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STICKELBERGER IDEALS AND DIVISOR CLASS NUMBERS*

ABSTRACT. Let K/k be a finite abelian extension of function fields with Galois group G. Using the Stickel-
berger elements associated to K/k studied by J. Tate, P. Deligne and D. Hayes, we construct an ideal I in the
integral group ring Z[G] relative to the extension K/k, whose elements annihilate the group of divisor classes
of degree zero of K and whose rank is equal to the degree of the extension. When K/k is a (wide or narrow)
ray class extension, we compute the index of I in Z[G], which is equal to the divisor class number of K up to
a trivial factor.

1. Introduction.

Let k be a global field. Let K/k be a finite abelian extension with Galois group G = Ggk. The
Stickelberger elements associated to the extension K/k have been studied extensively. These elements
enter into the formulation of the well-known Brumer-Stark conjecture. When K/k is an extension of
function fields, J. Tate [T] first proved that these Stickelberger elements annihilate the divisor classes of
degree zero of K (i.e. the Brumer part of the conjecture) by using the action of Gk on the Jacobian of K.
P. Deligne and D. Hayes independently proved the whole conjecture by different method. In fact, their
results are more precise than the function field analogue of the Brumer-Stark conjecture, see [Chap.V,
T] or [Th.1.1, H2]. In this paper, using these Stickelberger elements, we define an ideal in the integral
group ring Z[G] relative to the extension K/k, and call it the Stickelberger ideal of K. When K/k is a
function field extension, the elements in the ideal have the remarkable property that they annihilate the
divisor class group of degree zero of K, and the rank of the ideal is equal to the degree of the extension
K/k. Furthermore when K/k is a (wide or narrow) ray class extension of function fields, we compute the
index of the Stickelberger ideal in the group ring Z[G], which is equal to the divisor class number of K
up to a simple constant factor. Now we state the results precisely.

Let k be a global function field with constant field IF;, of ¢ elements, and let oo be a fixed place of k
with degree 1. Let ko be the completion of k at co. Let A be the Dedekind ring of functions in &£ which
are holomorphic away from co. We fix a sign function sgn: ke — F, with sgn(0) = 0 (cf. [Def.4.1,
H2]). Let m be a non-zero integral A-ideal. Let K = K, be the cyclotomic extension of the triple (k, oo,
sgn) of conductor m, which is the narrow ray class field of the triple modulo m. If in particular m = e,
the unit ideal, then K, is the narrow Hilbert class field of the triple. The cyclotomic extension K is
generated over K, by the m-torsion points of Hayes’ sgn-normalized rank one Drinfeld modules. Let
G = Gn = Gal(K/k). Let G, = Pic(A) be the Picard group of A and let N = Ny, be the subgroup of G,
generated by the Artin symbols 7, = (p, K./k) with p | m. Let ¢t =[G, : N] be the index. Let s be the
number of distinct prime divisors of m. Let R = Z[G] and let I be the Stickelberger ideal of K. For a
function field F, let h(F') be the divisor class number of F'. We have

Theorem 1. [R:1I]=(q— NI =D p(K).

Let K+ = K} be the maximal subfield of K in which the place oo splits completely. Then K7 is the
ray class field of (k,o0) modulo m. Since degoo = 1, we have K} = K,. Let Gt = G = Gal(K™*/k)
and let Rt = Z[G™]. Let It be the Stickelberger ideal of K.

Theorem 2. We have
[RT: IT] = (¢ —1)’h(KT)

where b=0if s =0,1 and b= (2°"2 — 1) if s > 2. Here s =0 means m = e.

The ideal It is a subideal of I under the corestriction map. We call it the real part of I. This
part is closely related to the extended cyclotomic units of K we studied in [Y1]. Our main method of
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2 STICKELBERGER IDEALS AND DIVISOR CLASS NUMBERS*

computing the indices is the same as that we used in [Y1], that is, we factor the indices as the product
of some lattice indices introduced by Sinnott in [Si], which we compute individually. A key step is to use
Anderson’s remarkable results [Th.5.2.3, An] on the Galois module structure of the sign-cohomology of
the universal ordinary distribution associated to a global function field. The results in this paper and in
[Y1, Y3] affirm Anderson’s claim in [Sect.1, An] that “more number theoretic applications of complete
cohomology can be expected”.

