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Abstract

We study some variational problems involving energy densities
(functions that have to be minimized) experiencing an infinite number
of wells. Such densities are encountered in the study of microstructure
of some materials as crystals. We consider the energy minimization
problem with a fixed Dirichlet boundary data related by a convex
relation to some number N of wells. We give a necessary and suf-
ficient condition for nonexistence of minimizers. In the absence of
minimizers, we prove that the minimizing sequences converge to the
boundary data and choose their gradients around each of the N wells
with a probability which tends to be constant. Moreover, they gener-
ate a unique Young measure that represents the microstructure. Our
analysis shows that the deformation gradient of such materials is only
governed by the NV wells even if the energy density vanishes at an in-
finite number of wells. Our results agree with the assumption made
in most of analytical and computational investigations that the defor-
mation gradient can be modeled by a limited number of wells.

AMS Subject Classification: 49, 74

Key words: microstructure, minimizers, variational problems, Young mea-
sures, wells.

1. Introduction

Let © be a bounded domain of RY (N > 2) with Lipschitz boundary T'. Let
® : RV — R be a continuous function. We denote by W(®) the set of wells
of ® i.e.

W(@)={weR" /®w)=0}. (1.1)
We assume that @ verifies
O(w) >0 Yw & W(D). (1.2)
If H denotes the following hyperplane of R" characterized by © € RY and « € R
H={weR" Jw-p=a} (1.3)

(w - denotes the scalar product of w and ), we assume that there exist
wi, ..., wy N elements of W(®) such that

w; e HYi=1,....N (1.4)

rig(Co(w;)) # 0 (1.5)



where Co(w;) is the convex hull of the w;’s, rig(Co(w;)) denotes its in-
terior relatively to the topology of H. If a € rig(Co(w;)), we denote by
Whe(Q) the set

Whe(Q)={veW"(Q) /v(z)=a-z onT}.

Then, we would like to consider the problem

inf /Q B(Vo(z)) da. (1.6)

veWL*(Q)

It is well known that

inf /Q<I>(Vv(x)) dz = 0] & (a),

veEWL ()

(19 is the Lebesgue measure of Q2 and ®** is the convex envelope of ® (see
[D.])-

When we write “inf” in (1.6) we have three different questions in mind : first,
what is the value of the infimum? Is there a minimizer and if there is no
minimizer, then what are the properties of the minimizing sequences. The
answer to the first question is 0. Indeed, since a € rig(Co(w;)), one has

using the convexity of ®**
®**(a) = 0. (1.7)

First, remark that there is no loss of generality in assuming
a=0and a=0. (1.8)

Indeed, the problem (1.6) is identical to the following one

inf /Q B(Vo(z)) dz (1.9)

vEW) ()
where ®(w) = ®(w + a). So, we end up to deal with the same problem with
W(®) =W(®) —a
and the wells w; — a € W(®) such that
0€rig(Co(w; —a)), wi—a€c H—a={weR" Jw-u=0}. (1.10)

So, in what follows we will always consider ¢ = 0 and o = 0. Remark that
due to (1.4), (1.10) one has

H = Span(w;)i=1,..y = Span(w; — w1)i=2,.. N (1.11)
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where Span(a;); denotes the vector space spanned by the vectors a; € RY. Let
us prove the first equality in (1.11), the second one is due to the first part of
(1.10). Since

0 € rig(Co(wy)) (1.12)

there exists r positive such that
B(0,r) C Co(w;) C Span(w;)i-1,...,~ (1.13)

where B(0,7) ={h' € H / |h'| < r} (|-|denotes the Euclidean norm). Let
h' be a nonzero element of H, then the vector

r h'

v
By (1.13) one deduces that A’ € Span(w;). Combining this with (1.4) one

gets
H = Span(w;)i=1,...n- (1.15)

By (1.11) and (1.12), there exist o;; € (0,1), i =1,..., N unique such that

N N
i=1 i=1

Then, we adopt the following notations

H ={weR" Jw-p>0}, Hy={weR" Jw-p>0} (1.17)

H ={weR" /w-p<0}, H.={weR" Jw-p<0} (1.18)
W(@) =W(@)\{w;, i=1,...,N }. (1.19)

