contractions with finite-dimensional defect space. In the last part
we indicate a solution of the operator-valued Nevanlinna-Pick problem with
uniform norms on uniqueness subsets of B.

In Section 1 we define, for given Hilbert spaces £ and &,, the Schur
norm on the space of all analytic L(&,€&,))-valued functions on B as the
smallest norm such that the vector-valued analytic functional calculus map
O(B,L(E,E)) — L(H ® E,H ® &,) is contractive for all strict spheri-
cal contrations T € L(H)"™ The space S(B,L(£,€&,)) of all functions
f € O, L(E,E,)) with finite Schur norm is in a natural way a Banach
space. Replacing the class of spherical contractions by the class of their ad-
joints, one obtains the dual Schur norm. Using realizations of multipliers
as fractional transforms of suitable unitary operator matrices we show that
the resulting Banach space §*(B, L(€,&,)) coincides isometrically with the
multiplier space

M(E,E) = {f € OB,L(E,E,)); FHE) C HE)).

The choice £ = &, = C™ leads to a new proof of Arveson’s version of the von
Neumann inequality for n-contractions. The above results on the Schur class
extend corresponding observations of Agler [1], Ball, Li, Timotin and Trent
[12], and others, from the case of the unit polydisc to the unit ball.

Let M C H%*(B,£) and M, C H?*(B,&,) be closed linear subspaces of the
vector-valued Hardy spaces on B that are invariant under the adjoints of
the n-tuple given by multiplication with the coordinate functions. In Sec-
tion 2 we give a characterization of those bounded operators X : M — M,
intertwining the compressions of M, onto M and M,, respectively, that pos-
sess a lifting to an analytic Toeplitz operator T, : H*(£) — H?*(,) with
a dual Schur-class symbol . In the single variable case our result reduces
to a standard version of the commutant lifting theorem. A corresponding
commutant lifting theorem on the unit polydisc can be found in [12]. A com-



mutant lifting theorem for operators over the space H(B) can be deduced
from non-commutative results of Popescu (cf. [6]) by symmetrization.

In Section 3 we apply our results to prove interpolation results of Nevanlinna-
Pick type for functions in the Schur class. We use the abstract interpolation
results proved in Section 1 to deduce a criterion for the solvability of the
corona problem within the Schur class. We apply the results obtained in
Section 2 for the classical Hardy space on B to give a simplified definition
of the curvature invariant for n-contractions with a finite-dimensional defect
space which was introduced by Arveson in [8].

It is well known that the classical Nevanlinna-Pick theorem for bounded
analytic functions on the unit disc admits no direct generalization to
the multivariable case. In Section 4 we extend an idea of Koranyi and
Pukanszki [23] for interpolation by analytic functions with prescribed
values on uniqueness sets in the polydisc to the case of vector-valued
bounded analytic functions on the unit ball. This extends at the same time
corresponding results of Szafraniec [33] and Beatrous and Burbea [13] to the
operator-valued case.

After submitting this paper we learnt that a fractional representation of multipliers
in M(€,&,) was independently obtained by J.A.Ball, T.T.Trent and V.Vinnikov
n [11]. We are gratefull to the referee for valuable comments on the first version
of this paper.

0 Preliminaries

Let H be a complex Hilbert space and let L(H) be the algebra of all bounded
linear operators on H. A commuting tuple 7" = (T1,...,T,) € L(H)" is a
spherical contraction if Y 7 | T*T; < 1p. Following Arveson [7] we call T an
n-contraction if the adjoint tuple 7* = (T7,... ,T*) € L(H)" is a spherical
contraction. Throughout this paper we use the notation B = {z € C"; |z| <
1} for the open Euclidean unit ball in C".

Let A be an arbitrary set. An operator-valued function K : Ax A — L(H) is
called positive definite if Y77 ., (K (\;, Aj)ci, ¢j) > 0 whenever s is a positive
integer, A\1,...,As € A and ¢y,...,¢c; € H. By a well-known theorem of
Kolmogorov and Aronszajn (Theorem 1.5.1 in [24]) a function K : A x A —
L(H) is positive definite if and only if there is a Hilbert space G and a
function £ : A — L(H,G) such that K(z,w) = k(w)*k(z) for z,w € A.
We shall denote by H(B) the functional Hilbert space on B given by the



reproducing kernel
K:BxB—C, K(z,w)=(1-{zw))™",

where (z,w) is the usual scalar product in C*. For any Hilbert space £, we
denote by H(£) = H(B) ® £ the Hilbertian tensor product of H(B) and £.
We identify H(E) with the £-valued functional Hilbert space given by the
reproducing kernel K¢(z,w) = K(z,w)lg. It is well known (cf. [7] or [26])
that the functions in H (&) can be represented by convergent power series on
B. More precisely,

HE) ={f=) a2 aa€€and |f|*= ) llaal’/7a < o0}

acNn acNr

where 7, = |a|!/a!. We denote by H?(€) the E—valued Hardy space on the
unit sphere in C", i.e. the norm closure of the set of all polynomials in n
variables with coefficients in £ formed in L?(o,£), where o is the surface
measure on the unit sphere OB in C* (cf. [32]). As in the scalar-valued case
one can identify H?(£) with the space

H2(B,€) = {f € O®B,E); {2 = sup / 1£(r2) 2o (2) < oo}
0<r<1aB

More precisely, each function f € H?(B,£) has radial limits almost every-
where and the map associating with each function f € H?(B, £) its boundary
function f* yields an isometric isomorphism H?(B, ) = H?(£).

For given Hilbert spaces £ and &,, we consider the multiplier space

M(E,E) ={p € OB, L(EEL)); pH(E) C H(EL)}-

By the closed graph theorem each function ¢ € M(&,E,) induces a continu-
ous linear multiplication operator M, : H(E) — H(E.), f — ¢f. The linear
subspace M (£,E,) C O(B, L(E,£,)) becomes a Banach space relative to the
norm

lell = 1M, || = sup{llefllae);  1fllme <1}

For a given commuting tuple 7" = (T1,...,T,) € L(H)™ on a Hilbert (or
Banach) space H, we write o(T") for the Taylor spectrum of 7', and we denote
by @ : O(o(T)) — L(H), f — f(T), Taylor’s analytic functional calculus
(cf. [19] or [35]).

