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Abstract

This article deals with the solution of integral equations using col-
location methods with almost linear complexity. This is done by gen-
erating a blockwise low-rank approximation to the system matrix. In
contrast to fast multipole and panel clustering the proposed algorithm
is based on only few entries from the original matrix. In this article
the results concerning matrix approximation from [1] are generalized
to collocation matrices and improved. Furthermore, we present a new
algorithm for matrix partitioning that dramatically reduces the num-
ber of blocks generated.

AMS Subject Classification: 41A63, 41A80, 65D05, 65D15, 65F05, 65F30
Keywords: integral equations, hierarchical matrices, low-rank approximation,
fast solvers

1 Introduction

This article is concerned with the efficient solution of integral equations

/D w(e,y) u(e) dis = f(y), yeD (1)

with given right hand side f. The domain of integration D is dim-dimensional,
i.e. there are two constants c¢;,co > 0 so that for z € D

cr®™ < u(DN K, (2)) < cor®™™  for all r > 0. (2)

Depending on dim the functional x denotes the surface or the volume measure
and K, (z) is the Euclidian ball with center z and radius 7.

The kernel x : R x R — R in (1) is assumed to be asymptotically smooth,
ie. K(x,-) € C®°(R¢\ {z}) for all z € R? and for all multiindices o € N it
holds that

1Dyr(z,y)l < ¢plz =y, p=lal,

where ¢, depends only on p. As usual we denote by Dy the partial derivative

o o \* 0 \*

In order to solve equation (1) the domain of integration D is divided into
smaller, possibly overlapping pieces X;, i € I := {1,..., N}, which in turn



are assembled from sets 7;, i.e. for each X; there is an index set J;, #J; = 1
so that

X, = U m; and diam X; < vy maxdiam 7;. (3)

i€d; Jegi

Moreover, each m € P is in at most v, of the sets X;, 7 € I.
Besides the Galerkin method the collocation method is often used to solve (1)
numerically. The solution u is approximated from a finite dimensional ansatz
space, i.e. the approximation uy is sought of the form u;, = Zjvzl zjp;. The
set X; may be looked at as the support of the ansatz function ¢;. In the case
of collocation methods we are led to the following system of linear equations

Azx = b’ Qi5 :/ R(xayi) on(x) diL‘, b’t = f(yl)’ Z’] € I’ (4)
D

where y; € X; are the so called collocation points. Generally speaking the
matrix entry a;; arises from the interaction of the sets X; and Xj:

Qij = (‘Cjﬁ)(yi)’ i’j € I’

where for each of the operators £; there is a continuous linear functional
l; € B'(Xj), the dual to the space of bounded functions on Xj, such that

(Lik)(y) = (ky,1;) for all y € R? \ X;. Here the function x, is defined by
ky(z) = k(z,y), € D. This includes the operators investigated in [1]

(Lik)(y) = K(zj,v),

where z; € X;, j € I.

A naive strategy for the solution of (4) would need at least O(N?) opera-
tions and memory. Methods such as fast multipole [3, 7] and panel clustering
[6] provide an approximation to the solution vector z in almost linear com-
plexity. These methods are based on explicitly given kernel approximations
by degenerate kernels, i.e. a finite sum of separable functions, which may be
seen as a blockwise low-rank approximation of the system matrix. The block-
wise approximant permits a fast matrix-vector multiplication, which can be
exploited in iterative solvers, and can be stored efficiently. In contrast to
the methods mentioned we will generate the low-rank approximant from the
matrix itself using only few entries and without using any explicit a priori
known degenerate kernel approximation.

In the case of boundary integral equations for 7; so called panels are often
used. For volume integrals 7; are usually tetrahedra. We assume this set
P = {m, i =1,...,m} to be regular and quasi-uniform, i.e. there is a
constant ¢, so that

cupt(m) > h*™  for all m € P, (5)



where h = max,cp diam 7. This guarantees in particular that we are able to
find ¢35 > 0 such that diam X; < cydiam X, ¢, 5 € 1.

