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GLOBAL DISTRIBUTIONS AND SPECIAL ZETA VALUES*

ABSTRACT. In this paper, we develop the theory of global distributions (i.e. distributions of global fields) and
apply it to the study of special values of abelian L-functions of a number field and division points of rank one
Drinfeld modules. We introduce the concept of e-distributions and give examples by e-partial zeta functions.
We determine the ranks of level groups of various kinds of universal distributions of a global field k, such
as universal e-, punctured, punctured even and odd distributions of k. We show the universality of several
distributions derived from special values of the e-partial zeta functions by studying Q-linear independence of
some special values. We also propose a conjecture and a question about the universality of e-distributions of
special values of e-partial zeta functions.

Introduction.

In classical number theory, ordinary distributions on Q/Z, as well as higher dimensional versions or
p-adic versions, were studied extensively and were used to describe the relations of various special values
such as Dirichlet L-functions, modular functions and I'-functions, see [Chaps.2 and 6, La], [Chap.12,
Wal, [LK] and [Ko], and some references there. These special values are of great arithmetic interest in
the classical cyclotomic or the complex multiplication theory. Many distributions, e.g., those derived
from the cyclotomic numbers or the Siegel (modular) functions, are universal up to torsion, and some,
e.g., special I'-values, are conjectured to be universal. Recently, the study of the universal ordinary
distribution on Q/Z has become active again, see [Da] and [Ou], since Anderson [An] invented a new
method to compute its +-cohomology and constructed a canonical Fy-basis for the cohomology. Thus
the concept of distributions on Q/Z is an important device in the study of some arithmetic quantities. In
[Yil], the author extended the concept of the classical distributions to global fields and determined the
ranks of the universal level groups. Quite recently, Belliard and Oukhaba [BO] gave detailed information
about the torsion of the level groups. We [BGY] have also applied the distribution method to the study
of the classical and characteristic-p I'-monomials. In this paper, we further develop the theory of global
distributions and apply it to the study of special values of abelian L-functions over global fields.

Let k be a number field with r; real places and ry pairs of conjugate complex places. Let € =
(€1, , € ), where €; = 0 or 1. We first classify the ordinary distributions of k into e-distributions. The
case € = 0 (i.e. all ¢; = 0) corresponds to the concept of even (or real) distributions defined in [Yil]. We
then introduce e-partial zeta functions Z¢ (s, a), where a and m are non-zero integral ideals of k. They
generalize the classical partial zeta functions corresponding to wide (i.e. € = 0) or narrow (i.e. € = 1) ray
ideal classes. Let e = >, €; and let € = ry + 72 — |¢|. We show that the order of vanishing of Zf, (s, a) at
s = 0 is greater than or equal to € (we assume m { a when € = 0). Let f¢(am™!) be the coefficient of s¢ in
the Taylor series expansion of Zg (s, a) at s = 0. Then f€ is a function from the set of non-zero fractional
ideals (non-integral if e = 0) of k to C. According to the conjecture of Stark (cf. [St] and [Tal) or its
generalization by Rubin [Ru], these functions, especially the one denoted by f¥ in the case e = 0, encode
important information about the class fields of k. Also the values at s = 1 of idele class L-functions of
k can be expressed as finite sums by these functions. Thus they are of great arithmetic interest. We
show that f€is an e-distribution (fT is punctured) and that the Stickelberger distribution F'¢ (with some
modification in the case |¢] < 1) associated to f¢ is a universal e-distributions up to torsion. For the
distributions f¢ (where |¢| > 1) themselves, we propose the question that for which number field k£ and
for which € they are universal.

We consider punctured distributions in section 3. We first give a sufficient and necessary condition
when a punctured distribution can be completed to a non-punctured distribution, using which we get
an upper bound for the rank of level m group of a universal punctured distribution. We prove that the
rank of level m group of the distribution F° = > FY is equal to the upper bound, where F¢ is the
punctured reduction of F¢. To get this result, we need to study Q-linear independence of some special
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2 GLOBAL DISTRIBUTIONS AND SPECIAL ZETA VALUES*

values of fT (we show more). We have conjectured that fT is a universal punctured even distribution
up to torsion [Conj.3.1, BGY]. It is equivalent to a conjecture on the Galois action of some special values
of f+ by the results we get in this paper. The latter conjecture also implies that the complex numbers
fH(ap~1) for all primes p and all integral ideals a with p { a are Q-linear independent. In the cases when
k = Q and when k is imaginary quadratic, the conjecture can be proved easily by the explicit reciprocity
law via the obvious expression of f*. Qur conjecture could be interpreted as a weak analytic version of
the (unkown) explicit reciprocity law of k. There are many conjectures on special values of L-functions,
see, for example, [Hu] and [Za], but only few of them have satisfactory answers. Our conjecture is the
first towards distributions. Could it be proved directly by analytic method? We expect an answer.

In the last section of the paper, we consider the case when k is a function field. In this case, the
even distribution f* can be expressed in the obvious manner as the valuations at a fixed place of the
division points of sign-normalized rank one Drinfeld modules [Ha2, Sect.6]. It takes rational values up
to a constant factor, and thus we have no the result on Q-linear independence. Also the conjecture is
not meaningful in this case. But the division points themselves form a multiplicative punctured even
distribution, which satisfies the multiplicative version of Q-linear independence and of the conjecture.
Thus we can determine the rank of the level m group of the universal punctured even distribution and
show the universality of the multiplicative distribution. The results here describe almost all Z-linear
relations satisfied by these division points and by the Stickelberger elements introduced in [Yi3]. This is
the principal motivation for the author to introduce the concept of global distributions. In the rational
number field case, similar results were obtained by several people, see [Ba], [Mi] and [Sc]. Finally, we
mention that the two parts about number fields and about function fields in the paper are relatively
independent.

1. e-distributions.

In this section, we further perfect the definition of distributions of a number field given in [Sect.1,
Yil]. We also introduce the concept of e-distributions.

Let k be a number field. We think of k£ as our base field. Let A be the integral closure of Z in k.
Let vq,--- ,v,, be all the real places of k. In the paper, we always fix this order of the real places. Let
€= (€1, ,€r,) be an r1-vector with entries in the field F» of two elements. Let Tp (resp. Tp) be the set
of non-zero integral (resp. fractional) ideals of A. Fix m € T,. We call integral ideals a,b e-equivalent
modulo m and write a ~¢, b if there exists z € 1 +a~'m, v;(z) > 0 when ¢; = 1 such that b = za. Let T,
be the set of equivalence classes of Ty under ~§ . Let G, be the set of equivalence classes of the ideals
coprime to m. We call it the e-ray class group of k of conductor m. The equivalence relation ~¢, has the
following properties.

Lemma 1.1. Let a,b,¢c and m be non-zero integral ideals of k. We have

1) If a ~5, b, then the geds of a with m and b with m are equal, i.e. (a,m) = (b, m).
2) Assume ¢ and m are coprime. Then ac ~¢, be if and only if a ~¢, b.

3) T¢ is a disjiont union of copies of G¢, where n runs over all divisors of m.

Proof. Assume b = za for some z € 1 + a~!m. Let integral ideal 9 O m. Then (z — )a Cm C 0. If
0 D a, then b = za C 0. The inverse is also valid since ~¢, is an equivalence relation. We get 1). Assume
ac ~¢ be. There exists £ € 1 + (ac) 'm such that bc = zac, which implies b = za and = € a~!. Thus
(r — 1)a is an integral ideal. Since m | (z — 1)ac and ¢, m are coprime, we get z € 1+ a~'m. This shows
2). The proof of 3) is easy.