For given Hilbert spaces H and K and any continuous linear operator A €
L(H, K), we define the multiplication operator



My L(H) = L(K), X - AXA*. If A= (A, ..., A,) € L(H)" is commut-
ing, then we use the induced operators A"} = (I — > " | My,)™ € L(L(H))
form =0,1,2,.... It is easy to see that

!
ATX) = ¥ (—n)lel T Aex A
10 = ¥ ()"

= I(m — |a])!

1 The Schur class

Let £, &, be Hilbert spaces. In this section we give different characterizations
of multipliers in M (€,¢&,). It is well known that multipliers and the multi-
plier norm on functional Hilbert spaces can be characterized via the positive
definiteness of suitable derived kernels.

Theorem 1.1  Let ¢ : B — L(E,&,) be given. Then ¢ € M(E,E,) if and
only if there is a constant ¢ > 0 such that the map

BxB— LE), (zw)— K(w,z2)(le — o(w)e(z))

is positive definite. In this case, the norm || M| is the minimum of all
possible constants ¢ > 0. O

For the scalar-valued case £ = £, = C, the above characterization of multi-
pliers can be found in [14]. The generalization to the operator-valued case is
straightforward and will be left to the reader.

Our next aim is to show that multipliers ¢ € M(&,E,) with |[M,| <1
possess a natural fractional representation determined by unitary operator
matrices. For any function ¢ : S — L(€,&,) defined on a subset S C B, we
consider the map

K,:SxS— L&), (zw)—Kw,z)(ls, —p(w)p(2)).

If L is any complex Hilbert space, then for z € B, we shall use the operator
ZL"— L, (332) — Z?:l 2 ;.

Proposition 1.2 Let S C B and ¢ : S — L(E,&.) be given. Then the
following are equivalent:

(i) the map K, : S xS — L(£,) is positive definite;
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(i) there exists a Hilbert space L and a unitary operator

A B n
U:(C D)EL(L@S,L ®E,)

such that o(z) = D+ C(1, — ZA)"'ZB for z € S;
(i1i) ¢ extends to a multiplier ® € M(E,E,) with ||®|| < 1.

Proof.  Suppose that K, is positive definite. By Kolmogorov’s theorem
(Theorem 1.5.1 in [24]) there is a Hilbert space G and an operator-valued
map k : S — L(&,,G) such that K,(z,w) = k(w)*k(z) for z,w € S. By
rewriting this identity in the form

n

Y @ k(W) (Z,k(2) + 1 = k(w)"k(2) + p(w)p ()"

v=1

we see that there is a Hilbert space L D G and a unitary operator

A B "
U=<C D)eL(L@E,L ®E.)

such that, for all z € S and = € &,,

Elkgz)x
N e ) =05 )

Solving the first of the two equations
A Z*k(z) + C* =k(z), B*Z'k(z) + D* = p(2)*
for k(z), and substituting k(z) by the result in the second equation, yields
o) =D"+B*Z*(1 - A*Z*) 'C* (2 €5).

Suppose that there is a fractional representation of ¢ on S as in condition
(ii). Then obviously ¢ extends to a holomorphic map ® € O(B, L(£,¢.))
which is given by

®(2)=D+C(1, — ZA)'ZB (2 €B).
Using the identity UU* = I one easily obtains that

1— ®(w)d(2)* = C(1 — WA) (1 - WA)(1 — A*Z%)
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+(1= WAL Z" + WA(L - A°Z") = WBB"Zx|(1 - A"Z")7'C"
— O - WA - W21 - A7) C

= K(w,2)"'C(1 - WA)"Y(1 — A*Z*) "¢,

Hence the map K is positive definite, and the proof is complete by Theorem
1.1. O

In [7] Arveson proved that the multiplication tuple S = M, € L(H(B))"
consisting of the multiplication operators by the coordinate functions M, :
H(B) — H(B), f +— zf, is a universal n—contraction in the sense that,
for each n—contraction T € L(H)™ on a Hilbert space H, the map p(S) —
p(T) defines a completely contractive representation of the algebra of all
polynomials in S. Below we give an independent proof of this result.

Let H be a separable infinite-dimensional complex Hilbert space. If T" €
L(H)" is a commuting tuple with Taylor spectrum contained in the closed
unit ball, then for each real number r with 0 < r < 1, we denote by

U, : OB, L(E,E)) > LIHRE, HRE,)

the unique continuous linear map with ¥, (f® S) = f(rT) ® S for f € O(B)
and S € L(&,¢&,). To simplify the notation we write again f(r7T) instead of
v, (f) for f € OB, L(E,E.)), where we allow the case r = 1 when o(T') C B.
Define

C={T € L(H)"; T is a spherical contraction}
and C* ={T*; T € C}. For f in O(B, L(£,&,)), we call
1flls = sup{[lf(rT)|[; 0 <r <1and T € C}

the Schur norm of f. Since, for each point z € B, the n—tuple
z1 = (z1ly,...,z,1g) is a spherical contraction on H such that
f(z1) = 1y @ f(z) for f € OB, L(E,&y)), it follows that || flls > ||f]lcon
for each such function f. A straightforward argument, using the fact that
the analytic functional calculus behaves naturally with respect to unitary
equivalence, shows that the Schur norm is independent of the choice of the
separable infinite-dimensional Hilbert space H.

The linear space

S(B,L(E,&.)) ={f € OB L(E,E.)); || flls < o0}
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becomes a Banach space if equipped with the Schur norm || - ||s. Its unit ball

is called the L(&, E,)-valued Schur class over B. Analogously the dual Schur
norm || f||s« = sup{||f(rT)||; 0 < r <1 and T € C*} and the dual Schur
class S5(E,&) ={f € OB, L(E,E,)); |Iflls- < 1} can be defined.

An analytic function f € O(B, L(€,£,)) belongs to the Schur class Sg(€, E,)
if and only if the function f € O(B,L(&,,€&)) defined by f(z) = f(2)*
belongs to the dual Schur class S;;(&,, £). To check this it suffices to observe
that, for each spherical contraction 77 € L(H)™ and each real number
0 <7 < 1, the identity f(rT)* = f(rT*) holds.