2 Matrix Partitioning

The aim of this section is to construct a partitioning of the coefficient matrix.
We will divide the index set I x I into pairwise distinct subsets ¢] x 3,
7 =1,...,n so that
IxI= |J #x4
Jj=1,...,n

and for each pair (¢1,%,) one of the following conditions holds:
(Z) min{tl, tg} =1
(’ll) diam th S n dist (th y XtZ)’

where for t C I we set X; = J,, Xi. The parameter n is the so called relative
distance. In contrast to the pairs (1, 2) generated in [1, 5] we admit pairs
that cannot be represented by a single block. Thus, these pairs are referred
to as generalized blocks.

If a pair (t1, to) fulfills condition () then each element from the corresponding
block will be generated and stored. For all other pairs condition (i) is
valid and in section 3 we will investigate an algorithm for the approximation
by matrices of low rank. Both storage and multiplication of the resulting
matrix with a vector can be done blockwise, taking advantage of the efficient
representation of low-rank matrices.

Instead of going through all possible partitionings the construction will be
based on the so called cluster tree, which is frequently used in this field of
research, cf. [6, 5], and contains a hierarchy of partitionings of I. Given a
mapping S which associates to an index set ¢ C I a set of pairwise distinct
subsets ¢;, j = 1,...,s;, so that

t= |J t, 2<s<q

J=1,...,8¢

and S(t) = @ <= #t = 1 the cluster tree is constructed by recursively
applying S to the index set I. Here ¢ € N denotes the maximum degree
of nodes in the cluster tree. If we assume the ratios #t/#t; to be bounded
by R € R from below, the maximum depth of the cluster tree is of order
L =logp N. Furthermore, we assume that S(¢) can be evaluated in O(#t)
operations. An example for S can be found in [2].



The complexity of an algorithm generating a partition of I x I with the
properties described above is mainly determined by the cost of evaluating

ist(X,Y)= inf |z—
dist(X, V) = _inf  |o—yl,

which depend on the product of the complexities of X and Y. Thus instead
of calculating the far field F'(t) = {i € I : diam X; < ndist(X;, X;)} of t C I
we would do better to determine the following set

= . . n
= : <
Fit)={iel:diam X; < T+

. dist(X;, z) },

where 2, € R? denotes some point in X;. Consequently, the near field is
replaced by N(t) = I'\ F(t). It can easily be seen that F(t) C F(t), and
the calculation of F (t1) Nty can be performed with at most cy(#t; + #t2)
operations.

Algorithm 2.1. Partitioning(ti,t2)

If #t; =1 then add (t1,t2) to the list of blocks.

else begin

Subdivide t, into S(t1) = {t},...,t]"}.

for j=1,...,s; begin

ift,NF#) #2

The block (t],t, N F(t])) fulfills condition (ii). Add it to the list of blocks.
call Partitioning(t], to \ F(t])).

end

end

A partitioning with the desired properties is obtained by applying Partition-
ingto (I,1).
2.1 Computational complexity

In this subsection we will estimate the computational cost of the algorithm
above. Quasi-uniformity of P immediately leads to

Lemma 2.2. There is a constant cs such that #t/cs < u(X;) h=%™ < cs#t
forallt C I.

Proof. Using (2) and (3) we see that

: di di
p(Xe) <) ulm) <n ZI]%?}%M(WJ') < er#Ftmaxdiam™ 1 = gt AT

i€t jeT; ict



On the other hand
van(Xp) > ) p(X;)
ict

Since P is quasi-uniform p(X;) > vy minje g, p(m;) > vih%™ /c,,. O
Lemma 2.3. Let t C I. Then #N(t) < c(n)#t, c(n) = &1 + 1/n)%™ holds.
Proof. From (5) follows diam X; < czdiam X;, @ € I. Since dist(Xj;, 2;) <
(14+1/n)diam X, for i € N(t) the ball K,(z;) with r = (c3+1+1/n) diam X,
covers X O X;. Now

(X ) < cr®™ = ca(cs + 14 1/n)*"diam™™ X,
Using (2) and diam X; < r we obtain

C )
(X)) < C—T(C?, +14+1/n)" " u(Xy).

