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Abstract

We consider the problem of minimizing

Muxchol = [ (xfi (@) + 0 =) () do

p/2
+o (/ | Au? dm) ,
Q

0 <p<1 h €R, o >0, among functions u: R¢ > Q — R?,
u/9q = 0, and measurable characteristic functions x: 2 — R. Here f,j' ,
f~ denote quadratic potentials defined on the space of all symmetric
d x d matrices, h is the minimum energy of fh+ and ¢(u) denotes the
symmetric gradient of the displacement field. An equilibrium state
@, x of I[-,-,h,o] is termed one-phase if ¥ = 0 or x = 1, two—phase
otherwise. We investigate in which way the distribution of phases is
affected by the choice of the parameters h and o.

AMS Subject Classification: 74 B 05, 74 G 65, 74 N 99 .
Key words: elastic materials, phase transition, equilibrium states, regular-
ization.

1 Introduction

We consider an elastic medium which can exist in two different phases. If
the medium occupies a bounded region 2 C R? (assumed to be of class C?),
then the energy density of the first (second) phase is given by

i (e) = (A" (e(u) =€), e(u) —€") + h,
(F () = (A () —¢).ew) —¢))

where u = (u',...,u%): Q — R? s the field of displacements, e (u) = 5 (d;u? +
0ju')1<ij<q denotes the corresponding strain tensor, and A*: S — S are
linear, symmetric operators defined on the space S¢ of all symmetric d x d
matrices having the meaning of the tensors of elastic moduli of the first and
the second phase. Finally, £ € S? denote the stress—free strains of the it
phase, and we use the symbol (g, ») := tr (€ 5) for the scalar product in S
Thus, the energy density of each phase is a quadratic function of the linear



strain, where the energy density of the first phase depends in addition on the
parameter A € R. Let us state the hypotheses imposed on the data: A* are
assumed to be positive, i.e. for some number v > 0 we have

(1.1) vl < (A%ee) < vtle|* forall £ €S,

hence the parameter h measures the difference between the minima of f;"
and f~. As a second condition concerning the tensors of elastic moduli we
require that for some number p € (0, v)

(1.2) (At = A7)e,e)| < plef’ forall e €S?
is satisfied. Finally, we suppose that
(1.3) AYER 4 ATE

is valid. Clearly, (1.2) holds in case that AT = A~ for which (1.3) reduces
to the condition £ # £~. If x denotes the characteristic function of the set
occupied by the first phase, then it is natural to take the functional

L) Tt = [ (e Ew) + 0= (ew)) da

as the total deformation energy of the medium and to define an equilibrium
state of J as a minimizing pair (%, Y) consisting of a deformation 4 and a
measurable characteristic function x. Following standard convention we say
that the equilibrium state is one—phase if Y = 0 or x = 1, two—phase oth-
erwise. Let us consider displacement fields v vanishing on 0€2. Then the
domain of definition of the functional J[-, -, | is the space of all pairs (u, x)

with v € X :=W;' (€ R?) (equipped with the norm |Julx = |le(u)||r20;59))
and y denoting an arbitrary measurable characteristic function 2 — R.
Unfortunately, the variational problem J[-,-,h] — min may fail to have
solutions as it is shown by an example in [MO]. One way to overcome
this difficulty is to introduce the quasiconvex envelope f, of the integrand
o =min{f;", 7} < x fif + (1 — x) f~ (see [DA] for a definition) and to
pass to the relaxed problem

/th(E(u)) dr — min in X



(note that by Dacorogna’s formula v = 0 is a solution; nontrivial solutions
were produced in [OS2]), we refer the reader to [DA], [KO], [SE] for a more
detailed outline of this approach and for further references. From the physical
point of view (compare [GR]) it is also reasonable to consider a regulariza-
tion of the functional J from (1.4) taking the area of the separating surface
between the different phases into account, i.e. we replace J by the energy

(1.5) Jlux,ho] = ﬂmxmy+a/va,
Q

where o > 0 denotes a parameter, and the characteristic function y is re-
quired to be an element of the space BV (Q2) of all functions having bounded
variation (see for example [GIU] for definitions). This model was investi-
gated in [OS1], [OS2], [BFO] establishing various existence results for the
functional from (1.5), in particular, in the paper [BFO] we showed how the
distribution of phases depends on the choices for the parameters h and o.
In the present note we regularize J[u, x, h] by adding a penalty term involving
higher order derivatives of the displacement field. In principal, this model
was proposed by Kohn and Miiller in [KM] and [MU]. To be precise, suppose
that a number 0 < p < 1 is fixed, and let for ¢ > 0

b
2

(1.6) fu,x ho] = Jlu,x,h] +0 (/Q\Au|2dx) |

where now u € H := W2(Q;R?) N X and (as in (1.4))
XEM = {measurable characteristic functions €2 — R} .