In the rest of the introduction, we mention some history of Stickelberger ideals and compare our
results with the classical ones. The notion of Stickelberger ideal was first introduced by Iwasawa [Iw] in
1962. Using the well-known Stickelberger elements, Iwasawa defines an ideal in the integral Galois group
ring of a cyclotomic number field of prime power conductor, whose elements annihilate the ideal class
group of the cyclotomic field (Stickelberger’s Theorem), but whose rank is only half that of the group
ring. In fact, it is an ideal of the minus part of the group ring, with the same rank. Iwasawa shows that
in this prime power conductor case the index of the Stickelberger ideal in the minus part of the group
ring is equal to the relative class number of the cyclotomic field, see [Iw] or [Sect. 6.4, Wa]. This result
complements Kummer’s famous formula expressing the class number of the maximal real subfield of a
cyclotomic field of prime power conductor as the index of cyclotomic units, see [Th.8.2, Wa]. In 1978,
Sinnott [Si] extends the results of both Iwasawa and Kummer to a general cyclotomic field by introducing
the powerful device of cohomology to the computation of the indices.

In the function field case, Hayes (cf. [H1]) develops the theory of sign-normalized rank one elliptic
modules and sets up explicit class field theory for a function field (also called cyclotomic extensions). In
this theory, the present author works out Kummer-Sinnott’s unit index formula in [Y1] and Iwasawa-
Sinnott’s index formula for the Stickelberger ideal in [Y3]. We point out that in the two cases of the
rational number field and of a function field above, the cyclotomic units and Stickelberger ideals both
arise from ray class partial zeta functions. By Weil’s theorem, partial zeta functions of a function field
are rational functions of ¢~®. This makes it possible to construct a bigger Stickelberger ideal in the
function field case compared to the number field case. In the cyclotomic case of function fields, roughly
speaking, the Stickelberger ideal defined in this paper can be regarded as a composition of the real part
I and the relative part I—, where It is the image of the extended cyclotomic units [Y1] under the
logarithm map and I~ is defined in [Y3]. So it has the same rank as the Galois group ring and its index
is essentially equal to the full (divisor) class number. It is the relative part I~ that is the analogue of
Iwasawa-Sinnott’s definition. We introduce I~ in [Y3] only for the purpose to give a result analogous
with Iwasawa-Sinnott’s. In the classical cyclotomic case, there is no real part It since the wide ray class
zeta functions of the rational number field take irrational values at s = 0. Thus the Stickelberger ideal in
the classical case has smaller rank than that of the group ring, and its index is only equal to the relative
class number. We think that the definition of the Stickelberger ideal in this paper is more natural than
that in [Y3]. In fact, the present definition applies to any finite abelian extension of global fields. In the
function field case we do not need to fix a place and a sign function first. Arguably, the result here is
more beautiful than those in [Si] and in [Y3]. As Iwasawa points out in [Iw], such an index-class number
formula suggests the existence of deeper group theoretical relations between the (divisor) class group and
the factor group of the Galois group ring modulo the Stickelberger ideal. In this direction, Euler systems
form a powerful device. We refer the reader to Rubin’s work [R1] and [R2].

2. Stickelberger ideal and its rank.

In this section, we recall the definition of Stickelberger elements and their basic properties. Using
these elements we define the Stickelberger ideal. We also compute its rank in the function field case.

