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Abstract. We consider the problem of minimizing

J(u,E) = / Fif (- e(u)) dx—i—/ f(e(w) dz +o|0EN Q|
E Q-E

among functions v : R* > Q — R?, ugn = 0, and measurable sub-
sets E of Q. Here f}:“ , [~ denote quadratic potentials defined on
Q x {symmetric d x d matrices}, h is the minimum energy of f,:L and
¢(u) is the symmetric gradient of the displacement field u. An equilib-
rium state 4, E of J (u, E) is called one—phase if E =0 or E = Q, two—
phase otherwise. For two—phase states o|0E N €| measures the effect of
the separating surface, and we investigate in which way the distribution
of phases is affected by the choice of the parameters h € R, o > 0. Ad-
ditional results concern the smoothness of two—phase equilibrium states
and the behaviour of inf J(u, F) in the limit o | 0. Moreover, we discuss
the case of additional volume force potentials, and extend the previous
results to non-zero boundary values.

AMS Subject Classification: 74 B 05, 74 G 65, 74 N 99.
Key words: elastic materials, phase transition, equilibrium states, functions
of bounded variation.
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1 Introduction

We consider an elastic medium occupying a bounded Lipschitz region  C R¢
and assume that the medium can exist in two different phases. Each phase
is characterized by its deformation energy density

fH(@e(u) (@) = (A%(2) (e(u)(2) — £5(2)),e(u)(z) — £5(2)) + o™

and its location in the non-deformed state, i.e. by sets QF C 2, where
QtNO~ =0 and QT UQ~ = Q. The plus and minus superscripts correspond
to the first and second phase, respectively, u(z) = (u'(z),...,u4(x)), z € Q,
is the field of displacements with corresponding strain tensor £(u), and we
assume that u(z) vanishes on 0€2. According to the definition the energy
density f* of each phase is a quadratic function of the linear strain &(u).
£* denotes the stress—free strain of the i phase; A*(z) is the tensor of the
elastic moduli viewed as a positve definite, symmetric linear map on the space
of symmetric tensors. We do not assume that A" and A~ coincide but their
difference measured in L*°-norm should be small (see Section 2 for precise
statements). Finally, a® is the associated minimum energy, w.l.o.g. we will
assume that a™ = h € R and ¢~ = 0. In order to indicate the dependence
of f* on the parameter h, we will write f,/(z,¢) in place of f*(z,¢). If x
denotes the characteristic function of the set Q% occupied by the first phase,
then it is natural to take the functional (neglecting for the moment volume
force potentials)

Jlu,x] = /Qfo('aE(U))+(1—x)f_(',€(U))dw (1.1)

as the total deformation energy and to investigate the existence and be-
haviour of equilibrium states, i.e. of pairs 4, x such that

J[a,x] =inf J,

where the infimum has to be taken w.r.t. to all deformations u : Q — R¢,
ujpo = 0, and all measurable characteristic functions x : 2 — R. A state of
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matical Institute for showing kind hospitality. This research was partially supported by
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equilibrium is termed one—phase, if Y = 0 or y = 1, and two—phase otherwise.
Unfortunately, the variational problem J — min may fail to have solutions
as it is shown by an example in [MO]. One way to overcome this difficulty
is the observation that

X (e(w) + (1 =x)f~(e(w) > min{f:(-,e(u)),f—(-,g(u))}

hence we may introduce the functional

M = [ few) da (1.2

whose energy density is the non—convex double well potential f(-,e(u)) and
whose infimum agrees with infJ (compare Theorem 7.1). Again, the ex-
istence of I-minimizing displacement fields can not be guaranteed but the
quasiconvex envelope f(:,£(u)) of f(-,£(u)) provides a natural regularisation
Iu] = Jo f(,e(u)) dz of the functional I which means that I attains its
minimum among all admissible displacements. Moreover, the I-minimizing
displacement fields are exactly the weak cluster points of /-minimizing se-
quences. There are many papers devoted to the study of the relaxed varia-
tional problem

I[u] — min (1.3)

on suitable classes of displacements u: 2 — R¢. Without being complete we
mention [DM], [BJ] and the references quoted therein.

There is another way to obtain a regularization of the functional (1.1): fol-
lowing [GR] it is natural to introduce an additional term in (1.1) similar to
the Griffith surface energy and proportional to the area of the surface S sep-
arating the regions Q' ={x € Q: x(z) =1} and Q™ ={z € Q: x(z) =0},
more precisely we let

Mud = [ [efi (o) + (1= 05 (o) datols], (1)

where |S| denotes the area of the separating surface and o is a positive
constant. Reformulating the variational problem for (1.4) in suitable spaces

like X :V;/zl(Q;Rd) X {x € BV(Q) : x(z) =0 or 1} by observing that

s1= [ 19x,
Q
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if S := O(spt x N ) is smooth, it is easy to show the existence of equilibrium
states @, x. Moreover, we have inf I[u, x| — inf J[u, x] as ¢ | 0 (see Theorem
7.1).

The main purpose of our paper is to investigate in which way equilibrium
states depend on the parameters A~ € R and o > 0, in particular, we describe
the range of parameters for which only two—phase (one—phase) equilibria
exist and under which conditions bifurcation occurs. A precise formulation
is given in Theorem 2.1, and in Theorem 8.1 we include additional volume
force terms, Theorem 9.1 addresses the case of non—zero boundary values. In
this paper we will make use of various methods introduced by the third author
in [OS1] for the investigation of phase transition problems in elastic media
with residual stress operators. The reader who wants to learn more about
the mathematical and physical background should consult the monograph
[082].

Finally, we wish to mention that there exists a third way of regularizing
(1.1) where the surface energy term o|S| from (1.4) is replaced by a quantity
involving higher order weak derivatives like o [, |Au[? dz of the deformation
field u. This model was proposed in [KM] and [MU], and in the particular
case h = 0 there is an approach to investigate the minimization problem for
the functional (1.2) without using any regularization. This approach is based
on the construction of a deformation u s.t. e(u)(x) € {£*(z),& (x)} holds
a.e. (see again [MU]).

REMARK 1.1 The reader should note that variational problems with a
perimeter penalization naturally occur in the setting of optimal design theory,
we refer e.g. to [AB].

2 Notation and results

Let S¢ denote the space of all symmetric d x d matrices. We define for
u = (u;), v=(v;) € R? and for s = (36;), k = (kij) € S u-v:=wu;v;, |u| =
Vu-u, (36, K) == tr (s k) = 365 kij, |3| := \/(3¢,%), scu = (sgu;) € RY,
where we always take the sum over repeated Latin indices from 1 to d. If A:
S¢ — S¢ denotes a symmetric linear operator, i.e.

(Ao, ) = (o, AB) forall o, f€S?,

we will use a coordinate representation in the form

(Aa)i; = aijmow, 4,j=1,....d.



In terms of the coefficients a;;x € R symmetry of A means
Gijkl = Qklgj, Qijkl = Gjikl, Gijkl = Qijlk - (2.1)

In the following Q C R? is assumed to be a bounded Lipschitz domain. For

functions u: Q — R? from the Sobolev space W, (Q; R?) (see [AD]) we define
the strain tensor

(e(u))z-j = %(aiuhrajui), ih,ji=1,...,d, (2.2)

and observe that e(u)(z) € S¢ for a.a. x € Q. Note also that by Korn’s
inequality (compare, e.g. [ZE] for a list of references) there is a constant ¢
independent of u such that

IVl oy < elle@ll oy

holds for any u from the space W, (£2;R?). Suppose now that for each z € Q
two symmetric, linear operators A%(z): S? — S? are given with coordinates
of the form
+ +
a’ij,kl(x) = aiu(z) + az’j,kl(x) ; (2.3

jr and afj,kl being symmetric and satisfying

g °Q), of *
Qijk1 € C (Q) ’ O“/Z],Icl €L (Q) ’ (2.32)
+

ZJ'JclHLoo(Q) <ée.

e

Here ¢ is a sufficiently small positive real number being specified in Lemma
3.5 below. In addition to (2.3) we assume the operators A* to be positive
definite, i.e. for some v > 0 we have

vie? < (A*(@)a,a) < vl (2.4)

being valid for all z € Q and o € S% Next, let us state our hypotheses
concerning the stress—free strains £*: for some finite ¢ > d we have

& € L(;87), (2.5)

moreover, £ are generalized solutions of the equilibrium equations, i.e.

/Q<Ai§i,g(v)>dx = 0 forall v GVE/QI(Q;Rd). (2.6)



Note that (2.6) holds in the case that A* as well as £ do not depend on z €
). Besides of this A% and ¢* should satisfy one of the following additional
conditions:
there is a subset E of {2 with positive measure such that
1
(W@ @€ @) - g7 (A W)y
_ _ _ 1 _ _ _
< (A7 (@) € (2),€ (@) - ] Q<A )€ (v),€ (v)) dy

is true for a.a. x € E.

(@) @67 @) = 17 [ (A€ .67 )) dy
<A@ @6 @) - [(WEW.EWay (T

a.e.on Qand ATET £ A-E.

7
In Section 4 the hypotheses (2.7) and (2.7*) will imply the existence ot two—
phase equilibria. (2.7) should be viewed as a kind of sufficient condition for
this fact in the case of variable data A*(z), ££(z). Clearly (2.7) is violated in
the case when A* = AT, ¢* = £ with constant operators AT and constant
symmetric matrices & but then (2.7*) reduces to the natural requirement
that Af &5 # Ay & - An example satisfying (2.7) will be given at the end of
Section 6.