With a slight abuse of notation we sometimes only assume y € L*(Q2), 0 <
x <1 a.e., equilibrium states of I however are always defined w.r.t. H X M.
Note, that on account of 9Q € C?, the quantity

lullx = 1 Aullaame)

introduces a norm on the space H being equivalent to the W2-norm which is
a consequence of the Calderon—Zygmund regularity results. Our main result
now concerns the analysis of the effect of the parameters ~ € R and ¢ > 0
on the distribution of phases, we have

THEOREM 1.1 Let (1.1)-(1.8) hold. Then, for each h € R and all o > 0,
the functional I[-,-, h,o| attains its minimum on the set H x M. There are
two bounded, continuous functions h*(o), o > 0, and a number o* > 0 with
the following properties



A

h*(c) > h on (0,06%), h'(o)

Il
>

for o> o*;

If
>

h=(c) < h on (0,6%), h (o) for o > o*;

hoi= (A7€7,67) — (A€ €,
ht strictly decreases on (0,0%), h™ is strictly increasing on (0,0%).

The graphs of h* divide the half-plane of parameters o > 0, h € R, into
three open regions

A = {(o,h): 0>0,h>hT(0)},
B = {(o,h): 0<o<0*, h (0c)<h<hT(o)},
C = {(o,h): 0>0,h<h (0)},
in which we have the following distribution of phases:
i) for (o,h) € A we only have the one-phase equilibrium 4 = 0, x = 0;
it) for (o,h) € C only the one—phase equilibrium 4 =0, x = 1 exists,
iii) for (o,h) € B only two—phase states of equilibria exist.
On the graphs of h* we have the following distribution of equilibrium states:

w) for h = h*(0), 0 < 0 < o*, we have the one—phase equilibrium state

=0, x =0 and at least one two—phase equilibrium,

(0), 0 < 0 < 0%, we have the one-phase equilibrium state
u=0, x =1 and at least one two—phase equilibrium;

vi) for h = il, o > o*, the equilibrium states consist of the pairs 4 = 0,
X = any measurable characteristic function;
vii) for h = h, 0 = o* there exist the equilibrium states & = 0, § =

arbitary measurable characteristic function and at least one two—phase
equilibrium state with 4 # 0.



REMARK 1.2  a) Ezcept for the behaviour at h = h together with o >
o* (see vi) and vii)) Theorem 1.1 corresponds in a qualitative sense to
Theorem 2.1 in [BFO]. Of course we do not claim that the functions
h* as well as the numbers o* are the same in both cases.

b) The different behaviour for the choice h = h, o > o* originates from

the fact that in this case the penalty term o (fQ |Aul? d:c)p/2 does not
create a formation of phases.

¢) In [0S2] the reader will find further comments on the above model,
moreover, the choice p < 1 s explained.

Concerning the regularity of solutions we have the following

THEOREM 1.3 With the above notation let (i,%) € H x M denote an
equilibrium state of I[-,-, h,o], 0 > 0. Then i is of class C*>*(Q; R%) for any
0<a<l.

REMARK 1.4 Forh€R, 0 >0 andu € H let (recall f, = min{f;", f~})

I[uho] = /fh d$+0||Au||L2de

Clearly, the variational problem

I — min on H

has at least one solution G (compare also Lemma 2.2 and Theorem 2.8 below).

Forw e H let
0 if fif(e(w) > f(e(w),
1 otherwise .
Then we have
Iu,x,h,0] > I[u,h,0] > I[i,h,0] = I[i,xa,h,0]

for any u € H and any measurable characteristic function x. Thus U gener-
ates a minimizing pair (G, xa) of I[-, -, h,o]. Conversely, consider an equilib-
rium state (4, x) of I[-,-, h,o]. Observing (recall f < Xfif +(1—=x)f")

Ifi,h,o] < IM6, X, h,0] < Ifu,Xu h,0] = Iu,h,0]  forall ueH

5



we deduce f[, h, o|-minimality of ii. So there is a one—to—one correspondence
between the minimizing deformation fields of both functionals. But the defor-
mation field u alone does not serve the complete information, for example,
in case u = 0 there exist various possibilities for the distribution of phases as
described in Theorem 1.1.

As an alternative to the model proposed in Theorem 1.1 we may associate
to each T [-, h, o]|-minimizing deformation field G the function xu and intro-
duce the notion of one (two)-phase equilibrium states (G, xz) as before. Then
again we get the statements of Theorem 1.1 where in part vi) and vii) the
phrase “x = any measurable characteristic function” has to be replaced by the
requirement X = Xo. Obviously the number of equilibrium states (4, xa) gen-
erated by I [-, h, o|-minimizers G is in general much smaller than the number
of equilibria considered in the first model: if x is a measurable characteristic
function satisfying

/th(e(ﬁ)) dr = /Q ()th* (e(a)) + (1 — x)f*(g(a))) d |

then (4,X) is a minimizing pair for I[-,- h,o]. But since we are mainly
interested in the qualitative behaviour of the distribution of phases depending
on h and o, we do not see any principal difference between both models except
for the different behaviour at h = ;z, o>o".

REMARK 1.5 At the end, let us briefly discuss some situations for which
the non-uniqueness w.r.t. the function x can be removed. Let (4, x) denote
an equilibrium state of I[u, x, h, o] with X := xa. We introduce the sets

o [f,j(a(a)) > (<) f*(e(ﬂ))}’
B = [Rew) = )]

and consider x € L>*(Q), 0 < x < 1. Then
(L.7) I, x, h,o] = I[d,x,h,o0]
if and only if



A 0 on ET
Since X = Xa = 1 on E- ' W€ Ssee

(1.8) X =X on ETUE™,

and the “non-uniqueness” can be excluded for the case that Ey is a set of
Lebesgue measure zero. In order to find a sufficient condition for |Ey| = 0
let us assume that 4 Z 0. Then ||Ad|f2qray > 0 and for any v € H the
expression || At +tAv|| 2 qraey > 0 is differentiable at t = 0. For x € L*(Q),
0<x<1, with (1.8) and all v € H we have according to (1.7)

d

%ﬁ:ol[a_{_tv’x’h’a] = 0, ie.