In view of the cited result of Arveson from [7] it is clear that there is a close
relationship between the multiplier space M (&, E,) and the dual Schur class.
To demonstrate the usefulness of the fractional representation of multipliers
obtained above, we give a direct argument.

Let L,L', K, K’ be Hilbert spaces and let

A B -
(0 D)EL(L@K,LEBK)

be a contraction. We shall use the well-known, and quite elementary, fact
that, for any bounded operator X € L(L', L) with || X|| < 1, the operator

D+C(ly — XA)'XB e L(K,K')

is a contraction again (cf. [12]).

Theorem 1.3 Let S C B and ¢ : S — L(E,E,.) be given. Then the
following are equivalent:

(i) ¢ extends to a map in S(E,Ey);
(it) the kernel K, : S x S — L(E,) is positive definite;

(#i) there is a Hilbert space L and a unitary operator

A B "
U=<C D)eL(LEBE,L ®E,)

such that p(z) = D+ C(1y — ZA)"'ZB for z € S;



(iv) the same as (iii), but with U only supposed to be a contraction;
(v) ¢ extends to a map ® € M(E,E,) with || @] < 1.

Proof. Since we know that (ii), (iii) and (v) are equivalent, it suffices to
show that (i) implies (v) and that (iv) implies (i).

To prove that (i) implies (v) we may suppose that S = B. Fix ¢ € S}(&,&.).
Let S = M, € L(H(B))" be the standard n—contraction as above. It is
well known that S € C* ([7]). Let U D B be open. For each function
g€ O(U,L(E,E,)) and each f € HB) ® &,

(9(S) NN =gV f(A) (A eB).

For fixed A, it suffices to check this identity for the case of elementary tensors
g=90® A and f = fy ® x, where it obviously holds. An application of this
remark to the functions ¢,(2) = ¢(rz)(0 < r < 1) yields

sup [|M, || = sup [lg.(S)] = sup [[p(rS)]| < [lolls- < 1.
0<r<1 0<r<1

o<r<1

A compactness argument allows us to choose a net (7;);c; converging to one
such that A = WOT — lim M, exists. It easily follows that

2—+00
(Af)A) =N f(A) (f € H(E),AeB).
Hence ¢ € M(&,&,) and || M| = ||A|| < 1.
To prove the remaining implication, let ¢ be given by a contractive operator
matrix U as in condition (iv). Then ¢ obviously extends to a holomorphic
map & € O(B, L(£,£,)) represented in the same way by U on all of B. Let T

be an n-contraction on a complex Hilbert space H. Using standard properties
of the analytic functional calculus, we obtain that

OrT) =14 D+ 15 @ C(lpgr — Z(rT)1g @ A) ' Z(rT)1y ® B
for 0 < r < 1. Since the operator

ln®A 1g®B \ o n
( 1,9C 1y®D ) g Q@UeLHQ(LBE),HR (L"BE,))
remains a contraction and since, for 0 < r < 1, the map
Z(rT) = (rTy,... ,rT,) ® 1, € LLH"® L,H ® L)

is a strict contraction, the remark preceding Theorem 1.3 implies that
v € S5(&,E.). O



Since a function ¢ € O(B, L(£,€£,)) belongs to the Schur class Sg(&,€,)
if and only if ¢ belongs to the dual Schur class, we obtain an analogous
characterization of the Schur class.

Corollary 1.4 Let S C B and ¢ : S — L(&,&,) be given. Then the
following are equivalent:

(i) ¢ extends to a map in Sg(&,E,);

(#) the kernel S x S — L(E), (z,w) — K(z,w)(1 — ¢(w)*¢(z)), is positive
definite;

(#i) there is a Hilbert space L and a unitary operator (or, equivalently, a
contraction)

A B n
U_<C D) EL(L"®E LDE,)

such that p(2) = D+ CZ' (1, — AZY)'B (2 € S);
(iv) ¢ : S={zze€ S} — L(&.,€), d(2) = ¢(z)*, extends to a map
® e M(E,, &) with ||®| < 1.

Since a scalar-valued function is positive definite if and only if its complex
conjugate is positive definite, a comparison of the second condition in
Theorem 1.3 with the second condition in Corollary 1.4 shows that, for
& = &, = C, the Schur class Sg and the dual Schur class S coincide. Using
the observation that the class of spherical contractions is not self-dual one
can show that in general the Schur class Sg(€,&,) and the dual Schur class
S; (€, &) are different.

The proof of Theorem 1.3 shows that S*(B, L(€,&,)) = M (€, &) isometri-
cally. As mentioned above this identity can also be proved by using results
of Arveson on the universal role of the n—contraction S = M, € L(H(B))".
To demonstrate the usefulness of the fractional representation of multipliers
described above, we indicate how the corresponding parts of Arveson’s re-
sults follow from Theorem 1.3. Let 7" € L(H)™ be an n—contraction on a
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Hilbert space H (that is, 7' € C*), and let A be the algebra of all polyno-
mials in Sy,...,S,. The case &€ = £, = C of Theorem 1.3 implies the von
Neumann-type inequality (cf.[18])

IP(D)l = lizn [lp(r T < [l

s = Sl (p € Cl2)).

If, for each N € N, one equips the algebra My (A) C L(H(B)Y) with the
norm structure that it inherits from the C*-algebra L(H (B)"), then the case
E =&, =CV of Theorem 1.3 implies that the map

pn : My(A) = My(L(H)),  (pi;(5)) = (pi;(T))

is a contraction. Indeed, for each matrix (p;;) of polynomials, we have
i (TDI = (i) (DI = lim [[(pig) P T < Nl (pig)ls- = 11 (i ()1

Thus we have proved Arveson’s version of the von Neumann inequality for
n—contractions (Theorem 8.1 in [7]).

Corollary 1.5 (Arveson) Let T € L(H)™ be an n-—contraction on a
complex Hilbert space H, and let A C L(H(B)) be the algebra of polynomials
in S1,...,Sn. Then the map ¢ : A — L(H), p(S) — p(T), defines a
completely contractive representation of A. O

We conclude this section with an interpolation result which generalizes parts
of Corollary 1.4.