Let us now recall our definitions of f*(-,¢), f,'(-,€), h € R, ¢ € S¢, from
Section 1 and define for o > 0

Ifu, x, h,o0] = /Q(th*(-,e(u))jL(l—)O f (,5(u))) dr+o /Q Vx| (2.8)
where the pair (u, x) is taken from the space
X = WE(RY) x {xe BV(@): x(z) € {0,1} ae}, (29)
i.e. x is a measurable characteristic function of finite total variation
/Q\Vx\ = sup{/ﬂxdivgadx: ¢ € Cy (U RY), Jp| < la.e.} < 4o00.

For a definition of the space BV (2) we refer to [GI] or [AFP| where the
reader will also find the proofs of the following facts:

6



a) lower semicontinuity: if {x,} is a sequence of measurable characteristic
functions x, € BV (Q) s.t. x, — x a.e., then

/|Vx| < liminf/\VXn|.
0 n—oQ 0

b) compactness: if for a sequence {x,} as above we have sup, [, |Vxn| <
00, then there is a subsequence {X,} and a measurable characteristic
function xy € BV () s.t. x, — X a.e.

c) isoperimetric inequality: suppose that the measurable characteristic
function x € BV () satisfies ﬁ Jo xdz < 1. Then there is a number

k = k(d, ) s.t.

d—1

(/Qxdx) T o< n/Q\VxL

d) density: for any measurable characteristic function y there exists a se-
quence {x,} of measurable characteristic functions in BV (2) s.t. x, —
X a.e.

(Property d) is proved in [OS2], for convenience we sketch the proof in the
Appendix.)

Now we state the main result of our paper in which we describe the depen-
dence of equilibrium states 4, ¥ of the functional (2.8) on the parameters h
and o.

THEOREM 2.1 Let all the hypotheses stated before be satisfied. Then, for
any h € R and o > 0, the functional from (2.8) attains its minimum on the
set X defined in (2.9). The half-plane of parameters o > 0 and h € R is
divided into three open regions A, B, C' (see the figure below) such that the
following holds:

a) for (o,h) € A we only have the one—phase equilibrium 4 = 0, x = 0;
b) for (o,h) € C only the one—phase equilibrium state i = 0, x = 1 exists;
¢) within the region B only two—phase states of equilibria ezist.

Region A (C) is separated from region B by the graph of a continuous
function h* (o) (h~(0)), 0 < o < o* for some o* > 0; the functions h* are
defined on (0,+00) and have the following properties: there exists a number
h (an expression for this quantity is given in (8.7)) such that:



n (0,0%) h' is strictly decreasing and h* > ZL,‘
on (0,0%) h™ is strictly increasing and h~ < h;
for o € [0, 00) we have h* (o) = h™ (o) = h.

On the graphs of h* we have the following description of equilibrium states:

d) for h = h (o), o € (0,0%), we have the one—phase equilibrium state
=0, x =0 and at least one additional two—phase equilibrium state;

e) for h=h (o), o € (0,0%), there is at least one two—phase equilibrium
state together with the one—phase equilibrium 4 =0, x = 1;

f) forh=h, o € (0%,00), the equilibrium states consist of the pairs it = 0,
X=0andu=0, x =1,

>
Il

g) for h = h, 0 = 0* we have the equilibrium states & =0, ¥ = 0,
X =1 plus at least one additional two—phase equilibrium.

0,

o(>0)
h'(o)

h(o)

Figure 1: The o, h half-plane

As to the regularity for two—phase state equilibria we have the following
result (assuming the same hypotheses as for Theorem 2.1).

THEOREM 2.2 Consider a two—phase equilibrium state (4, x) € X of the
functional from (2.8) with 0 > 0 and let E = {z € Q: x(x) = 1}. Then, if



d <7, QNOFE is a hypersurface of class C* separating S into two open sets
on which U is smooth provided that the coefficients aiij,kl are regular.

REMARK 2.3 Regarding the definition of OFE we adopt the standard con-
vention (see, e.g. [GI], Proposition 3.1 and Remark 3.2) that

0 < |[ENBy(z)] < wgr?

holds for any x € OF, wq denoting the volume of the d—dimensional unit ball.
The latter condition can always be achieved by replacing E through a set E
such that |E — E| = |E — E| = 0.

REMARK 2.4 In Theorem 8.1 (and 8.2) we prove that Theorem 2.1 (and
also Theorem 2.2) extend to the case when we add a potential like fﬂp-u dx to
the energy Ilu, x, h,o]. Moreover, we can include the case of non—vanishing
boundary values uy (see Theorem 9.1). In both cases the data have to be
sufficiently small.

REMARK 2.5 By further decreasing the quantity € from (2.3%) (if neces-
sary) the functions h*(c) are seen to be bounded if so are the stress—free
strains £ (z) (see Lemma 7.3).

The proof of Theorem 2.1 is organized in a series of lemmas presented in
Section 3 to Section 5. In Section 6 we put together these auxiliary results by
the way completing the proof of Theorem 2.1. Moreover, Section 6 contains
the proof of Theorem 2.2. We finish Section 6 by adding an example for which
condition (2.7) is satisfied. In Section 7 we give some further comments on
our results, in particular we show that {@,} is a minimizing sequence for
the functional from (1.2) whenever (4, X,) € X is an equilibrium state of
I[u, x, h, 0,) for a sequence {0, } such that o,, > 0,41, 0, > 0, lim,,,o, 0, = 0.
Finally, we discuss in Section 8 the case involving an additional volume force
term, in Section 9 we add some remarks on non-zero boundary values.

3 Some existence results

From now on we assume that all the conditions stated before Theorem 2.1
are valid but let us remark explicitly that we neither need (2.7) nor (2.7%)
throughout this section. We start with the following simple observation: con-
sider a one-phase equilibrium state (4, x) € X of the functional I[u, x, h, o],
heR, o0>0,ie. x=0or xy=1. Then we have & = 0. For the proof let us
consider the case Y = 1. Then

I[4,1,h,0] < I]0,1,h,0]

9



implies (compare (2.8) and write f;" = fif +h, fi (-,€) := (AT (e—€T),e—E£T))

|5 e@)de < [ 0,

and by (2.6) (recall 4 EI/E/QI(Q; R?)) this reduces to

/Q<A+5(1l),e(a)>dx <0,

hence the ellipticity condition (2.4) together with Korn’s inequality gives the
claim. The case x = 0 is treated in the same way.

The next result is a trivial application of (2.4) combined with Young’s in-
equality.

LEMMA 3.1 Let h € R, 0 > 0 be given. Then for any (u, x) € X we have
the estimate

g/ﬂ|g(u)\2dx+o/ﬂ\v><| (3.1)

v +4 _
< T ho] + 19+ 55 [ (€7 + 1€ ) do
Q

Proof. We have on account of (2.4)
1 h > 2dx — |h||Q \Y
wxhal = v [ E@Pd—he+o [ 9y
X et e ep
> (g i ) do
) /Q(|<A+s(u),§+>‘ + ‘{A_g(u),g_ﬂ) dz .

Observing |(A% ¢, &)| < \/(AZe,e) \/(A£E,E), inequality (3.1) is immediate.
|

The functional I[u, x, h, o] has nice lower semicontinuity properties.

LEMMA 3.2 Consider a sequence (un, Xn) from the space X and sequences
h, € R, o, > 0 such that

hy, =:h, o, =210, U, —:u in I/E/ZI(Q;Rd) and Xn —: X a.e. (3.2
with (u,x) € X. Then
Iu,x, h,o] < liminf I[uy, Xn, An, 0n] - (3.3)
n—0oQ

10



REMARK 3.3 Clearly, the assumption that (u,X) is in the space X is
equivalent to x € BV (Q). On account of

/|vx| < liminf/\VXn|

this would follow if the total variations of the x, stay bounded which can not
be deduced from the convergences stated in (3.2).

Proof. Let us first show that
Ifu,x, h,0] < liminfI[u,, xn, An, 0] . (3.4)
n—odo
Assuming (3.4) we get
Iu,x,h,o] = Iu,x,h,0] —l—a/ Vx|
Q
< liminf ITug, Xn, Bn, O] +1iminf/ |V (00 xn)|
n—od n—o0 o}

where o [, [Vx| < liminf, o [, |V(onxn)| follows from sup,, ||onXn||ze @) <
oo together with o, x, — ox by a simple application of Lebesgues’s theorem
on dominated convergence. This shows (3.3). For (3.4) we observe

T s 0 = [ (b i (o 2(0) + (1 =) £ (1 2(0) )
= [ (whi o)+ (0 =3 (W) do
[ [ (5 6 2ta) = £ (o)
(1= xa) (£ (rem) = £ (e(w))) ] da
= W+,

where
(1) = Ifu, xn, hn, 0] n2e I[u, x, h,0].
Let &, := &(uyn), € := &(u). Then

(A*(en—&5),en—E&") = (AT (en—¢€)en—c)+ (A (e —£F),e = £F)
+2(A* (e, —€),e — £,

11



and by ellipticity this implies the lower bound

2 > Q/QXH<A+(s(un)—g(u)),g(u)—g+>dx
+ 2/9(1—xn)<A_(5(un)—5(u)),6(u)—£‘>dm ngo

where the limit behaviour of the right—hand side follows from assumption
(3.2). This proves (3.4), Lemma 3.2 is established. [

Putting together Lemma 3.1 and Lemma 3.2 we get

THEOREM 3.4 Given arbitrary parameters h € R and o > 0, there exists
an equilibrium state (4, %) € X of the functional I[u, X, h, o).

Proof. Let (un, Xn) € X denote a I[-,-, h,c]-minimizing sequence, i.e.

I[up, Xn, b, O] nzee iﬁf[[-,-,h,o].