Lemma 2.2 leads to the desired estimate. OJ

Theorem 2.4. The number of operations and the amount of storage to per-
form the recursion Partitioning(I, 1) is of order n~%™N logyr N. The number
of blocks generated is of order N.

Proof. The recursion Partitioning(I,I) descending the cluster tree generates
at most two blocks in each node. The number of nodes is limited by ¢N, so
the number of generated blocks is of order V.
Let N;, denote the number of operations needed to carry out a part Partitioning(ti, t2)
of the whole recursion Partitioning(I, I). We will show that Ny, < &(n)#t1 logg #t1,
¢(n) = cs(1 + qe(n)). According to the remark preceding Algorithm 2.1 for
the number of operations it holds that

Stq Sty

LS ca(#t + #t) + Ny < eattti(1+ge(n +ZNH

j=1
For the last estimate we used Lemma 2.3 because Partztzomng is only applied
to pairs (¢1,t2) for which ty C N(tl) is valid. Thus

Sty

Ny, < z é(n)#t{ logg #t{ + c(n)#t
=1

. #_t< . #_)
_cn)#tljz:;#h logp #t1 — logp y n)#t:

) t{ #Tfl
= &(n)##t1logg #t1 + (n)#t: ( Z J>
— 1 #t

< €(n)#t logg #t1,



because we have assumed that #t; > R#t{. 0

In Section 3 it will be shown that it is possible to generate a rank-k approx-
imant of a block (t1,%s) in O(k*(#t1 + #ts)) operations. Thus for constant
k the numerical effort for approximating, storing and multiplying a single
block with a vector is of the same order as its generation. Therefore, for the
whole matrix the cost for all these operations is O(n~%™N logy N).

3 Low-rank approximation

In the preceding section we explained how to partition a matrix into blocks
(t1,t2) such that for the corresponding domains D; and D,

diam Dy < ndist(Dy, Dy) (6)

holds or the block degenerates to a vector. In this section we may therefore
concentrate on a single block A satisfying (6).
The aim of this section is to decompose the functions L;x in the following
way:

(Li%)(y) = ([Llkr) ()" Gr (L36)([Ce) + Rr(y), v € Do. (7)

Here G is a k x k matrix and Rj the approximation error. For the sake of
simplicity we use the abbreviations

f(gh) (‘cjl K’) (y)
fcle) =1 and  ([L]ek)(y) = :
f(Ge) (£56) ()

with points (; € Dy, i = 1,...,m,. Provided {G,,...,G.} € {y1, - Ym}
the decomposition (7) constitutes the analytic form of a pseudo skeleton
decomposition, cf. [4]. In contrast with multipole [3, 7] and panel clustering
[6] methods we will not approximate the functions £;x by using appropriate
approximations to the kernel k. Instead we will employ a small number of
functions chosen from Lk, ..., L,k to approximate L;k.

3.1 Incomplete low-rank approximation

For the sake of simplicity we define for i =1,...,m+m,
C’ia 1 S { S my
2 =
’ Yiemy, Mp <t < my+m

and extend A to A by setting a;; = (Ljk)(z),i=1,...,m+my, j=1,...,n.

6



Algorithm 3.1.

Let ’io =0.

Fork=1,2,...

let 4y, be the smallest integer so that i1 < i < my, and

k-1

(D) = (LK) (Cir) Z j=1,...,n

=1

18 non-zero.

If no such i can be found then the algorithm terminates.
else begin

choose j, = argmax;_; .[(Tx);| and set v, = (f)k)j_kl.

let vy = v U and

Bl

-1

(tg)i = (Ljr)(zi) = ) _(W)i(w)j, i=1,...,mp+m.

end

It is worth remarking that the algorithm differs for different types of matrices
only with respect to the initial matrix. Define Sk = Zl 1 ulvl and Rk =
A — 8. Tt is easy to see that (iy); = (Rk)m, i = 1,...,m+ m, and
(); = (Rk)ikj, j =1,...,n. The rank of S, is bounded by k. For the

calculation of Sy, we need at most k(m 4 m, 4+ n) units of memory and

ikn + k(m, + m) evaluations of Lk,
2kign + k*(m, +m) additions and multiplications,
kn divisions.