Theorem 1.6 Let £, F and G be complexr Hilbert spaces and let S C B
be arbitrary. Suppose that o : S — L(E,F) and 5 : S — L(E,G) are given
operator—valued functions. Then there is a function ¢ € Sg(F,G) with

o(z)a(z) = B(z) (2 €58)
if and only if the mapping

a(w) a(z) — f(w)"B(2)

Kup: SxS— L(E), Ka,ﬂ('Z7 w) = 1— <Z w>

18 positive definite.

11



Proof.  Suppose that ¢ € Sp(F,G) satisfies p(z)a(z) = B(z) for z € S.
Then Corollary 1.4 and the identity
a(w) a(z) — B(w) B(z) = a(w)"(1 — p(w)'p(2))alz) (z,w € S)

show that the operator-valued kernel K, s is positive definite.

Conversely, suppose that K, g is positive definite. Then there is a Hilbert
space M and a map k : S — L(€, M) such that K, g(z,w) = k(w)*k(2) for
z,w € S. Rewriting this equation as

n

> (wk(w) (2k(2) + a(w) a(z) = k(w)*k(2) + B(w)*B(2)

v=1

one can deduce that there is a Hilbert space L D M and a unitary operator

A B "
Uz(c D)eL(L &F,LaG)

such that, for all z € £ and z € S,
z1k(2)x

U . = .
a(z)x

If we regard k as a map with values in L(&, L), then solving the first of the
two equations

AZ'k(2) + Ba(z) = k(2), CZ'%(z) + Da(z) = B(2)

for k(z) and substituting k(z) in the second equation by the resulting solution
gives

B(z2) =D+ CZ'(1—AZ") 'Bla(z) (z€9).

The function in square brackets extends to a holomorphic map ¢ on B given
by the same formula. By Corollary 1.4 the map ¢ belongs to the Schur class

Se(F,G).
O

We shall apply Theorem 1.6 to solve concrete interpolation problems on the
unit ball in Section 3.
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2 A commutant lifting theorem on the ball

In this section we prove a commutant lifting theorem for the classical Hardy
space on the unit ball in C*. Corresponding results for the unit polydisc
have been obtained in [12]. A version of the commutant lifting theorem
over the space H(B) can also be obtained by specializing corresponding non-
commutative results of Popescu to the commutative case (cf. [6]).

Let £ and &, be complex Hilbert spaces. We write S € L(H?(E))" for
the tuple with components given by the multiplication with the coordinate
functions

S;: H* (&) = H*(&), (Sif)(2) =2zf(2) (i=1,...,n).

Let S, € L(H*(£.))" be the corresponding multiplication tuple on H?(E,).
Suppose that M C H?*(E) and M, C H?*(E,) are closed linear subspaces
invariant under the adjoint tuples S* and S}, respectively. We denote by
T € L(M)" and T, € L(M,)™ the compressions of S and S, onto M and M,,
i.e. the commuting n-tuples with components

where P and P, are the orthogonal projections of H*(€) onto M and H?(E,)
onto M,. We are interested in characterizing those operators X : M — M,

intertwining 7" and 7, that possess a lifting to an analytic Toeplitz operator
T, : H*(€) — H?*(&,) with a dual Schur—class symbol .

Recall from the preliminaries that, for a commuting tuple A =
(A1,...,A,) € L(H)" on a Hilbert space H, the operators A} (m=
0,1,2, ... ) are defined as A} = (I — > ", Ma,)™ € L(L(H)). Positivity
conditions formulated in terms of these operators have been used in [26] to
construct functional models and normal boundary dilations for spherical
contractions. The reader should be aware that in our definition of the
operator M4 we have exchanged the roles of A and A*.

Lemma 2.1 Let X € L(M,M,) be an operator with Tu,X = XT; for
1=1,...,n. For h,k € M,, we have

(X7h)(0), (X7k)(0)) = (AT, (X X7)h, k).
Proof.  We first show that the identity A%(1)h = h(0) holds for all h €
H?(£). Since H?(&) is the closed linear hull of the elements k,, , (w € B,z €
E) with
z

(1 = (z,w))"
13

kwx(2) = (z € B)



and since S;ky ; = Wiky 4, the assertion follows from the observation that,
forw e B and x € &,

A1) (kwz) = D2 caS*S*(ku)

la|<n

= (2 et )b = (1= (2, 0) ks = @

laj<n

with suitably chosen constants c,.

Since X intertwines 7" and 7, we obtain the relation
AT (XX™) = AT Mx(1a) = Mx AT (1r).

Using the notations My = (Mqy,...,Mz,) and Mg = (Mg,,...,Ms,), we
obtain the identity

(M (La)h, k) = (T T k) = (ME(Liace))h, k)
for all j € N* and h, k € M. To complete the proof it suffices to observe that
(AT, (XX7)h, k) = (A7 (1a) X7h, X7k) = (AG(1)(X7h), X7k) = ((X7h)(0), (X"k)(0)).

|

Our characterization of Toeplitz operators with dual Schur—class symbol is
based on the following elementary observation (cf. Lemma 3.2 in [12]).

Lemma 2.2  Let H be a Hilbert space and let

A B "
UZ(O D)eL(H@E,H ®E.)

be a contraction. Then the map Q : H — H*(B, &), Q&)(2) = C(1ly —
ZA)7YE, is a well-defined linear contraction. The functions

Q: H" — H*(B,E,), (£)—=Q&) (i=1,...,n)

satisfy the identity

(2) = C(ly — ZA) ' Z¢

!_Z S, (€)

for £ € H" and z € B.

14



Proof. The complex—valued function F' defined on the open unit ball by
F(z) = ((1lu + ZA)(1n — ZA)'¢,€)
has the property that, for any real number 0 < r < 1,

/Re F(rz)do = Re F(0) = [[¢]|2

oB

But, for z € B,
Re F(2) =((lg — A*Z*) " (1g — A*Z*ZA)(1g — ZA) 7', €)
> [|C(Ag = ZA) P + (A — Z2°2)A(ly — ZA) 7', ALy — ZA) 1)

> |C(1y — ZA) g2

Therefore €2 is a well-defined contraction. The second part of the lemma is
obvious.
O

For a commuting n—tuple A = (Ay,...,A,) € L(H)" on a Hilbert space H,
let us consider the operator

Sa=Y My € L(L(H)).
i=1
In [26] (Lemma 7) it is proved that

SOT — lim (EZ)(1H2(5)) = 0,
k—o0

where S is as before the tuple consisting of the multiplication operators with
the coordinate functions on H?(£). An inspection of the proof given in [26]
shows that even

SOT — lim (Z%)(X) =0

k—o00

for each operator X € L(H?*(£)).