The case when W(®) spans a proper subspace of RY was studied by M.
Chipot and C. Collins (see for example [C.5], [C.C.]). Mainly they prove,
when the number of wells is less than /V, that the minimizing sequences have
a common behaviour in the sense that they define the same homogeneous
Young measure supported by this number of wells. In this paper, we are
concerned by the case where W(®) spans the whole R" so that one can
select N wells and a hyperplane H such that (1.4), (1.5) hold. The fact that
the energy density is allowed to have an infinite number of wells makes diffi-
cult to predict a priori the behaviour of the minimizing sequences since the
energy density has more freedom to choose some strategy to lower the global
energy by making use of its available huge number of wells. Our analysis
shows that, in the absence of minimizers, the behaviour of the minimizing
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sequences is only governed by the wells related to the boundary data by a
convex relation. The most interesting examples of applications of our results
occur in the study of deformation of structured materials as crystals (see
[B.J.1], [B.J4], [E.], [F1], [F2], [J.K.], [K.], [Ko.]). In this case the po-
tential wells are matrices. Moreover, due to the frame indifference, these wells
are in infinite number. Note that we are considering here the so called scalar
case i.e. the wells are vectors and not matrices. We are out of important phe-
nomena such as incompatibility between phases observed in three-dimensinal
models. Our scalar case studied here is nevertheless of some interest as it
arises when restricting a three-dimensinal stored energy to antiplane shear
deformations (see [F.]).

We organize the rest of this paper as follows. In section 2 we give a suffi-
cient condition for existence of minimizers which is the case when the set
W(®) contains some wells situated in the two disjoint half spaces separated
by the hyperplane H. In section 3 we prove that this condition is also nec-
essary. Then we show, in the absence of minimizers, that the corresponding
bounded minimizing sequences converge towards the boundary data. We
also demonstrate that when H N W(®) = {w;, i = 1,..., N} the sequences
made of gradient of bounded minimizing sequences generate a unique homo-
geneous Young measure. In section 4 we prove that the minimizing sequences
are choosing their gradient around each of the N wells w; with a probability
which tends to be constant. Finally, in section 5 we give via Lagrange finite
elements a bounded minimizing sequence as well as error estimate for the
corresponding energy. This estimate is the same as in [Cy.] since the energy
density only makes use of the wells w;, + = 1,..., N to lower the global
energy. The other wells seem to have no influence.

In his interesting paper (see [F.]), Friesecke gives a necessary and sufficient
condition for existence of minimizers (theorem 2.12) for more general den-
sities ®. In particular, ® is allowed to have wells of nonequal depths. The
proofs of the equivalent condition for our special case are relatively simple
using also the construction done by Chipot (see [C.]) and lemma 1. in sec-
tion 3 below. This condition can be easily checked : it does not involve the
computation of the convex envelope of ® which is not in general an easy
task (compare with theorem 2.12 in [F.]). Let us illustrate our results by the
following example

Example 1: The notations are as above, we assume for convenience that p
is a normed vector. Let ¢ : R¥ — R, be a continuous function such that

W((P) = {wl,wz,...,wN}. (120)



Let us consider the function ® defined as follows

O(w) = p(w)((w- p—a)” + (w]=1)%), (1.21)

where (a,7) € Rx (0,400), and f~ denotes the negative part of the function
f. Then we have

W(B) = W(p) U (H, N IB(0,1)). (1.22)

where H, = {w € R"|w-u > o} and 0B(0,r) is the boundary of the ball of
center 0 and radius r. First remark that if o > r then

W(®) = W(yp) (1.23)

so that this case coincides with the case studied in [Cy.]. If @ < 0 the problem
(1.6) admits minimizers. If & > 0 the infimum in (1.6) is not attained and
the minimizing sequences generate a unique Young measure. Now if o = 0
the problem (1.6) does not admit minimizers but the minimizing sequences
may generate several Young measures.

2. A sufficient condition for existence of minimizers

We investigate in this section the case when the set W(®) contains some wells
situated in the two half spaces defined by the hyperplane H. More precisely
we have

Theorem 1. If W(®) N H, and W(®) N H_ are not empty, then
the infimum in (1.6) is attained.

