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Abstract

We search for the best fit in Frobenius norm of A € C™*" by

a matrix product BC*, where B € C™*" and C € C"*", r < m so

B = {bjj} i=1,....m definite by some unknown parameters o1,..., 0,
j=1,...,r

0bj;
k << mr and all partial derivatives of 5—” are definite, bounded and
a]

can be computed analytically.

We show that this problem transforms to a new minimization prob-
lem with only & unknowns, with analytical computation of gradient of
minimized function by all . The complexity of computation of gradi-
ent is only 4 times bigger than the complexity of computation of the
function, and this new algorithm needs only 3mr additional memory.

We apply this approach for solution of the three-way decomposition
problem and obtain good results of convergence of Broyden algorithm.

1 Introduction

Suppose we have A € C™*". The idea is to find B € C™*" and C € C™*",
r < m Sso

min [|A - B(5)C*[|%, (1)
C,U’l,...,ak
where B = {b;;} i=1,...,m defined by unknown parameters o7,..., 04, k <<
=1, ...,r

5bis

mr and all partial derivatives of —~ are definite, bounded and can be com-
a1

puted analytically.

This problem occurs in statistics [1], nuclear magnetic resonance [2] and
three-way decomposition [3]. Usually, the number of parameters o is small
(3—10in [2]) since m and n can be sufficiently large (100 — 1000 in [3]), then
it is impossible to make gradient minimization with thousands variables.

If we freeze B then this functional is linear in C, and C' = A*B(B*B) !, then
the problem (1) turns to the new nonlinear problem with only & unknowns:

min ||A — B(B*B) 'B*Al||r =

0140

min y/[|4[} — | 4°Q(B)| 3, @

01 4000y0

where Q(B) € C™" contains orthonormal subspace from B.



The main difficulty in applying minimization methods for (2) is a computa-
tion of gradient of functional by all 0. Finite difference method needs k or 2k
computations of this functional for one evaluation of gradient and cannot be
considered an accurate. There is a good alternative for it — Baur-Strassen
(BS) method [5], which allows to compute a gradient of function for only 5n
operations if the original function can be computed by n simple arithmetical
operations with no more than 2 operands. The big disadvantage of the BS
method is a memory requirement: it needs O(n) words in memory, which is
too much in the most applications.

We suggest a new approach to compute the gradient of function containing
Modified Gramm-Schmidt (MGS) orthogonalization [6] with low memory
requirements based on BS method.

2 Algorithm

To compute (2) we should make the following steps:

1) create B from oy, ..., 0;
2) compute orthonormal subspace @ in B;
3) compute (2).

In this article we discuss how to compute a gradient § € C™ of (2) by all
entries of B. Further we will use both G € C™*" and ¢ for the same data.
Let the dependence of B by o1,...,0, be so simple that one can compute
the gradient of (2) by oy,...,0% if G is known.
Steps 2 and 3 need mr additional words in memory and compute within
2mr(r 4+ n) arithmetical operations in case that MGS algorithm is used for
the step 2. BS algorithm can compute the gradient with the same order of
arithmetical complexity but with 4mr(r + n) additional words in memory.
Let us consider a computation of (2) from B. Let B = [by,...,b] be an
initial matrix and @ = [qy, ..., ¢x] the orthonormal subspace, which we are
going to compute. Then

1

I
doi=2,1
u:bi:
doj=11—1
U =u—gigu
enddo



u

q.:—
bl

enddo

F= A= 1Al
=1

Let’s construct a gradient of f by B. We call dy; € C™ the vector of deriva-
tives — each k-th element of this vector contains the derivative of k-th ele-
ment of vector y;. Then there are the following formulas for the gradient:

1

do 1 =2, r

doj=1,1—-1

QUunew = (I — ¢;47)duog — (G5 Uotal + Uoraq})dg;
enddo
dg; = (I — qig;)du
[[ull2

enddo
df = —- Z g AA*dg

We can write all these equations in matrix notations:

Imr)(m'r 0 O §
FmT‘X mr(;+1) Lmr(;+1) « mr(;+1) O ( @ ) — ( Imrgmr ) or
0 : 1 g
mr(r+1)
2
I F* 0 9 1
mrXxXmr mrx mr(;+1) % 0
E3
0 mr(r+1) % mr(r+1) h””'(T‘Fl) . = - ) (3)
2 2 2 : .
0 0 1 . 0

where Lmr(r+1) me(r41) is a lower block triangular matrix with the block size

m X m. ThlS matrlx has I,,«., blocks on the diagonal. The block matrix
[F, L] contains no more than 3 nonzero blocks in each row (see Fig. 1 for
one example with 4 vectors). We marked with * the elements that we are
not interested in, g is vector of the gradient of original function by all b;;.
To compute § we should solve the linear system (3). If we create L and F
matrices, then we need at least mr(r + 3) words to solve L.