In the case e =1 (i.e. all ¢, = 1), we denote ~¢,, T, and G, by ~m, T, and Gy, respectively. We
also interpret Gy, as the Galois group over k of the narrow ray class field Ky, of conductor m via Artin
morphism. In the obvious way, the set {Ty, | m € To} is a projective system of finite sets ordered by
divisibility. In the case e = 0 we write ~f=~¢ and G{, = G¢,, which is the wide ray class group of A
modulo m.

Let u,0 € Ty. Assume v C u. Let U and U™ be the unit group and totally positive unit group of k
respectively. Let w(u/b) C 1+ u be a complete set of representatives of (1+ (u/v))/U+. We may assume
that each z in w(u/v) is totally positive. In this paper, we always make this assumption.

By Mazur’s abstract definition [Sect.7.1, MSd] of distributions on a projective system of finite sets, a
distribution on {Ty} is a family of functions {fm : To — V | m € Ty}, where V is an abelian group and
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fm factors through Ty — T/ ~m, and subject to the conditions whenever n | m we have

@)= > fu(6) =) fulza) (1.1)
brna TEW
bmod~,

for all a € Ty, where w = w(a~'n/a~'m). There are several equivalent definitions of distributions on a
projective system, see [Chap.2, La] or [Chap.12, Wa).

One can also use the projective system {7 } to define distributions. But these distributions are special
case of those on {T,}. The family {fn} is called a punctured distribution if for each m the function f, is
not defined at the integral ideals divisible by m and they satisfy Eqs.(1.1) for all a with n{ a. Notice that,
by Lem.1.1(1), if n{ a and b ~, a then n{ b and thus m{ b for n | m. Let G = li<£nGm. For o € G, let

op € G be the image of o under the natural map G — Gy, where oy is the Artin morphism associated
to the integral ideal b. We define the action of G on the distribution {fm} by ofm(a) = fm(ba). From
Lem.1.1(2) we see that the family {ofn} is also a distribution on the system.

In Ty, we define an equivalence relation ~ as follows: u ~ v if and only if v = zu for some totally
positive z € 1 +u~!. We mention that if u = am~! and v = bn! are the coprime fractional expressions,
then u ~ v if and only if m = n and a ~, b.

The distribution {fn} is called ordinary if whenever am=! = bn~! we have fn(a) = f.(b). In this
case, the map fn, for each m can be obtained by composing the map Ty — T, multiplying by m~! with a
map f : Ty — V which factors through Ty — T/ ~. Thus an ordinary distribution of k can be replaced
by a single function f on Ty modulo ~, which satisfies the relations, from (1.1),

fwy= Y fln')= > flawm) (1.2)

bAU zew(u=1/u"1n)
on~'mod~

for all u € Ty and n € Ty. Sometimes we call f a distribution of the field k for simplicity.
The action of G on {fn} induces an action of G on f. Clearly of for ¢ € G is also an ordinary
distribution. If {f,} is punctured, then f is only defined on Tp \ Tp. In this case, we call f punctured.
Let Jy be the subgroup of G, consisting of the ~p-equivalence classes of ideals of the form (a) for
some a € A such that a = 1( mod m). The sign-subgroup is defined to be J = liLnJm C G. We now

describe it more clearly, cf. [2.24, DR]. Let v be one of r; real places of k. Take a € 1 + m such that
it is negative at v and positive at each real places of k different from v. The class o of (o) in Gy, is
independent of o and has order 1 or 2. It is trivial if and only if & may be chosen to be a unit. In fact, o
is the complex conjugation after we choose an embedding Ky, — C which induces v on k. The subgroup
Jm of G is generated by all 0. Let 0, = (07')m € G. Then each o, has order 2. The sign-subgroup .J
of G is generated by all g,. Thus J is an elementary 2-group of order 2.

Let € = (€1, - ,€r,), where ¢, = 0 or 1. An ordinary distribution f is called an e-distribution if for
all1<i<r; and allue Ty (u & Ty if f is punctured) one has

ov f(u) = (=1)% f(u). (1.3)

We can construct e-distributions as follows. Let f be an ordinary distribution. Set

ot = [[a+ow) [JQ-0w) (1.4)

€;=0 €;=1

Then f¢ = a°f is an e-distribution. We mention that the concept of e-distributions can be defined for
general distributions on {T,}, not only the ordinary ones. In the general case it would be more natural
to introduce some concepts such as G-action if we used another definition of a distribution as a locally
constant function on the compact space 1i<£nTm.

For an integral ideal m, we set €™ = (ef',-- - , €. ), where € = 0 if ¢; = 0 or if the image o7 of 0, in

Jm is trivial and €* = 1 otherwise. We call it m-reduction of e. If f is an e-distribution and if €™ # ¢,
then f(am~!) must be 2-torsion for all a € Ty by Eq.(1.3).
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Lemma 1.2. The equivalence relations ~5, and ~f“m are the same. Further we have Gy, ~ G/ < oy, |
€ = 0>.

Proof. Clearly if a ~¢, b for integral ideals a and b, then a ~¢ b. Conversely, we assume € = (0, €5, - )
and o)) = 1. If a ~¢ b, then b = za for some # € 1+ a~'m such that v;(z) > 0 when ¢ = 1. Let
€= (1,ez,---). Ifvy(z) > 0, then a ~ b. If v1(x) < 0, take a unit o € 1 + m such that v, (a) < 0 and
vi(a) > 0 for i > 1. Since o} = 1, there does exist such a. We have b = aza, az € 1+a~'m, vy (az) > 0
and v;(az)/v;(z) > 0 for i > 1. Thus also a ~¢, b. Continuing this process, one shows the first claim in
the lemma. The homomorphism G, =+ G¢, defined by amod ~+— amod ~¢ is surjective and has kernel
< oy | € = 0 >. This shows the second claim.

Recall that the distribution f is called even if J acts on it trivially and odd if s(J)f is the trivial
distribution, where s(J) = }7 ;7. An e-distribution is even if ¢ = 0 and is odd otherwise. If f
takes values in a ring on which 2 is invertible, then f can be uniquely expressed as a sum of even and
odd distributions, and as a sum of e-distributions. In fact, we have |J|f = s(J)f + (|J| — s(J))f and
|J|f =3, f¢, where f€ is defined as above and the sum is over all vectors in Fy'. The latter equality is
induced from ) a‘ = |J|

The level m group of an V-valued distribution f is defined to be the subgroup of V generated by
f(am™1!) with a € Ty (and m{ a if f is punctured). Since of for o € G is also a distribution, the level m
group is a Gp-module via the action of G on f. If f = fT + f~ is the even-odd decomposition of f, then
the rank of level m group of f is the sum of those of f* and f~. The same is true for the e-decomposition.

The V-valued distribution f is called universal if for any distribution g : Ty — W there exists a
unique homomorphism h : V' — W such that ¢ = ho f. In this case we must have V = Imf. We often
ignore this easily satisfied condition. If the universal condition holds for all g with torsion free values, we
call f universal with values in torsion free abelian groups or universal up to torsion. We denote the level
m group of a universal ordinary (resp. €, even(odd), punctured, punctured even(odd)) distribution by
A (resp. A, AL A% A%) and call them the universal level m groups of k. They are G-modules. A
distribution f is universal up to torsion if and only if the rank of level m group of f is equal to that of
Ap, for all integral ideals m. We have showed rank Ay, = |G|, see [Th.3.4, Yil]. In this paper, we will
determine all other ranks. The following lemma is useful, whose proof is easy.

Lemma 1.3. Assume that f = ) f¢ is the e-decomposition of the (punctured) distribution f. Then f
is a universal ordinary (punctured) distribution up to torsion if and only if f€ is a universal (punctured)
e-distribution up to torsion.