Lemma 3.1 together with Korn’s inequality and the compactness of the
embedding BV (Q2) — L'(Q) implies the existence of a subsequence and the
existence of a pair (u,x) € X such that the convergences (3.2) hold. The
minimizing property of (u,x) is a consequence of (3.3) (with the choice
hn = h, 0, = 0). [ |

In the next lemma we give an upper bound for the value of the quantity e
occurring in condition (2.32). Tt should be noted that & does neither depend
on h nor on o > 0.

LEMMA 3.5 There exist constants € > 0 and R > 0 just depending on
Q, d, q, ||aijkllLe) and the ellipticity constant v (R is also depending
on [|€%||r2a(q)) such that if (2.3%) is satisfied for this choice of €, we have
@ €Wy (4 R?) together with lallwy omey < R, whenever (4,X) € X is an
equilibrium state of Iu, x, h, o] with h € R, o > 0.

Proof. Let (u,x) denote an equilibrium state of Iu,x,h,o]. Then
Ift, X, h,o] < I[t + tv, X, h,o] for any t € R, v EW (€; R?), therefore

S~

{* AT (2(@) — €4),6(0)) + (1= Q) (4™ (e(@) — €7),6(v)) } dz = 0.

12



Let A := (aijm), A= ()Za;;,kl +[1—¥] ai_j,kl)7 hence

/Q<Ag(a),g(v)>dx+/ﬂ<As(a),g(v)>dx
— [ GAte (=04 ¢ ew) o

being valid for any v €W,(;R?). For ¢ small enough (depending on
|Allze () and v) the operator A(z): S — S satisfies (2.4) with v replaced

by & for any z € Q, therefore the unique weak solution u EVf/Ql(Q; R?) of
/ (Ae(u),e(v))dz = (T,v)
Q

belongs to the space W21q(Q; R?) provided

o

T € Wi, (4 R?Y) := (W (4 RY))
(compare, e.g. [MOR], Chap. 6.4, or [RS]), more precisely, the mapping
J: W5, (GR) 5T +— u Wy, (% RY)
is an isomorphism. Clearly
L: V;QI(I(Q;Rd) Su = I, € szll (Q;Rd) ,
(op) = [ (At () dn, o Wy (U RY,

is a continuous linear mapping whose norm can be bounded independent of
X, and from the definition of A is follows that

J 1+ L: VT/QIQ(Q;Rd) — W{ql(Q;Rd)

is an isomorphism provided that ||L|| is small enough. The last requirement
can be fulfilled (independent of x) if we choose

||C¥?;,kl||L°°(Q) < e

with ¢ as in the lemma. Let b € Wz_ql(Q; R?¢) be given by
(o) = [RATE + (=D A€ ew) da.
Q

13



By the above considerations there exists a unique function u' €W,} (Q; R?)
such that
(J '+ L)) = b,
and from the equation satisfied by 4 we immediately deduce @ = u'. This
shows
U €Wao (% R?)  together with ||y @) < Clibllw;1 (@ -

By definition (recall (2.5)) the norm of b can be bounded uniformly w.r.t. to
X, the lemma is established. m

To finish this section let us consider

I'[u,h] = I[u,1,h,0] = /f,;F e(u)) dz (3.5)

I7[u] := I[u,0,h,0] = /f )dz, ueﬁ/;(Q;Rd).

I# represent the total deformation energy of one-phase elastic media with
energy density f, (-,£) and f (-, ), respectively.

LEMMA 3.6 On W, (;R?) the functionals I attain their unique minima
at 4 = 0.

Proof. Existence and uniqueness of minimizers 4+ for I* follows from con-
dition (2.4). The corresponding Euler equation reads

/ (A% (g( £*),e(v))dz = 0 forall v EVf/Ql(Q;Rd),
and by (2.6) this reduces to
/Q<Ai5(ai),5(v)> de = 0.
Taking v = 4F the claim follows. |

Let us consider the case that the variational problem
Ifu,x,h,0] — min in X (heR, o>0)

admits only one-phase equilibria (i, x), i.e. either x = 0 or x = 1 together
with 4 = 0 (see the beginning of this section). Then the quantity

Io[h] := min {I+[a+,h],f—[a—]} (3.6)

14



determines the dependence of the energy of an equilibrium state on the quan-
tity h. It is easy to check that

" /Q<A+§+,§+>dx+h|ﬂ|, h<h,
0 —

[ueeri, h>h, (37)
b= [(Curee) e o)

4 The behaviour of the volume of the phases
of equilibrium states as a function of the
parameter h

Roughly speaking, the next lemma implies that under certain hypotheses
sequences of two—phase equilibria will converge weakly to a two-phase equi-
librium.

LEMMA 4.1 For any k > 1 there exists a number 6 = 6(k) € (0,1/2) (de-
pending also on d, Q, q, ||€¥||120(q)) such that the following is true: suppose
that (4,x) € X is a two—phase equilibrium of the energy I[u,x, h, a] with
|h| <k and k™' < o < k. Then we have

1
Q

Proof. Let (4, x) denote a two—phase equilibrium state of I[u, x, h, o]. Then

I[a,x,h,0] < I[0,0,h,o],
(4.1)
I, x,h,o0] < I[0,1,h,0].

The first inequality in (4.1) implies
/Q {f_(.,s(a)) +x (f[f(.,g(A)) f(ea ))) } dz + o / V%]

< [reow < [ (e
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where the last inequality follows from Lemma 3.6. Thus we obtain

o [Vl < [a{r Ge@) - g Ce@) e @
In a similar way we may use the second inequality in (4.1) to get
| {srCoe@) + 0= (4 (et@) = 5 (o)) o
vo [IVa-0] < [ f0d < [ r(e@) ds
in conclusion
o [IVa-0 < [0=0{f @) = Ce@) e @)

Let G := |ff(,e(d)) — f~(-,&())|. Recalling Lemma 3.5 and assumption
(2.5) we get

1Gllzew) < Go

for a finite constant G independent of h and ¢ (but depending on the same
quantities as R from Lemma 3.5). Let us denote by X one of the functions y

or 1 — x for which
xdr < -
@

is true. (4.2), (4.3) and Holder’s inequality imply
- g 1 i1en e
o [1951 < [Go+ IR )] ¥l

_ G h l/q ] T dT
= |Go+[PllIXl Ly | XISy 111 1

LY(@)
l/q T _dd
< [Go+ 14| 11y [ 194

where we used the isoperimetric inequality (with constant k) to bound the
d—1

quantity ||x|| 1i()- Recall that (4, x) is a two—phase equilibrium state, hence

Jo [VX| # 0, and we deduce from the above inequality

qd

1 o a—d 1
@ {/{[GO + | Al (|Q‘/2)1/q} } < @ ||X||L1(Q)- (4.4)
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From (4.4) the claim of the lemma follows if we define ¢ as the minimum of
the left-hand side for all choices of |h| < k and o € [4, k). [

An application of Lemma 4.1 is

LEMMA 4.2 Consider sequences h, € R, o, > 0 such that h, — h and
on = 0 >0 asn — oco. For each n let (U, Xn) € X denote an equilibrium
state of the functional I[u, X, hn,0n]. Suppose that a subsequence of two-
phase equilibria (or one-phase equilibria with x,, = 0 or one-phase equilibria
with xn = 1) exists. Then, for I[u,x,h,c]| there also erists a two-phase
equilibrium state (or a one—phase equilibrium state with x = 0 or a one—
phase equilibrium state with x =1).

Proof. Passing to a subsequence let us first assume that (i, X,) is a se-
quence of two—phase equilibria. By Lemma 3.1 we can extract a subsequence
having the convergence properties stated in (3.2), in particular 4, — 4 in

Vf/'Ql(Q; R%), ¥, — X a.e. Lemma 3.2 implies
I, x, h,o] < li;r_l)glff[ﬂn, Xns Py O] -
On the other hand, for any (u, x) € X, we have by minimality
I, Xns bnyon] < Ifu, X, by 00,

and since the right-hand side converges to I[u, x, h, o], we see that (4, )2) i
an equilibrium state of I[u, x, h,o]. Let us fix k& > 1 such that |h,| < k
on € [1/k, k]. Then, according to Lemma 4.1, we have

1
Q

for all n with § independent of n, therefore

1
Q

and (u,x) is a two—phase equilibrium state. The corresponding result for
single—phase equilibria is trivial, since the property x, =0 (x, = 1) is stable
in the limit. u

LEMMA 4.3 Fori = 1,2 let (4;,X;) € X denote an equilibrium state of
the functional I[u, x, h;,o|. Then we have

(h1 = ho) (IIX1ll @) = [IX2lli@) < 0.

17



Proof. The proof is a simple calculation using
Ity X1, by 0] < I[dg, Xo, by, O]
and
I[tg, X2, ho, 0] < Il X1, ho, 0]
|

REMARK 4.4 Suppose that for some hg there exists an equilibrium state
(o, Xo0) of Iu, x, ho, o] such that X0 =0 (Xo = 1). Then, according to Lemma
4.8, all equilibrium states (4, X) of Iu, x, h,o] with h > hy (h < ho) satisfy
X=0(x=1)

The next lemma shows that for |h| large enough only one-phase equilibrium
states can exist.

LEMMA 4.5 There are numbers h™ > h™ depending in particular on o
with the following property: if h > h™ (h < h™) and if (u,x) denotes an
equilibrium state of Iu, x, h, o], then we have x =0 (x = 1).