Lemma 2.3 Let M C H?(E) be a closed invariant subspace for S*.
a) For each operator X € L(M), we have SOT — limy,_, (%) (X) = 0.

15



b) The operator Ay = I — X is injective.
c) If X € L(M) is a positive operator with Ar(X) <0, then X = 0.
Proof. Let X € L(M) be arbitrary. Since, for h € M and k € N,

(Eh)(X)h= )" gTaXT*ah = P(Zk)(X P)h,
la|=k

part a) follows from the remarks preceding the lemma. If Ar(X) < 0, then
N .
(I =33 )(X) = 3 S7(Ar(X)) <0
=0

for each N € N and hence X < 0. The same identity, combined with part
a), also shows that Ay is injective.
O

The following result is a multivariable version of the commutant lifting
theorem for the Hardy space on the unit ball.

Theorem 2.4 Let X € L(M,M,) be a continuous linear operator with
Tu:X = XT, fori=1,... ,n. Then the following conditions are equivalent:

(i) there exists a symbol ¢ € S(E,E.) such that XP = P, T,;

(#) there exists a Hilbert space L and a unitary operator

A B i
U:<C D)EL(L@&L BE,)

such that if o(z) = D+ C(1, — ZA) 'ZB, then XP = P,T,;
(iii) A% (1—XX*)>0.

Proof. The equivalence of the first two conditions follows from Theorem
1.3.

To prove the implication (iii) = (ii) suppose that the operator

I' = A’7'(1 — XX*) € L(M,) is positive. According to Lemma 2.1 the
identity

2

1RO = IX*R(O)* = (A%, (1 = XX*)h, h) = [TV2A]* = |02 T5h)1?
i=1

16



holds for all h € M,. Hence the map

TY2Txh
| (i)
: —
T2T* b (X*h)(0)
h(0)

defines an isometry V from {(T'V/2T}h,... ,T'Y2T* h,h(0)); h € M,} into
M, & &. Let L be a separable Hilbert space containing M, such that V' can
be extended to a unitary operator

Ur:L"e& — LBE.

We write U as an operator matrix

A B .
U:(C D)eL(L@g,L BE,).

According to Theorem 1.3 the matrix U determines a function
0(z)=D+C(1, — ZA)*ZB

in the dual Schur class S;(€,&,). Our aim is to show that XP = P, T,,.
By Lemma 2.2 we know that

((T3h)(0),z)e = (T 3h, 2) (e

— (h, Dz + é S.:%(B1)) e,

— (D*h(0) + éB*Q;‘S;‘ih, 2)e
for all z € £ and h € H*(E,). It follows that

(T,h)(0) = D*h(0) + z”: B*Q: Sk (1)

for all h € H?(E,).

Secondly, the identities

(0h, &) = (h,C(1, — ZA) " ((1p — ZA)E + ZAE)) 2.

17



= (h,CE+ ) Suhi(AE)) mae,) = (C*h(0) + > A QIS5 €)1
=1

=1

valid for all h € H%(€,) and £ € L, show that
O'h=C"h(0) + > _ A*Q;S5h (2)
i=1

for all h € H?(E,).

Let j : M, < L be the inclusion. Define ® = j oI''/?2 € L(M,, L). Then our
choice of U* yields

T h

. z _( @h

U\ eren ‘((X*h)(m)
h(0)

for all h € M,. Since
. AY C* n
U* = < B D ) eEL(L"BE,,LBE),

the identities (1) and (2) above show that, on the other hand,

Q*S*h

(L) |~ (o)
Q*S* h (T;1)(0)
h(0)

for all h € H2(E,).

We want to show that the difference ¥ = ® — (2*|M,) € L(M,, L) is the zero
operator. Since T} = S| M,, we obtain the identity

vTrh
A* : = Uh
UTrh
for h € M,. Since A* is a contraction, it follows that

UV <TgUvTi+...+T,90T;

*77
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or equivalently, that Az, (¥*W¥) < 0. By Lemma 2.3 it is clear that ¥ = 0.

Since ® = Q* on M,, we know also that
X*h(0) = (T;h)(O) (h € M,).
Consequently, for x € £ and h € M,, we obtain

(Tth, S°z) = (T S:%h, ) = (X*S:h, x) = (X*T;h, z)

= (T"*X"h,z) = (S™*X"h,z) = (X"h, S%)

for all & € N*. Since the vectors S%z (z € £, € N*) span the space H?*(E),
we deduce that X*h =Tjh for h € M,, or equivalently, that P.T,, = X P.

To complete the proof we show that (ii) implies (iii). For this purpose,
let ¢ and U be given as in condition (ii). We first consider the case that
M = H?*E), M, = H*&,), and X = T,. Let Q : L — H?*(,) be the
operator associated with U as in Lemma 2.2. Recall that the operators

Q=Qom:L"— H*E) (i=1,...,n),

where 7; is the projection of L™ onto its i—th component, satisfy the equation
3 S.u(O)(z) = Oy — Z4)'7¢ (€ € 1),
i=1

Denote by j; = m; : L — L™ the inclusion mappings and define
= Ag:l(l -T,T;) € L(H*(&,)).

According to Lemma 2.1 the identity

n

IR O = [1R(O)]* = (Ch, h) + Y (TSh, Sh)

=1
holds for all h € H?(€,). Exactly as in the proof of the implication (iii) =
(ii) we obtain that

(T3h)(0) = D*h(0) + Y | B*Q;S5h
=1
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for each function h € H*(£,). Using this identity and the relation UU* = [
we deduce that

I(T5R) O)]1 = [IR(0)]I* — [IC*A(0)[?

—2Re(AC™h(0), 3 Q7 S5h) + > (QQ"Sh, S4h)
i=1

i=1

—<A*§;§ﬁsgh,A*§;§nsghy
Again by the proof of the implication (iii) = (ii) we know that
A* i QS5 h=Q*h — C*h(0)
i=1
for all h € H?(E,). Thus, for all such functions h,

(TR O = [1RO)I* — (QQh, h) + Y (QQ" S}k, Siih).
i=1
Hence Ag, (Q2Q* —T') = 0 and by Lemma 2.3 it follows that I' = QQ* is
positive.