Let Q = li_r>n(C[Gm]. Let f be a distribution with complex values. The Stickelberger distribution
associated to f is defined to be St(f) : To — 2, and for u = am™—! € T,

St(f)w) = Y flub)o,’,

beGn

where the sum over b € G, means that b runs over a complete set of representatives of the classes in
G- We will often use this notation in the paper for simplicity.

2. e-partial zeta function.

In this section, we introduce e-partial zeta functions to give examples of e-distributions. We determine
the ranks of the universal level m groups A¢, and AX. We also prove the universality of some distributions
derived from the e-partial zeta functions.

The notations are as those in last section. Let [k : Q] = r1 + 272 be the degree. Let vq,--- ,v,, be
all the real places of k. Fix an r;-vector € = (e1,--- , €, ), where ¢, = 0 or 1. Let N : To — Q be the
absolute norm. For z € k*, write || z ||= NzA. Let a,m € Tp. Set m; = m(a,m)"*. Let U be the
totally positive unit group in 1+my and let Uy, be the unit group in 1+ m; whose elements are positive
at v; when ¢; = 1. For Re(s) > 1 we define

Z¢(s,a) = Na~* > o lI=*=[Ug, : Ut ] > No~°,

0#£z€(14a"tm)/UT b~ina
v;(z)>0when ¢;=1
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and call it e-partial zeta function of the class of @ modulo ~§,. It can be extended to the whole complex
plane and is holomorphic except for a simple pole at s = 1. Furthermore, the following equality, for n | m

and all s #1,
> )™= > =77,
0#£ze(1+a=1n) /Ut YW otz (y+a~tm) /Ut
v;(z)>0when ¢;=1 v;(2)>0when e;=1

where w = w(a~'n/a"1m), implies the following
Proposition 2.1. For each s # 1, the family of functions {Z§ (s,*) | m € Ty} on T is a distribution on
the system {Tm}.

We now prepare to give some information about the order of vanishing of Z¢ (s,*) at s = 0. Write
lel = >"; €i. Let €™ be the m-reduction of e.

Lemma 2.2. Let a,m € To. We have Z (s,a) = 21" |=1€1Z¢7 (s,a). Thus Z& (s, a) and ZS (s,a) have
the same order of vanishing at s = 0.

Proof. Without loss of generality, we assume € = (1,€2,---) and o} = 1. Write € = (0,€2,---). Take a
unit o € 1+ m such that v;(a) < 0 and v;(«) > 0 when ¢ > 1. Then

27¢ (s, 0) = Z& (s,0) + Z5 (s, aa) = Z5 (s, a).

Continuing this process, we get the lemma.

An idele class character x of conductor f is called an e-character if for all 1 < ¢ < r; we have
x(ov;) = x(o},) = (=1)%. In this case one must have ¢ = €/. Such a character induces a primitive
character of G by Lem.1.2. We denote it also by x. For a € Ty, we define x(a) = 0 if (f,a) # ¢ and
x(a) = x(oa) otherwise, where oq € Gf is the class of a modulo ~f. Let Gwn = Hom(Gr,C) be the
complex character group of Gy,. Let u : Tp — C be a function defined modulo ~. For a character x of
conductor dividing m, we set

um(X) = Y x(a)u(am™). (2.1)

a€EGn
In [Prop.3.1, Yil], we showed the following result.

Lemma 2.3. Assume u: Ty — C is defined modulo ~. Then u is an ordinary distribution if and only if
for allm € Ty and all x € Gy of conductor f, one has

um(x) = JT@ = x®)) - ug, (),

plm

where the product is over all prime divisors of m.
Write € = r; 4+ r2 — |¢|. We have

Proposition 2.4. Assume |e| # 0. The order of vanishing of Z% (s,a) at s = 0 is greater than or equal
to €. Assume |e| = 0. This order is equal to r1 + 72 ifmta and tor +ro —14fm|a.

Proof. Before the proof, we first mention a basic fact. Let A be a finite abelian group and let A =
Hom(A,C"). Then the determinant of the matrix (x(a)), ¢4 ,c I8 nOt zero.

The order in the case |¢] = 0 has been determined in [Prop.2.2, Yil]. We mainly consider the case
|| # 0 here. Let I > 0 be the minimal order of vanishing of Zg (s,a) at s = 0 for all integral ideals m
and a. Let f¢(am~!) be the coefficient of s! in the Taylor expansion of Z¢ (s,a) at s = 0. By Prop.2.1,
the function f¢: T — C is a distribution. Suppose ord,;—g Z5,(8,00) = 1. We can assume that ap and mg
are coprime. Let x € G‘fno be of conductor §. Then x induces a character of G§. The L-function L(s, x)
can be expressed as

L0 = 3 x@ S N6 = — 1 3 (@) 7 (s, a). (2:2)

- .77t
a€Gs§ brfa [Ufe : Uf ] a€Gs
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Determine €X = 0 or 1 by the condition x(oy;) = (=1)%. Set €, = (¢}, ,€X,). By the well-known
function equation of L-functions, see for example [Chap.8, CF], we know that the order of vanishing
of L(s,x) at s = 0 is equal to €,. Assume |¢| # 0 and assume | < €. Since € > € > I, we have
ZQGG? x(a)f¢(af~') = 0 by Eq.2.2. Because f€ is a distribution, by Lem.2.3 we see that for all x € G'§,,

the following equality holds

3 x@f<amg") = 0.

aeGy

Thus f¢(amy ') = 0 for all a coprime to mg. This is a contradiction.
Since the order of vanishing of L(s, xo) at s = 0, where ¢ is the trivial character, is equal to r{ +793—1,
not 71 + rz, one must modify the discussion above in the case |e| = 0.

We guess that the order of Z¢ (s,a) at s = 0 is equal to €™ if a,m are coprime. Let f¢(am~!) be the
coefficient of s¢ in the Taylor expansion of Zf (s,a) at s = 0. Here we assume m{ a if e = 0. By Props.2.1
and 2.4, the function f€ is an ordinary distribution, but it is punctured in the case e = 0. Let x be an
idele class character of conductor § = f,. Let ¢, be defined as above. Then x is an e,-character of Gf.
The character x is called real if €, = 0 and non-real otherwise. In the real case, we assume yx is ramified.
The €,-th derivative of L(s, x) at s = 0 can be expressed as, by Eq.(2.2),

|G|

LE0,%) = e 37 x(a)fx(af1) = UatEaTen

o0 2 > x(@)fx(af ™). (2.3)

aEG;

Let f;F(a) be the coefficient of "7 in the expansion of Z (s, a) at s = 0. Here Z™ is the e-partial zeta
function in the case € = 0 and ¢ is the unit ideal of A. When x # 1 is real and unramified, we have

L(n—i—rz)(o x) [U U+] Z [U U+ |G | uEZG (2.4)

By the function equation of L-functions, the two equalities above give an expression of the value
L(1,x) as a finite summation for each non-trivial idele class character x. Since for each € € Fy' there
exist idele class characters x such that e, = ¢, the distribution f€ is non-trivial. We denote f€ by f* in
the case e = 0. It is punctured and is even. We now consider the case € # 0.