U

2 /QX <A+ (e(@) — £7) — A= () — €7), e(v)>
(1.9) +2/Q<A_e(v),a(a)—§_>dx+pa (/Q|Aa|2>

= 0.

X

[N

-1
/ At - Avdz
Q

Let |Ey| > 0. Then we use (1.9) with x = 0 on Ey and with x = ® on Ej,
where ® € L*(Ey), 0 < ® < 1. Subtracting the results we get

/ @ (A* (2(8) ~€°) = A~ (i) —€7).c(v) ) do = 0,
Ey
and since ® can be chosen arbitrarily, this turns into

(A (e(@) — €4) = A (e(@) — € ),2(v) ) = 0

a.e. on Ey. Consider a Lebesgue point xo € Ey of e(4) and let v(x) =
n(z) z, E' where n € C°(Q), n = 1 near z, and E' is the 1™ standard
unit-vector in RY. Then e(v)(zo) = (Js 6*) and the above identity

1<i,5<d
implies

At (e(@)—€f)—A (e(a)—€¢7) = 0
on Fy, hence

(AT —AT)e(a) = ATET AL,

7



and we get a contradiction if we assume that
(1.10) ATEr —A ¢ dIm(AT - A)

holds. For ezample we have (1.10) in case AT = A~ together with & # £~.
Thus the assumption 4 % 0 combined with (1.10) shows |Ey| =0 and we can
associate to U a unique function x such that (1.7) is valid.

Our paper is organized as follows: in Section 2 we prove some existence and
lower semicontinuity results concerning the functional I from (1.6). Section
3 contains a series of lemmata which are used in Section 4 and Section 5 to
prove satement i)—vii) of Theorem 1.1. In a last section we prove Theorem
1.3.

2 Some existence results
From now on we assume that all the conditions stated in Section 1 are valid.

LEMMA 2.1 Let h € R, 0 > 0 be given. Then we have for any (u,X) €
HxM

4+ 12
I

14 —
Fllullx +ollully < Iu,x, b, 0]+ h|Q] + €1 +1e7°) -

Proof. Assumption (1.1) implies
Iu, x, h,0] > V/|€(U)|2d$—|h||9|+0||U||’}1
Q
1 2 p
— (g + e ds
9 /Q(|<A+a(u),§+>| (A c(w).&)]) de.

The lemma is proved by combining this inequality with
(A*e, &) < \/(Aie,5> \/(Aié,é). |

Next we establish a lower semicontinuity result



LEMMA 2.2 Consider sequences {un}, {xn}, {Pn} and {o,}, u, € H,
Xn € L®(Q), 0 < x <1, hy, € R, 0, > 0 such that u, — u in H, Xn — X
in L*(Q), h, — h and 0, — 0 as n — oo. Then we have

Iu,x,h,o] < liminf Iy, Xn, An, 00 -
n—0o0

Proof. The uniform L*-bound together with the weak L?-convergence of
the sequence {x,} yields

Xn = x in L*(Q) forany s<oco, 0<yx<1 ae.
The weak H-convergence of the sequence {u,} gives in addition
e(up) "=° e(u) in L'(;SY  for some 7> 2,

thus

Ity Xns hny, 0] — Iu,x,h,0] as n— oco.
Moreover, again by weak convergence of the sequence {u,,},

lullyy < timin [

i.e. we get the estimate

T, X, hyo] = I, x, h, 0] + o[l

IN

. . . . p
h;gg}lf[[un, Xns Py 0] + hﬁggolf (o0 |luall)

IN

lim inf (I[tn, X, i, O] + O [[nl %)
n—o0

= liminf I'[ug,, Xn, hn, On) -
n—o0

As a consequence we obtain the following existence theorem [ |

THEOREM 2.3 The functional I]-,-,h,0], h € R, 0 > 0, attains its min-
imum on the set H x M.

Proof. Lemma 2.1 immediately gives

= inf [ , h, > —o00,
v e [u, X, h, 0] o0



and we may consider a minimizing sequence (uy,, X») s.t. (again recall Lemma
2.1)

Up —: 4 in H, x, —: X in L*(Q) as n— .

We do not know that x is an element of M, however 0 < Y < 1 and, by
Lemma 2.2,

(2.1) I[4, X, h,o] < liminf I[u,, xn, b, o]
n—oo
Therefore, if y is defined via

0 on the set [f;F ((a)
1 ontheset [f;(e(a)) <

v

and if we observe (2.1) together with

U @) + (1= @) = 2(fHE@) - @) + (@)
> X (fif (e@) = £ (@) ) + £~ (@),

(4,x) € H x M is seen to be an equilibrium state of I. [

Next, consider the energies of one-phase deformations, i.e. we let
Mol = Tl = [ f(ew) do+olul

I [u,0] = I[u,0,h,0] = /f ))dz+o|lulff, uweH.