In the general case, it suffices to observe that, for g € M,,

(ATTM1=XX")g,9)= 3 callTiogll® — I XT7g])

laf<n—1

= X calllSgll? = I1T58:l?) = (A5 (1 = T,T3)g, 9)

al<n—1

with suitable constants c,.

Remark 2.5 (a) Let X € L(M, M,) be a continuous linear map with
TuX = XT; for i = 1,... ,n such that A7 (1 — XX*) > 0. Let V be the
isometry constructed in the proof of the implication (iii) = (ii) of Theorem
2.4. Fix a Hilbert space L containing M, and a contraction U* : L" ® &, —
L & &€ extending the isometry V. If U is represented by the operator matrix

A B .
U:(C D)eL(L@g,L B E,),
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then as in the previous proof it follows that
0(z)=D+C(1,—ZA)'ZB

defines a function in the dual Schur class Sj(&, E,) such that X P = P,T,.
(b) By applying Theorem 2.4 to the case M = H?*(E) and M, = H?*(E,) one
can see that a function ¢ € H*(B, L(£,£,)) belongs to the dual Schur class
Si(€,€,) if and only if AYH (1 —T,T7) > 0.

3 Applications

As a first application of Theorem 2.4 we prove an interpolation result of
Nevanlinna—Pick type for Schur—class functions on B.

In Section 1 we saw that the dual Schur class S%(&,E,.) can be inter-
preted as the closed unit ball in the multiplier space M(&,&,) (see The-
orem 1.3). Via this identification our interpolation results are generaliza-
tions of corresponding results of Agler and McCarthy [3] for the matrix-
valued case. Non-commutative operator-valued interpolation problems of
Nevanlinna-Pick type on the unit ball have been solved by Popescu [29],
Arias and Popescu [6], and Davidson and Pitts [17].

Let £ and &, be separable complex Hilbert spaces, and let w®, ... w®) € B
be pairwise distinct points in the open unit ball. For any given vectors
a:,(kl), ... ,xy) € &\ {0} and V...  2(M € £, we are looking for conditions
that guarantee the existence of a function ¢ € Sj(&, £,) with

(w2 =20 (j=1,...,r).

We use the kernel functions k,, , : B — £ defined by
x

(1= (z,w))"

as well as the corresponding &,—valued functions. As an abbreviation we

write k; = ky6) z0)5 k; = kw(ﬂ,x@ for j =1,...,r. The spaces

by (2) = (weBzef)

M =LH{kj; j=1,...,r} CH*(), M,=LH{k}; j=1,...,1} C H*(&)

are finite-dimensional invariant subspaces for S* and S¥, respectively. As
in Section 2 we write 1" and T, for the compressions of S and S, on M and M.,,.
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In this setting the positivity condition occurring in part (iii) of Theorem 2.4
has a very natural meaning.

Lemma 3.1 Let X : M — M, be the linear map with adjoint defined by

For k € N, the condition A% (1 — XX*) > 0 holds if and only if the (r x r)-

matlrix
(<m5ﬁ>,x9’> = <x<i>,x<f>>)
_ ) (A)\\n—k
0= o) )

is positive semidefinite.

Proof. Fix k € N. For a € N* with |a| < k, define ¢, = (—1)1*'k!/(a!(k —
|a|)!). Then

(1 —(z,w))F = Z co2*w®  (z,w € C).

la|<k

Since the elements £} (j =1,...,r) form a basis of M,, the condition that
A% (1 — XX*) > 0 is equivalent to the fact that the (r x r)-matrix with
(i,7)—th entry equal to

(Ak (1= XXV K = 3 ca(<T:ak;, Tk — (X T2k, X*T:%;))

\al<k

= Ca(w(a‘))a(w(i))a(@f),xi”) - (x(i),fc“)>> _ (@92 — (@9, 29))

(1 — (w®@, wi))n (1 = (w®), w@))n—*

la|<k

is positive semidefinite.
O

For X as in the preceding lemma and any function ¢ € Sj(€,€&,), the
condition XP = P,T, holds if and only if T;M* C M and X* = T;‘|M* or,
equivalently, if T3k; = k; (i = 1,...,7). But T}ky . = ky p)-. for w € B
and z € &,. Hence a direct application of Theorem 2.4 yields the following
interpolation result.
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Corollary 3.2  Let w®,... w') € B be pairwise distinct. For given vec-

tors :ci”,... ,xy) in & \ {0} and =0, ... 2" in £, there is a function

v € Si(E,E,) in the dual Schur class with
w2l =20 (Gi=1,...7)

if and only if the (r X r)-matriz

(a;g),xskj)) — (2, 209y
1-— <w(j),w(i)>
1<4,5<r

18 positive semidefinite. O

Using the fact that ¢ € Sg(&,€&,) if and only if ¢ € S}(&,, &), one obtains

that, for w™®,... ,w™ as above and given vectors (), ... (" € £\ {0},
2 . 2l € &, there is a function € Sp(€, &) with

w2z =20 (G=1,...,7)

if and only if the (r x r)-matrix

(¢, 20) — (@1, 217
1 — <w(’i),u)(j)>
1<i,j<r

is positive semidefinite.

A closely related interpolation result follows as an application of Theorem
1.6.

Theorem 3.3  Let £, F,G be Hilbert spaces, let S = {wy,... ,w,} C B
be a finite subset and let A; € L(E,F), B; € L(E,G) (1 < i <) be given
operators. Then there is a function ¢ € Sg(F,G) with p(w;)A; = B; for
t=1,...,7 if and only if the matriz-operator

(A:AJ_BZ*B]) € L(gr)
1-— (wj,wi) 1<i,j<r

18 positive.

Proof. By Theorem 1.6 there is a function ¢ with the stated properties
if and only if the associated kernel K4, (5, : S x S — L(£) is positive
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definite. This condition is easily seen to be equivalent to the positivity of
the matrix-operator considered above. O

Since ¢ € Sp(F,G) if and only if ¢ € S;(G,F) (which is the unit ball
of M(G,F)) one obtains that, for S = {wy,... ,w,} C B and any given
operators A; € L(F,€), B; € L(G,&), there is a multiplier ¢ in M(G, F)
with ||¢|| < 1 such that A;p(w;) = B; for i = 1,...,r if and only if the
matrix-operator

A;AS — BB}
(T2t e
1- <wuw]> 1<i,j<r

is positive. A non-commutative interpolation result which specializes in the
commutative case to the last observation has been obtained by Popescu [28]
(Theorem 4.1). Similar results can be found in Arias-Popescu [6], Davidson
and Pitts [17] and Meyer [25].