Under the assumption that the evaluation of (£;x)(y) can be done in O(1)
operations the cost for the generation of the approximant Sp sum up to
O(i3(m + my, + n)) operations.

We have already pointed out in [1] that each step of Algorithm 3.1 may be
understood as the generation of an approximant using the column-pivoted
LU decomposition. To see this let us assume that ¢, = 5, =1, =1,... k.
In this case we have

Ry, = (I — yRy_rexer) Ry = Ly Ry_1.



The (m, +m) x (m, +m) matrix Ly

-1 -

0
_(ng—l)k+1,k 1
(Rk—1)k.k

_ Bi)mtmyp e 1
L (Re—1)k,k g

differs from a Gaussian matriz only in position (k, k).

In the rest of this article the entries of Rk will be estimated. To this end
we will relate Rk with functions r; constructed by the following rule. Let
ro(z,y) = k(z,y), so(x,y) =0 and for £k =1,2,...

(2, y) = rho1(2,y) — W (Ljprr—1) (W) rh—1(, Gy.), (8a)
sk(z,y) = sk—1(2,y) + e (Ljpre—1) (Y) Te-1(2, CGip)- (8b)

The following relation between Rk and 7 is obvious.

Lemma 3.2. For1 < i <m+m, and 1 < j < n it holds that (]A%k)” =
(Ljr—1)(2:)-

The number of zeros of L;r; increases for increasing k.

Lemma 3.3. Fork >0 and 1 <[ <k it holds that
(Liri)(y) =0 for ally € R\ Dy.

The preceding lemma can be prooven by inductively applying (8).
We define the matrix A, € RF¥F as

. (‘le K) (Cll) ce (‘Cjkl{) (C’Ll)
Ay = : : : ©)
(L5i6) (i) - (L5k) (i)

Furthermore, let Ay (1, j) € R¥** be the matrix resulting from A by replacing
the Ith column with the vector (L£;x)([(]x) and My(l,y) € R¥** the matrix
that forms after replacing the Ith row with the vector ([£]xx)(y). Especially,
Ak = Ak(l,]l) = Mk(l, Czl) holds.

For the determinants of the matrices A,(l, j) it is possible to obtain a recur-
rence relation.



Lemma 3.4. For 1 <[ < k we have
det Ap(1, ) = 7; " det Ap_1 (1, §) — (Ls7r-1) (G, ) det Ax_1 (1, jix),

det A;(1,7) = (£;5)(¢,) and det Ag(k, ) = (L;75-1)(C;, ) det Ay_y for k > 1.
Especially,
k
det Ak = H")/l_l.
=1

The proof uses the same ideas as the proof for the analogous assertion in [1]
and is therefore omitted.

Not only does the last lemma guarantee that Ay is non-singular, we also
notice that the larger the product of the values v, ! the larger the determinant
of flk.

We are now in a position to show that the decomposition of x into s, and 7y,
is of type (7).

Lemma 3.5. The sequences {si}r and {ri}r generated in (8) satisfy

sk(@,y) +1e(z,y) = K(7,9),

where for k > 1 X
se(@,y) = ([Llew) (y)" Ay 6 (z, [Ce).

