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Abstract

Let A = T,[T] be the polynomial ring in the variable T and
K = F,(T) the rational function field over F, (the finite field with
¢ elements), and let K, be the completion of K at the place co := %
Furthermore let C' be the completion of a fixed algebraic closure of
K.
We aim to construct extensions K C K’ C C with many rational
places relative to the genus g(K') of K'.
As a first step we consider the cyclotomic fields K (n)/K with n € A,
which are generated analogously to the classical cyclotomic fields over
@Q. Then we consider certain decomposition fields and their inter-
sections. Here we know a lower bound for the number of rational
places. We get explicit formulas to calculate the genus, but they de-
pend on the relative position of some subgroups of the muliplicative
group (A/(n))* of the ring A/(n). So the concrete calculation of ex-
amples must be done by computer. With a special program we made
a systematical search for ¢ = 2 and found for fixed genus three new
lower bounds.

Key words: curves with many rational points, abelian extensions of function
fields, cyclotomic function fields, function fields with many rational places
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1 Cyclotomic Extensions of K

First we introduce some notations which are used in the whole article.

Definition 1.1 Let n € A be a monic polynomial of positive degree. Then
there exists a unique factorisation of n in trreducible polynomials, namely:

5
— | | v
n = py 9
v=1

with s,ry, in N and p, € A monic, irreducible and pairwise different polyno-
mials of degree > 1. We write for short

du = deg(p,,) 5 Qv = qd;; s
ny, = plro, my = and p(n) = [(A/(n))*| .

The extensions K(n) we are looking for are just the splitting fields of the
polynomials p,, in C' which are defined by the following conditions:

L pr(X)=TX + X°,

2. pTz(X) = pT(pTi—l (X)),

3. prg(X) = ps(X) 4 pg(X) forall f, g€, F,[T]
4. per(X) =c-pr(X) forall c € F,.

In other words, K(n) is obtained from K by adjoing the n-torsion of the
Carlitz-module p (cf. [1, chapter 3]).

Theorem 1.2 1. The extension K(n)/K is galois and abelian with Galois
group (A/(n))*.

2. Let n = p" be a primary polynomial, then the extension K(n)/K is
totally ramified in p = (p) and unramified in all other finite places

q7p.
3. Let K (n) be the fized field of the embedding F; — (A/(n))".
K(n)
L

(A/(n))" 4 Ki(n)

K



Then the place oo is totally split in Ky (n) and any place of K (n) over
oo is totally ramified in the extension K(n)/Ky(n).

4. Let n be the product of s primary factors in A. Then K(n) is the
compositum of the fields K(pi»), v=1,...,s, and all these K(p}’) are
linearly disjoint.

5. Let O(n) be the integral closure of A in K(n) and X a primitive root of
pn- Then

O(n) = A[)] .
Proof: In [2] as well as in [3].
Corollary 1.3 The field F, is algebraically closed in K(n).

Remark 1.4 The theorem shows that the splitting fields of p, have many
of the properties of the cyclotomic fields over Q. Therefore they are called
cyclotomic extensions of the rational function field. The field Ky(n) is the
analogue of the maximal real extension of Q which is contained in the cyclo-
tomic estension. The integral closure O(n) could be compared with the ring
of integers Z[(n] for some primitive m-th root of unity (.

2 The Genus of K(n)

Our aim is now to find a closed formula for the genus g(K(n)). Such a
formula has been known to several people since about the appearance of
[2]. Surprisingly, that formula for the case of a general n has never been
published. For special cases, see [4].

First we consider the field K(p") and then we can derive the genus of K(n)
via induction.

We need some notations:

Definition 2.1 For a field extension L of K let S(L) be the set of places.
Let O be the integral closure of A in L. Then for any q € S(L) we write O(g)
for the localization of O at q. With D(L/K) we denote the different of L/ K.
Let p, :=(p,) forallv=1,... s and for 1l <a <r,

G(ny)* :={b€ (A/(ny))"|b=1mod p;} .