Proof. Let us first suppose that for all numbers H > 0 there exists h > H
and an equilibrium state (@p, x») of I[u, x, h, o] such that

1 .
@ f e 2
Q

A~

From estimate (4.2) we get (X := Xp, U := Up)

o [IVReh [ de < [ R(r o) < 5 (e@)) o (40

(4.6) implies

(4.5)

DN |

i a1
o [19514h [ Rde < Gl < GolofT. @)
Q Q

If we replace h by a sequence h, 1 oo and use (4.5), then (4.7) gives a
contradiction. Hence there exists At > 0 such that

1 1 -
Q

18



Returning to (4.7) and quoting (4.8) we may use the isoperimetric inequality
to get (h > h1)

q—d

g—1 d—1
o [1V3] < Gollilidny = Gollil o 1%
q—d
S KGO”)AC“qud(Q) |V>A(‘
Q

being valid for all equilibrium states (4, x) of I[u, x, h,o]. By (4.8) x =1 is
not possible. If (4, X) is a two-phase equilibrium, then [, |Vx| # 0. But the

same argument leading to (4.8) also shows the existence of At (w.Lo.g. > ™)
such that o
o 'kGo|lX|l*® < 1 forall h>ht. (4.9)

Inserting this into the estimate for o [, [Vx|, we see that (u,x) must be a
one—phase equilibrium, in conclusion ¥ = 0 follows. The existence of h™ is
proved in a similar way: we recall (4.3)

/|V1— )= h /(1— %) da
(4.10)
< [0=0 (8 Ce@) = 1 (e@)) da

valid for an arbitrary equilibrium state (@, x) of I[u, x, h,o] and use (4.10)
to get the estimate

d—1
/ V-9 —h / 1-Rdr < Golll = 5y 11— %y
< Gol'T . (4.11)

As before (4.11) gives the existence of a number A~ < 0 s.t.

1 1 -
@ /(1 —x)dz < — forall h<h™. (4.12)
Q

\)

(4.12) enables us to use the isoperimetric inequality with the result

o [IV0-R)] < Gl -1l [ 90 (113)
Q
Next we determine b~ (w.l.o.g. < h~) according to
g—d
o ' kGolll — x| 5 T < 1 forall h<h” (4.14)
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to get from (4.13) [, |V(1 — x)| = 0. Finally, (4.12) implies x = 1. [ |

To proceed further we now present some necessary conditions for the param-
eter h under which two—phase equilibria for I[u, x, h, o] can exist.

LEMMA 4.6 Suppose that for the functional I[u, x, h, o] at least one two—
phase equilibrium state exists. Then we have

k| < ho(o) := max{(2/|Q|)1/qGO, (/o) @) Gg/(q—d)}_
Here Gy is defined after (4.8) and k denotes the constant from the isoperi-
metric inequality.

Proof. Let (4, x) denote a two—phase equilibrium state.

Case 1: h >0

Going through the proof of Lemma 4.5, we see that (4.8) or (4.9) must be
violated, i.e. we have

1

— Xl >

g—d
] or U_IEGOH)ZHL‘I{’Z(Q) > 1 (4.15)

1
2

since in the opposite case (4, Y) is a one—phase equilibrium state. Quoting
(4.7) in the form

h /Q)de < GO||>2||Z?(IQ), ie. h < GO||;<||;§(Q)
and using (4.15) to estimate the right-hand side we get

0<h < max{(2/|9|)éc;o,(n/o)d/@—d) Gg/<q—d>}.
Case 2: h<0

Going back to the proof of Lemma 4.5 we see that now (4.12) or (4.14) must
be wrong. Then we may argue as in Case 1 with the result

0 < —h < max{(2/|)/1Go, (/o) GY I}

LEMMA 4.7 There exists a number o* such that for o > o* and all h € R
all equilibrium states of I[u, x, h, o] are one—phase equilibria.
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Proof.: Consider an arbitrary equilibrium state (u, x) € X of the functional
I[u, x, h,o]. According to (4.7) we have

d—1
o [IVR+h [ ke < ol I
Q Q
hence . - o
7 [ 1931 < {11 @+ Goll T Y11

If (@, X) is a two—phase equilibrium state, then, according to Lemma 4.6, |A|
can be replaced by hy(0), in the one—phase case this is obvious, therefore

d—1
o / Vil < {hol0) 1Kl oy + Gy } 1l

Using (4.11) we get in the same manner

qg—d

1 d—1
7 [1V@ =01 < {halo) 1L = Kl o)+ Gallt = oy 1 = Kl -

Let x denote the function x or 1 — x for which

1 -
@/deg
Q

Using the isoperimetric inequality and the estimates for x and 1 — x, we

deduce
L1951 < meo) [ 198,
Q Q

m(e) = = [holo) (120/2)F + Go(10/2) "

Since hg(o) stays bounded as o0 — o0, it is clear that there exists a number
o* > 0 such that hy(c) < 1 for all ¢ > o*. But then (@, Y) is a one—phase
equilibrium state. |

N~

LEMMA 4.8 Let h denote the number defined in formula (3.7). Then, for
all o > 0 small enough, the energy Iu, x, h, o] has only two—phase equilibrium
states.

Proof. By contradiction we assume that there exists a sequence o, > 0,
on, — 0, such that I[u,x,h,o,] admits a one—phase equilibria (i, X»),

21



ie. U, =0, x, =0o0r 4, =0, x, = 1. For any (u, x) € X we get

I[U,X,iL,O'n] Z IU"anah O'n] - I[O Xnah’ 0]

/f+ =1,

/f_(‘,O)d.'If, )A(n EO:
Q
thus (compare (3.7))

I[u,x, h,04] > Io[h] forall (u,x) € X.
Choosing u = 0 we get for any characteristic function y € BV ()

| (xarenen+a-0 e ) +hx)doto, [ vx
Q Q
> i) = (e as
Q
hence
[xlureen - ey rhldrra [ 94 > 0.
Q Q
Passing to the limit n — oo and using the definition of h, we obtain
1
[xlurenen - [are e
Q €2 Ja
(- [ue o) e > o0
€2 Ja
valid for all x as above. Therefore

1 1
Aret ety — = [(atet ehyd A ey—— [(ae,e)d
wrenen - [urenens 2 e o) - [(re 6

which is in contradiction to (2.7). Let us now assume condition (2.7*) in

place of (2.7). With the same notation as before we get
Iu, x, h, on] > fo[ﬁ] for all (u,x) € X, ie.
[ (- ¢).ew - €7) + 1)
0
+(1 = x){A™ (e(u) — €7),e(u) — §_>} dx + an/ Vx|
Q
Ih] = [(A ¢ ,¢)d

> bl = [@e i
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Observing [(A~€ ,e(u)) dz = [(§, Ae(u)) dz = 0 (see (2.6)) and letting
n — 00, we arrive at

/Q (A”e(u),e(w) + x [(A* e(u), (W) +2(e(u), A€~ — ATEY)
_<A_5(u),6(u)>] dx +/Qx[(A+§+,§+) — ﬁl‘ /Q(AJF§+,§+) dy
(- [Ae )]
> 0,

and (2.7*) implies

/Q (A” (), e(w)) + x [(A" ew), (w)) + 2= (), A€ — AT€7)
—<A_5(u),e(u)>] de > 0 forall (u,x) € X.

In a next step we replace u by Au, A > 0, divide through A and pass to the
limit A | O with the result

/X<5(u),A§ —AT¢H)dz > 0 forall (u,x) € X. (4.16)
Q

We claim that (2.7*) (i.e. ATET # A~¢) implies the existence of u €
Cs°(Q; RY) s.t.
(e(u), A= —ATEr) # 0 (4.17)
holds on a set F C ) with positive measure. If not, then
(e(u),A"¢ —ATET)Y = 0 ae. and for all u € CP(QR?Y),
hence

/<p<6(u),A_§_—A+§+>d:v = 0 forall p€C™(Q), ueCP(YHRY).
"

Observing

e(pu) = =(Ve@u+u®Vp)+e(u)p

DN | =

and (compare (2.6))
/Q<e(g0u),A§ —AT¢H)dz = 0
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we get ((yi;) == A& — ATET)
/ Ojpu' v dr = 0,
Q
and since u is arbitrary, this implies
Ojpv; = 0, i=1,...,d, forall p € C®(Q).
Letting ¢(z) = x, k = 1,...,d, we obtain the contradiction
v = 0, ,k=1,...,d.

Thus we have (4.17). W.l.o.g. we may assume that

E- = {x € Q: (e(u)(z), A ()€ (z) — At (2) € () < o}

has positive measure (otherwise replace u by —u). Let x denote the charac-
teristic function of E~. We do not know that x is in BV (€2) but according to
the density property we find measurable characteristic functions x,, € BV (2)
such that x, — x a.e. We get

0 > /X<a(u),A§—A+§+>dm = lim | x,(e(u), A & —ATEN) d,

hence

/xn<6(u),A‘§‘—A+§+>d:c <0
Q

for large enough n. But (u,x,) € X and so the last inequality contradicts
(4.16). |

5 The behaviour of the energy of equilibrium
states as a function of the parameter h

If he R and o > 0, we set

I[h, 0] = (uiXI;EXI[u,X,h,a]. (5.1)

According to Theorem 3.4 the value I[h, o] is attained by at least one equi-
librium state (4, x).
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LEMMA 5.1 We have the estimates

Ilh,o] < Iolhl, 652

|[IThy, 0] = I[h1, 0] < (9 |hy — by

valid for all 0 > 0, h, hy, hy € R, in particular, the function h — I[h, o] is
continuous for all o > 0.

Proof. For (5.2) we just observe
I[h,0] < I[0,1,h,0] and I[h,0] < I[0,0,h,0].
Consider hy, hy € R and let (i, x;) denote equilibrium states of I[u, x, h;, o],
t=1,2. Then
j[h27 0] - f[hh J] S I[ala 217 h?a 0-] - I[fala )%17 hla O]

= (h —h1)/ﬂ>21 dz < [Q|hy — |
and in the same way
ilhn, o] - I{hy, 0] < /Q;@ di (hy — hy),
from which the claim follows. |

Let us define the number

o* = inf {01 > 0: for 0 > o7 and all h € R the energy I|u, x, h, o] has

only one—phase state equilibria} .