Proof. The lemma is obviously true for £ = 1. We continue by induction.
From the definition of r; and s; we can see that

Sk(xa y) + Tk(x,y) = Skfl(xay) + kal(xa y)a

which according to the assumption coincides with x(z,y).
For the sake of simplicity we set

ar = A" (L) (Cr) and by = 7T, (IC)o1m)(Gy)-
Since

sk(2,y) = sk-1(2,y) + v (Ljpre-1) (Y) Tr—1(2, Giy,)

-] e e [

and

. [A-1 T _
A, [Ak—l +’Y/cTakbk %ak] _ 1
— &by, Yk



together with s;_; also s; has the form

sk(@,y) = ([L]er) () " A (i, [Cle)-

U
Using Cramer’s rule we see that
A det M, (1,
(b)) 4;), = SRR
where My(l,y) is the matrix defined from (9). Thus
k
(y5) = 32 W (1 ). (10

The representation (10) shows that L£;s; is the uniquely defined interpolant
of £;x in the nodes (;, in the linear hull of the functions Lk, [ = 1,... k.
Let ¢i,...,¢; be a basis of the function space ®, z; € R and f; € R,
1 =1,..., k. Define

(P1(71) .. dr(x1)]

M(z) = qbl'(:v) (;Sk.(:v) .

| &1 (‘xk) P (.l“k)_

Furthermore, let M = M;(z;) € R¥**. Tt is obvious that provided M is
non-singular the Lagrange functions

det Ml(.I)
xi(@) = det M

are in ® and x;(z;) = 03, 1 < 4,1 <k, where 0 denotes Kronecker’s symbol.
The function

Lf(a:) = fixi(z) + -+ fixu(z) € @

solves the interpolation problem
Lix))=fi, 1<i<k (11)

and is uniquely defined.

10



We need an expression for the interpolation error. To this end, we will relate
the error £;r;, to the error in another system of functions. Let v1,..., %,
be a system of functions with

det[;(Gi)]i; # 0,
spanning the space W. For this system let the error
EY[L;K] = Lijk — LY, [L;K]

be known.

It is now possible to relate the remainder £;r; of our approximation to the
remainder E;f of the interpolation in the -system. Notice that the points (;,
1y < 1 < igy1, which were omitted during the construction of the sequences
{r}x and {s}«, are not lost for the approximation error.

Lemma 3.6. Let {iy,...,3} C {1,...,m,} be the indices used during the
construction of {ri}r and {sg}x. Then the functions L;ry satisfy

Erto) = Bf1Eseln) - 3 D gy, yem\D1 12

1=1
Proof. Let x; be the ith Lagrange function in ¥, i.e. for 1 < 4,1 < m, we
have x;({;) = dy. Set
x1(y)
xw) = :
Xmyp (¥)

For the interpolant L%F [Li6](y) = (LK) ([CIm,) x(v), 1 < j' < n, we obtain

L%p[[’j'ﬁ](y) = 2_:( ”f Cz Xz +Z{ ”% CZI le( )+ Z ('CJ’H;)(CZ) Xi(y)},

where we set ix11 = m, + 1. Since (L;7)(G) = 0 for all 4 < i < 444 we
obtain with the aid of Lemma 3.5

0 = (L) (G) = (L) (G) = ([£Dm) (G) AT (L) ([T

Thus l

Lyr)(G) = 3 (L) (G)" A ) (Lk)(C).

v=1

11



From this it follows that

3 L@ x) = Do D (L@ AT (L) (G) %)
= > (LG o ),

where off (y) = X% () (€))7 A .
From (£;k)(¢;) =0, 1 < i <14, we see that

l
{( ”f Czl le +Z /Iﬁ Cz,, a’ )}

LY, [£yw](y) =

k
Mp Z
=1 v=
k k k
= Z( ”{) (sz Xll + Z Z ”i gzt/ )
=1 v=1 l=v

(Ly6) (Gi) @(y) = (Lyrr)([Sle) a(y),

I
hE

=1

where ¢ € RF is the vector with components ¢,(y) = x;,(y) + Zle al(") (y).
Using Lemma 3.5 we obtain

(Lire) (W) = (L38)(y) — ([Llur) (1) AL (C50) ([Cle)
= EBY1L;k)(y) + (L£;5) (16 "aly) — ([L1km) (9) A7 (L50) (k)

= B — (L) — Aaw)) A7 (£m)(Cl)

EY[L54](y ZE L)) (A1) () -

According to Cramer’s rule

(47 (Lm) (i), = %ﬁf”

The assertion follows. O

We are now able to control the approximation error by estimating the coeffi-
cients in (12). In general the choice of j; in Algorithm 3.1 does not produce
a submatrix of maximum determinant in modulus. However, we can see
from Lemma 3.4 that this maximum element strategy is the best choice with
respect to maximum determinants if we keep all previously chosen indices
jl, . ;jk—l fixed.