As a second application of Theorem 1.6 we give a criterion for the solvability
of the corona problem within the Schur class. In the one—variable case our
result reduces to a version of the Toeplitz corona theorem (see [31] and [22]).
In [10] a corresponding result over the unit polydisc is proved.

Theorem 3.4  Let f1,...,f, : S — C be complex-valued functions on an
arbitrary subset S C B and let 6 > 0 be given. Then there are functions
91y ,9r 1 O(B) such that (g1,...,9,) € (1/6)Sp(C",C) and such that
Yoiy fi(2)gi(2) =1 for z € S if and only if the kernel

T

> filw) fi(z) — 6
K;:SxS—C  K(zw) == T

1s positive definite.

Proof. It suffices to apply Theorem 1.6 with & = C, F = C", G = C to the
analytic functions 8 = ¢ and « : S — L(C,C"), a(z) = (fi(2),.-.., f-(2))"
O

As a third application we indicate how the results from Section 1 and Section
2 can be used to give an elementary definition of the curvature invariant
introduced by Arveson for n-contractions with finite-dimensional defect space

24



[8]. Let T € L(H)™ be an n—contraction such that the defect operator
A = (1 _ ZrTZTrZ*)l/Q
i=1

has finite-dimensional range AH. In [8] Arveson used the operator—valued
function F : B — L(AH),

F(2)é=A(1 =) &T7) "(1-) =) 'A¢L (€€ AH),
=1 i=1

to define the curvature invariant of 7". More precisely, the limits

Ky(z) = 11_13(1 — r%) trace F(rz)

are shown to exist for almost every z € 0B, and the curvature invariant K (7')
of T is defined by averaging K, over the unit sphere

mn:/m@m@.

Arveson proves that the curvature invariant is an integer for large classes of
n—contractions and that this integer is closely related to the Fredholm index
of T (see [8] and [9]). The first result was extended to the class of all pure
n—contractions by Greene, Richter and Sundberg in [21].

Below we indicate how the results of the previous sections can be used to
give a simplified, and very natural, definition of the curvature invariant. In
the setting described above define & = AH. Regard C = A € L(H,¢&,)
as an operator with values in the finite-dimensional space &,. Let A =
(T})1<i<n € L(H,H") be the column operator with components 7;. The
operators A and C form the entries of an isometry V € L(H,H" & &,).
Define £ = (H" @ £,) © Im V and consider the unitary matrix—operator

A B .
Uz(C_D>€MH®&H€wJ

where the second column is by definition the inclusion map from &£ into
H™ @ &,. By Theorem 1.3 the function ¢ : B — L(€,€&,), ¢(2) = D +
C(ly — ZA)"'ZB, belongs to the dual Schur class S(€,£,). In the proof
of Proposition 1.2 it was shown that the associated positive definite kernel
K, :B x B — L(&,) has the representation

K, (z,w) =C(1 — w;TH) (1 = z. Tt
@ %
i=1 i=1
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By restricting both sides to the diagonal we obtain the relation (cf. Theorem
1.2 in [8])

1—g(2)p(2)" = (1= [z[)F(2) (2 €B).

Since the space L(&,€&,) is topologically isomorphic to a Hilbert space, the
bounded analytic function ¢ has radial limits ¢(z) = lim,_,; ¢(rz) for almost
every z € 0B. The resulting bounded measurable function ¢ : 0B — L(&, E,)
satisfies the condition

1 - @(2)@(2)" = lim(1 — r?)F(rz)

r—1

for almost every z € 0B. Hence K, = trace (1 — @¢*) and the curvature
invariant has the representation

K(T) = / trace(1 — 3(2)5(2)")do(2).

OB

Let (ex) be an orthonormal basis of £. Since, for z € JB,

tracee, (((2)@(2)") = traces (¢(2)"@ Z 15(2)exl,

it follows that K(7T') = dim(&,) — >, ||<pek||H2(5 By choosing an orthonor-

mal basis (b;) of H%(E,), the series occurring on the right can be rewritten
as

DD by Toer)? ZHT* (0)]|* = traceA? (T, T7),
kJ

where we have used Lemma 2.1 with X = T,,. The proof of Lemma 2.1 shows
that the operator A% (1p2(c,)) is the orthogonal projection from H*(,) onto
the closed subspace con31st1ng of all constant functions. Thus we have shown
that K(7') = trace A (1—T,T}). According to the proof of the implication
(ii) = (iii) of Theorem 2.4 we have

Ay, (1 =T,T7) = As, () = Ag, (Q67),

where Q : H — H?(E,) is the contraction Q(£)(z) = C(1y — ZA) 1€ defined
in Lemma 2.2.
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Theorem 3.5 (Arveson)  For every n—contraction T € L(H)™ with finite—
dimensional defect space £, = Imy\/1 -1  T;T}, the operator Ag, (")
belongs to the trace class C*(H*(E.)), and we have

K(T) = trace Ag, (2027).

The above result should be compared with Theorem C in Arveson [8]. The
interested reader will have no difficulties to show that the operator Ag, (€2€2*)
is precisely the curvature operator introduced by Arveson in [8] (see Defini-
tion 3.5 and the subsequent remarks).

4 Interpolation in H*(B) on uniqueness subsets of B

It is well known that the interpolation results presented in Section 3 do
not hold for the full class of H°—functions on the unit ball B in C",
see for instance [2], [10]. In this respect it is surprising to find a simple
Nevanlinna-Pick type theorem on small subsets of B valid within the class
H>(B). A similar phenomenon was observed in the note [20]. A different
proof of these results in the scalar—valued case can be found in Beatrous and
Burbea [13] and in Szafraniec [33].