Let k be an algebraic number field or a global function field. Let K/k be a finite abelian extension
with Galois group G. We denote M}, the set of all places of k, Too = Too(k) the set of archimedean places
of k, Wy, the number of unity roots in k. Let T be a finite non-empty subset of My which contains Ty, as
well as all the places which ramified in K. For a place v € M\ T, let o, be the Frobenius automorphism
associated to v and let Nv be the norm of v. We define a function for Re(s) > 1

Ok /kr(s) = H(l —o,'Nv™#)7t = Z Z(s,0)0! (ve M \T) (2.1)
v oceG

with values in C[G], where Z(s,0) = >, Nv~—?, the summation is over all v € M}, \ T' such that o, = 0.
It is well-know that this function can be extended to the whole complex plane, and is well defined except
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at s = 1. Let Ox,7 = O/, 7(0). We know that 0k, € Q[G] and WkOk,r € Z[G]. For detail, we refer to
[S] and [DR] in number field case and to [H2] or [W] in function field case. The element wg,7 = WkOk, T
is called the Stickelberger element of K /k relative to T. In function field case it annihilates the group of
divisor classes of degree zero of K. In fact, Deligne proved a more precise result than this (cf. [Th.1.1,
H2)).

Let x be a character of G with complex values. We extend the definition of x to C[G] linearly. Let
L1(0,x) be the Artin L-function associated to x with Euler factors for the places in T removed. Then
we have x(6x,7) = L7(0,%), where X is the inverse of x. The element Ok 1 is determined uniquely by
this equality for all characters of G. By considering the order of zero of L7(s,x) at s = 0, we see that in
number field case these Stickelberger elements are 0 unless % is totally real and K is a CM field.

Suppose that E/k is a finite abelian overextension of K/k with Galois group Gg. The restriction of
automorphisms from E to K induces a ring homomorphism Resg/k : Q(Gr] — Q[Gk]. The corestric-
tion map is defined as follows

Corg/k : Q[Gk] — QGE], o Z T
THOo
For a subset M of G, we set s(M) = 3 _,, 0. The corestriction map induces an isomorphism QG k] ~
s(Gal(E/K))Q[GEg]. For a € Q[Gg] and 8 € Q[Gk], we have

ResE/KCorE/K(ﬂ) = [E H K]ﬂ and COI'E/KRGSE/K(Q) = s(Gal(E/K))a (22)

Now we assume that K/k is ramified at least at one non-archimedean place if it is an extension of
function fields. Let Tk denote the set of non-archimedean places of k which are ramified in K. Let
To = Too UTk. It is non-empty. Let 8k = Ok, 1,. This element is uniquely determined by the set Tk.
We have

Lemma 2.1. If E and K have the same set of ramified non-archimedean places, then Resg/k (0r) = 0k

The definition of Stickelberger ideal is divided into two parts, the ramified part and the unramified
part. We now define them respectively. Let K°/k be the maximal subextension of K/k in which all
non-archimedean places are unramified.

Ramified part: Assume K # K in function field case. For every non-empty set T with T, C
T C Tk UTy, let K1/K° be the maximal subextension of K/K° in which exactly the non-archimedean
places in T are ramified. Then 1 = Corg/k, (0K, ) is an element in Q[G]. Let S™ be the G-submodule
of Q[G] generated by 07 with all T satisfying the condition above. We mention that if we remove the
“maximal” condition in the definition of K7/K?°, then the element 67 defined in the same way is in S™
by Eq. (2.2). Let I"™ = S"™ N Z[G]. We call it the ramified part of the Stickelberger ideal of K/k. When
K = KV in function field case, there is no such 7. Thus we set S™ = {0} in this case.

Unramified part: For a non-archimedean place v, let K9/K° be a finite extension of K° in which
only v is ramified and that K/ is abelian. Let 6, = Corg,goResgo/ko (ko). It is an element in Q[G].
Notice that this element is only dependent on v, not on K9, by Lemma 2.1. If for some v there does not
exist such extension KY/K°, we set 6, = 0. Let S be the G-submodule of Q[G] generated by 6, with all
non-archimedean places v and by § = (1/Wk)s(G). Let I"™ = S""NZ[G]. We call it the unramified part
of the Stickelberger ideal of K/k. The idea of the definition of the unramified part comes from Hayes’
structure of unramified elliptic units in [H4].