Proof : Let w 1 € W(®)N H; and wy € W(®) N H_. Since

0e riH(Co(wi))izl N (21)

yeeey

there exist k wells (k¥ > N — 1) among the w;’s that we can assume to be
w1, . .., w such that
Span(w;)i=_10,.5 = RY (2.2)

0e Int(Co(wi)i:_l,o,___,k) (23)
where Int(A) denotes the interior of A. Therefore, there exist 51, fo, ..., Bk €

(0,1) such that
k k

i=—1 i=—1



Then, we consider the function

k
u(z) = /\ wi-z+1, r € RY

1=—1

where A denotes the infimum of functions. It is clear that

Vu(z) =w; ae. in RY (i=-1,0,...,k).

Due to (2.4) one has

k
/\wi-xgo,V:vERN.

i=—1

We denote by S the following open subset of RY

S={zeR" Ju(z)= N wi-2+1>0}

i=—1
We claim that S is bounded. Indeed, one has

k
Vaxebs, /\wi-x+1>0.

i=—1
Then
k
Vzeos, \/ w; - (—x) <1
i=—1
where \/ denotes the supremum of numbers. Thus

7 . 50)
Vzes |z \/wi-

i=—1

Hence

(2.5)

(2.6)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

where SV=! = {y € R" / |y| = 1}. Since S¥~! is compact, there exists

y* € SN=1 such that

k k
. *
inf \/ w; - Y = \/ w; - Y.
yestT iy

i=—1
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(From (2.4) one has

k
\ wi-y* >0 (2.14)
1=—1
We claim that .
\/ wi-y* >0 (2.15)
i=—1
Indeed, assume that
k
\ wi-y =0 (2.16)
i=—1
Then
Vi=-1,0,...,k w;-y* <0, (2.17)
but from (2.4) one has
k
3" B -y =0, B € (0,1) (2.18)
i=—1
then
wi-y' =0 Vi=1,...,k (2.19)

It results from (2.2) that y* = 0 which contradicts the fact that y* €
SN-1 Thus (2.15) holds and S is then a bounded open set. Taking 2 = S, one
has

u e Wy (), (2.20)

since the w;’s belong to W(®) and u verifies (2.6) we deduce that u is a
minimizer of problem (1.6) with = S. Then, one can construct a minimizer
on {2 by covering it with scaled copies of S using Vitali’s covering lemma.

]
3. Nonexistence of minimizer-Young measure.

In this section we show that there is no minimizer when we are out of the
situation of section 2. This proves the fact that the sufficient condition in
theorem 1 is also necessary. So, we assume that

W(@) NH =0 or W@)NH_=1 (3.1)

- W(®) C H, or W(®) C T (3.2)



In the sequel, we will treat the case where
W(®) C H, (3.3)

the negative case is handeled similarly. We will frequently use the following
lemma

Lemma 1. Let Q be a bounded domain of RN and u € Wy (Q) such that

ou

a(x) =Vu(z)-v>0 ae in Q (3.4)

where v is a nonzero vector of RY. Then one has

u=0 a.e in Q. (3.5)

Proof : Since u € W,'(Q) one has the following variant of Poincaré’s

inequality
/|u |d:c<C/\ z)|dz. (3.6)
Using (3.4) one has
/| |dx—/gq: das—/Vu Ydx - v. (3.7)

Integrating by part one gets
/ Vu(z)dz = 0. (3.8)
Q

Combining (3.6)-(3.8) one deduces that
u(z) =0 a.e. in Q. (3.9)
Remark 1: Let v € W, () such that

0
8—Z<O a.e. in €2

then v = 0 a.e. in €. Indeed, it suffices to apply Lemma 1 to —u.
Then one can prove:

Theorem 2. Assume that 0 ¢ W(®), and W(®) C H,, then the infimum
in (1.6) is not achieved.