Let 1 <j <ry. Let a; € 1+ m be a number such that «a; is negative at v; and positive at each real
places of k different from v;. Assume u = am~!. If ¢; = 0 we have

00; Z(8,0) = Zy (s, 0) = Z, (s, 0),

and thus o, f¢(u) = f¢(u). If ¢; = 1, we denote €(j) the r;-vector by replacing the j-component of € by
0. We have

(1+00,) 25 (5,0) = Z5,(s,0) + Z5y(5,050) = Zn” (5, 0). (2:5)
;From Prop.2.4, we see g, f*(u) = —f¢(u) except for the case when m = ¢ and |e(j)| = 0. Thus f€ is

an e-distribution when |e| > 2 and a punctured e-distribution when |¢| = 1. In the latter case, we can
make f€ become a non-punctured e-distribution by redefining its values at integral ideals. In fact, for any
distribution g we can redefine its value at ¢ freely. For any a define g(a) = g(a) — g(¢) + « if a € Ty and
g(u) = g(u) if u € To \ Ty. Then g is also a distribution. Assume |¢| = 1. We define f¢(a) = f¢(a) — f¢(e)
if a € Ty and fé(u) = f<(u) if u ¢ Tp. Then f€ is a non-punctured e-distribution. Finally, we get

Theorem 2.5. If |e| > 2, f€ is an e-distribution. If |e| =1, f€ is a punctured e-distribution, but we can

make it become a non-punctured e-distribution f¢ by redefining its values at integral ideals. If |¢| = 0, f+
is punctured and even.

In the next section, we will see that in any case f* can not be made to be non-punctured.
Let F¢ = St(f€) be the Stickelberger distribution associated to f¢. Then F*¢ is punctured when
le] < 1. Set ' = 1i_1>nC[Gm]/(s(Gm)). Let F¢ take values in €' via the natural map @ — Q'. The first

non-zero coefficient in the expansion of Z}(s,a) at s = 0 is a constant. In fact, it is equal to —R/w,
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where R and w are the regulator and the number of roots of unity of k, respectively. When |¢| = 1, we
see from Eq.(2.5) that F* becomes a non-punctured e-distribution. Actually F¢ is the composition of

St(f¢) with  — Q'. When |¢| = 0, we write F't = F*¢ and define for a € T

Fr(a)= ) (f(ab) = = £ (0))o; ",

beGm

which is independent of m as an element in . Then F'* becomes a non-punctured even distribution
[Prop.2.4, Yil]. Note that F*(¢) = 0.

Our next purpose is to determine the ranks of A¢ and AL and to prove the universility of F¢. We
need some preparations. We first recall the definition of Iwasawa distribution introduced in [Sect.3, Yil].

There exists a unique function ug : Ty = Q defined modulo ~ such that for all m € Ty and all x € ém
one has

Y x(@uo(am™) = JT(1 = x(p)), (2.6)

a€EGm plm

where the product is over all prime divisors of m. By Lem.2.3 ug is a distribution. The Stickelberger
distribution I = St(ug) of ug is called the Iwasawa distribution of the field k. It is universal up to torsion
[Th.3.4, Yil]. Set I = aI/|J|, where a° is defined in Eq.(1.4). We have e-decomposition I = ) _I°.
By Lemma 1.3, I€ is a universal e-distribution up to torsion. We call it Iwasawa e-distribution of k. For
X € G, We extend the definition of y linearly to C[Gy]. Let r¢, be the number of e-characters of Gy,.

Theorem 2.6. rankA¢ = r¢ . Especially, rank A} = |G| and rank A, = |Gn| — |G-

Proof. Let I, be the level m group of I¢. By Thm.3.1 in Chap.1 in [KL], we have
rank A, = rankl¢, = dimeC ®z IS, = #{x € Gm | x(I5) # 0}.

Let x € G be of conductor f. If x is an e-character, we have x(I¢(f)) = x(I(f)) # 0. If x is not an
e-character, we claim x(I5) = 0. Since I, is generated as Giy-modules by I¢(n~!) with n | m, we only
need to show x(I¢(n™')) = 0 for all n | m. We first assume f { n. Since Gal(K,/k) ~ Gn/Gal(Kn/Ky),
there exists o € Gal(Ky,/K,) such that x(o) # 1. Thus x(Z¢(n~!)) =0 as oI¢(n~!) = I*(n~1). Now we
assume f | n. By Lem.2.3 it is enough to show x(I¢(f~!)) = 0. Since x is not an e-character, there exists
i such that x(oy,) # (=1)¢. But we have o,,I¢(f~!) = (=1)¢I¢(§!). Thus x(I¢(f~!)) = 0. This shows
the claim. Therefore, x(Ig) # 0 if and only if x is an e-character of Gy,. We complete the proof.

Let u be a complex valued distribution and let x € G be of conductor fx, We set
Wm = wm(u) = Z u(x)ey € ClGn],
Xeém

where y is the inverse of x, u(X) = uj, (X) is defined in Eq.(2.1) and e, is the idempotent element of x
in C[Gw]. Let U = St(u). Let Uy and Iy, be the level m groups of U and I respectively. The following
lemma will be useful in next section.

Lemma 2.7. Assume that u is an e-distribution. Then Uy = wmln = wn I .

Proof. Since u is an e-distribution, we have aU = |J|U. Thus the first equality implies the second. To
show the first, we will prove U(n!) = wnI(n"!) for all n | m. It is enough to prove

XU®™)) = x(wnl(®m™)) (2.7)

for all Y € Gp. Let f = fy be the conductor of x. If f { n, we see that both sides of Eq.(2.7) are zero as
in the proof of Th.2.6. If f | n, using Lem.2.3, one can show Eq.(2.7) easily.

Now we show the following
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Theorem 2.8. F7T is a universal even distribution subject to the condition FT(e) = 0 and F¢ (where
€ # 0) is a universal e-distribution, up to torsion.

Proof. We denote F¢, the level m group of F¢. We need to show rankF,} = |Gt| — 1 and rankF¢ = rf,.
Let Sg, be the level m group of F¢ with values in 2. For M C Gn, write s(M) = 7 .,;0. Then
Ffg = 55/5(Gw)SE. We have

rankFy, = #{x € G | X(Fg) # 0} = #{1 # x € G | x(S5,) # 0}

Let x be a non-trivial e-character of Gy, of conductor f. When Y is real, we assume § # ¢. We have,
by Eq.(2.3),
e o i [Uf : U ]|Gl
X(FG) = 32 £ (i x(w) = =g
f

a€EGm

L®(0,x) # 0.

Composing with Th.2.6, we get rankF5 = rg, when € # 0.
When x # 1is real and § = ¢, let a € Ty be such that x(a) # 1. We have, by Eq.(2.4),

_ [U:UY)|Gal

G @)~ 1) L0, £ 0.

X(F*(a))

We showed rankF,t = |G| — 1.

It is easy to supplement F'* to obtain a universal even distribution F¢ with no restriction on the value
at e, using the method ahead Th.2.5. Let F'~ = Z#O F¢and let F = Ft + F~. Then F is a universal
ordinary distribution and F'~ is a universal odd distribution with values in torsion free abelian groups.

Here we give no information about the torsion of AL and AS. In [Th.3.4, Yil] we showed that Ay
has no p-torsion if the prime p does not divide |Gy, |. Recently, Belliard and Oukhaba [BO] gave another
sufficient condition when A, is p-torsion free (better than ours). Their results [Prop.3, BO] imply that
if prime p does not divide the order of Gal(K,/K,.) then A, has no p-torsion. Especially when k is
imaginary quadratic, they gave more detailed information about the torsion. In the case k = Q, the
group A = 1i_r>nAm is free [Kul], and the torsion of AL was first determined by Yamamoto [Ya] and later
by Sinnott [Si] using the cohomology method. In the function field case, these results were given by
Anderson [An] by double complex method. For a general number field k, the difficulty to determine the
torsion of Ay, compared to cases k = QQ and a function field, arises mainly from the totally positive units

of k. In the following, we explain some arithmetic meaning of the torsion.
Let A =limA,, and A¢ =1limA¢ . We first give a clear description of A and A°. Let A = A(k) be the
— —

free abelian group generated by all the classes [u] in Ty/ ~. We define the action of G on A as before.
We identify A with the quotient of A by the subgroup generated by all elements in A of the form

[u] — > [(1+ z)un™!] (2.8)

z€w(u=1/u"1n)

for n € Ty and u € Ty. We identify A€ with the quotient of A by the subgroups generated by all elements
of A of the form (2.8), along with those of the form [u] — o4, [u] when €; = 0 and [u] + o, [u] when ¢; = 1.
Let a=), m;[u;] be an element in A and let m be the lem of the fractional parts of the u;. If a € T, we
set ft(a) = f;F(a). We have the following criteria.

