Universität des Saarlandes

Fachrichtung 6.1 – Mathematik

Preprint

The effect of a penalty term involving higher order derivatives on the distribution of phases in an elastic medium with a two-well elastic potential

Michael Bildhauer, Martin Fuchs and Victor Osmolovskii

> Preprint No. 24 Saarbrücken 2000

Universität des Saarlandes

Fachrichtung 6.1 – Mathematik

The effect of a penalty term involving higher order derivatives on the distribution of phases in an elastic medium with a two-well elastic potential

Michael Bildhauer

Saarland University

Department of Mathematics

Postfach 15 11 50

D-66041 Saarbrücken, Germany

E-Mail: bibi@math.uni-sb.de

Martin Fuchs

Saarland University

Department of Mathematics

Postfach 15 11 50

D-66041 Saarbrücken, Germany

E-Mail: fuchs@math.uni-sb.de

Victor Osmolovskii

Mathematics & Mechanics Faculty St. Petersburg State University 198904 St. Petersburg, Russia

submitted: December 6, 2000

Preprint No. 24 Saarbrücken 2000

Edited by FR 6.1 – Mathematik Im Stadtwald D–66041 Saarbrücken Germany

Fax: + 49 681 302 4443 e-mail: preprint@math.uni-sb.de WWW: http://www.math.uni-sb.de/

Abstract

We consider the problem of minimizing

$$I[u,\chi,h,\sigma] = \int_{\Omega} \left(\chi f_h^+ (\varepsilon(u)) + (1-\chi) f^- (\varepsilon(u)) \right) dx$$
$$+ \sigma \left(\int_{\Omega} |\Delta u|^2 dx \right)^{p/2},$$

0 0, among functions $u : \mathbb{R}^d \supset \Omega \to \mathbb{R}^d$, $u_{|\partial\Omega} = 0$, and measurable characteristic functions $\chi : \Omega \to \mathbb{R}$. Here f_h^+ , f^- denote quadratic potentials defined on the space of all symmetric $d \times d$ matrices, h is the minimum energy of f_h^+ and $\varepsilon(u)$ denotes the symmetric gradient of the displacement field. An equilibrium state $\hat{u}, \hat{\chi}$ of $I[\cdot, \cdot, h, \sigma]$ is termed one-phase if $\hat{\chi} \equiv 0$ or $\hat{\chi} \equiv 1$, two-phase otherwise. We investigate in which way the distribution of phases is affected by the choice of the parameters h and σ .

 $AMS\ Subject\ Classification:\ 74\ B\ 05,\ 74\ G\ 65,\ 74\ N\ 99$. Key words: elastic materials, phase transition, equilibrium states, regularization.

1 Introduction

We consider an elastic medium which can exist in two different phases. If the medium occupies a bounded region $\Omega \subset \mathbb{R}^d$ (assumed to be of class C^2), then the energy density of the first (second) phase is given by

$$f_h^+(\varepsilon(u)) = \langle A^+(\varepsilon(u) - \xi^+), \varepsilon(u) - \xi^+ \rangle + h,$$

$$\left(f^-(\varepsilon(u)) = \langle A^-(\varepsilon(u) - \xi^-), \varepsilon(u) - \xi^- \rangle \right)$$

where $u=(u^1,\ldots,u^d)\colon\Omega\to\mathbb{R}^d$ is the field of displacements, $\varepsilon(u)=\frac{1}{2}(\partial_i u^j+\partial_j u^i)_{1\leq i,j\leq d}$ denotes the corresponding strain tensor, and $A^\pm\colon\mathbb{S}^d\to\mathbb{S}^d$ are linear, symmetric operators defined on the space \mathbb{S}^d of all symmetric $d\times d$ matrices having the meaning of the tensors of elastic moduli of the first and the second phase. Finally, $\xi^\pm\in\mathbb{S}^d$ denote the stress–free strains of the i^{th} phase, and we use the symbol $\langle\varepsilon,\varkappa\rangle:=\operatorname{tr}(\varepsilon\varkappa)$ for the scalar product in \mathbb{S}^d . Thus, the energy density of each phase is a quadratic function of the linear

strain, where the energy density of the first phase depends in addition on the parameter $h \in \mathbb{R}$. Let us state the hypotheses imposed on the data: A^{\pm} are assumed to be positive, i.e. for some number $\nu > 0$ we have

(1.1)
$$\nu |\varepsilon|^2 \leq \langle A^{\pm} \varepsilon, \varepsilon \rangle \leq \nu^{-1} |\varepsilon|^2 \quad \text{for all } \varepsilon \in \mathbb{S}^d,$$

hence the parameter h measures the difference between the minima of f_h^+ and f^- . As a second condition concerning the tensors of elastic moduli we require that for some number $\mu \in (0, \nu)$

$$(1.2) |\langle (A^+ - A^-)\varepsilon, \varepsilon \rangle| \leq \mu |\varepsilon|^2 for all \varepsilon \in \mathbb{S}^d$$

is satisfied. Finally, we suppose that

$$(1.3) A^{+} \xi^{+} \neq A^{-} \xi^{-}$$

is valid. Clearly, (1.2) holds in case that $A^+ = A^-$ for which (1.3) reduces to the condition $\xi^+ \neq \xi^-$. If χ denotes the characteristic function of the set occupied by the first phase, then it is natural to take the functional

(1.4)
$$J[u,\chi,h] := \int_{\Omega} \left(\chi f_h^+(\varepsilon(u)) + (1-\chi) f^-(\varepsilon(u)) \right) dx$$

as the total deformation energy of the medium and to define an equilibrium state of J as a minimizing pair $(\hat{u},\hat{\chi})$ consisting of a deformation \hat{u} and a measurable characteristic function $\hat{\chi}$. Following standard convention we say that the equilibrium state is one-phase if $\hat{\chi}\equiv 0$ or $\hat{\chi}\equiv 1$, two-phase otherwise. Let us consider displacement fields u vanishing on $\partial\Omega$. Then the domain of definition of the functional $J[\cdot,\cdot,h]$ is the space of all pairs (u,χ) with $u\in X:=\stackrel{\circ}{W_2^1}(\Omega;\mathbb{R}^d)$ (equipped with the norm $\|u\|_X:=\|\varepsilon(u)\|_{L^2(\Omega;\mathbb{S}^d)}$) and χ denoting an arbitrary measurable characteristic function $\Omega\to\mathbb{R}$. Unfortunately, the variational problem $J[\cdot,\cdot,h]\to\min$ may fail to have solutions as it is shown by an example in [MO]. One way to overcome this difficulty is to introduce the quasiconvex envelope \hat{f}_h of the integrand $f_h:=\min\{f_h^+,f^-\}\leq\chi\,f_h^++(1-\chi)\,f^-$ (see [DA] for a definition) and to pass to the relaxed problem

$$\int_{\Omega} \tilde{f}_h(\varepsilon(u)) dx \to \min \quad \text{in } X$$

(note that by Dacorogna's formula $u \equiv 0$ is a solution; nontrivial solutions were produced in [OS2]), we refer the reader to [DA], [KO], [SE] for a more detailed outline of this approach and for further references. From the physical point of view (compare [GR]) it is also reasonable to consider a regularization of the functional J from (1.4) taking the area of the separating surface between the different phases into account, i.e. we replace J by the energy

(1.5)
$$J[u,\chi,h,\sigma] = J[u,\chi,h] + \sigma \int_{\Omega} |\nabla \chi|,$$

where $\sigma>0$ denotes a parameter, and the characteristic function χ is required to be an element of the space $BV(\Omega)$ of all functions having bounded variation (see for example [GIU] for definitions). This model was investigated in [OS1], [OS2], [BFO] establishing various existence results for the functional from (1.5), in particular, in the paper [BFO] we showed how the distribution of phases depends on the choices for the parameters h and σ . In the present note we regularize $J[u,\chi,h]$ by adding a penalty term involving higher order derivatives of the displacement field. In principal, this model was proposed by Kohn and Müller in [KM] and [MU]. To be precise, suppose that a number $0 is fixed, and let for <math>\sigma > 0$

(1.6)
$$I[u,\chi,h,\sigma] := J[u,\chi,h] + \sigma \left(\int_{\Omega} |\Delta u|^2 dx \right)^{\frac{p}{2}},$$

where now $u \in H := W_2^2(\Omega; \mathbb{R}^d) \cap X$ and (as in (1.4))

$$\chi \in M \ := \ \left\{ \text{measurable characteristic functions } \Omega \to \mathbb{R} \right\}.$$

With a slight abuse of notation we sometimes only assume $\chi \in L^{\infty}(\Omega)$, $0 \le \chi \le 1$ a.e., equilibrium states of I however are always defined w.r.t. $H \times M$. Note, that on account of $\partial \Omega \in C^2$, the quantity

$$||u||_H := ||\Delta u||_{L^2(\Omega;\mathbb{R}^d)}$$

introduces a norm on the space H being equivalent to the W_2^2 -norm which is a consequence of the Calderon–Zygmund regularity results. Our main result now concerns the analysis of the effect of the parameters $h \in \mathbb{R}$ and $\sigma > 0$ on the distribution of phases, we have

THEOREM 1.1 Let (1.1)–(1.3) hold. Then, for each $h \in \mathbb{R}$ and all $\sigma > 0$, the functional $I[\cdot, \cdot, h, \sigma]$ attains its minimum on the set $H \times M$. There are two bounded, continuous functions $h^{\pm}(\sigma)$, $\sigma > 0$, and a number $\sigma^* > 0$ with the following properties

$$\begin{array}{lll} h^+(\sigma) &>& \hat{h} & on \ (0,\sigma^*) \,, & h^+(\sigma) \ \equiv \ \hat{h} & for \ \sigma \geq \sigma^* \,; \\ \\ h^-(\sigma) &<& \hat{h} & on \ (0,\sigma^*) \,, & h^-(\sigma) \ \equiv \ \hat{h} & for \ \sigma \geq \sigma^* \,; \\ \\ \hat{h} &:=& \langle A^-\xi^-,\xi^-\rangle - \langle A^+\xi^+,\xi^+\rangle \,; \end{array}$$

 h^+ strictly decreases on $(0, \sigma^*)$, h^- is strictly increasing on $(0, \sigma^*)$.