By Lemma 4.7 the set of numbers o; > 0 is non-empty, hence inf{...} > 0,
but on account of Lemma 4.8 we know o* > 0.

LEMMA 5.2 For any o > 0 there ezist unique numbers h* (o) > h™ (o) as
follows:

o) = h  fordl o> 0" (5.3)

h™ (o) =
h < h'(o) forall o€ (0,0%); (5.4)

(o) <

S S
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for h € (h,_ (0),h" (a)), 0 <o <o*, all equilibrium states

. . (5.5)
are two—phase and Ih,o] < Iylh];
for h < h™(0), 0 >0, only the one—phase equilibrium state (5.6)
4=0, x =1 ezists, we have I[h,0] = Iylh]; .
for h > h*(0), 0 > 0, only the one—phase equilibrium state (5.7)

0, x = 0 ewists, we have f[h, o] = fo[h].

U
Proof. Fix 0 > 0 and quote Lemma 4.5 to see that
h* (o) = inf{HeR: i=0,%=0
is the only equilibrium state of I[u, x, H, a]} ,

1

h=(o) = sup{HE]R: =0, x
is the only equilibrium state of I[u, x, H, a]}

h*(o) > h™ (o), are well-defined and that for h > h* (o) (h < h™(0)) we
must have x =0 (x = 1) for any equilibrium state (4, x) of I[u, x, h,o]. Let
us start with the proof of (5.3) assuming first that o > o* is fixed. Recalling
the definition of o* we see

/Q<A_§‘,§‘>dx = F (“¢x=0")

I[h,0] = or (5.8)
/<A+§+,§+>da:+h|§2| (¢ = 1)
Q

with I[h,o] = E at least for h > h'*(c) whereas the second line of (5.8) is
valid for h < h~(0). We claim that h* (o) = h= (o) (= h). If this is not the
case, then h™(0) < h™ (o). Suppose that for some h; € (h~(0),h" (o)) we
have

I[hy,0] = I[h*(0),0].

By continuity of I[h, o] we get I[ht(0),0] = E, hence & = 0, ¥ = 0 is an
equilibrium state of I[u, x, h1, o]. But then Remark 4.4 shows that for h > h;
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all equilibria of I[u, x, h, o] are of this form contradicting the definition of
h* (o) and the choice hy < h™(c). For this reason we must have

ilh,o] = /{;A*&ﬂ&ﬂdwh\ﬂ\

also on (h™(0),h*(0)), in particular & = 0, ¥ = 1 is the only equilibrium
state for h in this range (compare Remark 4.4) contradicting the definition
of k= (o). Thus we have h*(0) = h~(0) and by continuity of I[h, o] this can
only happen for the common value h.

Let us extend (5.3) to the limit case o = ¢*: consider a sequence o,, > ¢*
such that o, — o*. For h > h = h*(0,) we have the only equilibrium state
Up, = 0, Xp = 0, by Lemma 4.2 4 = 0, x = 0 is an equilibrium state of
I[u, x, h,0*], and with the same reasoning & = 0, ¥ = 1 is an equilibrium
state of I[u, x, h,0*], h < h. According to Remark 4.4 we see that for h > h
the only equilibrium state of I[u, x, h,0*] is given by & = 0, x = 0, whereas
for h < h we only have @& = 0, ¥ = 1. This implies ht(c*) = h™(o*) = h by
definition of h*(c*). Altogether we have shown (5.3), (5.6) and (5.7). For
example, I[h, o] = Iy[h] in case h > h* (o) follows from

Ifla*,h] = I[0,1,h,0] > I[h,0] = I[0,0,h,0] = I[a7],

hence according to the definition of Io[h] it is seen I[0,0,h,0] = Io[h] =
I[h, o).

To proceed further we claim that at iz, o* there exist the equilibrium states
2 =0, x=0or Yy =1 and at least one two—phase equilibrium state , x.

In fact, the existence of the one—phase equilibria follows from Lemma 4.2
together with (5.3), (5.6) and (5.7). By definition of o* there exists a
sequence o, < ¢*, g, — ¢*, such that at least for one h = h,, a two—phase
equilibrium state (i, Xn) of I[u, X, hs,0,] must exist. Lemma 4.6 implies
sup,, |hn| < +oc, hence h, —: h at least for a subsequence, and Lemma 4.2
shows that at h, o* a two-phase equilibrium state exists. In case h > h we
get a contradiction: since & = 0, ¥ = 0 is an equilibrium state at h 0¥, we
would get again by Remark 4.4 that for h > h all equilibrium states are of
this kind. The same argument excludes the case h < h hence h = h.

Let us fix 0 < o*. If (4, X) is the two—phase equilibrium state at h,o*, we
get (use the existence of one—phase equilibria for the first equation)

k] = Ih,o* = I[a,x, h,o*] > Ia,x h,o] > Ih,o].
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Since h — Iy[h] and h — I[h,o| are continuous, we see Iy[h] > I[h,0]
valid for h on an open interval (H (¢),H"(c)) containing h. Clearly
H*(0) = h*(0): by definition of h*(c) we have h (o) < H (o),
H*(o) < h*(0), since for example H (o) < h~ (o) would imply the
existence of h € (H™(c), h™(c)) with equilibrium state only & = 0, X = 1,
but then H™ (o) has also 4 = 0, x = 1 as the only equilibrium state (see
Remark 4.4) contradicting Io[h] > I[h,o]. On the other hand, by definition
of h*(o), the open interval (h~,h") contains only numbers h for which
only two-phase state equilibria of I[u, x, h,o] can exist (again use Remark
4.4), hence Io[h] > I[h,o]. This proves H*(c) = h*(0), i.e. (5.4) and (5.5).1

Next we discuss the behaviour of the phases for the cases h = h* (o).

LEMMA 5.3 i) Foro € (0,0%) and h = h'* (o) the states of equilibrium
of the energy I[u,x, h,o] consist of & = 0, x = 0 and at least one
additional two—phase equilibrium.

ii) For o € (0,0*) and h = h™ (o ) the states of equilibrium of the energy

I[u, x, h,o] consist of & = 0, x = 1 and at least one additional two-
phase equilibrium.

ii1) In case h = iz > o* only the one—phase state equilibria u =0, x =0
and 4 =0, X =1 (both) occur.

iv) At h = iz = 0" we have one—phase equilibrium states u = 0, x = 0,
u=0, x =1, and at least one two—phase equilibrium.

Proof. i) ii), iii) follow directly from Lemma 5.2 and Lemma 4.2 (with

on = 0), iv) is contained in the proof of Lemma 5.2. [

Finally, we discuss some analytic aspects concerning the functions h* (o).

LEMMA 5.4 The functions o — h*(o) are continuous on (0,00). h* is
strictly decreasing on (0,0%), whereas h™ is strictly increasing on this set.

Proof. It is sufficient to discuss h™, the results for A~ follow with obvious
modifications. So let 0 < 09 < 01 < 0*, h; := h™(0;), 1 = 1,2, and consider a
two—phase equilibrium state 4;, x; of I[u, x, h;, 03], i = 1,2, whose existence
follows from Lemma 5.3. Since there also exists the one—phase equilibria
u; =0, x; = 0, we have X X

][hz, O'Z'] = Io[hz] s
hence

jo[hl] = I[ﬁl,fﬁ,hl,ﬂl] > I[al,ﬁl,hl,@] > f[h1702]-
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But fo[hl] > ] [h1, 02] implies that I[u, x, hi,09] admits only two-phase equi-
libria which means hy € (h™ (02),h*(02)) (see Lemma 5.2), i.e. h*(oy) <
h,+(0'2).
It is enough to discuss the continuity of h™ on (0, 0*], since ht = hon [o*, o0).
Assume by contradiction that A* is discontinuous at some point oy € (0, o*].
The monotonicity of At implies

limh*t(c) =@ a > B := limh'(0).

otoo oloo
Let us fix h € [f,a] and consider a sequence o, 1 o0o. We have
h*(on) > limy4e, ht(0) > h. By Lemma 5.2, (5.5), there exists a two—
phase equilibrium state for I[u, x, h,0,], Lemma 4.2 implies the same for
Ifu, x, h,00]. Next, let o, | 09. Then h*(0,) < lim,,, h™ () < h, on
account of Lemma 5.2, (5.7), we find the one—phase equilibrium state 4 = 0,
X = 0 for the energy I[u, x, h,0,], hence the same is true for I[u,x, h, oo
Thus, for any h € [, o], there exists the one-phase equilibrium ¢ =0, y =0
and also a two-phase equilibrium of I[u, x, h,00]. By Lemma 5.2 and 5.3
this implies h = h*(0g) for any h € [3, a] which contradicts 8 < a. [ |

6 Proofs of Theorem 2.1 and Theorem 2.2

The existence of equilibrium states (4,x) € X for the energy I[u, x, h, o],
(u,x) € X, h € R, 0 > 0, is established in Theorem 3.4. The subdivision
of the parameter half-plane 0 > 0, h € R into the open regions A, B, C
together with a description of the corresponding phase states is given in
Lemma 5.2. In Lemma 5.3 the behaviour of the distribution of the phases on
the boundaries of the regions A, B and C is analyzed, Lemma 5.4 contains
the information concerning the functions o + h* (o) whose graphs generate
the subdivision of the parameter half-plane. Thus we have a complete proof
of Theorem 2.1. [ ]