LEMMA 2.4 On H the functionals I* attain their unique minima at u* =
0.

Proof. For any u € H we have
Muhol = [ [(A% () =€), e =€) + ] da + ol
_ /Q<A+e(u),s(u)>d$+ QAT ) + b1 + o |Jul,
> [Q[{ATERET) + |9,

10



where equality holds if and only if v = 0. An analogous inequality is true for
I~ and the lemma is proved. |

We finish this section by introducing the quantity Io(h) := min{I"[0, h, o], I~[0, 0]},
ie.

et oot 2
(b = Q| ((ATEr, €7) +h), thl,
QI{A7¢7,€7), hzh,

h = (ATE,E) — (ATt e,

which measures the dependence of the energy of one-phase equilibria on the
parameter h.

3 Auxiliary results

In this section we prove (under the hypotheses stated in Section 1) a series
of auxiliary results which are needed in Section 4 to show Theorem 1.1. We
start with two lemmata estimating the X -norm of equilibrium states.

LEMMA 3.1 Consider an equilibrium state (u,x) of I[-,-, h,o]|. Then

31) ol + @ - pllalk < 2147& - AT VIQ lallx

holds true, in particular, there is a constant R, not depending on h, o, such
that

(3.2) lallx = lle(@)r2@sy < R.
Proof. The minimizing property yields /[, x, h, o] < I[0, X, h, 0], i.e.
wlilly + [ %4A = A7) e(@). (@) do + [ (A”e(@), (@) da
Q Q
+2 [ Rl Ae - At ds < 0,
Q

thus the assertions follow from (1.1)-(1.3). [

11



LEMMA 3.2 There is a real number § > 0 such that we have for any
equilibrium state (4, x) of I[-,-, h,0], 4 # 0,

(3.3) lallx® > o

Proof. From the Calderon-Zygmund regularity results (compare, for ex-
ample [GT], Theorem 9.14 and 9.15) we deduce the existence of a positve
number k = (2, d) such that

lallx = lle(@llz2@sy < llillwgopre < wllAdl@py = &lldlla-

(3.1) gives

ollal, < 2[AT¢T—ATEVIl lallx

< 20Atet - AT [ VI llallx " w lall

implying Lemma 3.2 since
1
o
2|ATEY — A&/ kP

lallx™? >

[ |
In the next lemma we investigate the relation between one—phase equilibrium
states and the vanishing of the associated deformation field.
LEMMA 3.3 Consider an equilibrium state (4, x) of I[-,-,h,o]. Then:

a) if (4, x) is one—phase, i.e. Y =0 or x =1, then 4 =0;

b) if h # h and if & = 0, then (@, X) is a one—phase equilibrium;

c) if h = h and if 4 = 0, then any x € M provides an equilibrium state
(0, x)-
Proof. Assume that x =1 (x =0), thus I[-, X, h,o] = IT[-,h,0] (= I"[, 0]),
hence by Lemma 2.4 & = 0 and a) is verified. Next observe that for any
X €M

10, hyo] = [(A*EH,€%) — (A€, €Y + 1] /Q xdz+ Q| (A€, €)
- (h—ﬁ)/nxdxﬂﬁ\(flf,f)-

12



In the case h > h it is seen that
I[O’ X’ h’ G] 2 |Q|<A7£7’€7> )

and equality is true it and only if x = 0. This proves part b) for h > h
the case h < h is treated in the same manner. Finally h = h implies
1[0, x, h,0] = |Q] (A~ &, &) for any x € M, thus we have c). [ |

As a next step we ensure that the existence of one-phase (two-phase) equi-
libria depends continuously on A and o.

LEMMA 3.4 Given two sequences {h,}, {o,} assume that h, — hy and
on — 09 > 0 as n — oo. As usual denote by (i, Xn), (o, Xo) equilibrium
states of I[-,+, hyp,0n] and I[-,-, ho, 00|, respectively.

a) If 4, = 0 (4, Z 0) at least for a subsequence, then there exists an
equilibrium state (g, Xo) satisfying g =0 (g Z0).

b) If Xn = 0 (Xn = 1) for a subsequence, then I[-,-, hy,00] admits an
equilibrium state satisfying 4o =0, Xo =0 (X0 = 1).

c) If hg # h and if 0 # xn £ 1, again at least for a subsequence, then
there is a solution with 0 Z xo Z 1.

Proof. From Lemma 2.1 we deduce

4—|—1/

v, . N
S nlx 4 onllinllly < Iliin, X, b, on] + b 2] + — 5= (|€7* + [€7[?)
4+y

< I00,0, By, 0] + o |92 + —— (€2 + €7,

hence (recall that op > 0) there is a real number ¢ > 0 such that ||d,||x <
¢ < +oo. Passing to a subsequence (not relabelled) we may assume that

U, —: Ug in H as n — o0,

Sobolev’s embedding theorem then gives the existence of a real number r > 1
such that

U, — Uy in WQT(Q;Rd) as n — oo.

13



Moreover, we may assume (again passing to a subsequence if necessary) that
n—

X = Xo in L*(Q), 0<% <1 ae.,

and applying Lemma 2.2 we see for all (u,x) € H x M

I[tg, X0, ho,00] < liminf I[d,, Xn, An, 0n] < lminf Iu, x, by, 0,]
n— o0

n—oQ

= I[’U,, X hO; UO] .