Proof : If u is a minimizer one has

/ B(Vu(z))dz = 0 (3.10)
Q
hence by (1.1), (1.2) one gets

Vu(r) € W(®) C H, a.e. in Q. (3.11)
Therefore

Vu(z) -p>0 ae. in Q. (3.12)

Using Lemma 1 one gets
u=0 a.e. in Q. (3.13)

Since 0 ¢ W(®) one has by (1.2)
®(0) >0 (3.14)

so that (3.10) is impossible.
]

In the absence of minimizers we turn to the study of minimizing sequences.
We have

Theorem 3. Assume that B
W(®P) C H,. (3.15)

Let (un)n be a minimizing sequence of (1.6) such that
l|un(2)|], [[Vun(z)|| < C a.e. inQ (3.16)

for some constant C independent of n (||-|| denotes a norm in R or RY), then
one has
U, — 0 uniformly in €. (3.17)

Proof : From (3.16), by a compactness argument there exist u € W,"*°(Q) and
a subsequence u,, such that
Up, — v uniformly in (3.18)

Vg, — Vu in L2(Q)Y — x weak (3.19)

when k& — oo. Now, the bounded sequence of gradients generates a Young
measure on RV (see [P.]) in the sense that there is a probability measure



v, on RN and a subsequence of Vu,, -still labeled Vu,, - such that for any
continuous function F' on RY one has

F(Vug,,) — / F(N)dvg()\) in L®(2) — * weak. (3.20)

RN

Considering first (3.20) with F' = & and since u,, is a minimizing sequence
one gets

/Q 1 ®(Vaup,) — 0 = /Q /R 0(N) (Ve (3.21)

It follows that
/ B(A) dvs(\) = 0 ae. in Q. (3.22)
RN

One deduces that
Suppy, C W(®) C H,, fora.e. x € (3.23)

where Suppr, denotes the support of v,. Considering then for F' in (3.20)
the function F(A) = X-p

Vup, (z) - p— A dyg () in L®(2) — % weak. (3.24)
RN

Combining this with (3.19) one deduces that
Vu(x) p= /RN A dug(N) ae. in (3.25)
but, by (3.23) one has
/ A pdug(A) >0 ae. in Q. (3.26)
RN

Combining (3.25), (3.26) and Lemma 1, one deduces that © = 0. Since the
sequence has 0 as unique limit point the whole sequence converges towards
0. In other words one has obtained:

tun, — 0 uniformly in €, (3.27)
Vu, = 0 in L®(Q)Y — x weak, (3.28)
/ A prdvg(A) =0ae. in Q. (3.29)

RN

This completes the proof of theorem 3.
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Due to (3.29) one has
Suppr, C HNW(®). (3.30)

so that when n is large the gradient Vu,(z) tends to take one of the wells
situated in the Hyperplane H with a probability which tends to v,. Let us
make this more precise by isolating the wells w;, 1 =1,..., N. Then we have

Theorem 4. Assume that
W(®)" C H,. (3.31)
If (uy,) is a minimizing sequence of problem (1.6) satisfying (3.16) then
u, — 0 uniformly in (3.32)

moreover, the sequence of gradients Vu, generates a unique homogeneous
Young Measure on RN given by

N
Ve =Y by, (3.33)
i=1

where 0,,, denotes the Dirac mass at the point w; and o; are the constants
appearing in (1.16).

Proof : The convergence in (3.32) is a simple consequence of theorem 3.
Let (vz)zeq be the Young measure associated to Vu, verifying (3.20). Due
to (3.30) and (3.31) one has

Suppy, C {w;,i=1,...,N} (3.34)

and the proof follows as in [Cs]. u

Remark 2 : If W(®)* N H is not empty, then the bounded minimizing
sequences of (1.6) converge toward 0 (cf Theorem 3) but they may not gen-
erate the same homogeneous Young measure. Indeed, when we have wells
satisfying (1.16) one can construct a minimizing sequence of problem (1.6)
satisfying (3.16) and whose sequence of gradients generates a Young measure
given by (3.31) (see [C.5]). Note also that the function ® defined in example
1. with a > 0 (respectively o > 0) satisfies the hypothesis of theorem 3
(respectively theorem 4.).

4. Probabilistic analysis

In this section we would like to analyse further the behaviour of the minimiz-
ing sequences of (1.6). As we will see, under some assumptions, they have
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a common pattern. In particular in order to minimize the energy they are
choosing their gradients around each of the N wells w; with a probability
which tends to be constant. First let us make precise our assumptions. We

will assume that
W((I))* - H—H
(4.1)
W(®)* is compact.