Definition 2.2. Let S = S" + 5™ and let I = SN Z[G]. We call I the Stickelberger ideal of the
extension K/k.

Notice that we may not have I = I'"" + I"*. We remark that the definition of Stickelberger ideal in
number field case is not meaningful unless k is a totally real field and K is a CM field. By Deligne’s
result, the elements in I annihilate the group of divisor classes of degree zero of K in function field case.

We now begin to calculate the rank of the Stickelberger ideal. The notations are as above. Let K/k be
a finite abelian extension of function fields with Galois group G = Gg. Let I = Ik be the Stickelberger
ideal of K. Let G denote the character group of G with complex values. For 1 # y € G, let Ly(s, x) be
the Artin L-function associated to x. We have the following well-known analytic class number formula

WE) =hk) [[ Lx0x)
1#£xe@
Thus L (0,x) # 0 if x # 1.
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Proposition 2.3. Suppose that k is a function field. Then rank I = [K : k].
Proof. Since WgS C I C Z|G] and rank S = dimcC ® S, we have

rank I = rank S = #{x € G | x(S) # 0}.

We now show that x(S) # 0 for all x € G. We first assume that x is ramified. Let T be the set of places
of k on which x ramifies. It is non-empty. Let 61 be the element in S defined above. We have

x(0r) = [K : K7]- x(0k,) = [K : K7]- L0, X) # 0.

Next we suppose that x is unramified. If x is trivial, we have x(s(G)) = |G| # 0. If x # 1, let v be a
place such that x(v) # 1. Let 6, be the element defined above. We have

x(6y) = [K : K°]- (1 = X(v)) - L(0,X) # 0.
This completes the proof.

3. Cyclotomic extensions of a function field.

(From now on, we assume that k is a global function field. And from now on, we fix a place co
of k and fix a sign function sgn of kw,. The other notations are as in the introduction. Let € be the
completion of an algebraic closure of ko,. A rank one Drinfeld A-module p is called sgn-normalized if the
coefficients of p, are in K, for all z € A and coefficient of the highest term of p, is equal to sgn(z). Let
h = h(A) be the ideal class number of A. Since degoo = 1, we also have h = h(k). We know that there
are h sgn-normalized rank one Drinfeld A-modules. Let p be one such A-module and let € A\F,. Then
the Hilbert class field K, is the extension of k£ generated by the coefficients of p,. For an integral ideal
m # ¢, let A% be the set of m-torsion points of p in 2. Then cyclotomic extension K = K, of k is the
extension over K, generated by Af,. Let J = Gal(Kn/Hy) ~ F;, which is the decomposition group and
inertia subgroup at oo. For the details, we refer the reader to [Part II, H1]. The sets of ramified places
in Kt and in K are T+ = {p | p | m} and Tk = Tg+ U {oo} respectively. Notice that K, = K} is the
maximal unramified extension both in K and in K.

Let S be the G-submodule of Q[G] corresponding to K = Ky, defined in last section. We now divide
S into two parts. For a non-empty subset T' of Tk, the element 87 is defined as in section 2. We regard
the unramified part S"" defined in section 2 as 6, where ¢ is the empty set. Let ST (resp. S™) be the
G-submodule of Q[G] generated by 67 with T C T+ or T' = {oo} (resp. oo € T C Tk but T # {oo}).
The reason that we divide 6/} in ST, not in S~, will becomes clear in the following lemma 4.2. We call
St and S~ the real part and relative part of S, respectively. Notice that the unramified part 6, belongs
to the real part St. Let I* = S* N Z[G] respectively. Notice that we do have S = St + S~, but we
may not have I = I't + I~. By Deligne’s results [Th.1.1, H2], the elements in I~ actually annihilate the
divisor class group of K, and thus the ideal class group of K. We will see that the element 6} actually
belongs to f. Thus we have IT = Corg/x+(I;") by the definitions, where I;" is the Stickelberger ideal
of the extension K+ /k. In this paper we compute the indices of It and I in the whole group rings Z[G*]
and Z[G] respectively. Here we regard Z[G*] as a subring of Z[G] by the corestriction map. In the rest
of this section we will elucidate the structure of S™ and S~ by means of torsion points of sgn-normalized
rank one Drinfeld A-modules and of partial zeta functions of k.