The graphs of h^{\pm} divide the half-plane of parameters $\sigma > 0$, $h \in \mathbb{R}$, into three open regions

$$A := \{(\sigma, h) : \sigma > 0, h > h^{+}(\sigma)\},$$

$$B := \{(\sigma, h) : 0 < \sigma < \sigma^{*}, h^{-}(\sigma) < h < h^{+}(\sigma)\},$$

$$C := \{(\sigma, h) : \sigma > 0, h < h^{-}(\sigma)\},$$

in which we have the following distribution of phases:

- i) for $(\sigma, h) \in A$ we only have the one-phase equilibrium $\hat{u} \equiv 0$, $\hat{\chi} \equiv 0$;
- ii) for $(\sigma, h) \in C$ only the one-phase equilibrium $\hat{u} \equiv 0$, $\hat{\chi} \equiv 1$ exists;
- iii) for $(\sigma, h) \in B$ only two-phase states of equilibria exist.

On the graphs of h^{\pm} we have the following distribution of equilibrium states:

- iv) for $h = h^+(\sigma)$, $0 < \sigma < \sigma^*$, we have the one-phase equilibrium state $\hat{u} \equiv 0$, $\hat{\chi} \equiv 0$ and at least one two-phase equilibrium;
- v) for $h = h^-(\sigma)$, $0 < \sigma < \sigma^*$, we have the one-phase equilibrium state $\hat{u} \equiv 0$, $\hat{\chi} \equiv 1$ and at least one two-phase equilibrium;
- vi) for $h = \hat{h}$, $\sigma > \sigma^*$, the equilibrium states consist of the pairs $\hat{u} \equiv 0$, $\hat{\chi} \equiv \text{any measurable characteristic function}$;
- vii) for $h = \hat{h}$, $\sigma = \sigma^*$ there exist the equilibrium states $\hat{u} \equiv 0$, $\hat{\chi} \equiv$ arbitary measurable characteristic function and at least one two-phase equilibrium state with $\hat{u} \not\equiv 0$.

- **REMARK 1.2** a) Except for the behaviour at $h = \hat{h}$ together with $\sigma \geq \sigma^*$ (see vi) and vii)) Theorem 1.1 corresponds in a qualitative sense to Theorem 2.1 in [BFO]. Of course we do not claim that the functions h^{\pm} as well as the numbers σ^* are the same in both cases.
 - b) The different behaviour for the choice $h = \hat{h}$, $\sigma \geq \sigma^*$ originates from the fact that in this case the penalty term $\sigma \left(\int_{\Omega} |\Delta u|^2 dx \right)^{p/2}$ does not create a formation of phases.
 - c) In [OS2] the reader will find further comments on the above model, moreover, the choice p < 1 is explained.

Concerning the regularity of solutions we have the following

THEOREM 1.3 With the above notation let $(\hat{u}, \hat{\chi}) \in H \times M$ denote an equilibrium state of $I[\cdot, \cdot, h, \sigma]$, $\sigma > 0$. Then \hat{u} is of class $C^{2,\alpha}(\Omega; \mathbb{R}^d)$ for any $0 < \alpha < 1$.

REMARK 1.4 For $h \in \mathbb{R}$, $\sigma > 0$ and $u \in H$ let $(recall f_h = \min\{f_h^+, f^-\})$

$$\tilde{I}[u, h, \sigma] = \int_{\Omega} f_h(\varepsilon(u)) dx + \sigma \|\Delta u\|_{L^2(\Omega; \mathbb{R}^d)}^p.$$

Clearly, the variational problem

$$\tilde{I} \rightarrow \min \quad on \ H$$

has at least one solution \hat{u} (compare also Lemma 2.2 and Theorem 2.3 below). For $u \in H$ let

$$\chi_u := \begin{cases} 0 & if \quad f_h^+(\varepsilon(u)) \ge f^-(\varepsilon(u)), \\ 1 & otherwise. \end{cases}$$

Then we have

$$I[u,\chi,h,\sigma] \ \geq \ \tilde{I}[u,h,\sigma] \ \geq \ \tilde{I}[\hat{u},h,\sigma] \ = \ I[\hat{u},\chi_{\hat{u}},h,\sigma]$$

for any $u \in H$ and any measurable characteristic function χ . Thus \hat{u} generates a minimizing pair $(\hat{u}, \chi_{\hat{u}})$ of $I[\cdot, \cdot, h, \sigma]$. Conversely, consider an equilibrium state $(\check{u}, \check{\chi})$ of $I[\cdot, \cdot, h, \sigma]$. Observing (recall $f_h \leq \check{\chi} f_h^+ + (1 - \check{\chi}) f^-$)

$$\tilde{I}[\check{u},h,\sigma] \ \leq \ I[\check{u},\check{\chi},h,\sigma] \ \leq \ I[u,\chi_u,h,\sigma] \ = \ \tilde{I}[u,h,\sigma] \quad \textit{for all } u \in H$$

we deduce $\tilde{I}[\cdot, h, \sigma]$ -minimality of \check{u} . So there is a one-to-one correspondence between the minimizing deformation fields of both functionals. But the deformation field u alone does not serve the complete information, for example, in case $u \equiv 0$ there exist various possibilities for the distribution of phases as described in Theorem 1.1.

As an alternative to the model proposed in Theorem 1.1 we may associate to each $\tilde{I}[\cdot,h,\sigma]$ -minimizing deformation field \hat{u} the function $\chi_{\hat{u}}$ and introduce the notion of one (two)-phase equilibrium states $(\hat{u},\chi_{\hat{u}})$ as before. Then again we get the statements of Theorem 1.1 where in part vi) and vii) the phrase " $\hat{\chi}=$ any measurable characteristic function" has to be replaced by the requirement $\hat{\chi}=\chi_0$. Obviously the number of equilibrium states $(\hat{u},\chi_{\hat{u}})$ generated by $\tilde{I}[\cdot,h,\sigma]$ -minimizers \hat{u} is in general much smaller than the number of equilibria considered in the first model: if $\hat{\chi}$ is a measurable characteristic function satisfying

$$\int_{\Omega} f_h(\varepsilon(\hat{u})) dx = \int_{\Omega} \left(\hat{\chi} f_h^+(\varepsilon(\hat{u})) + (1 - \hat{\chi}) f^-(\varepsilon(\hat{u})) \right) dx,$$

then $(\hat{u}, \hat{\chi})$ is a minimizing pair for $I[\cdot, \cdot, h, \sigma]$. But since we are mainly interested in the qualitative behaviour of the distribution of phases depending on h and σ , we do not see any principal difference between both models except for the different behaviour at $h = \hat{h}$, $\sigma \geq \sigma^*$.

REMARK 1.5 At the end, let us briefly discuss some situations for which the non-uniqueness w.r.t. the function χ can be removed. Let $(\hat{u}, \hat{\chi})$ denote an equilibrium state of $I[u, \chi, h, \sigma]$ with $\hat{\chi} := \chi_{\hat{u}}$. We introduce the sets

$$E^{+(-)} := \left[f_h^+(\varepsilon(\hat{u})) > (<) f^-(\varepsilon(\hat{u})) \right],$$

$$E^0 := \left[f_h^+(\varepsilon(\hat{u})) = f^-(\varepsilon(\hat{u})) \right],$$

and consider $\chi \in L^{\infty}(\Omega)$, $0 \le \chi \le 1$. Then

(1.7)
$$I[\hat{u}, \hat{\chi}, h, \sigma] = I[\hat{u}, \chi, h, \sigma]$$

if and only if

$$\int_{E^{+}} (\hat{\chi} - \chi) \left(f_{h}^{+} \left(\varepsilon(\hat{u}) \right) - f^{-} \left(\varepsilon(\hat{u}) \right) \right) dx + \int_{E^{-}} (\hat{\chi} - \chi) \left(f_{h}^{+} \left(\varepsilon(\hat{u}) \right) - f^{-} \left(\varepsilon(\hat{u}) \right) \right) dx = 0.$$