Furthermore we fix an algebraic closure By of B, and denote the constant field
extension by K'(n) := F, K(n).



Later we consider some subeztension K.(n) of K(n)/K for which we will
write K/ (n) := F, K.(n).
Let K C L C K(n). For any place q € S(L) and S(L') > ¢'|q with L' := F, L,

we write

gi(d') := [(G(K"(n)/L")i(a")] = [(G(K(n)/L))i(q)| =: gi(a)
for the cardinality of the i-th ramification group in the extension K'(n)/L'.

Since F, is algebraically closed in K(n) neither the genus g(K(n)) nor the
ramification index ep(K(n)/K) change by a constant field extension. The
cardinalities of the higher ramification groups are invariant too. So we get:

[K'(n): K'] = [K(n):K]=¢(n) and
ep(K'(n)/K') = ep(K(n)/K) as well as  g(K'(n)) = g¢(K(n)),
where p’ € S(K') with p'|p.

Let p € A be a prime polynomial of degree d > 0 and r > 0 an integer.
The genus of the field K(p") can be calculated by the Riemann-Hurwitz—
formula

29(K(y)) =2 = [K(5) : K)(29(K) —2) + deg D(K (p")/ ).

The degree of the different is the sum of degrees of the local differents. For
calculating them we can use the cardinalities of the ramification groups (cf.
[5, chap. 4, §2]).

We know from 1.2 that oo is tamely ramified, so the higher ramification
groups are trivial and the local different D(K (p")n/K) at a place Q with
oo has degree ¢ — 2.

Another fact from theorem 1.2 is that p = (p) is the only finite ramified
place. Since p 1s totally ramified, the ramification index is

eo(K(p")/K) = [(A/p)"| = o(p) = ¢""V(¢" - 1) .

For PB|p let K, (resp. K(p")p) the completion of K (resp. K(p")) with
respect to p (resp. B). We write G := G(K(p")/K) for the Galois group of
the extension K (p")/K.

Then we can the Galois group G of the extension K(p")/K identify with the
Galois group G(K (p")q/Ky), which is equal to the decomposition and inertia
group.

For all i € Z and ¢« > —1 the i-th ramification group of P in K(p")p/ K, is

Gi:={o0 € G|vp(o(a) —a)>i+1forall a € O} .



Proposition 2.2 The ramification groups of K(p")p/K, are

Go = G(K(p)p/K) ,
G, = G@p)° forqgde<i<g®—1andl <a<r-—1,
G = GO ={1}  forg"V <i

Proof: It is clear that Go = Tp(K(p")p/Kp) = G(K(p")p/ Ky).
The map

(A/(p") — GE(p")p/Kp)
b > op with  o5(Xo) = pp(Ao)

is well-defined and bijective. For b € (A/(p"))* the equations hold:

(o) = bAo+ ()Nl
Pb(/\o) — X = Pb—l()‘0> >
vp(ps(Ao) —Xo) = vp(pp-1(Xo)) -

Let b =1 mod p® and b # 1 mod p**' for some 0 < o < r — 1, then pp_1(Ao)
is a primitive root of p,-—.. For we have two Eisenstein polynomials

fr(X) = AX)): H (X —X) and

ppr_l (‘X PY= Tp
kprirﬁ.TPA
ppr=a(X)
fra(X) 1= = I x-».
lopr_{!_1 ( ) e 7'_(1’0
kplﬁm.TP.

which are the minimal polynomials for the extension K(p") and K(p"™*),
respectively.