Next consider a two-phase equilibrium state (4, x) of I[u, x, h,o]. Let H =
ot (f:(,g(ﬁ)) - ff(',S(ﬂ))) and observe

/\V)%H—/Xde < /\V)d—i—/dex
Q Q Q Q

for any characteristic function x € BV (€2). This implies

Q ENQ Q FNQ
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for any set F' of finite perimeter in €2, and following [TA] we see that E is a
set of generalized mean curvature H in 2. From (2.3), (2.5) and Lemma 3.5
we deduce H € L(Q)e and since g > d, the regularity of 0E' N follows from
[TA], 1.9 and 1.14. It is wellknown that Vyx is supported on the reduced
boundary 0*F which on account of the above result coincides with OF if
d <7. Let zyp € Q — OF. Due to the smoothness of 0F N2 we find a ball
B,(zo) such that B,(zo)NOE = (), hence |Vx|(B,(z)) = 0, thus either x =1
on B,(zg) or X = 0 on this ball. Let us consider the case x = 0. Then, for
any v € C§(B,(), RY) we have

d _ .
0 = o /Bp(zo)f (-, e() +te(v)) dz

= 2 pr(mo) (A (e(t) —&7),e(v)) da
20 4 A" e(ua),e(v))dx,
JREEUED)

hence 4 is a solution of the equilibrium equations of linear elasticity and
therefore smooth in case of regular coefficients. The other case is treated in
the same way which gives the proof of Theorem 2.2 . [ |

As stated in Section 2 we require the tensors of elastic moduli A*(z) and the
stress—free strains £ (z) to satisfy one of the conditions (2.7) or (2.7*) which
in turn are used to prove the existence of two—phase equilibrium states for
I[u, x, h, o] for small positive o. In the case of constant data (2.7*) seems to
be quite natural, now we would like to add an example for which 2.7 is true.
Let

(A76,6) = a* (@) (&) +57(x) (r)*, (€8, veQ,
with functions a®, b* € L*°(Q) such that
af(z) > v > 0, b(z) > v > 0.

The equilibrium equations (2.6) to be satisfied by the stress—free strains £+
now read

0
+ ot +, ot -
— )+ — (bt =0 =1,....d. 1
835,- (a U) a.’L'Z( I‘f ) ’ ' ’ ’ (6 )
Let us assume that

at = a, b© = b and &F = &
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with constants a, b > v, £ € S% Then (6.1) holds in the +—case, and (2.7)
reduces to

fﬁ / (A€ .6 dr < (A€ €) (6.2)

valid on a set £ C Q with |E| > 0. Obviously, (6.2) holds if we assume that
(A=E,&7) # const. Let us write

a (z) = a+a (z), b (x) = b+8 (x)

with functions o=, f~ € L*°(£2) whose norm is sufficiently small (see (2.3)).
Moreover, let

§ii(w) = c(x)dy -
Returning to (6.1) we find for some constant 7

cx) = v/(a+a” +db+7]). (6.3)

Conversely, if we define ¢ through (6.3) and let £, a—, b~ be defined as above,
then we see that A*, £+ satisfy 2.7 together with the other requirements from
Section 2.

7 The case 0, | 0

In this section we first investigate the behaviour of

ap, = inf Ifu,x,h, o)
(u,x)€X

for a sequence {o0,}, 0, > 0, 0p41 < 0, such that lim, ., 0, = 0. To this
purpose define J[u, x] and I[u] according to (1.1) and (1.2), respectively, and
let

Y = Vf/; (Q;Rd) X {X : 2 - R, x is measurable, x(z) € {0, 1} a.e.} :
We further define

a = infJ, g = infJ, v := inf [

o
W4 (©;R?)

and select for each n € N an equilibrium state (i, Xn) € X of I[u, x, h, 0,],
i.e. I[ly, Xn,h,0n] = ay. Then we have

THEOREM 7.1 Let the above assumptions hold, in particular, we assume
that all the hypothese needed for Theorem 2.1 are satisfied.
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a) We have oo = 3 = vy, and the common value is given by lim,_, o, .

b) (U, Xn) provides a minimizing sequence for the functional J considered
either on the space X or on the space Y.

¢) {i,} is a minimizing sequence for the energy I on the space W, (£; R?).

REMARK 7.2 According to Lemma 3.1 there exits a subsequence {i,} (not

relabeled) and a function 4 € W} (Q;R?) such that 4, — 4 in W' (;R?).
Since U 1s a weak cluster point of an I-minimizing sequence, we see that
@ is a minimizer of the relazed energy I[u] = Jo f(,e(w)dz, f denoting
the quasiconver envelope of f. On account of Theorem 2.2 the functions
have good smoothness properties, and it is an interesting question if these
properties are preserved to some extend in the limit n — oo.

Proof of Theorem 7.1. From
I[an—l—l; Xn—kla h, Un—l—l] S I[’&n, )A(na h, 0n+1] S I[’[Ln, )A('m h7 Un]
we see a1 < oy, Moreover

a = igl(fJ = igl(fl[%thvO] < I[anaf(mhao] < I[@n,f(n,h,an] = Qp,

thus a < lim,_,, ,. To prove the reverse inequality, choose ¢ > 0 and
(@, x) € X such that
a > Ju,x]—¢.

Since x € BV (Q) we have o, [, |VX| < e for n>> 1, in conclusion
a > Ia,x, h,on] — 2 > a, —2¢

valid for large enough n. By definition we have § < «. Again, for given
e > 0, select (u,x) € Y such that

g > Ju,x]—¢.

The density property d) stated before Theorem 2.1 implies the existence of
a sequence {xm,} of characteristic functions in BV () such that x,, — x a.e.
For large enough m we get (by dominated convergence) J[u, x| > J[u, xm]—¢,
and having fixed such a m we see as before J{u, X,n| > I[u, Xm, h,0,] — € for
n > 1, thus

B > Iu,Xm,h,0n] —3¢ > o, —3e, ie. [ > lim q,.

n—00
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From g < o and a = lim,,_, o, together with the foregoing inequality we
get

a = f = lim q,.
n—oQ

Obviously
I[ana )A(na h7 an] Z J[,&'na Xn] Z «,

thus (n, Xn) is a J-minimizing sequence w.r.t. both spaces X and Y. By
definition we have

for any (u,x) € Y which shows v < 5. Consider now an arbitrary function
u €Wy (2;R?) and let

0 = {x €eQ: fif(-e(w) < f‘(-,s(u))},
Qy = {x €eQ: fif(-e(u) > f_(-,s(u))}.

Then we have (x := 1q,)

/Qf(-,e(u))dx = Ju,x] > iI)}fJ = j,

hence v > 3, in conclusion § = 7. Finally, we observe

n—oo
B

Y < I[an] < J[@n:f(n] =7,

and therefore {4, } is an I-minimizing sequence. This completes the proof
of Theorem 7.1. [ |

We finish this section with the following

LEMMA 7.3 If we assume in addition to the hypotheses of Theorem 2.1
that (2.5) is replaced by the requirement

¢t € I°(;89)

and if we further impose the bound (see (2.3) and (2.4)) € < v/2, then the
functions h* (o) have finite limits as o | 0.

Proof. Let us suppose that we can find a finite number h{ such that

Iu, x, hg, o] > I00,0,h,0] (7.1)
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holds for any ¢ > 0 and all pairs (u,x) € X. From Remark 4.4 we deduce
that & = 0, ¥ = 0 is the only equilibrium state of I[-,-, h,o] for h > h§
which means (recall the definition of h*(c)) that h* (o) < h¢ for any o > 0,
Obviously (7.1) is equivalent to

/QX [((A+ — A7 )e(u),e(u)) — 2(ATET — A7 €7, e(u))
H{ATETENY — (A€, )+ h(ﬂ dx + /Q (A7 e(u), e(u)) dz (7.2)
+0’/ Vx| > 0.

Using the estimates (0 < p < 1)

(A e(u),e(u)) + x (AT — A7) e(u), e(u))
> (A7 e(u),2(u)) - [((AT = A7) e(u),=(w))] ,
2|<Ai§i,g(u)>| < M<Aie(u),€(u)>+%<Ai§i,§i>

we see that (7.2) follows from

/Q (A7 (), ) — [((4" ~ A7) e(u),e(w)

—p (AT + A’)é(U),g(“)ﬂ dz 1 (7.3)

+ WY gt ey (L — = g
+/Qx[h0+(1 M)(A £t ety (N+1)<A 6| do
> 0.
By (2.4) and the bound for € the first term in (7.3) is greater than or equal

to
/Q (1/ 5 2puv ) le(u)|” dx .

Thus we fix 1 < 1 such that £ — 2ur~! > 0 and define

o= (- - (e

Lo(Q)

This proves (7.3) and by the way (7.1).
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In a similar way we prove the existence of a number h; > 0 such that
I[U, X5 _haa O-] > I[O7 17 _ha’ 0]

is true for all ¢ > 0 and (u, x) € X, i.e. h™ (o) > —hy. [

8 The case of non—zero volume forces

From now on suppose that (2.1), (2.3), (2.4), (2.5), (2.6) and either (2.7) or
(2.7%) are satisfied. Suppose further that a function

2qd

s . Tod
pe L*(ZRY), s > qtd’

(8.1)

is given. (Note that s > 2d/(d + 2), hence Vf/;(Q;]Rd) Su— [,p-udeis
compact.) With I[u, x, h, o] from (2.8) we now let

Lu,x,h,0] = I[u,x,h,a]+/p-udx, (8.2)
Q

heR, o>0,(u,x) € X. As before we say that a minimizer (u, x) of I, is
a one-phase equilibrium state if either Y = 1 or ¥ = 0, otherwise (4, X) is
termed a two—phase equilibrium state. Clearly, Lemma 3.2 and Theorem 3.4
hold for the functional from (8.2). From (8.1) we see that Lemma 3.5 is true
for equilibrium states (4, x) of I,[u, x, h, o] with the quantity € as before but
R now also depending on ||p||s(q). Let

Itlu,h] = I[u,l,h,O]-l—/p-udx = /(lf;(-,s(u))+/(2p-udx,

Q

I"[u] = I[u,O,h,O]-l—/p-udx = /Qf_(-,s(u))-i-/np-udx,

Q

u €WL(;RY). Let 47 and @~ denote the unique minimizer of I*[u, h] and
I~ [u], respectively. Obviously (%, ) is a one-phase equilibrium state if and
only if (@, ¥) = (4%,1) or = (4,0). Using (2.6) we find for any v €W (; R?)