If 0 # z € k satisfies sgn(z) = 1, we call z is positive and write > 0. We also write ||z|| = N(zA),
the norm of zA. Let a, f be integral A-ideals. For Re(s) > 1, we define

ZfH(s,0)=Na™® Y |[L+a]7
—1#£z€a~1f

and
Z-(s,0) = Na=* 3 [lL4a]~".
z€a"lf
1+z>0

Notice that ZfJr (s,a) and Z (s, a) are only dependent on the wide and the narrow ray classes of a modulo
f respectively. It is well-known by Weil’s theorem that they are rational functions of ¢~% over Q, and is
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holomorphic except for a simple pole at s = 1. In [Sect.2, Y2] we showed that these functions satisfy
distribution relations in the sense of B. Mazur. For | m,f # ¢ we set

+ -1 - - -1
o = long e F(0,a)0,;' and b, = ;Zf (0,a)0,

where the summations are over all representatives of Gy, and o, = (a, K/k) is the Artin morphism of
the extension K/k associated to the ideal a.

Let T be a set such that {oo} C T C Tk. Let § be the maximal factor of m which is divisible by all
finite primes in 7. Notice that f # ¢. The cyclotomic field Kj is the maximal subextension Ky of K/k
in which all places in T' are ramified. By the definition in section 2, we have 0k, =3, Z; (0,a)0; L the

summation is over all representatives of Gy and oq = (a, K5/k). Thus 07 = Corg/x, (0x,) = 0; . We get
Lemma 3.1. As a G-module, S~ is generated by 0, with | m,f#e.

Now we consider the real part. The case T = {co} is easy to deal with. Write 8 = s(G)/(g—1)(€ 84).
As the discussion above, we have 0;,; = 8, = —f, where the second equality follows from [Prop.6.1,
H2]. To describe the real part clearly, we need to recall the torsion points of sgn-normalized rank one
Drinfeld modules and the definition of logarithm map. Let £(a) € Q be the £-invariant of ideal a, which
is characterized by the condition that the lattice (A-submodule of ) £(a)a corresponds to some sgn-
normalized A-module, say p. Let e,(z) be the Drinfeld exponential function associated to ideal a. Let
Aa = &(a)eq(1). Assume that a is an integral ideal. Then )\, is a a-torsion point of p. In fact, it is
a generator of the set Af of a-torsion points of p. For f # ¢ and a coprime to f, Hayes showed that
Zf+(0,a) = 0, see [Prop.6.1, H2], and that %Z;F(O,a) = %ETQ . Uoo(()\?u))"“), see [Ths.6.1 and 5.1, H2],
where g4 = (a, K f+ /k). Recall that the logarithm map [ : K* — Q[G] is defined for z € K* by

= Z Voo (27)o 7,

oeG

where v, is the extension to 2 of the normalized valuation of k., at oco.

Now let T be a non-empty subset of T+ and let f be the maximal factor of m which is divisible by
all primes in T'. We know that K f+ is the maximal subfield K of K in which only the places in T are
ramified. By Eq. (2.1), we have

(1— _)K+/kT ZZ Sa

where a runs over representatives of G?’ and o4 = (a, K f+ /k). We get via ’'Hopital that

— S(J) o'u —1
Orcr = Oxct 11 (0) longds f —1Z Jou

where a runs over all representatives of G;r. Thus 07 = Corg/k, (0x,) = I(A5). Let P be the subgroup
of K* generated by A\s with f | m and f # e. It is the group of cyclotomic numbers of K introduced
in [Def.1.1, Y1]. We have showed that the ramified part of St is equal to [(P). Next we consider the
unramified part.