Since p®|(b— 1) and p**' J (b —
have b — 1 = b'p® mod p" and ged(d', p) = 1. We conclude that

1) t
d(
prr==(pp-1(Xo)) = T“(/\0>—Pb' #(do) = ppr(pp(do)) = 0 and
prr=ot(Po-1(X0)) = pypr- 1(%)

there exists ¥ € (A/(p"))*, for which we

because pyp(Ag) is a primitive root of ppr.
Furthermore, fyr—a(pp—1(Ao)) = 0 and pp_1(Ao) is a primitive root of pyr-a.
Keeping in mind that the extension is totally ramified we get

vp(pp-1(Xo)) = [K(p ) : K(p"™")q] - va(pp-1(Mo)) = 4™ .

qda 1




for a prime ideal g|p in the integral closure of A in K(p"~*).

Therefore o5 € G; for all i < ¢ — 1 and o5 & G; for i > ¢%*. O
It is easily seen that for all 1 < a < r the cardinality of the higher ramifica-
tion groups is given by |G(p")*| = ¢?=).

Remark 2.3 The filtration {G(p")*} corresponds to the filtration in upper
numbering via the Herbrand p-function (cf. [5]).

We write G(n) for (A/(n))* and identify the Galois group G(K(n)/K) with
G(n) under the given isomorphism.

Now we use the above results to calculate the genus via the Riemann-
Hurwitz—formula and get

Theorem 2.4 1. The genus of the field K(p") is

; 1 qg—2 rgd —r—1
Kp)=1+=-pp")| -2 d .
9(K(p")) +290(p)< T T A )

2. More generally, for any monic polynomial n € A we get

. 1 . q—2 u ruqy, — Ty — 1
g(Ix(n)) =14+ ) ap(n) (—2 + =— 4+ Z;dl,—> .

q_l QV_l

Proof: The first part is shown. The second part of the theorem can be
proved by induction under using some well-known facts:

1. The Riemann-Hurwitz—formula gives a recursion:
29(K(n)) —2=[K(n): K(m,)](29(K(m,)) —2) + deg D(K (n)/K(m,)) .

2. K(n,) and K(m,) are linearly disjoint over K and p,, is the only finite
ramified place in K (n,)/K, it is unramified in K(rn,)/K and totally
split in K'(m,)/ K’ of degree d, - ¢(m,) (cf. 1.2).

3. For s > 2 the ramification indices of co in K (n)/K and K(m,)/K are
equal.

4. Let B € S(K(n)) with Blp,, and let H;(P) be the i-th ramification
group of P in K(n)/K(m,). Then we have

H;(P) = G(K(n)/K(m,)) N Gi(P) = Gi(P) ,
because of G(K(n)/K(m,)) = G(K(n,)/K) = G(n,).

6



5. So for s > 2 we have

29(K () — 2 = ¢(n,) (29(K (m,) = 2) + dusplm,) Y (p) — 1)

3 The Decomposition Field K, (n)

Now we calculate the genus of the decomposition field of the place oo. We do
this from the top and consider the extension K(n)/K,(n). Since [F;| = ¢—1,
the ramification is tame for all places and all higher ramification groups are
trivial. So we have only to calculate the inertia group. For a (fixed) finite
place B of K(n) with PB|p, for any v = 1,... s the inertia group is

T (n)/ K (n) = T(K () [ K) N G ()] Ko ()
Because of Tig(K (n)/K) = G(n,) we get
Tp(K(n)/K)={bec G(n)|b=1modm,}

and therefore

Tm(K(n)/Ix’)mG(K(n)/m(n))g{ {IEE}: for s =1

All (‘0( ) different places lying over oo have the ramification index ¢ — 1. This
proves

Theorem 3.1 The genus of K (n) is

) = 14— (oK) =1 - 5 (w0

fors =1 and
o) = 1+ (oK) 1= 322} fors> 1.




4 Decomposition Fields and Their Intersec-
tions

Let the monic polynomial n € A now be relatively prime to T and T — 1.
So we can consider the decomposition field of (T') and (T' — 1), respectively,
in K(n). This is no restriction, since for any two rational places (a) and (b)
in K there exists a linear transformation which maps these places to (T') and
(T — 1), respectively, and lets oo invariant.