Since
$$\hat{\chi} = \chi_{\hat{u}} = \begin{cases} 0 & on \quad E^+ \\ 1 & on \quad E^- \end{cases}$$
, we see

$$\chi = \hat{\chi} \quad on \ E^+ \cup E^-,$$

and the "non-uniqueness" can be excluded for the case that E_0 is a set of Lebesgue measure zero. In order to find a sufficient condition for $|E_0| = 0$ let us assume that $\hat{u} \not\equiv 0$. Then $\|\Delta \hat{u}\|_{L^2(\Omega;\mathbb{R}^d)} > 0$ and for any $v \in H$ the expression $\|\Delta \hat{u} + t\Delta v\|_{L^2(\Omega;\mathbb{R}^d)} > 0$ is differentiable at t = 0. For $\chi \in L^{\infty}(\Omega)$, $0 \le \chi \le 1$, with (1.8) and all $v \in H$ we have according to (1.7)

$$\frac{d}{dt}_{|t=0}I[\hat{u}+tv,\chi,h,\sigma] \ = \ 0 \,, \quad i.e. \label{eq:energy_equation}$$

$$2 \int_{\Omega} \chi \left\langle A^{+} \left(\varepsilon(\hat{u}) - \xi^{+} \right) - A^{-} \left(\varepsilon(\hat{u}) - \xi^{-} \right), \varepsilon(v) \right\rangle dx$$

$$(1.9) \quad +2 \int_{\Omega} \left\langle A^{-} \varepsilon(v), \varepsilon(\hat{u}) - \xi^{-} \right\rangle dx + p \sigma \left(\int_{\Omega} |\Delta \hat{u}|^{2} \right)^{\frac{p}{2} - 1} \int_{\Omega} \Delta \hat{u} \cdot \Delta v \, dx$$

$$= 0.$$

Let $|E_0| > 0$. Then we use (1.9) with $\chi = 0$ on E_0 and with $\chi = \Phi$ on E_0 , where $\Phi \in L^{\infty}(E_0)$, $0 \le \Phi \le 1$. Subtracting the results we get

$$\int_{E_0} \Phi \left\langle A^+ \left(\varepsilon(\hat{u}) - \xi^+ \right) - A^- \left(\varepsilon(\hat{u}) - \xi^- \right), \varepsilon(v) \right\rangle dx = 0,$$

and since Φ can be chosen arbitrarily, this turns into

$$\left\langle A^{+}\left(\varepsilon(\hat{u}) - \xi^{+}\right) - A^{-}\left(\varepsilon(\hat{u}) - \xi^{-}\right), \varepsilon(v)\right\rangle = 0$$

a.e. on E_0 . Consider a Lebesgue point $x_0 \in E_0$ of $\varepsilon(\hat{u})$ and let $v(x) = \eta(x) x_k E^l$ where $\eta \in C_0^{\infty}(\Omega)$, $\eta \equiv 1$ near x_0 , and E^l is the l^{th} standard unit-vector in \mathbb{R}^d . Then $\varepsilon(v)(x_0) = \left(\delta_{ik} \delta^{jl}\right)_{1 \leq i,j \leq d}$ and the above identity implies

$$A^{+}\left(\varepsilon(\hat{u}) - \xi^{+}\right) - A^{-}\left(\varepsilon(\hat{u}) - \xi^{-}\right) = 0$$

on E_0 , hence

$$(A^+ - A^-) \varepsilon(\hat{u}) = A^+ \xi^+ - A^- \xi^-,$$

and we get a contradiction if we assume that

$$(1.10) A^{+}\xi^{+} - A^{-}\xi^{-} \notin \operatorname{Im}(A^{+} - A^{-})$$

holds. For example we have (1.10) in case $A^+ = A^-$ together with $\xi^+ \neq \xi^-$. Thus the assumption $\hat{u} \not\equiv 0$ combined with (1.10) shows $|E_0| = 0$ and we can associate to \hat{u} a unique function χ such that (1.7) is valid.

Our paper is organized as follows: in Section 2 we prove some existence and lower semicontinuity results concerning the functional I from (1.6). Section 3 contains a series of lemmata which are used in Section 4 and Section 5 to prove satement i)—vii) of Theorem 1.1. In a last section we prove Theorem 1.3.

2 Some existence results

From now on we assume that all the conditions stated in Section 1 are valid.

LEMMA 2.1 Let $h \in \mathbb{R}$, $\sigma \geq 0$ be given. Then we have for any $(u, \chi) \in H \times M$

$$\frac{\nu}{2} \|u\|_X^2 + \sigma \|u\|_H^p \leq I[u, \chi, h, \sigma] + h |\Omega| + \frac{4 + \nu^2}{\nu^3} (|\xi^+|^2 + |\xi^-|^2).$$

Proof. Assumption (1.1) implies

$$I[u,\chi,h,\sigma] \geq \nu \int_{\Omega} |\varepsilon(u)|^{2} dx - |h| |\Omega| + \sigma ||u||_{H}^{p}$$

$$-\frac{1}{\nu} \int_{\Omega} (|\xi^{+}|^{2} + |\xi^{-}|^{2}) dx$$

$$-2 \int_{\Omega} (|\langle A^{+} \varepsilon(u), \xi^{+} \rangle| + |\langle A^{-} \varepsilon(u), \xi^{-} \rangle|) dx.$$

The lemma is proved by combining this inequality with $|\langle A^{\pm}\varepsilon, \tilde{\varepsilon}\rangle| \leq \sqrt{\langle A^{\pm}\varepsilon, \varepsilon\rangle} \sqrt{\langle A^{\pm}\tilde{\varepsilon}, \tilde{\varepsilon}\rangle}$.

Next we establish a lower semicontinuity result

LEMMA 2.2 Consider sequences $\{u_n\}$, $\{\chi_n\}$, $\{h_n\}$ and $\{\sigma_n\}$, $u_n \in H$, $\chi_n \in L^{\infty}(\Omega)$, $0 \le \chi_n \le 1$, $h_n \in \mathbb{R}$, $\sigma_n \ge 0$ such that $u_n \to u$ in H, $\chi_n \to \chi$ in $L^2(\Omega)$, $h_n \to h$ and $\sigma_n \to \sigma$ as $n \to \infty$. Then we have

$$I[u, \chi, h, \sigma] \leq \liminf_{n \to \infty} I[u_n, \chi_n, h_n, \sigma_n].$$

Proof. The uniform L^{∞} -bound together with the weak L^2 -convergence of the sequence $\{\chi_n\}$ yields

$$\chi_n \stackrel{n \to \infty}{\rightharpoondown} \chi$$
 in $L^s(\Omega)$ for any $s < \infty$, $0 \le \chi \le 1$ a.e.

The weak H-convergence of the sequence $\{u_n\}$ gives in addition

$$\varepsilon(u_n) \stackrel{n \to \infty}{\to} \varepsilon(u)$$
 in $L^r(\Omega; \mathbb{S}^d)$ for some $r > 2$,

thus

$$I[u_n, \chi_n, h_n, 0] \rightarrow I[u, \chi, h, 0]$$
 as $n \rightarrow \infty$.

Moreover, again by weak convergence of the sequence $\{u_n\}$,

$$||u||_H^p \leq \liminf_{n\to\infty} ||u_n||_H^p$$

i.e. we get the estimate

$$I[u, \chi, h, \sigma] = I[u, \chi, h, 0] + \sigma \|u\|_{H}^{p}$$

$$\leq \liminf_{n \to \infty} I[u_{n}, \chi_{n}, h_{n}, 0] + \liminf_{n \to \infty} \left(\sigma_{n} \|u_{n}\|_{H}^{p}\right)$$

$$\leq \liminf_{n \to \infty} \left(I[u_{n}, \chi_{n}, h_{n}, 0] + \sigma_{n} \|u_{n}\|_{H}^{p}\right)$$

$$= \liminf_{n \to \infty} I[u_{n}, \chi_{n}, h_{n}, \sigma_{n}].$$

As a consequence we obtain the following existence theorem

THEOREM 2.3 The functional $I[\cdot, \cdot, h, \sigma]$, $h \in \mathbb{R}$, $\sigma > 0$, attains its minimum on the set $H \times M$.

Proof. Lemma 2.1 immediately gives

$$\gamma \ := \ \inf_{(u,\chi) \in H \times M} I[u,\chi,h,\sigma] \ > \ -\infty \,,$$

and we may consider a minimizing sequence (u_n, χ_n) s.t. (again recall Lemma 2.1)

$$u_n \rightarrow : \hat{u} \text{ in } H, \quad \chi_n \rightarrow : \tilde{\chi} \text{ in } L^2(\Omega) \quad \text{as } n \to \infty.$$

We do not know that $\tilde{\chi}$ is an element of M, however $0 \leq \tilde{\chi} \leq 1$ and, by Lemma 2.2,

(2.1)
$$I[\hat{u}, \tilde{\chi}, h, \sigma] \leq \liminf_{n \to \infty} I[u_n, \chi_n, h, \sigma].$$

Therefore, if $\hat{\chi}$ is defined via

$$\hat{\chi} := \begin{cases} 0 & \text{on the set} \quad \left[f_h^+ \big(\varepsilon(\hat{u}) \big) \ge f^- \big(\varepsilon(\hat{u}) \big) \right], \\ 1 & \text{on the set} \quad \left[f_h^+ \big(\varepsilon(\hat{u}) \big) < f^- \big(\varepsilon(\hat{u}) \big) \right], \end{cases}$$

and if we observe (2.1) together with

$$\tilde{\chi} f_h^+(\varepsilon(\hat{u})) + (1 - \tilde{\chi}) f^-(\varepsilon(\hat{u})) = \tilde{\chi} \left(f_h^+(\varepsilon(\hat{u})) - f^-(\varepsilon(\hat{u})) \right) + f^-(\varepsilon(\hat{u}))
\geq \tilde{\chi} \left(f_h^+(\varepsilon(\hat{u})) - f^-(\varepsilon(\hat{u})) \right) + f^-(\varepsilon(\hat{u})),$$

 $(\hat{u}, \hat{\chi}) \in H \times M$ is seen to be an equilibrium state of I.

Next, consider the energies of one-phase deformations, i.e. we let

$$I^{+}[u, h, \sigma] := I[u, 1, h, \sigma] = \int_{\Omega} f_{h}^{+}(\varepsilon(u)) dx + \sigma \|u\|_{H}^{p},$$

$$I^{-}[u, \sigma] := I[u, 0, h, \sigma] = \int_{\Omega} f^{-}(\varepsilon(u)) dx + \sigma \|u\|_{H}^{p}, \quad u \in H$$

LEMMA 2.4 On H the functionals I^{\pm} attain their unique minima at $u^{\pm} \equiv 0$.

Proof. For any $u \in H$ we have

$$I^{+}[u, h, \sigma] = \int_{\Omega} \left[\left\langle A^{+} \left(\varepsilon(u) - \xi^{+} \right), \varepsilon(u) - \xi^{+} \right\rangle + h \right] dx + \sigma \|u\|_{H}^{p}$$

$$= \int_{\Omega} \left\langle A^{+} \varepsilon(u), \varepsilon(u) \right\rangle dx + |\Omega| \left\langle A^{+} \xi^{+}, \xi^{+} \right\rangle + h |\Omega| + \sigma \|u\|_{H}^{p}$$

$$\geq |\Omega| \left\langle A^{+} \xi^{+}, \xi^{+} \right\rangle + h |\Omega|,$$

where equality holds if and only if $u \equiv 0$. An analogous inequality is true for I^- and the lemma is proved.