The maximal unramified subfield of K is K. Let v be a place of k. For v = 0o, since there does
not exist finite extension of K which is abelian over k£ and in which only oo is ramified (notice that
degoo = 1), we have §,, = 0. Now we assume that v = p is a finite place. K;L is an abelian extension of
k in which only p is ramified. As above, we have

1 (D rgar
s = —— 3 voo((Ae)7e)g L,

and thus
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where in the first equality o4 = (a, K,T /k) and a runs over all representatives of G,J{, and in the second
equality 7, = (a, KF /k) and a runs over those of Gf. Using the fact that Ng,/x, (Ap) = £(A)/£(p), see
[Sect.1, H4], we have

0y = CorgejncsResyer e (B ) = HEB)/E(p)) /g — 1).

Let P be the G-submodule of K* generated by A**”) with f | m,f # ¢ and by ((A)/((p) with all primes

p. Notice that )\?(J) = —)\?_1, see [Eq. 4.13, H2]. Furthermore, we claim that 6 € [(P)/(qg — 1). Let k.
be the subset of k of positive elements. By [Sect.2, H4], we have ky C PN k. Since the GCD of all degz

with 0 # z € A is equal to degoo = 1, we have

U(P)/(a—1) > 1(ks)/(a = 1) = Bvoo (ky) = 263 6.
This proved the claim. We have showed
Lemma 3.2. ST =1(P)/(g—1).

4. Preparations for computing the indices.

In this section, we make some preparation for the calculation of the indices of the Stickelberger ideals.
We begin this section by recalling the definition of lattice index.

Let Y be a Q-subspace of Q[G]. A lattice in Y is a finitely generated subgroup of Y with the maximal
rank. Let L and L' be two lattices in Y. There exists a nonsingular linear transformation A : Y — Y
such that A(L) = L'. The lattice index is defined to be (L : L") = |detA|. Sinnott has given some
properties of lattice indices [Lems.1.1 and 6.1, Si]. Here we mention one more which will be used later.
The proof is clear.

Lemma 4.1. Assume that L = Ly & Ly and L' = L & L), are two lattices in Y =Y, ®Y> and that L;, L
are lattices in'Y; for i =1,2. Then
(L:L'")=(Ly : LY)(Ly : LY).
For a G-module M, we denote by M, the G-submodule of M of elements killed by s(G), and by M¢
the submodule of M fixed by G. Let et = s(J)/(¢—1) and let e~ =1 —e*. Then ete™ = 0.
Lemma 4.2. etST=S8" ande S~ =S5". Thus S=Sta S~.

Proof. Since St C s(J)Q[G], the first equality is obvious. We now show the second. For f | m,§ # ¢, by
[Prop.6.1, H2] we have

s(J)b; = Z ZZ{(O,a)a(_li_a)u = Z(Z Z7(0,(1+ Q)a)or!
=3 (Y IL+al™)emoos! =0,

a gea~lf

where a runs over all representatives of principal ideals (1 + a)A with & € m modulo principal ideals
(14 a)A with & € m and 1 + a > 0. We complete the proof by Lem.3.1.

Lemma 4.3. (ST)% =S¢ = 74.

Proof. Let e; = s(G)/|G|. Tt is easy to check that S¢ = S N e S, which implies the first equality by
the last lemma. Clearly I(k,) C I(PNk) C I(P)¢. Conversely, let I(a) € I(P)¢, where @ € P. Then
(0 —Dl(a) =1(a”"t) =0 for all 0 € G. Since a°~! is a positive unit, we get a’~! =1 for all 0 € G and
thus a € k. Here we used the fact that each element in P is totally positive [Cor.4.16, H2]. We showed
I(ky) = I(P)¥. Thus we have

(81)¢ =1(ky)/(a — 1) = Z6.

This completes the proof.