Moreover, we denote by 7 the projection on W(®) defined by
(&) =w (4.2)

where w is the unique element of Ky (&) C Ky_1(§) C ... C Ko(§) C W(®)
where K;,2 =0,..., N are defined as follows

Ko(§) ={w e W(®) [ [{ —w|= min_ [¢—uw'[}

w' EW(P)
K ={weK;,|w-¢,= min w'-¢}, i=1,...,N. (4.3)
weK; 1
where (ey,...,ey) is the canonical basis of RM. By (4.1) and since the K;’s

are compact such an operator is clearly defined. Then, we will assume that
there exist A > 0, p > 1 such that

B(&) > Mg~ ()P V¢ € RY. (4.4)
Now, let us denote by R some positive number such that

(4.5)
B(w;, RyNB(w', R) =0 Yw' € W(®)*.

Such a R exists since W(®)* is compact. If v € Wh*(Q) we denote by
E(v) the quantity

E(v) = /Q &(Vo())dz (4.6)

and if B is some Lipschitz subdomain of 2 we will denote by BX(v) the set
Bf(v) = {x € B/Vuv(z) € B(w;, R)}. (4.7)

|Bf(v)]

|B
for v to have its gradient on B in B(w;, R). We introduce also the notation

If | | denotes the Lebesgue measure in RV, represents the probability

BE(v) = B\UBiR(v). (4.8)
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Then we have:

Lemma 2.Under the above assumptions, if u, 1S a minimizing sequence
verifying (3.16) then one has for some constant C independent of n

1> |BE(un) wi] < CE(uy)% (4.9)

i=1
when n s choosen large enough.

Proof : Note first that

> 1B )l = /U  A(Vun(a))ds

- /B (Y (z))dz — /B (V@) (4.10)

= /Byr(Vun(x)) — Vun(ac)dac—f-/Bvun(ﬂlc)dﬂc
_ /B (Vo)

=l [+ L+ I

To estimate I; note that by Holder’s inequality and (4.4)

L) < / (Vin(2)) = Vun (@) da
B
< B[ 5(Van (@) - Vo))
_1 1_Bl 1
< A2 |B| TP E(uy)?. (4.11)
To estimate I, one applies the divergence theorem to get

L= /B Vi, (2)dz = /6 tn@n(e)do(z)

where n(x) denotes the outward normal to dB the boundary of B. Hence

I/ < /8 Jua(e)ldota) < (0B / un(2) 2do (2)) . (4.12)

OB
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Applying the continuity of the trace function to u? one gets for a certain
constant C

/ lup (2)[2do (2) < C / ()2 + [t (2) |Vt (2) | . (4.13)
0B B
Since

/B tin[? + [t (&) |Vt () iz = /B 11 () ([t (@) | + | Vit (2) )z
one deduces by (3.16)

/ lup () 2do(z) < C / () (4.14)
0B B

Then one obtains by Poincaré’s inequality

/ lun () 2o () < c/ () < 0/ Vun(z) plds  (4.15)

0B Q Q

(Recall that p is an orthogonal vector to the hyperplane H that we can
assume of norm equal to 1). By the triangle inequality one has

/Q Viun(2) - uldz < / (Vtn(z) = 7(Vun(2))) - plde + / 7 (Veun()) - plda
(4.16)

but by (4.1) one has
7(Vuy(z)) -1 >0 (4.17)

then

/Q 7 (Vun(2)) - plde = /Q T (Vun () - pda
= /Q(W(Vun(x)) — Vg (z)) - pdx + /Q Vun(z) - pdz
- /Q (1 (Vun(2)) — Viun(2)) - udz (4.18)

since

/ Vu,(z) - pdx = / Vu,(z)dz - p=0.
o Q
Thus
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/Q|Vun(x) cpldr < Q/Q |(Vug(z) — m(Vug(x))) - pldz
< 2/Q|Vun(x)—7r(Vun(x))|dx.

Applying Holder’s inequality one obtains

S

/Q V() - pld < 2/0]' 7 /Q(Wun(fﬂ) — 7(Vun(2))Pdz)r.

Combining (4.12), (4.15) and (4.20) one deduces by (4.4) that
| < CE(uy)%.