We finish this section by introducing the quantity $I_0(h) := \min\{I^+[0, h, \sigma], I^-[0, \sigma]\}$, i.e.

$$I_{0}(h) = \begin{cases} |\Omega| \left(\langle A^{+} \xi^{+}, \xi^{+} \rangle + h \right), & h \leq \hat{h}, \\ |\Omega| \langle A^{-} \xi^{-}, \xi^{-} \rangle, & h \geq \hat{h}, \end{cases}$$

$$\hat{h} := \langle A^{-} \xi^{-}, \xi^{-} \rangle - \langle A^{+} \xi^{+}, \xi^{+} \rangle,$$

which measures the dependence of the energy of one–phase equilibria on the parameter h.

3 Auxiliary results

In this section we prove (under the hypotheses stated in Section 1) a series of auxiliary results which are needed in Section 4 to show Theorem 1.1. We start with two lemmata estimating the X-norm of equilibrium states.

LEMMA 3.1 Consider an equilibrium state $(\hat{u}, \hat{\chi})$ of $I[\cdot, \cdot, h, \sigma]$. Then

$$(3.1) \sigma \|\hat{u}\|_{H}^{p} + (\nu - \mu) \|\hat{u}\|_{X}^{2} \le 2|A^{-}\xi^{-} - A^{+}\xi^{+}|\sqrt{|\Omega|} \|\hat{u}\|_{X}$$

holds true, in particular, there is a constant R, not depending on h, σ , such that

(3.2)
$$\|\hat{u}\|_{X} = \|\varepsilon(\hat{u})\|_{L^{2}(\Omega;\mathbb{S}^{d})} \leq R.$$

Proof. The minimizing property yields $I[\hat{u}, \hat{\chi}, h, \sigma] \leq I[0, \hat{\chi}, h, \sigma]$, i.e.

$$\sigma \|\hat{u}\|_{H}^{p} + \int_{\Omega} \hat{\chi} \left\langle (A^{+} - A^{-}) \varepsilon(\hat{u}), \varepsilon(\hat{u}) \right\rangle dx + \int_{\Omega} \left\langle A^{-} \varepsilon(\hat{u}), \varepsilon(\hat{u}) \right\rangle dx + 2 \int_{\Omega} \hat{\chi} \left\langle \varepsilon(\hat{u}), A^{-} \xi^{-} - A^{+} \xi^{+} \right\rangle dx \leq 0,$$

thus the assertions follow from (1.1)–(1.3).

LEMMA 3.2 There is a real number $\delta > 0$ such that we have for any equilibrium state $(\hat{u}, \hat{\chi})$ of $I[\cdot, \cdot, h, \sigma]$, $\hat{u} \not\equiv 0$,

$$\|\hat{u}\|_X^{1-p} \geq \delta \sigma.$$

Proof. From the Calderon–Zygmund regularity results (compare, for example [GT], Theorem 9.14 and 9.15) we deduce the existence of a positive number $\kappa = \kappa(\Omega, d)$ such that

$$\|\hat{u}\|_{X} = \|\varepsilon(\hat{u})\|_{L^{2}(\Omega;\mathbb{S}^{d})} \le \|\hat{u}\|_{W_{2}^{2}(\Omega;\mathbb{R}^{d})} \le \kappa \|\Delta\hat{u}\|_{L^{2}(\Omega;\mathbb{R}^{d})} = \kappa \|\hat{u}\|_{H}.$$
(3.1) gives

$$\sigma \|\hat{u}\|_{H}^{p} \leq 2|A^{+}\xi^{+} - A^{-}\xi^{-}|\sqrt{|\Omega|} \|\hat{u}\|_{X}$$

$$\leq 2|A^{+}\xi^{+} - A^{-}\xi^{-}|\sqrt{|\Omega|} \|\hat{u}\|_{X}^{1-p} \kappa^{p} \|\hat{u}\|_{H}^{p},$$

implying Lemma 3.2 since

$$\|\hat{u}\|_{X}^{1-p} \geq \sigma \frac{1}{2|A^{+}\xi^{+} - A^{-}\xi^{-}|\sqrt{|\Omega|}\kappa^{p}} =: \sigma \delta.$$

In the next lemma we investigate the relation between one-phase equilibrium states and the vanishing of the associated deformation field.

LEMMA 3.3 Consider an equilibrium state $(\hat{u}, \hat{\chi})$ of $I[\cdot, \cdot, h, \sigma]$. Then:

- a) if $(\hat{u}, \hat{\chi})$ is one-phase, i.e. $\hat{\chi} \equiv 0$ or $\hat{\chi} \equiv 1$, then $\hat{u} \equiv 0$;
- b) if $h \neq \hat{h}$ and if $\hat{u} \equiv 0$, then $(\hat{u}, \hat{\chi})$ is a one-phase equilibrium;
- c) if $h = \hat{h}$ and if $\hat{u} \equiv 0$, then any $\chi \in M$ provides an equilibrium state $(0, \chi)$.

Proof. Assume that $\hat{\chi} \equiv 1$ ($\hat{\chi} \equiv 0$), thus $I[\cdot, \hat{\chi}, h, \sigma] = I^+[\cdot, h, \sigma]$ (= $I^-[\cdot, \sigma]$), hence by Lemma 2.4 $\hat{u} \equiv 0$ and a) is verified. Next observe that for any $\chi \in M$

$$\begin{split} I[0,\chi,h,\sigma] &= \left[\langle A^+ \, \xi^+, \xi^+ \rangle - \langle A^- \, \xi^-, \xi^- \rangle + h \right] \int_{\Omega} \chi \, dx + |\Omega| \, \langle A^- \, \xi^-, \xi^- \rangle \\ &= \left. (h - \hat{h}) \int_{\Omega} \chi \, dx + |\Omega| \, \langle A^- \, \xi^-, \xi^- \rangle \, . \end{split}$$

In the case $h > \hat{h}$ it is seen that

$$I[0, \chi, h, \sigma] \geq |\Omega| \langle A^- \xi^-, \xi^- \rangle,$$

and equality is true if and only if $\chi \equiv 0$. This proves part b) for $h > \hat{h}$, the case $h < \hat{h}$ is treated in the same manner. Finally $h = \hat{h}$ implies $I[0, \chi, h, \sigma] = |\Omega| \langle A^- \xi^-, \xi^- \rangle$ for any $\chi \in M$, thus we have c).

As a next step we ensure that the existence of one-phase (two-phase) equilibria depends continuously on h and σ .

LEMMA 3.4 Given two sequences $\{h_n\}$, $\{\sigma_n\}$ assume that $h_n \to h_0$ and $\sigma_n \to \sigma_0 > 0$ as $n \to \infty$. As usual denote by $(\hat{u}_n, \hat{\chi}_n)$, $(\hat{u}_0, \hat{\chi}_0)$ equilibrium states of $I[\cdot, \cdot, h_n, \sigma_n]$ and $I[\cdot, \cdot, h_0, \sigma_0]$, respectively.

- a) If $\hat{u}_n \equiv 0$ ($\hat{u}_n \not\equiv 0$) at least for a subsequence, then there exists an equilibrium state ($\hat{u}_0, \hat{\chi}_0$) satisfying $\hat{u}_0 \equiv 0$ ($\hat{u}_0 \not\equiv 0$).
- b) If $\hat{\chi}_n \equiv 0$ ($\hat{\chi}_n \equiv 1$) for a subsequence, then $I[\cdot, \cdot, h_0, \sigma_0]$ admits an equilibrium state satisfying $\hat{u}_0 \equiv 0$, $\hat{\chi}_0 \equiv 0$ ($\hat{\chi}_0 \equiv 1$).
- c) If $h_0 \neq \hat{h}$ and if $0 \not\equiv \hat{\chi}_n \not\equiv 1$, again at least for a subsequence, then there is a solution with $0 \not\equiv \hat{\chi}_0 \not\equiv 1$.

Proof. From Lemma 2.1 we deduce

$$\frac{\nu}{2} \|\hat{u}_n\|_X^2 + \sigma_n \|\hat{u}_n\|_H^p \leq I[\hat{u}_n, \hat{\chi}_n, h_n, \sigma_n] + h_n |\Omega| + \frac{4 + \nu^2}{\nu^3} (|\xi^+|^2 + |\xi^-|^2)
\leq I[0, 0, h_n, \sigma_n] + h_n |\Omega| + \frac{4 + \nu^2}{\nu^3} (|\xi^+|^2 + |\xi^-|^2),$$

hence (recall that $\sigma_0 > 0$) there is a real number c > 0 such that $\|\hat{u}_n\|_H \le c < +\infty$. Passing to a subsequence (not relabelled) we may assume that

$$\hat{u}_n \rightarrow : \hat{u}_0 \quad \text{in } H \text{ as } n \rightarrow \infty$$

Sobolev's embedding theorem then gives the existence of a real number r>1 such that

$$\hat{u}_n \to \hat{u}_0$$
 in $W_{2r}^1(\Omega; \mathbb{R}^d)$ as $n \to \infty$.