We now introduce some notations. Let x € G be with conductor fx» and let a be an integral A-ideal.
We define x(a) as follows. If (a,fy) # e, we define x(a) = 0. Otherwise, we set x(a) = x(oq), where
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oqa = (a,K; [k) is the Artin symbol. For prime p, let &, be the unique element in Q[G] such that
x(@p) = x(p) for all x € G. For § | m, let Iy = Gal(K/Kj). Let V be the G-submodule of Q[G] generated
by
aj = S(If) H(]. - &p)
plf
with § | m, f #¢. Wealsoset U =V +s(l,)R and U' = (¢ — 1)V + s(I,)R, where R = Z[G]. We
mention that U is the level m group of the Iwasawa distribution associated to k, see [Sect.3, Y2]. For

convenience of the reader, we list two results from [Y1] and [An] in the follows. They are important in
the computation of the indices. The following result is the corollary 3.3 in [Y1].

Lemme 4.4. [etUp : et U} = (¢ — 1)[E k¢,

Let H%(J,U) denote the i-th Tate cohomology of the J-module U. It is a G-module. The author
determined the G-module structure conditionally following the ideas of Sinnott’s [Sect.5, Si]. Anderson
[An] invented a remarkable method and determined it completely. Recall that s is the number of distinct
prime factors of m.

Lemma 4.5 ([Th.5.2.3, An]). For all i, we have the following G-equivariant isomorphism
. 5s—1
H'(J,U) = (Z/(g— DIG./N))* .

A character x of G is called real if x(J) = 1. Such x induces a character of G*. If x is not real,
we call it non-real. Let GT and G~ denote the sets of real characters and of non-real characters of G
respectively. Let e, be the idempotent element associated to x. We set

Cd+ = Z Lk(O,X)GX and w” = Z Lk(07>z)eX
1#£xEG+ XEG-

Clearly etw* = w' and ew™ = w~. We have
Lemma 4.6. (1—¢)St=wtetU] and (1-¢€)S™ =S~ =w e U.

Proof. The first equality follows from (Prop.4.1 and Lem.4.2, [Y1]). For a non-real character x of G of
conductor f,, the L-function L(s, x) of x does not contain the Euler factor at co. Using the partial zeta
function, we get

Li(0,x) = Y_ X(a)Z; (0, 0),

where a runs over all representatives of Gj,. We claim that 6§, = w™aj for all § | m,§ # e, which will
implies the second equality.

If x € G is real, we have x(6;") = x(w™aj) = 0. Now assume that x is non-real. If the conductor fy
of x does not divide f, there exists o € Ij such that x(o) # 1 and o6 = 6. Thus x(6;) =0. If f | f,
by [Prop.3.1, Y2] we have x(0;) = % T, (1 = x(0)) - (0, %)-

On the other hand, for non-real x, we have x(w™) = L(0,%) and x(3,) = x(p), and x(s(Iy)) =
> aer, X(0), which is equal to 0if f, { f and to |Gw|/|Gj| otherwise. We showed x(6;") = x(w ™ ay) for all
X € G. This is the claim.

Finally we study the relations of S with I and St with I'T. Let a be an integral A-ideal coprime to
m. Let 04 = (a, K./k) be the Artin symbol. By [Equ.4.2, H3] and [Sect.1, H4], we have

Lo (R /€)™ = 1 (0 (E™)) — 0 B)) = S Frmod 2,

and thus
1(E(A)/€(p)) /(¢ — 1) € I + Z6. (4.1)
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¢From the proof of [Prop.6.1, H2] and via a simple calculation, we get, for f | m and § # e,

1 d -1
oo Uu:—'_Z+ s=0 = — Za
Voo (A7) logq ds 2! (s,a)|s=0 q_lmod
where o, = (a, Ky, /k), which shows
I(\) € It + 7. (4.2)

For large M, by the proof of [Prop.6.1, H2], we have

Zr00=( X ol o= =5 X Jall kim0 = —modZ.

0<<:c€a_1f wea_lf
degz>M degz>M
This gives us
6. € I+176. (4.3)

(From Egs. (4.1-4.3) we get
Lemma 4.7. St =IT"+276 and S=1+7Z6.