We define Kr(n) and Kp_q(n) as the fixed field of the decomposition groups
Zir\(K(n)/K) and Zip_y(K(n)/K), respectively. We further put

Kri(n) = Kr(n)NKi(n),
Krr_i(n) := Kr(n)N Kr_q(n),
Krproi4(n) = Kppoi(n) N EKy(n) .

Now we will calculate the genus for each of these fields.

4.1 The Decomposition Group of a Finite Place

To do that we need an explicit description of the decomposition group of a
place a € S(K) of degree a. It is well-known that this group is cyclic and
the generator is the Frobenius automorphism, which is described by

o(z) = 29 mod A forallzec O .

Here 2 is a prime divisor of a in the integral closure O of A in K(n). From
[2, cor. 2.5.] follows

Proposition 4.1 Let a € A be a monic, irreducible polynomial prime to n.
The Frobenius automorphism of (a) is oz.

Definition 4.2 Let a € G(n). Then (a)gm) denotes the subgroup of G(n)
generated by a.

In view of our identifications we have for the decomposition group of the
places (T') and (T — 1):
Z(T)(IX’(TL)/I{) = <UT> = <T >G(n)
and Z(T_l)(.f&"(n)/K) = <0'ﬁ> = <T —1 >G(n) .

Now we can describe the Galois groups of the extensions.

We have
G(E(n)/Krs(n)) = (T)awF;
G(K(n)/Krr-1(n)) = (T,.T —1)am) -
G )/ Krgas(n) = (T.T = 1)oumF;



FyK( n) n) R K(n

/ /
K4 (n) (T)(n (T)a (T-1)G(n) K4(n) E

/IXT n IXT n) I\T 1 (T, T-1 )G(n)
A“ " \ /
Kp 1 (n) ' /BT —1(n)

IXTT 1 +(n)

K K K

4.2 The Genus of the Subextensions

Definition 4.3 For o = 1,...,r, we write H(n,)* for the embedding of
G(ny)* in G(n) and F, for F; regarded as a subgroup of G(n).

With this notation we have a description of the ramification groups for the

different extensions K(n)/L, where L is one of the fields Kp(n), Kz 4(n),
Krr_1(n) and Krp_q 4+(n). For any v € {1,... s} let PB|p, be a place of L
and ¢2~!' <7 < ¢% — 1, then we have

(G(K(n)/Kr(n)):
(G(K(n)/Kr4(n));
(G(K(n)/Krpr-1(n));
(G(K(n)/Krr-1,4(n));

Now it follows that the sequences

1 — F.N H(ny,)" — Fy — Fonpg

1 = (TiemNHm)* = (Tiewy — (T )cemug)
1 = (ThemFanNH(m)* = (TemFa = (T )cmps) Frupe
1 = (T, T-1)gm NH(n)* = (T.T=1)cm — (T.T—1)c(m.pp)

are exact. The maps between the groups are the usual injections and projec-
tions.

So 1t 1s possible to calculate the cardinality of a higher ramification group

as the quotient of the cardinalities of two known groups. For a concrete
example 1t 1s more or less necessary to build the different groups explicitly

9
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and count the elements. So we get explicit formulas which depend on the
relative position of (T >G(n) and (T — 1>G(n), and are therefore difficult to
evaluate.

We give two examples.

Let f € A be a monic polynomial prime to T and T'— 1. Then we define

erta(f)=KkT)ai N(T—L)apl, erra(f)=KT,T—-1)a),
éra+(f):=KT, T 1> a(n N Fyl e +(f):=KT, T—1)ai) Fyl ,

and for s =1 we put €,(m,) =1 and e.(m,) := 1.