12



Lemma 3.7. Assume that in each step we choose ji so that

[(Lgrr-1)(Gip)| = [(Ljre-1)(Gi)|  for all1 < j <n.

Then for 1 <1<k and j=1,...,n it holds that

|det Ay(l, §)| < 257! det Ay|. (13)
Proof. See [1]. O
Thus we obtain
(L) (y)] < (1+2) Sup By (L) (y)- (14)
yclz

It is well known that elements may grow during a column-pivoted LU de-
composition. The term 2™» in (14) is therefore not a consequence of overes-
timation.

In order to estimate the error of our interpolation and, according to Lemma
3.2, also the error of matrix approximation, we have to specify the system
of functions 1, ..., %y, so that the interpolation error for it is known. The
easiest choice are the monomials

Yi(z) =2t =2 .2l i€ NG with ||i]l < p—1

Accordingly we choose m, = p? as the dimension of the spanned space V.
The set of points {(i,...,(n,} from the construction of {s} is chosen to
be the tensor-product

g’i = (é-im e agid)a ) € Nd with ||z||oo S p

of the zeros of Tschebyscheff polynomials on [—a, a]

2v—1
& = a-cos ey , v=1,...,p.
2 p

The uniqueness of interpolation is inherited from one-dimensional interpo-
lation, so the condition det[t;((;)];; # O is fulfilled. The polynomial L,f €
II, 1[—a,a] interpolating a function f € CP[—a,a] in the points &, v =
1,...,p satisfies, cf. [9],

@ || Pl
2r—1  pl

1f = Lpflloo < and  ||Lpf|le < clogp || flco- (15)

13



For multivariate functions f : [—a, a]? — R we use the tensor-product inter-
polation polynomial L,|f]

Lfl=L{ - LWf e w.

P

Then using standard tensor-product arguments we obtain with (15)

_ 1+d(clogp)?!
N 2r—1p!

IF = Lyl < & 0 max 13 fllos & (16)

We are now ready to estimate the remainder Ry in Algorithm 3.1. To this
end we remove the virtual points (; by letting Sy € R™*™ be the last m rows

of Sk, i.e.
k
T
Sy = E uv, ,
=1

where u; € R™ are the last m entries of ;.

Theorem 3.8. Let k be an asymptotically smooth kernel and the pair (D1, Dy)
fulfill condition (6). Then forp>g,i=1,....,m and j =1,...,n it holds
that .
< iatd P 7. _
|(Ri)ij| < Cpdist?(Dy, Do) Jgia)fn ], 0<n< na
where R, = A — S},.

Proof. We can find a cube @), having sidelength ¢ = 2diam Dy such that
Dy C @, for which we may assume that Q, = {z € R? : ||z]lc < a}. It is
easy to check that

. . 1
2dist(Dq, Q,) > dist(D;, Dy) for n < i

From this follows
diam Q, < 7 dist(D1,Qa), 7 =4Vdn.
By assumption the derivatives of xk are bounded on D; X Q:

sup 105 K)yllp, < cp dist?™ (D1, Qa),  |ef = p.
yE a

Here, we use || f||p, = sup,ep, |f(x)]. According to (16) we have

IB L] la, < & a? max [0FLsllo,.