5. The index of the real part.
In this section we compute the index of It in RT (= s(J)R). We leave the reader to check that each
lattice index appeared in this and next sections are well defined.

Proof of Theorem 2. We have, by [Lems.1.1 and 6.1, Si],
[RT : IT] =(s(J)R : s(J)U)(s(J)U : ST)(ST : I'")
=(s(J)R : s(J)U)(s(J)Up : (1 —e1)ST)((1 —e1)ST : S) (5.1)
x (g —1)s(G)U : s(G)ST)(ST : I'T).

We now compute the indices respectively.
Applying Lem. 4.5 and using the calculation in [Page 64-65, Y1], we have

{(q—1)t if s=1

(s(J)R: s(J)U) = (q— 1) if s> 1.

(5a)

Since (s(J)Up : (1 — €1)S™) = (s(J)Uq : s(J)U) (s(J)U§ : (1 — e1)ST) and since the rank of s(J)U}
is equal to [KT : k] — 1, by Lems.4.4 and 4.6, and by analytic class number formula, we get, noting that
h = h(k) is the divisor class number of k,

(s(N)Up: (1 —e1)SH) = (¢ — 1)[K+:k]_1(e+Uo cetU)(eTUy = (1 —e1)ST)

=(@-D)"" [ L&) =(g—1D)'"*h(KT)/h. (50)
1£xeG+

It is easy to show Sj = St N (1 —e;)ST, which shows
(1—e1)ST/Sf ~e1 ST+ St/S+ ~e;5T/(SH)“.
Furthermore, s(G)U = |I.|s(G)Z and |G|/|I.| = h. Thus by Lem.4.3
(1= e)ST: S5)((a - 1)s(G)U : 5(G)SH)
=(e1 ST : (ST)) (¢ = DILIs(G)Z : et ST)(e7 ST : 5(G)ST) (5¢)
=h(s(G)Z: (5*)9)/(a—1) = h/(¢ —1)*.
By Lemma 4.7, we have ST /It ~Z60/ItTN7ZO ~7Z/(q— 1)Z. Thus
[ST:IT]=¢q-1. (5d)
By substituting Egs.(5a-5d) in Eq.(5.1), we get Theorem 2.
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6. The index of the whole ideal.
In this last section we calculate the index of I in R.

Proof of Theorem 1. As in last section, we have, noting that (e U)o = e U,
[R:I]=(R:e"R+e R)(etR+e R:etU+e U)(etU+e U:U)(U:S5)(S:1I)
=(R:e"R+e R)(e"R+e R:etU+e U)(eUp+e U:(1—e)S) (6.1)
X ((1—e1)S: 80)(s(G)U : s(@)S)(S : I.
As above, we compute these indices one by one.
Since et R+ e R= R+ e"R, we have et R+ e R/R ~ et R/s(J)R. Thus
(R:e*R+e R) = (qg—1) K4, (6a)
By [Page 64, Y1] we have
1=(R:U)= (e R:e U)ker(e )|r : ker(e”)|y) = ("R :e"U)(R’ : UY).
Since H°(J,U) = U’ /s(J)U and R’ = s(J)R, we get, by Lems.4.1 and 4.5,
(e"R+e R:e"U+e U)=(e"R:etU)(e"R:e U) = |H*(J,U)| = (¢ — 1)t2s_1. (6b)
By Lems.4.1, 4.2 and 4.6, and by Eq.(5b), we have
(etUp+e U:(1—e)S)=(etUp:(1—e1)ST)(e U :(1—e1)S7)
=(g-DE"H-t T Li(0,%) = (¢ = DEH=th(K) /h. (6c)
1#£x€EG

As in last section we can compute the two other indices. We have
(1 —e1)S : So)(s(G)U : s(@)S) = h(s(G)Z : 8%) = h/(qg—1). (6d)

and
[S:I]=¢q-1. (6e)

Substituting Egs.(6a-6e) in Eq.(6.1), we get Theorem 1.
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