Corollary 2.9. a=)", m;[u;] € tor(A€) if and only if 3, m;f(bu;) is independent of integral ideals b
coprime to m. In the case € = 0 we must have Zj m; = 0, where the summation s over all j such that
u; is integral.

Proof. When € # 0 we have the exact sequence, by Th.2.8,

0 — tor(A°) — A° — li_r>nF,f1 — 0.

Thus a=}_; m;[u;] € tor(A) if and only if 3, m;F“(u;) = 0 in &', i.e., >°; m; f*(bu;) is independent of
integral ideals b, where b runs over the representatives of G,. In the case € = 0, replaceing F+ by FT,



GLOBAL DISTRIBUTIONS AND SPECIAL ZETA VALUES* 9

we still have the exact sequence. Similarly we get the criterion when a€ tor(AT). In the even case, since
F*(¢) = a is Z-linear independent with all the values of F'*', we get 3°,m; = 0, the sum over all j such
that u; is integral.

We know that f€ itself is an e-distribution when |e| > 2. The proof of Th.2.8 implies that the e-
distribution F¢ = St(f€¢) with values in Q, not in ', is universal up to torsion. As the proof of Cor.2.9,
we have

Corollary 2.10. Assume |¢| > 2. Then a=)_, m;[u;] € tor(A°) if and only if for all b coprime to m one
has Y, mife(bu;) =0 .

A natural question is whether these f¢ themselves are universal up to torsion. Let f& be the level
m group of f¢. If f¢ has the property that ), m;f¢(a;bm™"') = 0 for all integral ideals b coprime to m
whenever Y, m;f(a;m™") = 0, where m; € Z, then rankf = rankF¢, and thus f€ is universal up to
torsion. Conversely, if f€ is universal up to torsion, we have the exact sequence, for all integral ideals m,

0 — tor(As,) — A, — fo — 0.

If >, mife(a;m~') = 0, where m; € Z, then ), m;[a;m™!] € tor(AS,). By Cor.2.10 (or since tor(AS,) is
an Gp-submodule of A%), we have >, m; f¢(a;pbm ™) = 0 for all integral ideals b coprime to m. In the
case |e| = 1, if we replace f¢ by f¢ defined ahead Th.2.5, the discussions above are also valid.

It is impossible that f€ are universal up to torsion for all number field k and all € with |e| > 2.
For example, when k is totally real, by Siegel’s results, see [Si] or [DR], we know that f¢ takes rational
values for € = 1 and thus it is not universal. We do not know whether there exist some € such that f¢ is
universal. So we propose the following question. Write ¢ = Y smf ¢(e), the sum over j such that m | a;.

Question 2.11. For which number field k and for which € with |e| > 2 (resp. |e| = 1), f¢ (resp.
f¢) is a universal e-distribution up to torsion? Or equivalently, when does f¢ have the property that
Simif<(am™) = 0 (resp. = c) implies Y, m;if¢(a;bm™") = 0 (resp. = c) for all integral ideals b
coprime to m? where m; € 7.

3. Punctured distributions.

In this section, we first give a sufficient and necenssary condition when a punctured distribution can
be completed to a non-punctured distribution, which implies an upper bound for the rank of A%. We
then construct punctured even and odd distributions whose sum of ranks of level m groups is equal to
the upper bound. To obtain this result, we need to study Z-linear independence of some values of f+.
We conjectured that f* is universal up to torsion in [Conj.3.1, BGY]. This motivates a conjecture on
the Galois action of some special values of f. In the cases when k = Q and is imaginary quadratic, the
conjecture can be proved easily by the explicit reciprocity law via the obvious expression of f+.

Let g : Ty — V be a distribution. If we only consider g on Tp \ Tp, we get a punctured distribution
and call it the punctured reduction of g. When can a punctured distribution be got in this way? Or
equivalently, when can it be completed to a non-punctured distribution? The answer is the follows.

Theorem 3.1. Punctured distribution g can be completed to a non-punctured distribution if and only
if Dotwcw(n/zon) 9T YA) = 0 for all totally positive zy € A\ UT. Furthermore, this non-punctured
distribution is unique up to its value at the unit ideal e.

Proof. Assume that g can be completed to a non-punctured distribution, denoted also by g. Let z¢ €
A\ U be totally positive. We have

g(e) —glmee) = > glazy'A) =0.
0Fzcw(A/zoA)

Conversely, we define g(e) = 0. Let a € Tg. Take m € Ty such that am = (xg) for some totally positive
To. We define

gl@)=— > glam™ == > glaz, ).

O£z cw(A/m) 0£z€w(A/zga—1)
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Using the condition in the theorem and the distribution relations of g at fractional ideals, we have

glay=— > > g(wyzy ' A)

0#zcw(A/zoa—1) ycw(z—lzoa—1/z~1zoh)

=- > > gz A)

0#z€(A/zoa—1) /Ut z€(z+(zoa—1/z0A)) /Ut

=— Z g(xzytA) + Z g(zzytA)

0Z£zew(A/zo A) 0#zE€(zoa—1/zoA)/UT

= ) gWA).

0£ycw(a=1/A)

Thus g(a) is independent of the choice of m or zy and g factors through Ty — T/ ~.

Now we show that g satisfies the distribution relations (1.2) at integral ideals. Let a = zom~! be as
above and let ¢ # n € Ty. Let yo € n be totally positive. By the definition of g at integral ideals and the
distribution relations of g at fractional ideals, we have

g(@) —glyoan )= Y gymnH—— Y glam™)
0£yEw(A/mn) 0£zEw(4/m)
= Z glym™nt) — - Z Z g(zm~'n7) (3.2)
0#ycw(A/mn) 0#z€(A/m)/U+ z€(z+(m/mn))/U+t
= ) glmT'nTh) = > glyan™).
0#z€(m/mn) /Ut 0#ycw(a—1/a—1n)

This is the distribution relation we required. From the distribution relations (1.2) we can see that the
completed non-punctured distribution is unique up to its values at e.

The condition in the theorem is hard to deal with. We wish to replace it in some cases by a weaker
but simpler condition. We mention that the condition in the theorem implies 3 o7 4o glam™1) =0
for all m € Ty and m # ¢ since the latter holds if g is a non-punctured distribution, where the sum over
a € Ty, m { a means that a runs over all representatives of the classes in Ty, such that m t a. Note that
the condition m { a is independent of the choice of the representative in the class by Lem.1.1(1).

Proposition 3.2. Let g be a punctured distribution. Assume m # e. We have

(1) Both ZaeTm’m,mg(am_l) and Y ,cq. g(am™") are Z-linear combinations of the elements
Zaer g(ap™1), where p are prime divisors of m.