14



From the continuity of l} corresponding to £; we obtain
05 (Lik)(y) = 5 (ys i) = (B kys lj) = (L0 R)(Y), Y € Qu.
This leads to
10y, Ljkllo. = 1£;0ykllq. = sup (88 )y, 15)]
Y a

sup 1005 %)yl IE51] < € 1511 dist? P (D1, Qu)
Y a

IN

and thus

S\ P
~ . ~ n
VB, o]l < &y dist? (D, Qu) I (ﬁ) . 17)
Using (12) and (14) we are finally led to

|(Rk)ij| < Cpdist?(Dy, Do) 0P max ||l II,

.....

where C, = ¢, ¢, 219147(1 + 2m™»). O

Corollary. Let (Ds,D5) fulfill condition (6) and k be an asymptotically
smooth kernel. In the case of matrices

(Lij:/{)(.’L'j,yi), i:l,...,m,j:l,___’n

with x; € Dy, y; € Dy for p > g it holds that

|(Rk)2]| S Cp diStg(Dl, DQ) 7’]p, 0< n < (18)

4\f
where Ry = A — Sg.

Corollary. Let (Ds, D) fulfill condition (6) and k be an asymptotically
smooth kernel. In the case of collocation matrices

i :/ k(z,yi)pi(x)dp,, t=1,...,m, j=1,...,n
D
with supp ¢; C Dy, ||¢jllec =1 and y; € Dy for p > g it holds that

|(Rg)ij| < Cpdist?(Dy, Do) u(Dy)nP, 0<n< (19)

1
4vd’
where R, = A — S;.

15



In what remains we will estimate how a prescribed accuracy € > 0 for the
approximation error ||[A — A||p < ¢ affects the cost of the algorithm. For an
increasing p the term C), in (18) and (19) grows faster than nP. Hence, we
have to keep p constant and control the error by 7. Theorem 3.8 states that
for each block M € R™ " the approximant M satisfies

|M — M||r < Cp/mndist?(Dy, Dy) 1
Since (Dy, Dy) fulfills (6) and diam7 > h/c, we obtain dist?(D;, Dy) <

cN~@m. Thus ||[A — A||p < cC,N'"@mnP. Setting nP = ﬁNﬁgﬁ_l we get

|A — Al < e. With this choice the overall complexity O(n~%™N log N)
reads O(s " *N'**logp N).

4 Numerical experiments

Algorithm 3.1 may be stopped if the approximation reaches a certain accu-
racy. For this purpose the error estimator from [1] can be used. It is based
on the idea that R,,, is approximated by Z;if’;;; ww! and that the latter can
be evaluated efficiently.

4.1 Implementation aspects

In this section we discuss two possible implementations of the ACA (Adaptive
Cross Approximation) method. Let A € R™*" be a given matrix. Each of
the following algorithms produces vectors uv; € R™ and v, e R*, [ =1,...,k
from which the approximant Sy can be formed

k
Sk: E ’U,l’l)lT.
=1

Algorithm 4.1 (fully pivoted ACA). Set Ry = A and for £ =0,1,...

(Rk)ik+1,jk+1 = n}z}x ‘(Rk)i,j )
).

Uk+1 = Rkejk+17
T
Vg1 = Rk; e’ik+1’
T
Ryy1 = Rp — Ve 1Uk4+1Vjc 41
with
—1
Ye+1 = ((Rk)ik+1,jk+1) :

16



We call this algorithm fully pivoted ACA since in each step the whole error
matrix Ry is inspected for its maximal entry. In Algorithm 4.1 the following
stopping criterion may be used

ri 1B lr <ellAllr, e > 0.

Hence the number of operations required to generate the approximant is
O(rmmn). Memory requirements for the algorithm are O(nm). Thus the
algorithm is rather expensive and can not be used for real large matrices.

If the matrix A has not yet been generated but there is a possibility of
generating its entries individually then the following partially pivoted ACA
method can be used for the approximation.

Algorithm 4.2 (partially pivoted ACA).A Set 7 =landfork=1,2,3,...
Let i € {1,...,m} be an index (set iy = 15—y if 74—; is a possible choice)

with nonzero
k—1

(irj — Z(ul)ik('ul)j, j=1,...,n.

1=1
If no such i exists the algorithm terminates, otherwise set

k-1

(ﬁk)j :aikj—Z(ul)ik(’Ul)j, j=1,...,n.