2/Q<Aie(ﬁi),€(v)>dx+/ﬂp-vdx = 0. (8.3)
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This implies
Pt = [ (A ) - €).e0) - €) da
Q
+h|§z\+/p-a+dm (8.4)
Q
(26.(8:5) h\Q\+/<A+§+,§+) dx+1/p-a+ d
Q 2 Q
and in the same way
1
i) = /(A—g—,g—>dx+—/p-a—da;. (8.5)
Q 2 Q

Let us define Io[h] as in (3.6). Then

1 -
/<A+§+,§+>d:c+h|s2|+§/p-fﬁd:c, h<h,
§2 Q

fo[h] = 1 )
/Q(Aé-aé- >d$+§[2p'u dx h>h,
where now
11 L
|Q| / (AYEr ety + (A7 ¢7,67)) dw+§@ Qp-(u —at)dx.

Consider next an equilibrium state (a, x) of I,[u, x, h, o]. Then

Lld, X, h,0] < Lla*,1,h,0],
le.
[ [ (5 Coe@) = 1 Coe@)) = £ (e(@)] da
Q
vy -dd I*lat b < I*fah
o [1Vil+ [ pade < Pt < T,
so that
o [IVa=01 < 0= (5 Ce@) = 5 (e@)) da.
Thus we have again inequality (4.3), inequality (4.2) follows from

Lli, %, h,o] < Lli~,0,ho] = I'[a] < I [d].
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With (4.2) and (4.3) the proof of Lemma 4.1 can be finished as before,
hence we have Lemma 4.1 for the functional I, with ¢ also depending on
p. Since Lemma 4.2 is reduced to Lemma 3.2 and Lemma 4.1, the conclu-
sion of Lemma 4.2 holds for the p—case, too; the validity of Lemma 4.3 for
equilibrium states of I,[u, x, hi, o] is immediate. From Lemma 4.3 we get
Remark 4.4 as before, and since the proof of Lemma 4.5 just uses inequality
(4.2) and (4.3), the result of Lemma 4.5 is not affected by the presence of the
p-term. Finally, Lemma 4.6 and Lemma 4.7 remain unchanged: their proofs
again rely on estimates presented in the proof of Lemma 4.5. Let us pass to
the proof of Lemma 4.8: again, assume by contradiction, that for a sequence
o, 4 0 the functional I,[u, X, h, o] admits only one—phase equilibria (G, X»),
i.e. (Un, Xn) = (4*,1) or = (4,0). Exactly the same calculations as before
— using (8.4) and (8.5) — imply

Llu,x,h,00] > Ip[h] forall (u,x)e X, (8.6)

and if we choose u = 0, (8.6) implies after passing to the limit n — oo
/Q( [(Atet e +h] +(1-x)(47¢,67)) do
1
> A__,_d+—/-Ad
/Q< £,€ > x 5 Qp U dx

being valid for any characteristic function x € BV ((2). Inserting the value
of h we arrive at

/Q{X[<A+§+,§+> _ ﬁ/ (A* €4 €5 dy — (<A_€_’§_>
|Q|/<A $he >dy)] +X|Q| ; /p (ﬂ_—ﬁJ’)dy}dac (8.7)

1

Suppose now that (2.7) is valid. Approximating 15 with characteristic func-
tions xx € BV () we see that

[aferenen - [arenena
~((am&6) _@/Q<A_§_,§_>dy)]dx

converges to the negative number

= /E[]d:v



and (8.7) implies

b(E) > ‘A'P|(|@+|+|@_|)dx (8.8)

> ol (13 lzzomey + 1|z )

Let us estimate the norms of 4%: minimality of 4 implies

/<A+ (s(fﬁ)—§+),5(12+)—§+>dx+iz|Q|+/p-ﬂ+da:
Q Q
< /<A+§+,s+>dx+l3|9|,
Q

in conclusion (recall (2.6))

/<A+ s(ﬂ‘)>dm+/p-ﬂ+dx <0,
0

and from Korn’s inequality we get
||Va+||%2(Q;Rd><d) < o ||a+||L2(Q;Rd) ||p||L2(Q;Rd) .
By Poincaré’s inequality this turns into the estimate
||V@+||%2(Q;Rdxd) < allpll@rey

and the same result holds for ||Vi™ || 2(qrixe). Inserting this into (8.8) we
end up with

2
b > —cllplli2oma)
which is a contradiction if we assume

”p”%%Q;Rd) < © (8.9)

for some sufficiently small positive number © depending on the data.
Suppose next that (2.7*) holds. Then we get for any (u, x) € X, using (8.2)
and passing to the limit n — oo

/Q{<A e(u) >+X[<A+ (u)>+2<A_§_—A+§+,g(u)>
_<A_a(u),e(u)>]}dx+/X[<A+5+’5+> |Q|/<A+§+ §+
_(<A_§_’§ |Q|/<A £,¢& >dy)}dx

1/ _ _
> — | p-u d:c—/p-udx———/xdx/p- o —at)dz.
3 J, o 310 Jo X Jp (=)



By (2.7*) we may drop the second integral on the left-hand side, thus

/Q [X<A+ e(u),e(u)) + (1 —x) <A—g(u),g(u)>] dx
+2/QX<A_€‘—A+§+,e(u)>d:c+/gp.udx (8.10)

> —ca|lpll 2 -

We recall (see (4.17)) that (2.7*) implies the existence of a measurable set
E with positive measure and of a function ¢ € C§°(Q2; R?) with the property
(e(p), A=& — ATET) #£0 ae. on E. W.lo.g. we may assume that

/(e(gp),A_ﬁ_—AJ“ﬁJ“)dac = b > 0.
E

Let xx € BV(2) denote a sequence of characteristic functions such that
Xt — 1p a.e. We then use (8.10) with x = xx and u = Ap, A € R, and get
after passing to the limit £ — oo

2 [ [1644"el0). () + (1 = 16)(A”e(0),(¢))] do
-1
+2A [b-l-i/ﬂp'@d-f] > —cq||pllr2oray 5

ie.
P(\) == NA+2\B+C > 0.

For [|p||2(qre) small enough we can arrange B > b/2 > 0 so that for
B? — C > 0 P()\) has two different negative zeros. Thus we can find A < 0
such that P(\) < 0. By definition of C the required condition B? > C
holds under suitable smallness assumptions for [|p||;2(qre). Summing up
we have shown that a condition of the form (8.9) implies a contradic-
tion also in the case (2.7*) which finally proves Lemma 4.8 to be valid
also in the presence of a volume force term p whose L?>-norm is small enough.

In accordance with (5.1) we let for h € R, 0 > 0

I[h, 0] = (ui>g£X Lu, x, h,o]

and obtain (5.2) from
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I[h,0] < Lla*,1,h,0] = IT[a*, A

. 1
(34 h|Q|+/(A+§+,§+>dx+§/p-fﬁda:,
Q Q

I[h,0] < L[a=,0,h,0] = I"[07]

& /(A—g—,g—)dwrl/p-adx.

Q 2 Ja
The second inequality in Lemma 5.1 can be proved as before if I[u, x, h;, 0]
is replaced by I,[u, x, hi, o).
Lemma 5.2 up to Lemma 5.4 were established just by combining the previous
results. So they remain valid with obvious changes: I[u,,h, o] has to be
replaced by I,[u, x, h, o], the one-phase equilibrium states (0,0) and (0,1)
have to be interpreted as (4%,1) and (47,0), respectively. Summing up
we have proved the first part of Remark 2.4, precisely, the validity of the
following result is shown:

THEOREM 8.1 Assume (2.1), (2.83)-(2.6), (2.7) or (2.7%), (8.1) and
(8.9). Then, with the notational changes just stated above, Theorem 2.1
remains valid if the functional from (2.8) is replaced by the energy defined in

(8.2).

It is immediate that the volume force term fﬂp - udx does not affect the
proof of Theorem 2.2, hence we get

THEOREM 8.2 Under the assumptions of Theorem 8.1 the result of Theo-
rem 2.2 is true for two—phase equilibrium states of the functional from (8.2).

In the same spirit we can prove Theorem 7.1 if the potential [,p - udz is
added to any energy under consideration.

9 Remarks on the case of non—zero boundary
values

Given uy € W1 (Q;R?) we now denote by 4+ (4~) the unique minimizer of

It[u, h] (I7[u]) in up+ Wi (Q;R?) (compare Lemma 3.6). We further replace
X (see (2.9)) by

X = {uo—i- V;/Ql (Q;Rd)} X {X € BV(Q) : x(x) € {0,1} a.e.},
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and with I defined according to (2.8) we consider the variational problem

Ifu,x,h,0] — min in X (heR, o>0). (9.1)
The existence of equilibrium states for (9.1) is ensured exactly as in Theorem
3.4. Let (u, x) denote a one—phase equilibrium of I[u, x, h,o]in X, ie. x =1
or x = 0. If x =1 we have for all u € ug+ W3 (Q;R?)