Formula 4.4 The field Ky r_1(n) has genus

Q(I{T,T—l(n)) = 1+ % (g(K(n)) . % |:90(n>

err-1\n

+ Z w(my,)d, - au(I",T,T—l(n>>]> ’

v=1

ry,—1
err-1(n) -1 o1 err-1(n)
K] = o1ty (g - 1) Y ge Tt
au( T — 1(n)) e r—1(my) q (¢ );q er -1 (mupl)
Formula 4.5 The genus of Ky p_1 4(n) is
. 1 . 1 [p(n)
Ky n = 1+7< K(n —1——[ -2
9(Krr-14(n)) p— g(K(n)) 5 q_l(q )

+Z@mu v CLVITT 1+( ))]) )

(& - (n) < lq € ( )
T,T-1,+ 7-_1 1 v T.T-1,+
7 ’ : Z

K — A =nNt) .
B ) = o o) B Y

a=1

Remark 4.6 It is clear that this method can also be used to calculate the
ramification groups of the intersection of more than three decomposition fields.

5 Number of Rational Places

In the subextensions from the top we get lower bounds for the number of

rational places.
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Let p € S(K) be a rational place. In its decomposition field K in K(n)/K,
every place over p is again rational. So this field has degree of I;’/K many
rational places. Therefore the field L defined as above has — depending on
the situation — at least one, two or three times [L : K| many rational places.
For ¢ = 2 we made explicit calculations to the fields K, (n) with deg (n) < 15.
Here the place oo is totally split in A'(rn) and in any subextension because
the inertia group is trivial. Furthermore Fy(T') has only three rational places
and so we got through our systematic search the exact number of rational
places in the intersection and not only a lower bound. Comparing our results
with the tables published in [8] and [7], this yields three new lower bounds
for the number of rational places for fields with fixed genus.

Example 5.1 For the polynomial n = (T4 + T3+ 1)(T4 4+ T34+T24+T' 4+ 1)
with @(n) = 225 and er(n) = 15 the field Ky(n) has the genus 38 and 30
rational points. A theoretical upper bound is 33 (cf. [6]).

Example 5.2 The field Krp_i(n) withn = (T° + T* + 1)*(T* 4+ T + 1)?
where @(n) = 5376 and err-1(n) = 336, has the genus 66 and 48 rational
places. Here we have 50 as an upper bound.

Example 5.3 Letn = (T°+T* + 1)*(T*+ T+ 1) (T" + T+ T+ T"+1)
then the field K'r(n) has the genus 81 and 56 rational places. For this genus
59 s an upper bound for the number of rational places.

The following table gives our best results. In the first column the genus is
written, in the second an upper bound which is taken from [8]. The third
column gives the best results which are cited in the tables of [8] and [7]. (In
the extensive bibliographies of these two papers, the reader will find many
related articles.) The last column contains our best results for each of these
genera.

Acknowledgements. This paper comprises the results of my Diplomarbeit,

and I would like to thank my teacher, Prof. Dr. E.-U. Gekeler, for his
support and Bodo Wack for writing the programs for the systematic search.
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g et lit. | here
bound
2 6 6 6
5 9 9 8
6 10 10| 9
8 11 11 9
9 12 12 | 12
11 14 14 | 12
20 21 19 | 18
21 21 21 21
22 22 21 | 18
26 25 24 | 24
28 26 24 | 24
29 27 25 | 24
31 28 27 | 24
32 29 26 | 24
34 30 27 | 27
37 32 28 | 28
38 33 28 | 30
41 35 32 | 32
42 35 30 | 30
48 39 34| 32
51 41 36 | 36
53 42 40 | 36
54 43 42 | 42
55 43 36 | 36
62 48 44 | 42

12

upper

g lit. | here
bound
65 50 |48 | 48
66 50 | 42| 48
67 51 44 | 42
68 51 45 | 42
69 52 |49 | 48
70 53 | 46 | 45
75 56 | 48 | 48
76 56 | 50 | 45
81 59 | 48| 56
105 | 73 64
08| 75 63
128 | 87 72
135 | 91 84
149 | 99 96
154 | 101 90
161 | 105 96
167 | 109 96
172 | 112 96
173 | 112 96
185 | 119 96
186 | 119 96
238 | 148 135
244 | 151 126
357 | 212 192
521 | 208 240
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