=1

-1

Choose jy = argmax;_; ,|(%);| and set vy = (¥x);~ % and

k-1
(ur)i = a, — Z(Uz)i(vl)jk, 1=1,...,m.
I=1
Set iy, = argmax; . |(ux)i-

With regard to stopping criteria, the following considerations can be made.
Since the matrix A will not be generated completely only the norm of the
approximant Sy can be used instead. This can be recursively computed in
the following way:

k-1

I1Skll7 = 15kl +2 D uiu; vf vk + [lugl| 7|0k |7 (20)
7j=1

An appropriate stopping criterion is then
r: ullplloelle < €llSelle- (21)

The amount of numerical work required by Algorithm 4.2 is O(r?(m + n)).
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4.2 Numerical results

We first apply the algorithm to a family of surfaces converging to the unit
sphere. This sequence is generated by recursive refinement of the icosahedron
dividing each of the surface triangles in four and projecting the new knots
to the unit sphere as shown in Figure 1.

Z
22
: s
y ’,\ 7 % \
i
KRR Y
e
R v ot
T 2 i
ROy v 4 v o v 4 VA vy
OO 4V v v A 4 Py v v
‘mk %ﬁ#«v”«é‘» v
AN P v v A v
RN P v vt
%i R e A
TV e st v Vb 5!
\ IO 7
%) /
S SEEEERe
% 7

Figure 1. Icosahedron (n = 20) and its refinement (n = 5120).

The following numerical tests were performed for the boundary integral for-
mulation

1
where
(AP = [ stenpl)ds, and (Boe) = [ on,sa)elu)ds,
Q0
of the Dirichlet problem for Laplace’s equation
Ay =01in €, (22a)
u = f on 0 (22Db)

using collocation with piecewise constant ansatz functions. In the above the
function s is the so called singularity function s(z,y) = &=z —y|™.

The table below shows for different problem sizes the compression factors for
the single layer and double potential matrix, the number of iterations when
using unpreconditioned GMRES and the accuracy

1/2
Z () |Ops(wo, my) — vp(m)[? , Mg center of 7

ﬂ'EHh
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of the solution v,. Since we chose f = s(xq,)|aq, To & €, the solution of
(22) is known to be u = s(zo, ).

For the approximation of the blocks we used Algorithm 4.2 and in the stop-
ping criterion (21) & was chosen as 107%, while the relative accuracy of GM-
RES was 1078,

n | single layer | double layer | # It | accuracy

80 100 % 100 % 14 | 0.791e-2
320 96 % 100 % 19 | 0.297e-2
1280 57 % 64 % 24 | 0.927e-3
5120 25 % 27 % 28 | 0.268e-3
20480 9% 10 % 34 | 0.796e-4
81920 3% 3% 39 | 0.263e-4

An example of the partition of the BEM matrix is presented in Figure 2.
Note that the numbering of the columns in the matrix corresponds to the
permutation obtained during the construction of the cluster-tree, whereas
the numbering of the rows is individual for each column due to Algorithm
2.1. However, it remains fixed within each block. The gray scale in Figure
2 indicates the quality of the approximation of the block as a percentage.
Thus the big light blocks are very well approximated while the compression
of the small dark blocks is either not possible or the compression rate is low.

100.0

Figure 2. Block structure of the matrix for n = 1280.

In the remaining tests the aim is to compare different methods for the gen-
eration of low-rank approximants for the following mesh which consists of
n = 19712 elements. This mesh comes from the TEAM 10 benchmark prob-
lem (see [8]) frequently used in the computational electrodynamic community.
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The speciality of this multiply connected mesh is an extremely thin split in
the middle and mesh refinement on the edges.
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Figure 3. TEAM 10 problem (n = 19712).

For the relative accuracy in each case ¢ = 10™* was used. Generating the
whole matrix without approximation would have led to 2964.5 MB of storage.

single layer double layer CPU-time

SVD | 199.11 MB | 6.72 % | 310.98 MB | 10.49 % 100 h

ACA full | 277.54 MB | 9.36 % | 410.29 MB | 13.84 % 20.5 h
ACA partial | 242.46 MB | 8.18 % | 376.19 MB | 12.69 % 10 min
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