Since a conformal map on the range of analytic maps f : B — D does
not change the interpolation problem, we shall work with analytic maps
f :B — C, which take values in the right half plane

C. ={z€C; Rez > 0}.

For such maps, an analogue of the classical Riesz-Herglotz formula is well
known (see [23], [4]). More specifically, there exists a bijection between
analytic maps f : B — C, and positive Borel measures p on the unit
sphere 0B which vanish on the monomials

Zazﬂ’ 327] € {1127" - ’n} : (ai - ﬁi)(aj - BJ) < 0’

22728 (qp, + B + 1 — (la| + B8] + n)|z?),
227 (g + B+ 1 — (la] + |8] + 1)z ),
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where o, 8 € N* and 1 < k£ < n. The bijective correspondence is given by
the formula

2
fz) = / (2 _1)du(u)+im f0) (z€B).  (41)
OB (1 - <Zau>)n
Note that 21— is the Szegd kernel of the unit ball and that the measure

(1={zw))"
p is the distributional boundary limit of Re(f).

In this case an elementary computation shows that the kernel

@+ Tw) _ dpu()
KT = (2 o = o TG~y

defines a positive definite function Ky : B x B — C.

Viceversa, if Ky is a positive definite kernel, then taking its restriction
to the diagonal z = w we obtain that Re(f) > 0. As Koranyi and
Pukanszky [23] observed in the case of the unit polydisc, it is sufficient
to ask the positivity of the kernel Ky on a much smaller set. The next
result gives an extension of their original theorem to the case of the unit ball.

A subset S C B is called a uniqueness set for analytic functions if there exists
a point p € S with the property that for all 0 < r < 1, the only function
f € O(B(p,r)) that vanishes on the set S N B(p,r) is the trivial function

f=0.

Theorem 4.1 Let S C B be a uniqueness set for analytic functions. Let
¢: S —> C, be a map with the property that the kernel

¢(2) + ¢(w)
(1= (zw))"

15 positive definite on S X S. Then there exists an analytic map f: B — C,
such that f(z) = ¢(z) for all z € S.

Proof. According to Kolmogorov’s factorization theorem, there exists a
Hilbert space H and a vector—valued map k : S — H with

¢(z) + ¢(w)

W = (k(2), k(w)) (z,w € 9). (4.2)
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By applying a suitable Moebius transform we can reduce the assertion to
the case that p = 0 is the point of analytic uniqueness for the set S.

By evaluating equation (4.2) successively at z = 0 and w = 0 we obtain the
identity

(1= (z,w))"(k(2), k(w)) = (k(2), k(0)) + (k(0), k(w)) — (k(0), k(0)). (4.3)

Let us write

(1= {z,w)" = Z (—1) %l z0we

laj<n

with suitable constants ¢, > 0. Then equation (4.3) is easily seen to be
equivalent to

S e (), uk(w)),

a€0(n)

where E(n) consists of all multiindices & € N* with 0 # |a| < n even and
O(n) contains all multiindices o € N* with |a| < n odd.

Let H, = H® @E(n) H and H, = @o(n) H be corresponding direct sums
of copies of the Hilbert space H. It follows that there exists a contraction
V . H, — H, with the property that

V((Vcazk(2))acom) = (k(2) = k(0)) ® (VCaz"k(2))acm) (2 € S).

In particular, by taking projections onto the first factor, we obtain bounded
linear operators T, : H — H such that

k(z = Y Vea'T.k(z)  (z€09).

|a| odd

Thus there exists 0 < p < 1 such that

1Y Ve Tall <1 (121 < p).

|| odd

Consequently, for |z| small enough, we obtain the formula

=[I— Z ca?®Ty] 1k(0).

|a| odd
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But this equation defines an analytic extension of the map
k:SNB(0,p) — H toamap ¢£: B(0,p) — H.

In virtue of the analytic uniqueness property assumed at p = 0, equation
(4.3) yields

(1 = (z,w))"{l(2), £(w)) = (€(2), £(0)) + (£(0), £(w)) = (£(0), £(0)) GZ"(JLUQ)S p)-

Recall that so far we have £(z) = k(z) only if z € SN B(0,p). Our next
aim is to show that actually the function / extends analytically to the whole
unit ball B.

To this aim, let £(z) = )" £,2®, be the Taylor expansion of £ at z = 0. By
evaluating both sides of (4.5) in z and @ and by comparing the coefficients
of the resulting power series in (z,w), one obtains the identity

D ltallPzw® = |l6o|?/(1 = (z,))"

for (z,w) € B(0, p)?. Since the right-hand side is analytic on B?, the power
series on the left converges absolutely for (z,w) € B%. Using the observation

that
D all® 20
o
converges for all z € B, one easily obtains that the series

l(z) = Z £y 2%

acN”

converges on B and defines a holomorphic extension of the function
¢: B(0, p) — H which satisfies equation (4.5) for all z,w € B.

By using equation (4.3) and the analytic uniqueness of B(0, p) NS for O(B)
we obtain, for all z € B and w € S,

(1 = (2, w))"{(2), k(w)) = (€(2), k(0)) + (k(0), k(w)) — (k(0), k(0)). (4.6)

Now it suffices to choose z = w € S and to substract twice the real part of
(4.6) from the sum of equations (4.3) and (4.5) to see that

(1= [w)"le(w) — k(w)[[* =0 (w € S).
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To complete the proof observe that f(z) = (£(z),4(0)) — ¢(0) defines an
analytic function with non-negative real part on B which extends ¢.
O

If one replaces the field of complex numbers by the algebra L(H) of all
bounded operators on a given Hilbert space H, one obtains easily an
operator—valued version of the last result.

Theorem 4.2  Let H be a Hilbert space and let S C B be a uniqueness
set for analytic functions. Then a map ¢ : S — L(H) can be extended to a
holomorphic function f :B — L(H) with positive real part

Ref(z) >0 (z €B)
if and only if the function K : S x S — L(H) defined by

¢(2) + ¢(w)*
(1= {z,w))"

18 positive definite. a

K(z,w) =

To prove Theorem 4.2 it suffices to apply the operator—valued version of Kol-
mogorov’s factorization theorem and then to argue exactly as in the previous
proof. The reader will have no problems to fill in the details. A version of
Theorem 4.1 for the polydisc can be found in [20]. In [13] and [33] corre-
sponding results are proved for Hilbert spaces of analytic functions given by
suitable reproducing kernels.
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