Moreover, we may assume (again passing to a subsequence if necessary) that

$$\hat{\chi}_n \stackrel{n \to \infty}{\longrightarrow} : \tilde{\chi}_0 \quad \text{in } L^2(\Omega), \quad 0 \le \tilde{\chi}_0 \le 1 \text{ a.e.},$$

and applying Lemma 2.2 we see for all $(u, \chi) \in H \times M$

$$I[\hat{u}_0, \tilde{\chi}_0, h_0, \sigma_0] \leq \liminf_{n \to \infty} I[\hat{u}_n, \hat{\chi}_n, h_n, \sigma_n] \leq \liminf_{n \to \infty} I[u, \chi, h_n, \sigma_n]$$
$$= I[u, \chi, h_0, \sigma_0].$$

As done in the proof of Theorem 2.3 (compare also Remark 1.4 and Remark 1.5) we may replace $\tilde{\chi}_0$ by a characteristic function $\hat{\chi}_0 \in M$, which provides an admissible minimizer $(\hat{u}_0, \hat{\chi}_0)$ of $I[\cdot, \cdot, h_0, \sigma_0]$.

ad a) If $\hat{u}_n = 0$ for a subsequence, then by the above arguments we clearly may take $\hat{u}_0 \equiv 0$. If $\hat{u}_n \not\equiv 0$ for a subsequence, Lemma 3.2 gives $\|\hat{u}_n\|_X^{1-p} \geq \delta \sigma_n$, hence strong convergence in $W_{2r}^1(\Omega; \mathbb{R}^d)$ proves $\|\hat{u}_0\|_X^{1-p} \geq \delta \sigma_0$, i.e. $\hat{u}_0 \not\equiv 0$. ad b) The case $\hat{\chi}_n \equiv 0$ for a subsequence shows (with the above notation) $\tilde{\chi}_0 \equiv 0$ and $(\hat{u}_0, 0)$ is seen to be minimizing. The first assertion of Lemma 3.3 ensures the statement $\hat{u}_0 \equiv 0$. The case $\hat{\chi}_n \equiv 1$ is covered by the same arguments.

ad c) We may assume that $h_n \neq \hat{h}$ for all n sufficiently large. Moreover, by Lemma 3.3 b) we then observe that $\hat{u}_n \not\equiv 0$, in conclusion Lemma 3.2 gives $\|\hat{u}_n\|_X^{1-p} \geq \delta \sigma_n$ and therefore the limit \hat{u}_0 does not vanish. The claim now follows from Lemma 3.3 a).

The volume of the phases depends in a monotonic manner on the parameter h, more precisely

LEMMA 3.5 Denote by $(\hat{u}_i, \hat{\chi}_i)$ equilibrium states of $I[\cdot, \cdot, h_i, \sigma]$, i = 1, 2. Then we have

$$(h_1 - h_2) \left(\|\hat{\chi}_1\|_{L^1(\Omega)} - \|\hat{\chi}_2\|_{L^1(\Omega)} \right) \leq 0.$$

Proof. The proof is an imediate consequence of

$$I[\hat{u}_1, \hat{\chi}_1, h_1, \sigma] \leq I[\hat{u}_2, \hat{\chi}_2, h_1, \sigma],$$

$$I[\hat{u}_2, \hat{\chi}_2, h_2, \sigma] \le I[\hat{u}_1, \hat{\chi}_1, h_2, \sigma].$$

REMARK 3.6 If there exists an equilibrium state $(\hat{u}_0, \hat{\chi}_0)$ of $I[\cdot, \cdot, h_0, \sigma]$ satisfying $\hat{\chi}_0 \equiv 0$ ($\hat{\chi}_0 \equiv 1$), then by Lemma 3.5 for $h > h_0$ ($h < h_0$) any equilibrium state $(\hat{u}, \hat{\chi})$ of $I[\cdot, \cdot, h, \sigma]$ is one-phase, i.e. $\hat{\chi} \equiv 0$ ($\hat{\chi} \equiv 1$).

If we want two-phase equilibria to exist, then we have to restrict the admissible values for the parameters h and σ . A precise formulation is given in the next two lemmata.

LEMMA 3.7 There is a real number $h_0 > 0$ with the following property: for any $h > h_0$ ($h < -h_0$), for all $\sigma > 0$ and for any equilibrium state $(\hat{u}, \hat{\chi})$ of $I[\cdot, \cdot, h, \sigma]$ we have $\hat{u} \equiv 0$ and $\hat{\chi} \equiv 0$ ($\hat{\chi} \equiv 1$).

Proof. The idea is to find a real number $h_0 > 0$ such that for any $\sigma > 0$ and for any $(u, \chi) \in H \times M$

(3.4)
$$I[u, \chi, h_0, \sigma] \geq I[0, 0, h_0, \sigma].$$

Once (3.4) is established, (0,0) is seen to be an equilibrium state of $I[\cdot, \cdot, h_0, \sigma]$ and the first assertion follows from Remark 3.6. The case $h < -h_0$ is treated in the same manner, where we have to increase h_0 if necessary. Thus, it remains to show (3.4) which is equivalent to

$$(3.5)$$

$$\int_{\Omega} \chi \left[\left\langle (A^{+} - A^{-}) \varepsilon(u), \varepsilon(u) \right\rangle - 2 \left\langle A^{+} \xi^{+} - A^{-} \xi^{-}, \varepsilon(u) \right\rangle + \left\langle A^{+} \xi^{+}, \xi^{+} \right\rangle \right.$$

$$\left. - \left\langle A^{-} \xi^{-}, \xi^{-} \right\rangle + h_{0} \right] dx + \int_{\Omega} \left\langle A^{-} \varepsilon(u), \varepsilon(u) \right\rangle dx + \sigma \|u\|_{H}^{p} \ge 0.$$

We may estimate $(0 < \lambda < 1)$

$$\langle A^{-}\varepsilon(u), \varepsilon(u) \rangle + \chi \langle (A^{+} - A^{-})\varepsilon(u), \varepsilon(u) \rangle$$

$$\geq \langle A^{-}\varepsilon(u), \varepsilon(u) \rangle - \left| \langle (A^{+} - A^{-})\varepsilon(u), \varepsilon(u) \rangle \right|,$$

$$2 \left| \langle A^{\pm}\xi^{\pm}, \varepsilon(u) \rangle \right| \leq \lambda \langle A^{\pm}\varepsilon(u), \varepsilon(u) \rangle + \frac{1}{\lambda} \langle A^{\pm}\xi^{\pm}, \xi^{\pm} \rangle,$$

thus (3.5) is implied by

$$\int_{\Omega} \left[\left\langle A^{-} \varepsilon(u), \varepsilon(u) \right\rangle - \left| \left\langle (A^{+} - A^{-}) \varepsilon(u), \varepsilon(u) \right\rangle \right| \\
-\lambda \left\langle (A^{+} + A^{-}) \varepsilon(u), \varepsilon(u) \right\rangle \right] dx \\
+ \int_{\Omega} \chi \left[h_{0} + \left(1 - \frac{1}{\lambda} \right) \left\langle A^{+} \xi^{+}, \xi^{+} \right\rangle - \left(\frac{1}{\lambda} + 1 \right) \left\langle A^{-} \xi^{-}, \xi^{-} \right\rangle \right] dx \\
\geq 0.$$

By (1.1) and (1.2) the first integral on the left-hand side of (3.6) is greater than or equal to

$$(\nu - \mu - 2\lambda \nu^{-1}) \|u\|_X^2$$

hence positive if we choose λ sufficiently small. Increasing λ , if necessary, we finally let

$$h_0 := \left(1 + \frac{1}{\lambda}\right) \left\langle A^- \xi^-, \xi^- \right\rangle - \left(1 - \frac{1}{\lambda}\right) \left\langle A^+ \xi^+, \xi^+ \right\rangle > 0.$$

With this choice (3.6), hence (3.5), and in conclusion the lemma is valid.

Except for $h \neq \hat{h}$ the existence of two-phase equilibria requires also the boundedness of σ :

LEMMA 3.8 There exits a real number $\sigma_0 > 0$ with the following property: for any $\sigma > \sigma_0$ and for any $h \in \mathbb{R}$ the functional $I[\cdot, \cdot, h, \sigma]$ admits only equilibria $(\hat{u}, \hat{\chi})$ satisfying $\hat{u} \equiv 0$.

Proof. Recalling (3.1) and (3.2) one gets

$$\begin{split} \sigma \, \| \hat{u} \|_H^p & \leq & 2 \, |A^+ \, \xi^+ - A^- \, \xi^-| \, |\Omega|^{\frac{1}{2}} R \,, \\ \text{i.e.} & \sigma \, \| \hat{u} \|_X^p & \leq & 2 \, |A^+ \, \xi^+ - A^- \, \xi^-| \, |\Omega|^{\frac{1}{2}} R \, \kappa^p \,, \end{split}$$

hence we may estimate

$$\sigma^{\frac{1-p}{p}} \|\hat{u}\|_X^{1-p} \leq R' := \left(2|A^+\xi^+ - A^-\xi^-||\Omega|^{\frac{1}{2}} R \kappa^p\right)^{\frac{1-p}{p}}.$$

If $\hat{u} \not\equiv 0$ is supposed, then (3.3) gives

$$\sigma^{\frac{1-p}{p}}\delta\sigma \leq R' \Leftrightarrow \sigma \leq (R'/\delta)^p$$

thus the lemma is proved by letting $\sigma_0 := (R'/\delta)^p$.

As a last auxiliary result on the distribution of phases, a sufficient condition for the existence of two phase equilibria is given.

LEMMA 3.9 If $\sigma > 0$ is sufficiently small, then $I[\cdot, \cdot, \hat{h}, \sigma]$ admits only equilibria $(\hat{u}, \hat{\chi})$ satisfying $\hat{u} \not\equiv 0$.