As done in the proof of Theorem 2.3 (compare also Remark 1.4 and Remark
1.5) we may replace X, by a characteristic function xo, € M, which provides
an admissible minimizer (g, Xo) of I[-, -, ho, 0o]-

ad a) If 4, = 0 for a subsequence, then by the above arguments we clearly may
take tig = 0. If 1, # 0 for a subsequence, Lemma 3.2 gives ||tin||% ? > 6 0n,
hence strong convergence in W (Q;R%) proves ||ig||? > 60y, i.e. g Z 0.
ad b) The case x, = 0 for a subsequence shows (with the above notation)
Xo = 0 and (dg,0) is seen to be minimizing. The first assertion of Lemma
3.3 ensures the statement iy = 0. The case X, = 1 is covered by the same
arguments.

ad ¢) We may assume that h, # h for all n sufficiently large. Moreover, by
Lemma 3.3 b) we then observe that 4, # 0, in conclusion Lemma 3.2 gives
lin|l? > 6 0, and therefore the limit @y does not vanish. The claim now
follows from Lemma 3.3 a). [

The volume of the phases depends in a monotonic manner on the parameter
h, more precisely

LEMMA 3.5 Denote by (u;, X;) equilibrium states of I[-,-, h; o], i = 1,2.
Then we have

(s = ha) (IRl el < 0.

Proof. The proof is an imediate consequence of
Iy, X1, h1, 0] < I[dg, X2, b, 0],

I[ta, X2, ho, 0] < I[Uq, X1, he, 0]

14



REMARK 3.6 If there exists an equilibrium state (Uo, Xo) of I[-,-, ho, 0]
satisfying Xo = 0 (xo = 1), then by Lemma 8.5 for h > hy (h < hg) any
equilibrium state (4, x) of I|-,-, h, o] is one—phase, i.e. x =0 (x =1).

If we want two—phase equilibria to exist, then we have to restrict the admis-
sible values for the parameters h and 0. A precise formulation is given in the

next two lemmata.

LEMMA 3.7 There is a real number hy > 0 with the following property:
for any h > hy (h < —hg), for all 0 > 0 and for any equilibrium state (4, x)
of I[-,+,h,0] we have 6t =0 and x =0 (x =1).

Proof. The idea is to find a real number hy > 0 such that for any ¢ > 0 and
for any (u,x) € H x M

(34) I[uaXahmO] 2 I[0,0,ho,O’]-

Once (3.4) is established, (0, 0) is seen to be an equilibrium state of I[-, -, hy, o]
and the first assertion follows from Remark 3.6. The case h < —hy is treated
in the same manner, where we have to increase hg if necessary. Thus, it
remains to show (3.4) which is equivalent to

(3.5)
/QX (A" = A7) e(u), e(w) — 2(A% € = A7, 2(u)) + (AT €4, ¢7)
—(A7¢€7,67) +h0} dz + /Q (A e(u),e(w))dz +allullf, > 0.
We may estimate (0 < A < 1)
(A7 e(u),e(w)) + x {(AT — A7)e(u),e(u))
> (A7e(u)e(w)) = [((A7 = A7) e(u),e(w))]
245 )] < MAe(w), u)) + 3 (A*E5,6),

thus (3.5) is implied by

15



/Q (A7 e(u), e(w) - [{(A" = A7)e(w), =(w))|
“A{(AT + A*)s(u),g(u)ﬂ dz
+/QX [ho + (1 _ %) (AT g+ ety — (% + 1) <A—§—,§—>] dz

> 0.

(3.6)

By (1.1) and (1.2) the first integral on the left-hand side of (3.6) is greater
than or equal to

(v —p =227 |lullk,

hence positive if we choose A sufficiently small. Increasing ), if necessary, we
finally let

— N e e (1 Y gt et ot
he = (1+/\)<A§,§> (1 A)(Ag,g>>0.
With this choice (3.6), hence (3.5), and in conclusion the lemma is valid. W

Except for h # h the existence of two—phase equilibria requires also the
boundedness of o:

LEMMA 3.8 There exits a real number oy > 0 with the following property:
for any o > o¢ and for any h € R the functional I[-,-, h,o| admits only
equilibria (4, X) satisfying 4 = 0.

Proof. Recalling (3.1) and (3.2) one gets
cllaly, < 2/ATET— A€ ||Q)2R,
ie. olall < 2046t —AT¢T|QF ReP,

hence we may estimate

1-p

o aly” < R = (204€" - Am¢T| QR 7
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If & # 0 is supposed, then (3.3) gives
o7 dc <R & o< (R'/8)P,
thus the lemma is proved by letting oy := (R'/J)P. [

As a last auxiliary result on the distribution of phases, a sufficient condition
for the existence of two phase equilibria is given.

LEMMA 3.9 If 0 > 0 is sufficiently small, then I[-,-,iL, o| admits only
equilibria (4, X) satisfying 4 % 0.