(2) Assume m = @A, where a is totally positive. Write Ton = To. Then

Y gea)=1G] S g@a'A).

a€Ty,ata 0#zcw(A/ad)

Proof. (1) Assume m = pn, where p is prime and n # e. Since ap ~n, bp if and only if a ~, b, we have

> glam™) = > glam™)+ ) glam™)

a€Ty a€ly a€Ty

mta pla,mpa pta

=Y glanH)+ > > glam™) =D glan™)+ Y glap™).
a€Ty beT, a~yb aeTy a€Gy
nfa pt6 amod~p nfa

Continuing this process, we get the result on ) g(am™1). Furthermore, using the Mobius inver-

sion formula to the following equality

Z glam™") = Z Z g(am Z Z (bn™1), (3.3)

a€Thm ?dm a€Tm m PEGH
mifa o#£m (a,m)=0 n;ée

a€Ty ,mta
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we get the result on > ., g(am™).
(2) Let a € To. For totally positive 2o € a, set ga (0) = = X 0s0cw(a/oa-1) g(zzy'a). On one hand,
we have by taking n = oA in Eqs.(3.2)

920(@) = Gaga(a) = > g(yaa™).

0£ycw(a—!'/aa~1)

On the other hand, from the third equality of Egs.(3.1) we see

gwo(a) - gwoa(a) = - Z g(xﬂchA) + Z g(.’ESL'O_lOzilA)
0£zEw(A/zo A) 0#£zEw(A/zo ah)
= Z g(zatA).
0£zcw(A/aA)

Here the second equality was got by the method in the proof of Egs.(3.1). Thus we have

Y oge'=Y Y geaw=lG] Y gla'A).

a€Tx,ata a€G. 0£z€w(a—1/aa"1) 0#£zEw(A/ah)

We complete the proof.

Corollary 3.3. Assume € # 0. Any punctured e-distribution with values in a group on which 2 and |G.|
are invertible can be completed to a unique non-punctured e-distribution with value 0 at the unit ideal e.

Proof. Let g be such a punctured distribution. By the two results above, it is enough to show
Zuegp g(ap~") = 0 for all primes p. Assume ¢; = 1. Take a; € 1+ p such that v;(e;) < 0 and v;(a;) > 0
for j # 4. We have

=Y g )= ouglap ) =) glasap )= D glap ).

acGy a€Gy acGy a€Gy

Since 2 is invertible, we get the result.

Applying Th.3.1 and Prop.3.2, we can give an upper bound of the rank of A%. Let Ny, (resp. N})
be the subgroup of G, (resp. G7) generated by the classes including p in G, (resp. G¢) with p | m. Let
t =[G, : Ny and tT =[G : NI] be the indices. Let s be the number of distinct prime divisors of m.

Let g : To \ To — V be a punctured distribution. Let W and R be the subgroups of V generated by
Yozzcu(n/an) 9(@atA) with all totally positive « € A\ U and by 3., g(ap™") with all primes p,
respectively. We have |G.|W C R by Prop.3.2. Let g be the level m group of g. Let Wy, = W N gy
and let R, = RN gn. The latter is generated by Zaer g(ap~™!) with primes p | m. We have R, D
|GelW N g 2 |Ge[Whn.

Let g take values in V/W via the natural map V — V/W. Then g can be completed to a non-
punctured distribution, say g, by Th.3.1. It takes values in the group generated by V/W and by g(a)
with a € Ty. Let g, be the level m group of g. In the level case, the values of g at some integral ideals can
be determined by the values of g at the other integral ideals and the values of g at fractional ideals (i.e.
the elements in gn/Why). Let p = app™!, where ag € p is totally positive. If we gave the value of g(e),
then g(p?) would be determined for all prime divisors p of m and all ¢ > 1 by applying the distribution
relations (1.2) at the unit ideal ¢ and the integral ideal p repeatedly. Let N;, be the subgroup of G,
generated by the classes including p in G, with p | m. Then N, and N, have the same order. Let
integral ideals a; = ¢, a9,-- -, a; represent all the classes in G,/N},. To determine the values of g at all
integral ideals, it is enough to add generaters g(a;) to gm/Wm with 1 < i < t¢. We can assume that the
g(a;) themselves and they with the elements in g, are Z-linear independent. We obtain an exact sequence

0— W — gn ® (B11Zg(a;)) — Gm — 0. (3.4)

Since rank Wy, = rank |G¢|Wy, < rank Ry, < s and rank gn < |G|, we get
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Proposition 3.4. For any punctured distribution g we have rank gn < |Gn| + s —t.

We will construct a punctured distribution whose rank of level m group is equal to the upper bound.
We need a long preparation.

Let I be the Iwasawa distribution of k£ and let I° be the punctured reduction of I. Let I = 19+ 4 10—
be the even-odd decomposition of I°. Let I%, I%+ and I9~ be their respective level m group.
Lemma 3.5. rankI%" = |GE| —tt  and  rankIl™ = (|Gn| —t) — (|G| = tT).
Proof. As in the proof of theorem 2.6 we have

rank I, = #{x € G | x(I%) # 0}.
If x is ramified, clearly x(I2) # 0. If x is unramified, we have, for n | m and n # e,

(I ) = % I - xto).

pln
Here we regard I(n—!) as an element in C[Gy,]. Thus x(I(n=1)) # 0 if and only if x(p) # 1 for all p | n.
We get {x | X(I%) # 0} = G — Ge/Nu, which implies rankI® = |Gy | —t. In the same way as above, we
can show rank I%T = |G| — t*. This completes the proof.

Let f* and f¢ (where € # 0) be the distributions defined in last section. We know f* is punctured.
Let f° be the punctured reduction of f¢. Let f~ = 3 _, f. Let F*t = St(f*) and F°¢ = St(f*) be
their respective Stickelberger distribution. Now they take values in Q, not in Q. Let FO~ = 3"_ 40 FO¢
and let FO = FOF + FO=. Let FO,F} and F2~ be their respective level m group. The Gy-module
structures of these level groups defined before are the same as those multiplying by the elements in Gy,.
Let em = $(Gm)/|Gml-

Lemma 3.6. rankFo~ = (|Gm| —t) — (|IGE| —tT) and rank(l —en)Fot =|GH| —tt.

Proof. From f* we construct a new distribution f* by f+(am™!) = (1 — en)f*(am™1), which is in-
dependent of the fractional part m. Since Zaer(l —ep)fT(ap™') = 0 for all primes p and |G| is
invertible in ©, ft can be completed to a unique non-punctured even distribution with value 0 at e
by Th.3.1 and Prop.3.2. We denote it also by fT. By Th.2.5 or Cor.3.3, f~ can also be completed
to a unique non-punctured odd distribution, say f~, with value 0 at e. Let F* = St(f*). Then FO*
above are the punctured reductions of F*, respectively. Let x € G’m be of conductor f,. We define

A = EaerX X(a)fi(af)zl) as in Eq.(2.1). When x = 1 we have f*(x) = Yaca, (1 —eo)ft(a) = 0.

Set
Z =( i X)ex € ClGn],
XEGm
respectively. By Lem.2.7, we have, for n | m,
P = Wil = wi ),
where the second equality comes from the fact that s(J)F+ = |J|F* and s(J)F~ = 0. Thus F%~ =
WIS~ and (1 — e) FOT = wtI%F. Since x(wf) # 0 if x # 1 is real (note x(I%t) = 0 when x = 1) and
X(wy) # 0 if x is non-real by the proof of Th.2.8, we get the ranks of (1 — ey)Fot and FO~ from last
lemma.