Proof. Suppose by contradiction that there is a sequence $\{\sigma_n\}$ of positive real numbers, $\sigma_n \downarrow 0$ as $n \to \infty$, such that $I[\cdot, \cdot, \hat{h}, \sigma_n]$ admits a one-phase equilibrium state, i.e. $\hat{\chi}_n \equiv 0$ or $\hat{\chi}_n \equiv 1$ and, by Lemma 3.3, $\hat{u}_n \equiv 0$. Minimality implies for any $(u, \chi) \in H \times M$

$$I[u,\chi,\hat{h},\sigma_n] \geq I[0,\hat{\chi}_n,\hat{h},\sigma_n] = |\Omega|\langle A^-\xi^-,\xi^-\rangle.$$

Using the definition of \hat{h} this can be rewritten as

$$\int_{\Omega} \chi \left[\left\langle (A^{+} - A^{-}) \varepsilon(u), \varepsilon(u) \right\rangle - 2 \left\langle \varepsilon(u), A^{+} \xi^{+} - A^{-} \xi^{-} \right\rangle \right] dx$$

$$+ \int_{\Omega} \left\langle A^{-} \varepsilon(u), \varepsilon(u) \right\rangle dx + \sigma_{n} \|u\|_{H}^{p} \geq 0 \quad \text{for any } (u, \chi) \in H \times M.$$

If we replace u by $\sigma_n u$, divide through σ_n and pass to the limit $n \to \infty$, we get

$$-\int_{\Omega} \chi \left\langle \varepsilon(u), A^{+} \xi^{+} - A^{-} \xi^{-} \right\rangle dx \geq 0 \quad \text{for any } (u, \chi) \in H \times M.$$

In fact, equality is true since we may consider -u instead of u. Let $\gamma = A^- \xi^- - A^+ \xi^+$, fix $x_0 \in \Omega$ and consider $\rho > 0$ such that $B_{2\rho}(x_0) \in \Omega$. Finally we choose $\chi = \mathbf{1}_{B_{\rho}(x_0)}, \ \varphi \in C_0^{\infty}(\Omega), \ \varphi \equiv 1 \text{ on } B_{2\rho}(x_0) \text{ and let } v_k(x) = e \varphi(x) x_k \text{ with } 1 \leq k \leq d, \ e \in \mathbb{R}^d$. This choice implies on $B_{2\rho}(x_0)$

$$\varepsilon(v_k) = \frac{1}{2} \left(e^i \delta_{jk} + e^j \delta_{ik} \right)_{1 \le i, j \le d},$$

hence we get

$$0 = \int_{\Omega} \chi \, dx \, rac{1}{2} \left(\gamma_{ij} \, e^i \, \delta_{jk} + \gamma_{i,j} \, e^j \, \delta_{ik} \right) = |B_{
ho}(x_0)| \left(\gamma \, e \right)_k.$$

This gives the contradiction $\gamma = 0$ and the lemma is proved.

We finish this section with the following

LEMMA 3.10 For any $h \in \mathbb{R}$ and for any real number $\sigma > 0$ we let

$$I_1(\sigma, h) := \inf_{(u,\chi) \in H \times M} I[u,\chi,h,\sigma].$$

Then $I_1(\sigma, h)$ is a concave function, in particular, $I_1(\sigma, h)$ is continuous.

Proof. Note that for h and σ as above $I_1(\sigma, h)$ is well defined. Moreover, for any fixed $(u, \chi) \in H \times M$ the mapping $(h, \sigma) \mapsto I[u, \chi, h, \sigma]$ is a linear function in h and σ , hence concave. Since the infimum of a family of concave functions again is concave, the lemma is seen to be valid.

4 Proof of Theorem 1.1, i)-iii)

Step 1. (Definition of the set B)
Note that by construction we have

$$(4.1) I_1(\sigma, h) \leq I_0(h) \text{for any } h \in \mathbb{R}, \ \sigma > 0.$$

Inequality (4.1) leads to the definition

$$B := \{(\sigma, h) \in \mathbb{R}^+ \times \mathbb{R} : I_1(\sigma, h) < I_0(h)\},$$

and we observe that

$$(\sigma_0,h_0)\in B \;\Leftrightarrow\; I[\cdot,\cdot,h_0,\sigma_0] \;\; \text{admits only two-phase equilibria} \; (\hat{u},\hat{\chi}) \,.$$

By Lemma 3.9, B is known to be non-empty, moreover, B is seen to be open on account of $B = (I_0 - I_1)^{-1}(0, \infty)$ and the continuity of I_0 , I_1 . Finally, Lemma 3.7 and Lemma 3.8 prove B to be bounded. Given $\sigma_0 > 0$ let

$$L(\sigma_0) := \{h \in \mathbb{R} : (\sigma_0, h) \in B\}.$$

LEMMA 4.1 Either we have $L(\sigma_0) = \emptyset$ or there exist two uniquely defined real numbers $h^{\pm}(\sigma_0)$, $h^{-}(\sigma_0) < \hat{h} < h^{+}(\sigma_0)$, such that

$$L(\sigma_0) = (h^-(\sigma_0), h^+(\sigma_0)).$$

Proof. Suppose that $L(\sigma_0) \neq \emptyset$, i.e. there exists a real number $h \in \mathbb{R}$ such that $(\sigma_0, h) \in B$. Since B is open $L(\sigma_0)$ is also open, thus

$$L(\sigma_0) = \bigcup_{n=1}^{N} I_n, \quad N \in \mathbb{N} \cup \{\infty\},$$

where $I_n \neq \emptyset$ denote some open, bounded, mutually disjoint intervals. If we fix one of these intervals $I_n = (\alpha, \beta)$, then α, β do not belong to $L(\sigma_0)$, hence $(\sigma_0, \alpha), (\sigma_0, \beta) \notin B$. This proves

$$(4.2) I_1(\sigma_0, \alpha) = I_0(\alpha), I_1(\sigma_0, \beta) = I_0(\beta), I_1(\sigma_0, h) < I_0(h)$$

for any $h \in (\alpha, \beta)$. Now we claim that $\alpha < \hat{h} < \beta$, which clearly gives the lemma. Suppose by contradiction that $\alpha \geq \hat{h}$. From $I_1(\sigma_0, \alpha) = I_0(\alpha)$ we see the existence of at least one one-phase equilibrium at (σ_0, α) . The assumption $\alpha \geq \hat{h}$ gives

$$I_0(\alpha) = |\Omega| \langle A^- \xi^-, \xi^- \rangle = I[0, 0, \alpha, \sigma_0],$$

hence the one-phase equilibrium with $\hat{u} \equiv 0$, $\hat{\chi} \equiv 0$ exists for (σ_0, α) . On the other hand, Remark 3.6 then proves that for $h > \alpha$ only one-phase equilibria with $\hat{\chi} \equiv 0$ exist which contradicts (4.2) and the lemma is proved since analogous arguments show the second inequality $\hat{h} < \beta$.

Step 2. (Definition of the functions $h^{\pm}(\sigma)$)

Following Lemma 4.1 we define for any $\sigma > 0$ satisfying $L(\sigma) \neq \emptyset$

$$h^+(\sigma) \ := \ \sup L(\sigma) \,, \quad \ h^-(\sigma) \ := \ \inf L(\sigma) \,.$$

If $L(\sigma) = \emptyset$ then we let

$$h^+(\sigma) := h^-(\sigma) := \hat{h}$$
.

Step 3. (Definition of the sets A and C)

The sets A and C are defined via

$$A := \{(\sigma, h) : \sigma > 0, h > h^+(\sigma)\},\$$

$$C \ := \ \left\{ (\sigma,h) : \, \sigma > 0 \,, \ h < h^-(\sigma) \right\},$$

and we claim that for $(\sigma, h) \in A$ $((\sigma, h) \in C)$ the functional $I[\cdot, \cdot, h, \sigma]$ admits only one-phase equilibria $(\hat{u}, \hat{\chi})$ with $\hat{u} \equiv 0$ and $\hat{\chi} \equiv 0$ $(\hat{\chi} \equiv 1)$. To verify our claim we assume $(\sigma, h) \in A$, hence $h > h^+(\sigma) \ge \hat{h}$. Recalling (4.2) we have $I_1(\sigma, h^+(\sigma)) = I_0(h^+(\sigma))$ and by Remark 3.6 $I[\cdot, \cdot, h, \sigma]$ admits only a one-phase equilibrium which on account of $h > \hat{h}$ is of type $\hat{\chi} \equiv 0$. The case $(\sigma, h) \in C$ is treated in the same way, and the claim is proved. Now let

$$A' := \left\{ (\sigma, h) : \sigma > 0, h \ge \hat{h}, I_1(\sigma, h) = I_0(h) = \langle A^- \xi^-, \xi^- \rangle |\Omega| \right\}.$$

It is easily seen that

$$A' = A \cup \operatorname{graph} h^+$$
.

In fact, if $(\sigma, h) \in A'$, then we either have $h > h^+(\sigma)$ or $h = h^+(\sigma)$ since $h < h^+(\sigma)$ would imply two-phase equilibria which are excluded by the definition of A'. Thus the inclusion " \subset " is proved. The other inclusion follows from Lemma 3.4 b). In a similar way we define

$$C' = \{ (\sigma, h) : \sigma > 0, h \le \hat{h}, I_1(\sigma, h) = I_0(h) = (\langle A^+ \xi^+, \xi^+ \rangle + h) |\Omega| \},$$

 $C' = C \cup \operatorname{graph} h^-.$

LEMMA 4.2 A' and C' are convex sets.

Proof. Fix two points $(\sigma_i, h_i) \in A'$, i = 1, 2, a real number $0 \le \tau \le 1$, and let $\sigma_{\tau} := \tau \sigma_1 + (1 - \tau) \sigma_2$, $h_{\tau} := \tau h_1 + (1 - \tau) h_2$. Since $\sigma_1, \sigma_2 > 0$ and since $h_1, h_2 \ge \hat{h}$ the assertions $\sigma_{\tau} > 0$ and $h_{\tau} \ge \hat{h}$ are trivial, it remains to show

$$I_1(\sigma_{\tau}, h_{\tau}) = I_0(h_{\tau}) = |\Omega| \langle A^- \xi^-, \xi^- \rangle.$$

However, these equalities are known to be true for σ_i , h_i and since in addition I_1 is concave (see Lemma 3.10), we obtain

$$I_1(\sigma_{\tau}, h_{\tau}) \geq \tau I_1(\sigma_1, h_1) + (1 - \tau) I_1(\sigma_2, h_2)$$

= $\tau I_0(h_1) + (1 - \tau) I_0(h_2) = |\Omega| \langle A^- \xi^-, \xi^- \rangle$.