Proof. Suppose by contradiction that there is a sequence {o,} of positive
real numbers, o, | 0 as n — oo, such that I[-, -, 71, 0,] admits a one-phase
equilibrium state, i.e. x, = 0 or x, = 1 and, by Lemma 3.3, 4, = 0.
Minimality implies for any (u,x) € H x M

Iu, X, by 0n] > 1[0, Xns hy 0] = |QATE,E7).

Using the definition of A this can be rewritten as

/QX (A% = A7)e(u),e(w) - 2(e(u), A7 €" = A=¢7)] da
+/Q<A‘e(u),e(u)>dx+an||u||1}{ > 0 forany (u,x) € Hx M.

If we replace u by o0, u, divide through o,, and pass to the limit n — oo, we
get

—/X<e(u),A+§+—A_§_>dx > 0 forany (u,x)€ Hx M.
Q

In fact, equality is true since we may consider —u instead of u. Let v =
A" & — AT EF) fix zp € Q and consider p > 0 such that By,(zy) € Q.
Finally we choose x = 1B,z), ¢ € C5°(Q), ¢ = 1 on By,(ry) and let
vp(z) = ep(z) 7y, with 1 < k < d, e € R?. This choice implies on By, (z)

(ei (Sjk + ej 5zk)

N | —
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hence we get

1 : .
0 = /Qxdfcg (vij€ 8jk + i€ 6ir) = |By(o)] (*ye)k .
This gives the contradiction v = 0 and the lemma is proved. |

We finish this section with the following
LEMMA 3.10 For any h € R and for any real number o > 0 we let
Li(o,h) = inf  [I[u, x, h,o].

(u,x)EH XM
Then I (o, h) is a concave function, in particular, I (o, h) is continuous.

Proof. Note that for h and o as above I (o, h) is well defined. Moreover,
for any fixed (u,x) € H x M the mapping (h,o) — I[u, x, h,o] is a linear
function in A and o, hence concave. Since the infimum of a family of concave
functions again is concave, the lemma is seen to be valid. |

4 Proof of Theorem 1.1, i)-iii

Stepl. (Definition of the set B)
Note that by construction we have

(4.1) Li(o,h) < Iy(h) forany heR, o>0.
Inequality (4.1) leads to the definition
B := {(o,h) €R" xR: Ii(0o,h) < Io(h)},
and we observe that
(00, hg) € B & I[-,-, hy,00] admits only two-phase equilibria (4, X) .

By Lemma 3.9, B is known to be non—empty, moreover, B is seen to be open
on account of B = (Iy — I;)7%(0,00) and the continuity of Iy, I;. Finally,
Lemma 3.7 and Lemma 3.8 prove B to be bounded. Given g > 0 let

L(oy) = {heR: (00,h) € B}.

18



LEMMA 4.1 Either we have L(og) = 0 or there exist two uniquely defined
real numbers h*(ay), h™(00) < h < h™(ay), such that

L(O'()) = (h_(O'o),h+(O'o)).

Proof. Suppose that L(og) # (), i.e. there exists a real number 4 € R such
that (09, h) € B. Since B is open L(0y) is also open, thus

N
L(oo) = |JIn., NeNU{oo},
n=1

where I,, # () denote some open, bounded, mutually disjoint intervals. If we
fix one of these intervals I,, = («, ), then «, 3 do not belong to L(oy), hence
(00, @), (00, 8) ¢ B. This proves

(4.2) Li(oo,a) = Iy(a), Ii(00,8) = Io(B), Ii(0o0,h) < Io(h)

for any h € (o, ). Now we claim that & < h < 8, which clearly gives
the lemma. Suppose by contradiction that o > h. From I (09, @) = Io(c)
we see the existence of at least one one—phase equilibrium at (o, ). The
assumption o > h gives

I(a) = [9[{A7¢7,€7) = I[0,0,a,00],

hence the one—phase equilibrium with @ = 0, ¥ = 0 exists for (o9, @). On the
other hand, Remark 3.6 then proves that for A > « only one—phase equilib-
ria with x = 0 exist which contradicts (4.2) and the lemma is proved since
analogous arguments show the second inequality h < B. |

Step 2. (Definition of the functions h* (o))
Following Lemma 4.1 we define for any o > 0 satisfying L(c) # ()
h*(o) := supL(o), h (o) := infL(o).
If L(o) = 0 then we let
(o) == h (o) = h.

Step 3. (Definition of the sets A and O)
The sets A and C' are defined via

A = {(o,h): 0>0, h>h%(0)},

C = {(o,h):0>0, h<h (o)},
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and we claim that for (o,h) € A ((0, h) € C) the functional I[-, -, h, o] admits
only one—phase equilibria (4, x) with & = 0 and x = 0 (x = 1). To verify
our claim we assume (0,h) € A, hence h > h™(0) > h. Recalling (4.2) we
have I1(o,h"(0)) = Iy(h* (o)) and by Remark 3.6 I[-, -, h, o] admits only a
one—phase equilibrium which on account of A > h is of type x = 0. The case
(0,h) € C is treated in the same way, and the claim is proved. Now let

A = {@n):0>0, hxh, Lio.h)=I(h) = (A €.) )}
It is easily seen that
A" = AUgraphh™.