We now consider the rank of the whole FO*. We have by the lemma above
rank FOT = rank(1 — en) FOt + rank e FOT = rank e FO + |GL| — ¢ (3.5)
Here e Ft is generated by s(Gm) Y peq, fH(abm™')/|G | with a € Ty and m t a. Let Ry, is the Z-
submodule of C generated by 3= ., f*(ap™') with p | m. By Prop.3.2(1), the rank of enFy* is equal
to that of Ry,. To determine this rank, we need to study Q-linear independence of some special values of
ft. We will do more.
Let Z(s) = > 4er, (Na)™® be the Dedekind zeta function of k. It is well-known that the order of
vanishing of Z(s) at s = 0 is equal to r; + 72 — 1. Let ¢ be the coefficient of s"+"2~1 in the Taylor
expansion of Z(s) at s = 0. Let T} = T, be the set of equivalence classes of Ty under ~¢ in the case

m
€ = 0 (see Sect.1). Define A : Tp — C by A(m) = log Np if m is a power of the prime p and A(m) = 0
otherwise.

vv
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Theorem 3.7. Let m € Ty and assume m # ¢. We have
Z fflam™ ) =c-logNm and Z fHam™1) =c¢- A(m).
a€Tt mta acGE
Thus Zuer fH(ap™t) are Q-linear independent for all primes p of k. Furthermore, if € # 0 we have

S fam= 3 foamh) =0,

a€Te ,mta aeGs,

Proof. Write r = r1 + r2. We have

dr dr
+(am—1) — —s - —s

> st Y Sy cL 5w
acTy ,mta a€T ,mta b~fa 5—0 bETo,mib s=0
d’l"
 dsT
Let p(m) be the Mobius function defined on Ty, that is, u(m) = (—1)" if m is a product of r distinct
primes and p(m) = 0 otherwise. By the equality above and by Mobius inversion formula (cf. Eq.(3.3)

and [Sect.6.4, Hua]), we have

Z fHam ) =c- Zu(mb_l)logND =c-A(m).

(Z(s) = (Nm)™*Z(s))|s=0 = c-log Nm.

acGH om
The last equality comes from the following fact, write m = p$* ---p&,
€1 €s €1 €s
DTAE) =D D AWk =D AR -+ D Alph) =log Nm.
?|m l1=1 ls=1 l1=1 Is=1

We get the two equalities on fT. Notice that C?—;(Z(s) — (Nm)~*Z(s))|s=0 = 0 since € < r. We get the
result on f€ in the same way.

For a prime ideal p of k, let f, be the residue class degree of p in the extension k/Q. Let p be
the rational prime lying down p. Then Np = p/*. The second equality in the theorem on f* implies
> acG, [T (ap™t) = ¢|Jp|fy - logp and thus they are Q-linear independent for all prime ideals p.

We remark that in the case k = Q, the function A(m) on positive integers is the well-known Mangoldt’s
function, see [Sect.6.1, Hua], which is useful in the study of primes. Here we gave another description of
the function using the cyclotomic units. We mention that Ths.3.1 and 3.7 and Prop.3.2 imply that f+
can not be completed to a non-punctured distribution.

We have rank Fot = |G| + s — tT for all m # ¢ by Eq.(3.5) and Th.3.7. Furthermore, by Prop.3.4,
Lem.3.6 and this equality, we get

Theorem 3.8. rank A% = |G| +s—tT and rank A%~ = (|G| —t) = (|GE|—tT). The distributions FO+
and F°~ are universal punctured even and odd distributions with values in torsion free abelian groups,
respectively.

We also have rank A% = |G| + s —t and that F® = FF + F°~ is a universal punctured distribution
up to torsion. By Lemma 1.3 I°¢ and F°¢ for € # 0 are universal e-distributions up to torsion. The
following result is a direct corollary of the theorem.

Corollary 3.9. Let a= )", n;[u;] be an element in the free abelian group generated by (To \ Tp)/ ~. Let
m be the lem of the fractional parts of the u;. Then a€ tor(A%%) if and only if 3, n;f*(bu;) = 0 for all
integral ideals b coprime to m, respectively.

We have conjectured that f+ is a universal punctured even distribution up to torsion [Conj.3.1, BGY].
It requires the equality rank f5 = rank FOt, where f;| is the level m group of f*. As the discussion at
the end of last section, the conjecture is equivalent to the following conjecture on Galois action of some
values of fT.



14 GLOBAL DISTRIBUTIONS AND SPECIAL ZETA VALUES*

Conjecture 3.10. Assume k is a number field. Lete #m e Ty. If > . nifT(a;m™t) =0, where n; € Z
and m 1 a;, then >, n; fT(a;bm™") = 0 for all integral ideals b coprime to m.

This conjecture would imply that the complex numbers f¥(ap~!) for all primes p and all integral
ideals a with p { a are Q-linear independent. In fact, if 3, n;f+(a;p; ') = 0, where n; € Z, p; { a; and p;
are diferent primes, we set m = [[, p;. By the conjecture, we have >_, n; f*(ba;p; ") = 0 for all b coprime

to m, which shows
S Soms o) = Smaget 3 oo

bEGm i beGy,

and thus n; = 0 by Th.3.7.

In some sense, Stark’s conjecture [St] (or its generalization by Rubin [Ru]) predicts the existence of
global units over k encoded in the special values of L-functions of k. Theorem 3.7 implies evidence for
this conjecture. If conjecture 3.10 is right, then the level m group fI of f* hasrank |G| +s—t*. Here s
comes from the part s(Gn)f and |GL| —tT from the part (|G| — s(Gm))f. The latter encodes global
units of Ky,. It is reasonable to conjecture that f; encodes a unit subgroup of Ky, of rank |Gt|—tT. In
the cases k = Q, imaginary quadratic and a function field, we will see this fact later.

Are there some ¢ # 0 such that f°¢ are universal punctured e-distributions up to torsion? The
following result transfers this question to Question 2.11 in last section.

Proposition 3.11. Assume € # 0 and u is o universal e-distribution up to torsion. Then the punctured
reduction u® of u is a universal punctured e-distribution up to torsion.

Proof. Assume that u takes values in the group V. Composing u with the homomorphisms
V — V/tor(V) — (V/tor(V)) ®z Q, (3.6)

we get a distribution @. Let @° be the punctured reduction of @. The ranks of level m groups of u and @
are equal since the second map in (3.6) is injective. The same is true for u° and @°. Thus we can assume
V C C. Let U = St(u) and U® = St(u®). The latter is the punctured reduction of the former. Let 42, and
U? be their respective level m group. By the proof of Lem.2.7 we have U = wn,I%. The universality of
u implies that of U. Thus x(wm) # 0 for all e-characters x of G,. This fact implies rankUQ = rankI9¢
and thus U° is universal up to torsion.

If 3, niu’(am 1) (= 3, niu(a;m~1)) = 0, where n; € Z and m { a;, then >, n;[a;m 1] € tor(As,)
since  is universal up to torsion. Thus Y, nju(a;bm™) = 3. n;u®(a;6m=") = 0 for all b coprime to m
as tor(AS) is an Gy-submodule of AS,. We get ranku®, = rankUQ. This completes the proof.

Finally, we consider the conjecture in the cases when k£ = Q and is imaginary quadratic. In these
cases, fT has an obvious expression. In fact, we have f*(am~!) = log|®,(a)| up to a constant factor,
where ®,(a) = 1 — exp(2rai/m) if am™' = 27, when k = Q, and ®(a) is the Remachandra invariant
of the ideal class a mod m, see [Sects.4-6, Ra] or [Sect.7, GR], when k is imaginary quadratic. Notice
that @, (a) is an algebraic integer in the ray class field Ky,. The following well-known result is a direct
conclusion of theorem 3.7.

Corollary 3.12. Assume a,m are coprime. Then ®n,(a) is a unit in Ky if m has two or more prime
factors and is a p-unit if m is a power of the prime p.