To estimate I3, note that

IN

| / (V@) |da
BE (un)

< BE (u,,
< (wrgvgg;)\wl)l ez (Un)|

To estimate |BZ (u,)| we denote by D and D' the sets

D ={z € BE(u,) | 7(Vun(x)) € {wn,...,wn}}

D' = By (un)\D = {z € B (un) / m(Vun(z)) € W(®)"}

then one has

RID| < / (Vi (2)) — Vi (2) | de
D
< / |T(Vuy(z)) — Vuy(z)|de.
B
Hence, using Holder’s inequality

1
DI < 5 |BI'" 5 A5 E(u,)5.

On the other hand one has

15
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|D'| werlr/lvi(rclp)*w u < /D’ 7(Vuy(x)) - pdz (wer1r/lvi(1<11>)* w-p >0 by (4.1))

- / (7(Vutn(®)) — Vtn(2)) - pd

< A, |7 (Vug(x)) — Vug(z)|dx

by Hélder’s inequality and (4.4) we have

D)< ( min wep) AT E () (424)

Combining (4.23) and (4.24) we obtain

1 _1._1 . 1 -1 _1 1
[BE(un)| = [DI+]D'| < {5|BI'" PN +( min w- ) A0} E un)

wEW(®)*
(4.25)
so that

1
13| < max |w|{E|B\1—%,\—%+( min  w-p) " A7F QT E (u,)? .

weEW weW(P)*
(4.26)
Combining (4.10), (4.11), (4.21), (4.26) we obtain
1S 1BR(un) wil < C(B(un)r + E(uq)?). (4.27)
i=1
When n is so large we have
E(u,) <1
so that . .
then we have
1> 1BE(un)lwi] < CE(uy)>
i=1
which is (4.9).
m

16
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As a consequence we have:

Theorem 5. Let (u,) be a minimizing sequence of problem (1.6) satisfying
(8.16). Under the above assumptions one has for some constant C indepen-
dent of n

i)l i < CE(un)?» Yi=1,...,N (4.28)
whenever n is choosen large enough.

Proof : We borrow the idea of the proof from [C.5]. Let M denote the

(N + 1) x N matrix
M = (“’11 q’N) . (4.29)

By (1.11) the vectors w; — wy, ¢ = 2,..., N are linearly independent so that
this matrix has rank N. In particular, the system

My=1»b (4.30)
has at most one solution which, when it exists, is given by
y=MTM)" M
(M" denotes the transpose of M) and one has
[yl < [[(MTM)~ M7 [[b) (4.31)

where || || denotes the matrix norm corresponding to the Euclidean norm.
Since (see (1.16))

N N
E o;W; = 0, E a; = 1
i=1 i=1

one has

Zf\;(a”B‘ - |BZR(“n)|)wz == Zf\; |BZR(U'n)‘wi
Yo (oi| B = [BF(un))) = |BE|. (4.32)

Hence, the vector with entries o;| B| — |Bf(u,)| satisfies (4.30) for b given by
the right hand side of (4.32). The result follows then by combining (4.25),
(4.9), (4.31) and the fact that



when n is large. As a consequence of this result one has

| BY* (un)|

Pl s Vi=1,...,N
| B|

at a rate proportional to E(un)ﬁ

Remark 3 : One can construct (see [C.5]) for each h € (0,1) a function
up € Wy () such that
lun(z)|, |Vup(z)| < C a.e. in (4.33)

where C' is a constant independent of h. Moreover one has
E(un) < Ch (4.34)
so that one has a minimizing sequence of problem (1.6) satisfying (3.16).

5. Numerical Analysis

In this section, we assume that {2 is a polyhedral domain for the simplicity
of the numerical analysis. Let (7;)n>0 be a family of regular triangulations
of Q (see [R.T.]), that is to say satisfying

VK e T, K isa N-simplex,

Vh>0 Igréa%(hz() = h, (5.1)
dv > 0 such that VK € T, z—l’j < v

where hg is the diameter of the N-simplex and pg its roundness (i.e. the
largest diameter of the balls that could fit in K). If P;(K) is the space of
polynomials of degree 1 on K, set

V2={v : Q@ — R continuous, v/x € P/(K), VK € Ty, v=0o0nT}.