In fact, if (o,h) € A', then we either have h > h* (o) or h = h* (o) since
h < h*(o) would imply two—phase equilibria which are excluded by the
definition of A’. Thus the inclusion “C” is proved. The other inclusion
follows from Lemma 3.4 b). In a similar way we define

o' = {(0,h):0>0, h<h, Il(o,h)zfo(h)z(<A+§+,§+>+h)|m},

C'" = CUgraphh™.

LEMMA 4.2 A" and C' are convex sets.

Proof. Fix two points (o;,h;) € A, i = 1,2, a real number 0 < 7 < 1, and
let 0, := 701+ (1 —7)02, hy :=7hy + (1 — 7) hy. Since 01, 02 > 0 and since
h1, ho > h the assertions o, > 0 and h, > h are trivial, it remains to show

Il(arahr) = IO(hT) = |Q|<A_£_:£_>

However, these equalities are known to be true for o;, h; and since in addition
I; is concave (see Lemma 3.10), we obtain

Il(O'T,hT) Z Tll(O'l,hl)+(1—T)Il(0'2,h2)
= Tlo(h1) + (1 —7)Io(he) = [Q{ATE,ET).

On the other hand, I,(o,h) < Iy(h) holds for any A € R, 0 > 0. This
together with h, > h gives

Li(or, he) < Iolhy) = [Q[{AE,€7).
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This proves the convexity of A’, C' is handled with anologous arguments. Wl

Step 4. (Properties of the functions h*(c))

LEMMA 4.3 The functions h* are bounded and depend continuously on
o > 0. Moreover, h* (o) is convex on (0,00), whereas h™ (o) is concave on
(0,00).

Proof. In Step 1. it was shown that B is bounded, hence with Lemma 4.1
the functions h* are seen to be uniformly bounded on (0, 00). Thus we only
have to prove that ht (h~) is convex (concave) which will imply continuity.
Now fix 01, 09 > 0,0 < 7 < 1, and observe that (o;,h"(0;)) € A", i =1,2. In
fact, h*(0;) > h is proved in Lemma 4.1, and the existence of an one-phase
equilibrium of type x = 0 follows from Lemma 3.4 b). Convexity of A’ then
yields
(ro1+ (1= 7)os, Th* (1) + (1 = 7)h*(02)) € A"

7 \a
-~ -~

o =h
Since (&, h) € A" immediately gives (compare Step 3.) h > h*(5), we have
proved the convexity of hA™:
Tht (o) + (1 =7)ht(0s) = h > h*(5) = Rt (o1 +(1—71)os).

Using the same arguments h~ is seen to be concave and the lemma is verified.ll

LEMMA 4.4 There is a real number o* > 0 such that h™ is strictly de-
creasing on (0,0%), whereas h™ is strictly increasing on this intervall. On
(0*,00) both h* and h™ are equal to h.

Proof. By Lemma 3.9 we know that A= (0) < h < ht(0) if 0 < 1 is
sufficiently small. On the other hand, o > 1 implies according to Lemma
3.8 h (0) = h = h*(0). Hence, we may define

of = inf{o>0:h"=h on (0,00)}.
Now assume by contradiction that A* is not strictly decreasing on (0,07 ),

i.e. for some positive numbers 0 < 0y < 03 < 0% we have h*(o1) < h't(0,).
Together with this assumption, convexity of h* gives for any o > o,

ht(o) = h¥(os) _ N'(0s) = h' (o)

o — 09 - 09 — 01

> 0.
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Since o, < o implies h*(0y) > h, we obtain the contradiction ht (o) >
ht(03) > h for any o > 05. Up to now it is proved that h't is strictly de-
creasing on (0,0%). Analogous considerations prove the existence of a real
number o* € (0, 00) such that h~ = h for ¢ > ¢* and such that k™ is strictly
increasing on (0,0 ). It remains to verify 0% = o*: to this purpose observe
that by Lemma 4.1 h=(c) # h* (o) implies h € (h=(c), h™(c)). If we assume
that 0* < o%, then we may find o € (0*,0%) such that (h=(c), h*(0)) # 0
and such that h~ (o) = h. This gives the contradiction h & (h™(0), h(0)).
Again the case 0 > o7 is excluded with the same arguments, and the proof
of Lemma 4.4 is complete. |

5 Equilibrium states of I[-,-,h,o] for points
(o,h) on the graphs of h™*

In this section we prove iv)-vii) of Theorem 1.1.

ad iv). Consider the case 0 < 0 < ¢* and h = h* (o). Letting 0, = o and
by considering a sequence {h,} satisfying h, 1 h as n — oo we may assume
(On, hn) € B for n sufficiently large, hence there exists a sequence of two—
phase equilibria (i, X,) of I[-, -, by, 0,]. Since lim,_,o, h,, = h = h* (o) > iL,
Lemma 3.4 b) is applicable and I[-, -, h*(0), 0] is seen to admit a two—phase
equilibrium. On the other hand, now letting 0, = o and considering a se-
quence {h,}, h, | h as n — oo, we have (o, h,) € A and the same reasoning
proves the existence of a one—phase equilibrium, which on account of Remark
3.6 can only be of type x = 0.

ad v). We can apply the same arguments as used for iv) with obvious modi-
fications.