On the other hand, $I_1(\sigma, h) \leq I_0(h)$ holds for any $h \in \mathbb{R}$, $\sigma > 0$. This together with $h_{\tau} \geq \hat{h}$ gives

$$I_1(\sigma_{\tau}, h_{\tau}) \leq I_0(h_{\tau}) = |\Omega| \langle A^- \xi^-, \xi^- \rangle.$$

This proves the convexity of A', C' is handled with anologous arguments.

Step 4. (Properties of the functions $h^{\pm}(\sigma)$)

LEMMA 4.3 The functions h^{\pm} are bounded and depend continuously on $\sigma > 0$. Moreover, $h^{+}(\sigma)$ is convex on $(0, \infty)$, whereas $h^{-}(\sigma)$ is concave on $(0, \infty)$.

Proof. In Step 1. it was shown that B is bounded, hence with Lemma 4.1 the functions h^{\pm} are seen to be uniformly bounded on $(0, \infty)$. Thus we only have to prove that h^+ (h^-) is convex (concave) which will imply continuity. Now fix $\sigma_1, \sigma_2 > 0, 0 \le \tau \le 1$, and observe that $(\sigma_i, h^+(\sigma_i)) \in A', i = 1, 2$. In fact, $h^+(\sigma_i) \ge \hat{h}$ is proved in Lemma 4.1, and the existence of an one-phase equilibrium of type $\hat{\chi} \equiv 0$ follows from Lemma 3.4 b). Convexity of A' then yields

$$(\underbrace{\tau \, \sigma_1 + (1 - \tau) \, \sigma_2}_{\tilde{\sigma}}, \underbrace{\tau \, h^+(\sigma_1) + (1 - \tau) \, h^+(\sigma_2)}_{=:\tilde{h}}) \in A'.$$

Since $(\tilde{\sigma}, \tilde{h}) \in A'$ immediately gives (compare Step 3.) $\tilde{h} \geq h^+(\tilde{\sigma})$, we have proved the convexity of h^+ :

$$\tau h^+(\sigma_1) + (1-\tau)h^+(\sigma_2) = \tilde{h} \geq h^+(\tilde{\sigma}) = h^+(\tau \sigma_1 + (1-\tau)\sigma_2).$$

Using the same arguments h^- is seen to be concave and the lemma is verified.

LEMMA 4.4 There is a real number $\sigma^* > 0$ such that h^+ is strictly decreasing on $(0, \sigma^*)$, whereas h^- is strictly increasing on this intervall. On (σ^*, ∞) both h^+ and h^- are equal to \hat{h} .

Proof. By Lemma 3.9 we know that $h^-(\sigma) < \hat{h} < h^+(\sigma)$ if $\sigma \ll 1$ is sufficiently small. On the other hand, $\sigma \gg 1$ implies according to Lemma 3.8 $h^-(\sigma) = \hat{h} = h^+(\sigma)$. Hence, we may define

$$\sigma_+^* := \inf \left\{ \sigma > 0 : h^+ = \hat{h} \text{ on } (\sigma, \infty) \right\}.$$

Now assume by contradiction that h^+ is not strictly decreasing on $(0, \sigma_+^*)$, i.e. for some positive numbers $0 < \sigma_1 < \sigma_2 < \sigma_+^*$ we have $h^+(\sigma_1) \leq h^+(\sigma_2)$. Together with this assumption, convexity of h^+ gives for any $\sigma > \sigma_2$

$$\frac{h^{+}(\sigma) - h^{+}(\sigma_{2})}{\sigma - \sigma_{2}} \geq \frac{h^{+}(\sigma_{2}) - h^{+}(\sigma_{1})}{\sigma_{2} - \sigma_{1}} \geq 0.$$

Since $\sigma_2 < \sigma_+^*$ implies $h^+(\sigma_2) > \hat{h}$, we obtain the contradiction $h^+(\sigma) \ge h^+(\sigma_2) > \hat{h}$ for any $\sigma > \sigma_2$. Up to now it is proved that h^+ is strictly decreasing on $(0, \sigma_+^*)$. Analogous considerations prove the existence of a real number $\sigma_-^* \in (0, \infty)$ such that $h^- \equiv \hat{h}$ for $\sigma \ge \sigma_-^*$ and such that h^- is strictly increasing on $(0, \sigma_-^*)$. It remains to verify $\sigma_+^* = \sigma_-^*$: to this purpose observe that by Lemma 4.1 $h^-(\sigma) \ne h^+(\sigma)$ implies $\hat{h} \in (h^-(\sigma), h^+(\sigma))$. If we assume that $\sigma_-^* < \sigma_+^*$, then we may find $\sigma \in (\sigma_-^*, \sigma_+^*)$ such that $(h^-(\sigma), h^+(\sigma)) \ne \emptyset$ and such that $h^-(\sigma) = \hat{h}$. This gives the contradiction $\hat{h} \notin (h^-(\sigma), h^+(\sigma))$. Again the case $\sigma_-^* > \sigma_+^*$ is excluded with the same arguments, and the proof of Lemma 4.4 is complete.

5 Equilibrium states of $I[\cdot, \cdot, h, \sigma]$ for points (σ, h) on the graphs of h^{\pm}

In this section we prove iv)-vii) of Theorem 1.1.

ad iv). Consider the case $0 < \sigma < \sigma^*$ and $h = h^+(\sigma)$. Letting $\sigma_n \equiv \sigma$ and by considering a sequence $\{h_n\}$ satisfying $h_n \uparrow h$ as $n \to \infty$ we may assume $(\sigma_n, h_n) \in B$ for n sufficiently large, hence there exists a sequence of twophase equilibria $(\hat{u}_n, \hat{\chi}_n)$ of $I[\cdot, \cdot, h_n, \sigma_n]$. Since $\lim_{n\to\infty} h_n = h = h^+(\sigma) > \hat{h}$, Lemma 3.4 b) is applicable and $I[\cdot, \cdot, h^+(\sigma), \sigma]$ is seen to admit a two-phase equilibrium. On the other hand, now letting $\sigma_n \equiv \sigma$ and considering a sequence $\{h_n\}$, $h_n \downarrow h$ as $n \to \infty$, we have $(\sigma_n, h_n) \in A$ and the same reasoning proves the existence of a one-phase equilibrium, which on account of Remark 3.6 can only be of type $\hat{\chi} \equiv 0$.

ad v). We can apply the same arguments as used for iv) with obvious modifications.

ad vi). For $h = \hat{h}$ and $\sigma > \sigma^*$ we again apply Lemma 3.4 to find $(\hat{u}, \hat{\chi})$, $\hat{u} \equiv 0$, as an equilibrium state of $I[\cdot, \cdot, \hat{h}, \sigma]$. Here, Lemma 3.3 c) shows any characteristic function $\hat{\chi}$ to be admissible. Equilibrium states satisfying $\hat{u} \not\equiv 0$ are not possible: if we assume the existence of an equilibrium state $(\hat{u}_0, \hat{\chi}_0)$ of $I[\cdot, \cdot, \hat{h}, \sigma_0]$, $\sigma_0 > \sigma^*$, $\hat{u}_0 \not\equiv 0$, then we obtain for any $\sigma \in (\sigma^*, \sigma_0)$,

$$I_0(\hat{h}) = I_1(\sigma, \hat{h}) \le I[\hat{u}_0, \hat{\chi}_0, \hat{h}, \sigma] < I[\hat{u}_0, \hat{\chi}_0, \hat{h}, \sigma_0]$$

= $I_1(\sigma_0, \hat{h}) = I_0(\hat{h})$,

where we used the existence of equilibria of type $\hat{u} \equiv 0$ for the parameters $\sigma = \sigma_0$, $h = \hat{h}$.

ad vii). Finally the case $h = \hat{h}$ and $\sigma = \sigma^*$ has to be discussed. As in vi) equilibrium states of type $\hat{u} \equiv 0$, $\hat{\chi} \equiv$ arbitrary characteristic function, are found. The existence of a two-phase equilibrium state satisfying $\hat{u} \not\equiv 0$ is proved by considering a sequence $\{\sigma_n\}$, $\sigma_n \uparrow \sigma^*$ as $n \to \infty$, $h_n \equiv \hat{h}$, i.e. $(\sigma_n, \hat{h}) \in B$. By the definition of B we have $I_1(\sigma_n, \hat{h}) < I_0(\hat{h})$ and, as a consequence (compare Lemma 3.3 c)), $\hat{u}_n \not\equiv 0$ if $(\hat{u}_n, \hat{\chi}_n)$ denotes a corresponding equilibrium state of $I[\cdot, \cdot, \hat{h}, \sigma_n]$. With Lemma 3.4 a) assertion vii) holds and the whole theorem is proved.