by | b bs by | g1 | U2 | @2 | w13 | U2s | Q3 | Uia | Uoa | U4 | Qu
@ | S I
U12 Wy Va I
g2 Sy | 1
U13 W V3 I
U23 Vs | Ws I
g3 Sz | I
U4 Wy | Vi 1
Ugg Vi W, I
U3y V, Wy | I
q4 Sy | 1

*

Figure 1 Shows the matrix [F, L] when B has 4 vectors, here S = IH_JT'?; ,
V =qul +uqg*, W =qq* — I.

We suggest an improvement where we need only 4mr words to store some
parts of L and F' but still compute the solution. Let’s remark that in the loop
for the variable j we update (i — 1) times vector u. If we store matrices B
and () we can recompute all updates of u from this loop for particular ¢ with
2(i — 1)M additional arithmetical operations and store it in one additional
array T € C™". Then, during backward substitution we recompute all
updates of u only when we need it. Obviously, it needs r — 1 times for
all ¢ = r,...,2. All multiplications to matrices S, V and W need O(m)
arithmetical operations. Thus we need only B, ), T" and G arrays with size
m X r for this computation. Here is an algorithm to compute G:

G = —%AA*Q
doi=r,1, -1
t1 = b,
doj=1,1—1
Zj = ;tj
tiv1 =15 — 2iq;
enddo i
9 — 4999
T
doj=i—1,1, -1
a=q;g;
9; =95 — %j9i — 'tj
9i = gi — Qqj
enddo
enddo



Table 1. Memory requirements (in words) for FD, BS, AGS, AMGS methods.

m n r FD BS AGS | AMGS

2 1 4 152 12 14
10 2 2 40 2.5k 92 124
100 10 10 1.9k | 619k | 4.1k 5.9k
1000 | 100 | 100 | 195k | 610m | 410k 586k

1000 | 100 | 10 | 19.5k | 33.5m | 39.3k | 58.6k
1000 | 10 | 100 | 195k | 337m | 410k | 586k

—_

Here we use Z = (21,...,2,) € C" array with only r elements for better
performance.

The total arithmetical complexity of computation of gradient is 4mr(2r +n)
operations. If we compare it with MGS (2mr(r + n)) it is less than 4 times
bigger.

We obtain similar results for Gramm-Schmidt (not MGS) orthogonalization:

r(r+1)

operations, but because of stability we do not recommend to use it.

it needs 3mr + words in memory and works with 2mr(3r + 2n)

3 Numerical Experiments

First we compare the general characteristics of our new approach with those
of well known approaches. We create the complex matrices A and B with
random numbers and compute the derivatives for the different size of the
problems by our new methods based on Gramm-Schmidt (AGS) and Modified
Gramm-Schmidt (AMGS) algorithms and compare it with finite difference
(FD) and Baur-Strassen (BS) methods (Tables 1, 2).

Further, we show how those algorithms work. We make the set of experiments
and check the number of iterations for the convergence of Broyden method
[7]. In this set of experiments the matrix B is real matrix with b; = p; ® ¢; €
IR"2, 1=1,..., R, where ® is Kronecker product of vectors, p;,¢; € IR" are
unknown vectors. We change n € [2,20] and r € [2,20] (Table 3). This
problem occurs in the three-way decomposition [3, 4].

Hence, our new method (AMGS) is stable enough (like BS method) and
faster than BS and FD methods up to thousand times and does not require
much additional memory (only 4 times more than FD).



Table 2. Computational time of FD, BS, AGS, AMGS methods on AMD

Athlon 500.
m n r FD BS AGS | AMGS
10 2 2 | 0.0003s | 0.0001s | 0.0003s | 0.0001s
100 | 10 | 10 2.09s 0.055s | 0.0016s | 0.0011s
1000 | 100 | 100 95h 1.07m 1.75s 2.08s
1000 | 100 | 10 9.2h 3.59s 0.092s | 0.093s
1000 | 10 | 100 50h 38.8s 1.54s 2.05s

Table 3. The dependence of the total number of iterations in the Broyden
method on the method of computation of the gradient and the size of problem
for the first series of experiments.

m ni|r| N, FD BS AGS | AMGS
2 x 2 2| 2 8 4 4 4 4
59X b 5 | 5 | 125 244 238 521 238
10 x 10 | 10 | 10 | 1000 | 3061 | 1581 | > 5000 | 1581
20 x 20 | 20 | 20 | 8000 | > 5000 | 2464 | > 5000 | 2464

N, is the total number of unknowns.
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