ad vi). For h = h and ¢ > o* we again apply Lemma 3.4 to find (4, X),
@ = 0, as an equilibrium state of I[-, - h, o]. Here, Lemma 3.3 c¢) shows
any characteristic function y to be admissible. Equilibrium states satisfying
u #% 0 are not possible: if we assume the existence of an equilibrium state
(o, Xo) of I[-, -, h, 00, 09 > 0*, g Z 0, then we obtain for any o € (0%, gy),

~

IO(iAl) = Il(o-ah) S I[a0:5607}}70-] < I[a07>207il70-0]

= Ii(og,h) = Iy(h),
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where we used the existence of equilibria of type 4 = 0 for the parameters
o=0y, h= h.

ad vii). Finally the case h = h and o = 0* has to be discussed. As in vi) equi-
librium states of type & = 0, x = arbitrary characteristic function, are found.
The existence of a two—phase equilibrium state satisfying 4 # 0 is proved by
considering a sequence {0y}, 0, T 0* as n — 00, h, = h, i.e. (0,,h) € B. By
the definition of B we have I1 (0, h) < Iy(h) and, as a consequence (com-
pare Lemma 3.3 ¢)), Uy, Z 0 if (4n, Xn) denotes a corresponding equilibrium
state of I[--, h, on]- With Lemma 3.4 a) assertion vii) holds and the whole
theorem is proved. [ |

6 Proof of Theorem 1.3

W.lo.g. assume that & # 0. Then we have [,|Au|*dz > 0 and letting
ug =10+ tp, t € R, ¢ € CP(Q;R?), minimality of (4, %) implies

d
0 = — I X, h
dt\t:() [ut’Xa ,O']

_ 2/Q<>“<A+ (@) —€) + (L= A (2(a) =€ ).e() ) d

+po (/Q |Aa|2>

hence, letting T = ¢ (Y A" (e(2) — &%) +(1—x) A~ (e(d) —&7)) for a suitable
real number ¢ > 0, we obtain

-1
/Aﬁ:Agpdx,
Q

(6.1) /A@:Aapdaj = /Vgp:de for all ¢ € C5°(Q;R?) .
Q Q

Now we abbreviate U := A4 € L?(2;R?) and denote by U?, T the standard
mollifications of U and T, respectively, where p > 0 is chosen sufficiently
small. Then (6.1) is valid for U”, T in the following sense

/VU”:Vgpd:c = —/Vgp:T”dm, QOECSO(Q;]Rd),
(6.2) Q Q

dist (spt, 092) > p.
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Since ?U?, n € C°(Q2), 0 < n < 1, is admissible in (6.2) for p sufficiently
small, this implies

/772|VU”‘2dx+2/77V77®U”:VU”d:c
Q Q
= —/nQVU”:T”dx—Q/nVn@UP:T”dx,
Q Q

hence, with the help of Young’s inequality,

/772|VUp|2dx < &(n) (/ |Uﬂ\2dx+/ \TPde) :
Q sptn sptn

This proves {U?} to be uniformly bounded in W;,,.(€; R?) which, together
with U? — U in L}, (9 R?) as p — 0, gives U € Wy,,.( R?). As a result
we have the equation

(6.3) /VU:V(pdx = —/T:V(pdx for all ¢ € Cg°(Q;R?) .
Q Q

Now we apply the standard LP—theory for weak solutions of “Av = VT”
as well as again the Calderon-Zygmund regularity results. To be precise
let us first consider the case d = 2. Here g(u) € W} (Q; R™?) implies T €
LP(Q; R¥?) for any p < co. LP—theory gives VU € L? (£2;R™™%) (compare
[GIA], Section 4.3, in particular p. 73), hence Au € W, ,,.(€;R?) for any
p < oo and we obtain Au € Cp*(;R%) for any o € (0,1). Finally, the
assertion follows from the interior Schauder estimates (see [GIA], Theorem
3.6). Next we assume that d > 3 and let s; := 2d/(d — 2[). Then it is easy

to see that
@ e WZ(S;RY) = e(a) € L (Q; R™?)

= Tel"(QR™) = V(Ad)e L (QR™)

loc

(6.4) = AdecW!

s1,loc

(RY) = Ade L

loc

(%R

= aeW?

s2,loc

(Q;R‘l) = T el (Q; ]RdXd)
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This procedure stops if d < 2[. Thus, denote by {* the maximum of all l € N
such that d — 2l > 0. Then s;« is well defined and satisfies s;x > d. In fact,
the latter inequality is equivalent to 2 > d — 2[* which is true on account of
the maximality of [*. Now assume that [* is an even number. Then (6.4)
implies for any p < oo

aeW? (R = (@) € Wy (R

s1%,loc

= (@) e Ly (4R = TelLf (QR>),

loc loc
thus Ad € W, ,,.(€ R?) for any p < co (again compare [GIA], Section 4.3)
and as a consequence At € C2%(€;R?) for all 0 < o < 1. Again the interior
Schauder estimates (see [GIA], Theorem 3.6) prove the result. In the case
that [* is an odd number we conclude
At e W) o (BRY) = Ade W, (%R = Ade L] (4RY)

s1%,loc loc
~ 2 . Rd
= Uuc Wp,lOC(Q’R ) 5

which again is valid for any p < oo, hence ¢(@) € L} (€Q;R¥*4) for any p < oo

loc
and we proceed as before, i.e. Theorem 1.3 is proved. [ |
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