6 Proof of Theorem 1.3

W.l.o.g. assume that $\hat{u} \not\equiv 0$. Then we have $\int_{\Omega} |\Delta \hat{u}|^2 dx > 0$ and letting $u_t := \hat{u} + t\varphi$, $t \in \mathbb{R}$, $\varphi \in C_0^{\infty}(\Omega; \mathbb{R}^d)$, minimality of $(\hat{u}, \hat{\chi})$ implies

$$0 = \frac{d}{dt} I[u_t, \hat{\chi}, h, \sigma]$$

$$= 2 \int_{\Omega} \left\langle \hat{\chi} A^+ \left(\varepsilon(\hat{u}) - \xi^+ \right) + (1 - \hat{\chi}) A^- \left(\varepsilon(\hat{u}) - \xi^- \right), \varepsilon(\varphi) \right\rangle dx$$

$$+ p \sigma \left(\int_{\Omega} |\Delta \hat{u}|^2 \right)^{\frac{p}{2} - 1} \int_{\Omega} \Delta \hat{u} : \Delta \varphi \, dx \,,$$

hence, letting $T = c(\hat{\chi}A^+(\varepsilon(\hat{u}) - \xi^+) + (1 - \hat{\chi})A^-(\varepsilon(\hat{u}) - \xi^-))$ for a suitable real number c > 0, we obtain

(6.1)
$$\int_{\Omega} \Delta \hat{u} : \Delta \varphi \, dx = \int_{\Omega} \nabla \varphi : T \, dx \quad \text{for all } \varphi \in C_0^{\infty}(\Omega; \mathbb{R}^d) .$$

Now we abbreviate $U := \Delta \hat{u} \in L^2(\Omega; \mathbb{R}^d)$ and denote by U^{ρ} , T^{ρ} the standard mollifications of U and T, respectively, where $\rho > 0$ is chosen sufficiently small. Then (6.1) is valid for U^{ρ} , T^{ρ} in the following sense

(6.2)
$$\int_{\Omega} \nabla U^{\rho} : \nabla \varphi \, dx = -\int_{\Omega} \nabla \varphi : T^{\rho} \, dx \,, \quad \varphi \in C_{0}^{\infty}(\Omega; \mathbb{R}^{d}) \,,$$
$$\operatorname{dist}(\operatorname{spt} \varphi, \partial \Omega) > \rho \,.$$

Since $\eta^2 U^{\rho}$, $\eta \in C_0^{\infty}(\Omega)$, $0 \leq \eta \leq 1$, is admissible in (6.2) for ρ sufficiently small, this implies

$$\int_{\Omega} \eta^{2} \left| \nabla U^{\rho} \right|^{2} dx + 2 \int_{\Omega} \eta \nabla \eta \otimes U^{\rho} : \nabla U^{\rho} dx$$

$$= - \int_{\Omega} \eta^{2} \nabla U^{\rho} : T^{\rho} dx - 2 \int_{\Omega} \eta \nabla \eta \otimes U^{\rho} : T^{\rho} dx,$$

hence, with the help of Young's inequality,

$$\int_{\Omega} \eta^2 \left| \nabla U^{\rho} \right|^2 dx \leq \tilde{c}(\eta) \left(\int_{\operatorname{SDt} n} \left| U^{\rho} \right|^2 dx + \int_{\operatorname{SDt} n} \left| T^{\rho} \right|^2 dx \right).$$

This proves $\{U^{\rho}\}$ to be uniformly bounded in $W^1_{2,loc}(\Omega; \mathbb{R}^d)$ which, together with $U^{\rho} \to U$ in $L^2_{loc}(\Omega; \mathbb{R}^d)$ as $\rho \to 0$, gives $U \in W^1_{2,loc}(\Omega; \mathbb{R}^d)$. As a result we have the equation

(6.3)
$$\int_{\Omega} \nabla U : \nabla \varphi \, dx = -\int_{\Omega} T : \nabla \varphi \, dx \quad \text{for all } \varphi \in C_0^{\infty}(\Omega; \mathbb{R}^d) .$$

Now we apply the standard L^p -theory for weak solutions of " $\Delta v = \nabla T$ " as well as again the Calderon-Zygmund regularity results. To be precise let us first consider the case d=2. Here $\varepsilon(u)\in W_2^1(\Omega;\mathbb{R}^{d\times d})$ implies $T\in L^p(\Omega;\mathbb{R}^{d\times d})$ for any $p<\infty$. L^p -theory gives $\nabla U\in L^p_{loc}(\Omega;\mathbb{R}^{d\times d})$ (compare [GIA], Section 4.3, in particular p. 73), hence $\Delta u\in W^1_{p,loc}(\Omega;\mathbb{R}^d)$ for any $p<\infty$ and we obtain $\Delta u\in C^{0,\alpha}_{loc}(\Omega;\mathbb{R}^d)$ for any $\alpha\in(0,1)$. Finally, the assertion follows from the interior Schauder estimates (see [GIA], Theorem 3.6). Next we assume that $d\geq 3$ and let $s_l:=2d/(d-2l)$. Then it is easy to see that

$$\hat{u} \in W_{2}^{2}(\Omega; \mathbb{R}^{d}) \qquad \Rightarrow \quad \varepsilon(\hat{u}) \in L^{s_{1}}(\Omega; \mathbb{R}^{d \times d})
\Rightarrow \quad T \in L^{s_{1}}(\Omega; \mathbb{R}^{d \times d}) \qquad \Rightarrow \quad \nabla(\Delta \hat{u}) \in L^{s_{1}}_{loc}(\Omega; \mathbb{R}^{d \times d})
\Rightarrow \quad \Delta \hat{u} \in W^{1}_{s_{1},loc}(\Omega; \mathbb{R}^{d}) \qquad \Rightarrow \quad \Delta \hat{u} \in L^{s_{2}}_{loc}(\Omega; \mathbb{R}^{d})
\Rightarrow \quad \hat{u} \in W^{2}_{s_{2},loc}(\Omega; \mathbb{R}^{d}) \qquad \Rightarrow \quad T \in L^{s_{3}}(\Omega; \mathbb{R}^{d \times d})$$

. . .

This procedure stops if $d \leq 2l$. Thus, denote by l^* the maximum of all $l \in \mathbb{N}$ such that d-2l>0. Then s_{l^*} is well defined and satisfies $s_{l^*} \geq d$. In fact, the latter inequality is equivalent to $2 \geq d-2l^*$ which is true on account of the maximality of l^* . Now assume that l^* is an even number. Then (6.4) implies for any $p < \infty$

$$\begin{split} \hat{u} &\in W^2_{s_{l^*},loc}\big(\Omega;\mathbb{R}^d\big) & \Rightarrow & \varepsilon(\hat{u}) \in W^1_{d,loc}\big(\Omega;\mathbb{R}^{d\times d}\big) \\ \\ &\Rightarrow & \varepsilon(\hat{u}) \in L^p_{loc}\big(\Omega;\mathbb{R}^{d\times d}\big) & \Rightarrow & T \in L^p_{loc}\big(\Omega;\mathbb{R}^{d\times d}\big) \,, \end{split}$$

thus $\Delta \hat{u} \in W^1_{p,loc}(\Omega; \mathbb{R}^d)$ for any $p < \infty$ (again compare [GIA], Section 4.3) and as a consequence $\Delta \hat{u} \in C^{0,\alpha}_{loc}(\Omega; \mathbb{R}^d)$ for all $0 < \alpha < 1$. Again the interior Schauder estimates (see [GIA], Theorem 3.6) prove the result. In the case that l^* is an odd number we conclude

$$\Delta \hat{u} \in W^1_{s_{l^*},loc}(\Omega; \mathbb{R}^d) \implies \Delta \hat{u} \in W^1_{d,loc}(\Omega; \mathbb{R}^d) \implies \Delta \hat{u} \in L^p_{loc}(\Omega; \mathbb{R}^d)$$

$$\Rightarrow \hat{u} \in W^2_{p,loc}(\Omega; \mathbb{R}^d),$$

which again is valid for any $p < \infty$, hence $\varepsilon(\hat{u}) \in L^p_{loc}(\Omega; \mathbb{R}^{d \times d})$ for any $p < \infty$ and we proceed as before, i.e. Theorem 1.3 is proved.

References

- [BFO] Bildhauer, M., Fuchs, M., Osmolovskii, V., The effect of a surface energy term on the distribution of phases in an elastic medium with a two-well elastic potential.
- [DA] Dacorogna, B., Direct methods in the calculus of variations. Appl. Math. Sciences 78, Springer, Berlin–Heidelberg–New York, 1989.
- [GIA] Giaquinta, M., Introduction to regularity theory for nonlinear elliptic systems. Lectures in Mathematics ETH Zürich, Birkhäuser, Basel-Boston-Berlin 1993.
- [GT] Gilbarg, D., Trudinger, N.S., Elliptic partial differential equations of second order. Grundlehren der math. Wiss. 224, second ed., revised third print., Springer, Berlin-Heidelberg-New York, 1998.
- [GIU] Giusti, E., Minimal surfaces and functions of bounded variation. Birkhäuser, Boston-Basel-Stuttgart, 1984.

- [GR] Grinfeld, M.A., The methods of continuum mechanics in the phase transition theory. Moskow 1990 (in Russian).
- [KO] Kohn, R.V., The relaxation of a double-well energy. Continuum Mech. Thermodyn. 3 (1991), 193–236.
- [KM] Kohn, R.V., Müller, S., Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math. 57 (1994), 405–432.
- [MO] Morozov, N.F., Osmolovskii, V., The formulation and an existence theorem for a variational problem on phase transitions in continuous medium mechanics. J. Appl. Math. Mech. 58.5 (1994), 889–896.
- [MU] Müller, S., Microstructures, phase transitions and geometry. Max-Planck-Institut für Mathematik in den Naturwissenschaften, preprint no. 3, Leipzig 1997.
- [OS1] Osmolovskii, V.G., Phase transitions for models of an elastic medium with residual stress operators. Problemy matematicheskogo analiza 17 (1997), 153–191 (in Russian). Engl. Trans.: J. Math. Sciences 97, no. 4 (1999), 4280–4305.
- [OS2] Osmolovskii, V.G., The variational problems on phase transition theory in the mechanics of continuum media. St. Petersburg 2000 (in Russian).
- [SE] Seregin, G., J_p^1 -quasiconvexity and variational problems on sets of solenoidal vector fields. Algebra and Analiz 11, 170–217, 1999. Engl. transl. in St. Petersburg Math. J. 11 (2000), No. 2, 337–373.