(5.2)
The following theorem gives the existence of finite elements minimizing se-
quence of problem (1.6) satisfying (3.16) as well as an error estimate for the
corresponding energy.

Theorem 6. For each h € (0,1), there exists up, € V}? such that
lun(z)|, |Vup(z)| < C a.e. in (5.3)
for a certain constant C' independent of h. Moreover

E(up) < Ch. (5.4)

18



Proof : (see [C.y])

Corollary. We assume that (4.1), (4.2), (4.4) hold. If B is a Lipschitz
domain of S, there exists a constant C' independent of h such that

/Q lup () |dz < Ch% (5.5)

/Q Vun(z) - pldz < Ch (5.6)

/Q Vun(z) — 7(Vup(z))|dz < Ch (5.7)
|w—ai|g0hﬁ Vi=1,...,N (5.8)

|B|
Proof : The estimate in (5.8) is a consequence of theorem 5 and the estimate

given by theorem 6. The estimate in (5.7) is infered from (4.11) and (5.4).
The estimates in (5.5) and (5.6) are deduced by (5.4), (4.15) and (4.20).

[ |
Acknowledgments. A first version of this work has been done during my
stay at the university of Ziirich. I would like to thank all the persons who
contribute to improve it. I thank M. Chipot for his remarks and for pointing
out to me the reference [F.].

References

[B.J.1] J. M. Ball and R. D. James : Fine phase mixtures as minimizers of
energy. Arch. Rational Mech. Anal., 100, (1987), p. 13-52.

[B.J.5] J. M. Ball and R. D. James : Proposed experimental tests of a theory
of fine microstructures. Phil. Trans. Roy. Soc. London A, 338, (1992), p.
350-389.

[C.1] M. Chipot : Hyperelasticity for crystals. European J. of Appl. Math.,
1, (1990), p. 113-129.

[C.2] M. Chipot : Numerical analysis of oscillations in nonconvex problems.
Numerische Mathematik, 59, (1991), p. 747-767.

[C.C.] M. Chipot and C. Collins : Numerical approximation in variational
problems with potential wells. STAM J. of Numerical Analysis, 29, 4, (1993),
p. 473-487.

19



[D.] B. Dacorogna : Direct Methods in the calculus of variations, Springer-
Verlag, Berlin, (1989).

[E.] J. L. Ericksen : Some constrainted elastic crystals. In Material Instabil-
ities in Continum Mechanics and Related Problems, J. M. Ball, ed., Oxford
University Press, Oxford, (1987), p. 119-137.

[F.] G. Friesecke: A necessary and sufficient condition for nonattainment and

formation of microstructure almost everywhere in scalar variational problems.
Proc. Royal Soc. Edinburgh 124 A (1994), p. 437-471.

[F.1] I. Fonseca : Variational methods for elastic crystals. Arch. Rat. Mech.
Anal., 97, (1985), p. 189-220.

[F.o] I. Fonseca : The lower quasiconvex envelope of stored energy function
for an elastic crystal. J. Math. Pures et Appl. 67, (1988), p. 175-195.

[J.K.] R. D. James and D. Kinderlehrer : Theory of diffusionless phase tran-
sitions. In Partial Differential Equations and Continum Models of Phase
transitions (eds. M. Rascle, D. Serre and M. Slemrod), Lecture Notes in
Physics £ 344, Springer-verlag, Berlin, New York, (1989), p. 51-84.

[K.] D. Kinderlehrer : Remarks about equilibrium configurations of crystals.
In Material Instabilities in Continum Mechanics and Related Problems, J.
M. Ball, ed., Oxford University Press, Oxford, (1987), p. 217-242.

[Ko.] R. Kohn : The relationship between linear and nonlinear variational
models of coherent phase transitions. In Proceedings of seventh Army Con-
ference on applied Mathematics and Computing, West Point, june 1989.

[P.] P. Pedregal : Parametrized measures and variational principles, Birkhauser,
1997.

[R.T.] P.A. Raviart, J.M. Thomas : Introduction & I’analyse numérique des
équations aux dérivées partielles. Masson, Paris, (1988).

20