The conjecture in these two cases can be proved easily by the explicit reciprocity law. Recall that
P ()70 = & (ab), where oy € Gt is the Artin symbol of the integral ideal b. If 3. n; f*(a;m™') =0,
where n; € Z,m¢t a;, we have [[, |®m(a;)|™ = 1. The explicit reciprocity law implies that
> nifT(a;bm™") = 0 for all integral ideals b coprime to m. Thus our conjecture could be regarded as a
weak analytic version of the explicit reciprocity law. The subgroup of K generated by & (a) with all
a € T, has rank |G|+ s —tT by Th.3.7 and the unit subgroup in it has rank |G| — ¢* by Lem.3.6. We
showed

Theorem 3.13. Assume k = Q or imaginary quadratic. Then conjecture 8.10 is valid, and thus fT
s o universal punctured even distribution up to torsion. Furthermore, the subgroup of K, generated by
., (a) with a € Ty contains a unit subgroup of Ky of rank |GL| —tT.

When k = Q, this is the Bass’ theorem [Ba] (conjectured by Milnor) in the classical cyclotomic theory.
But Bass did not consider the torsion. The fact that 2-torsion must be considered in Bass’ theorem was
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first recognized by Ennola [En]. The torsion of A% in the rational case has been determined by Schmidt
[Sc]. When k is imaginary quadratic, the result here is new. For the torsion of A%F(= A%) in this case,
we refer the reader to [BO]. We will give the analogue result in the function field case in next section.

4. Division points of rank one Drinfeld modules.

In this last section, we consider the function field case. We show that the level m group of the universal
punctured even distribution also has rank |G| + s — t* by the division points of sign-normalized rank
one Drinfeld modules.

Assume that % is the function field of a projective smooth irreducible curve C over the finite field I,
of q elements. Fix a closed point co € C. Let A be the ring of entire functions on C \ {oo0}. Let ks be
the completion of k£ at co. Fix a sign-function sgn: k% — F , where F is the residue class field of
k at oo. For the definition of sign-functions, we refer the reader to [Def.2.1 in Ch.4, Ge]. An element
x € k is called (totally) positive if sgn (z) = 1. The sign-subgroup J of k is isomorphic to Fi, . All the
concepts about distributions in sections 1-2 can be made for the triple (k, 00,sgn). But in this case, we
only classify the distributions into even and odd parts since k has only one “real” place co. We remark
that we can also fix a finite set {ooy,---,00,} of places of k and fix sign-functions {sgni,--- ,sgn,} at
each place oo;. Let A be the Dedekind subring of k of functions regular outside of all co;. Then all the
concepts before about distributions can be extended to the general case. Now the € should be a vector
in the space [y, x --- x Fy . In this paper we only consider the simple case of a single place.

By Weil’s theorem or the Riemann-Roch theorem, the function f*, which is defined in the same
way as that in the number field case, takes rational values up to the factor logg. Thus the values
Zaer ft(ap™!) for primes p are not Q-independent. Also Conjecture 3.9 is not meaningful in the
function field case. However, we will see that the function f* encodes a (mutiplicative) even distribution
we expect. We first recall the division points of sgn-normalized rank one Drinfeld modules.

Let Ci be the completion of an algebraic closure of kw. A rank 1 Drinfeld A-module p of generic
characteristic is called sgn-normalized, if for all = € A the coefficient p,(x) of the highest term of p, is a
twisting of the sign function sgn, i.e., there exists o € Gal(Fy, /F,) such that p, = o o sgn. For u € Ty,
let £(u) € Cy, be the &-invariant of u, which is characterized by the condition that the rank one A-lattice
&(uw)u corresponds to some sgn-nomalized rank one Drinfeld A-module. By a general result of Yu, we
know that {(u) is transcendence over k [Yu]. Let eu(2) = 2 [[1e,(1 — 2/7) be the exponential function
associated to u. Hayes [Sect.5, Ha2] showed that the set of m-division points of p, where p corresponds
to the lattice £(m)m, is equal to {(m)en(A) and Ay, = &(m)en (1) is a generator. The Galois action is
Ao = £(a"tm)eg-14(1), where (a,m) = e. Hayes [Ha2, Thm 6.1] also showed that, for u € Ty \ T,

£ (u) = deg oo - 1og g Voo (E(u™ ey-1(1)),

where v, is the extension to C}, of the normalized valuation of ko, at oco. Thus the valuations of these
division points at oo satisfy the distribution relations. In fact, the division points themselves satisfy the
relations. Define g+ : Ty \ To — Cj /tor(C}) by gt (u) = £(u=1)e,-1(1). Then gt is a (multiplicative)
punctured even distribution, see [Prop.7.1, BGY].

We next consider the rank of the level m group g} of g*. By the definition, it is generated by
E(a~tm)eg-11m(1) with a € To,m 1 a. The group g is nothing but the group of cyclotomic numbers of
the cyclotomic extension Ky, of k of conductor m defined in [Def.1.1, Yi2]. Let Cy, be the unit subgroup
in g. We have the following exact sequence, see the proof of [Th.A, Yi2],

0— Cn — gt — Z° —0, (4.1)

where s is the number of distinct prime divisors of m. In [Th.A, Yi2] we have showed rank Cy, = |G| —t7.
Thus rank gi; = |G |+s—t+. The sequence (4.1) comes from the fact that )\g(G") are Z-linear independent
(in multiplicative) for all primes p. This is a multiplicative version of Th.3.7.

Let f~ be the function defined in section 2 by taking e = 1. We know that it is a punctured odd
distribution. Let F°~ be the corresponding Stickelberger distribution with values in Q. The level m
group FO~ is the Stickelberger ideal defined in [Yi3] and has rank (|G| —t) — (|G| — t) by Lem.3.6.
We have by Prop.3.4
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Theorem 4.1. rankA% = |G| +s—tT  and rankA% = (|Gn| —t) — (|G| —t7).

We mention that g1 satisfies the multiplicative version of the conjecture 3.9. In fact, if
[1; 9" (aim=1)™ = 1, the explicit reciprocity law implies [], g+ (a;bm™")" = 1 for any integral ideal b
coprime to m.

Let FO = gt @ F°~. Let F2 be the level m group. It is a free abelian group of rank |G| + s —t. We
claim that F° is universal with values in abelian groups on which |G| is invertible. Let g : To\To — V be
a punctured distribution. Assume |G,| is invertible on V. By Prop. 3.2 the condition ) 0eG, glap™H) =0
for all primes p implies the condition 3 o, c.(a/aa) g(xa=tA) = 0 for all totally positive a € A\ U™.
Thus the exact sequence (3.4) is also valid if we replace Wy, by Rn. Since there exist |G| elements
which generate Ay, [Prop. 4.1, Yil], gm requires at most |G| + s — t generators and thus is a quotient
of FQ. This shows the claim. Thus we have

Proposition 4.2. AY has rank |G| + s —t. If prime p does not divide |G.|, there is no p-torsion in
A9

In the theory of global distributions we developed in this paper, a basic question unsolved is how
to determine the torsion of various kinds of universal level groups of a global field k. The results will
describe the arithmetic, especially the unit groups, of the ray class fields of k. Up to now, we have
truly satisfactory answer on this question only in the case k = Q, see [Ya], [Sin], [Ku2], [An], [Sc] and
[Th.12.18, Wa], and we have partial results in the two cases when k is imaginary quadratic and when k
is a fuction field, see [BO] and [An] respectively. For a general number field, the author thinks that it is
a hard question.

Acknowledgments: I would like to express my hearty thanks to Professor E.-U. Gekeler for his
kind hospitality in the university of the Saarland where the paper was written, and for his interest on
the subject in the paper.
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