/f,‘f(,s(ﬁ))dm = I[ﬂ,l,h,a] < I[uvlahaa] = I+[’U,,h],
Q

hence (together with the analogous inequality for /~) the one—phase equi-
libria are seen to be given by (4",1) and by (4~,0). Before going through
the arguments of Chapter 4, we first note that Lemma 3.5 remains valid
if we assume in addition that uy € Wy (Q;R?) (of course we now claim

i € up+ Wy, (Q; R*) with corresponding apriori bound for (@]l wy, (o,me), where
the quantity R also depends on ||u0||W21q(Q;Rd)). Moreover, the quantity ¢ is
seen to be independent of ug. Further, observe that now (3.7) reads as

c++/(A+§+,§+>dx+h|Q|, h<h,
Q

fo[h] =
o+ [re ), >, 92)
Q
h = iJri (= (ATET €M) +(A7€7,€67)) dn.
2] € Jq ’ ’

Here we have set

& = /Q ((A*e(@). ei)) - 2(A (i), 6%)) de

Writing 4% = ug+ @¢%, pF €W (Q; RY), the inequalities IT[a+, h] < IT[ug, h]
(I {a] < I-[uo]) imply

/Q ((A=e(i), c(i)) - 2(A*e(p%),6%) ) da < /Q<Ai e (1), £ (1))
and, as a consequence of (2.4) and (2.6),

| = |t (uo)] = 0 as |le(uo)llr2raxay — 0. (9.3)
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To check the arguments of Chapter 4 in the case of non-zero boundary values,
we replace the one—phase equilibria (0,1) and (0,0) by (¢*,1) and (4,0),
respectively, for example instead of (4.1) we obtain

I[d, X, h,o] < I[a~,0,h,0], Ili,x, h,o] < I[a*,1,h,0].

The minimality of 4* yields the fundamental inequalities (4.2) and (4.3)
as before. This proves Lemma 4.1 with Gy and § also depending on
||u0||W21q(Q;Rd). Lemma 4.2, Lemma 4.3 and Remark 4.4 remain valid without
any changes, going through the proofs of Lemma 4.5, Lemma 4.6 and Lemma,
4.7 we just have to observe that Gy, in particular the quantities h™, hy(o)
and ¢, now depend on ||u0||W21q(Q;Rd). As in Section 8 again Lemma 4.8 has

to be studied in detail: with % given in (9.2) again assume that there exists
a sequence o, > 0, o, — 0 such that [ [u, X, h,0,] admits only one—phase
equilibria (i, Xx) in X, ie. 4, =47, X, =1 or 4, =47, X, = 0. Again we
obtain (for Iy[h] defined in (9.2))

ITu, x, hy0n) > Iolh] forall (u,x) € X . (9.4)

Case 1.) Assume that a set E C Q satisfies (2.7) and choose u = ug as well as
the approximation of 1z with characteristic functions x; € BV () (compare
the density property d)). (9.4) implies (passing to the limit n — o00)

/QXk {<A+ e(uo), e(uo)) — 2<A+E(u0),§+>} d
+L(1 — X&) {<A_5(U0): 6(uo)> - 2<A‘g(u0)’§—>} dr
+/9Xk [<A+§+’§+> - <A_§_,§_> + il] dx > ¢ .

The absolute value of the first and the second integral on the left-hand side
is bounded independent of xx by a quantity co > 0 satisfying ¢o — 0 as
lle(u)||z2 — 0. The definition of h gives

[lareneny - [ (arerenay
0 9l o

—((ame ) - ﬁ () dy)| dz

> c(l—][xkdx>+c+ ][Xkdx—co.

Q Q
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Passing to the limit ¥ — oo the left-hand side converges to a negative number
b(E) = b(A%, &%) which gives a contradiction and the lemma is established
if we assume ||e(uo) || 2(q;rixay to be small enough such that

co+ e[+ et < [b(AF, &) (9-5)

Case 2.) Assume now (2.7%) to be true. According to (4.17) we find ¢ €
Cs°(92; RY) and a sequence of characteristic functions x; € BV (Q2) such that

/ka (e(p), AmE" — AT ) dx —: b(AF,E5) #0 (9.6)

as k — oo. Again we may assume w.l.o.g. that b > 0. Choosing u = ug+ Ay,
A € R, and x = xx in (9.4) we obtain in this case by a direct calculation
(using (2.7%))

a)? +b\+c
= ¥ [ (a7 e(0),e0) + (1 - x0) A7 e(0), ()] da
22 [ [ A" eun). ) + (1= xu) (A”eCu). ()
+xk (), A€ — A+g+>] dz
+{eo+ e[+ et} > 0

being valid for all A € R. Note that ¢ was chosen only depending on the
data A=, £* and we assume now |[le(uo)||z2(qraxe) to be sufficiently small
such that

/Q [Xk <A+s(u0),6(<p)> + (1= xx) <A_5(Uo)a5(¢)>} de > _g . (9.7)

Passing to the limit £ — oo and considering the case A < 0 we arrive at (see

(9.6))
a(AE, E5) A2 + b(A%, E5) A +¢c > 0 forall A<0. (9.8)

Note that a, b, ¢ > 0, i.e. the possible zeros of (9.8) are negative and a
contradiction is obtained if

V(A% 6F) —4a(A*,65)c > 0. (9.9)

In conclusion, the Lemma is proved for boundary value problems with
||l (o) || L2 (raxa) sufficiently small such that in addition to (9.7) inequality
(9.9) holds.
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Chapter 5 and Chapter 6 are carried over with the obvious changes and we
have proved

THEOREM 9.1 Assume that ug € Wy, (Q;R?) is given such that

||5(u0)||L2(Q;Rd><d) < 7,

where vy is sufficiently small depending on the data A%, £ (compare (9.5),
(9.7), (9.9)). Then Theorem 2.1 and Theorem 2.2 remain valid if we replace
X by X.

REMARK 9.2 i) In the same way small pertubations of solutions of the
equilibrium equations (2.6) can be treated as boundary values.

i1) Small pertubations of the equilibrium equations (2.6) are by the above
arguments also seen to be an admissible choice for £*.

i11) Of course we can combine the case of non—zero boundary values with
the presence of an additional volume force term p. The calculations are
i principal the same as needed for establishing the results of Theorem
8.1, 8.2 and 9.1.

Appendix

For completeness we give a proof of the density result d) from Section 2 fol-
lowing the lines of [OS2]. Consider a measurable characteristic function x:
2 — {0,1}. In order to construct a sequence {x,} of measurable charac-
teristic functions x, € BV(£2) such that x,(x) — x(z) for a.a. z € Q, we
introduce a subdivision of R? into cubes K with disjoint interior and side
length equal to 1/n, n € N. For each n € N we select those cubes KJ(-TL),
j=1,...,N(n), with the properties

17 g (v 17 o
UK"s0, kPnezo, |[JEY -9 < 1n.
Jj=1 j=1

Clearly, the last condition holds for n large enough. Let

cg-") = ][ x dx

KM
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and choose a smooth domain wJ(n) C wj(-n) CK ](-") N €2 such that
W = (1-1/n)"” |KM nQ). (A.1)
Next we define Xg-”) = 1w§n) and let
N(n)

X™ = 3" e BV (Q)

j=1

which clearly is a measurable characteristic function. We have

[ -xyas - Z/Kmm ) dr
N(n)

= > |47 0ol = lw)|

Jj=1

. (n)
hence, using 0 < ¢ < 1,

]‘ n n
‘/de—/x(”)dx‘ = — cg-)‘K](- )ﬂQ‘
Q Q n

IN

which means

lim [ x™dz = /de. (A.2)
Q

n—oo o)

Consider g € C}(Q) (to be extended by zero to the whole space R?) and let
a:é-n) denote the center of K J(-"). Then
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= KON
N(n)

2 / o 9@) = (")) (x(@) = X\ (2)) dz =: I+1I.
j=1 Kj N

For I we observe as before (see (A.1))
™Y gzl = L™ AQ
o =g dz) =~V KN QY
KMo

hence

N(n)
L (n)|-(n) 1
1] < Sl{lzp|g\;lﬁcj K" nq| < , |2 sup gl

Since |g(z) — g(xgn))‘ < (1/n)const||Vg|le on K](-n) N Q, we get

1
[11]| < const—|Q|||VY||co ,
n
therefore

lim [ g(x—x™)dr = 0 forall geCy(R). (A.3)

n—oo 0

Suppose now that 1 < p < co and g € L¥ (), p' := p/(p — 1), are given. If
we choose g € Cj(€2) such that

19 =9l < ¢

for some given ¢ > (0, we deduce

‘/Q(x—x(”))gdx‘ < ‘/Q(X—X("))f]d:r‘—i—‘/ﬂ(x—x(”))(g—g)d:r‘,

and the first integral on the right-hand side vanishes as n — oo according
to (A.3). For the second one we observe (using |y — x| < 1)

‘/Q(x—x(”))(g—é)dx‘ < lg = llria X =X oy < €102
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This shows
X™ — x in IP(Q) forall 1<p< oo, (A4)

in particular this is true for p = 2. On the other hand we have by (A.2)

/(x(”)fdfv = /X‘”’dfﬁ = /dev = /dex,
Q Q Q Q

hence ||x™ |2y — |Ix|lz2()-  This together with (A.4) implies
Q) (V)

Ix® = xllz2(@ — 0 (in fact LP-convergence holds, p < oo) and we

may extract a subsequence {x(")} s.t. x(*) — x a.e. on Q. [ |
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