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Abstract. In the present paper we study the mapping properties of the non-
linear Boltzmann collision operator on a scale of weighted Bessel potential
spaces.
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Introduction

We consider the classical Boltzmann equation for a simple, dilute gas of particles
[4]
ft+(vagra‘da:f) :Q(faf) (01)

which describes the time evolution of the particle density (¢, z,v)

f R xOxR S R,.
Here R, denotes the set of non-negative real numbers and Q@ C R? is a domain
in physical space. The right-hand side of equation (0.1), known as the collision
integral or the collision term, is of the form

Qe = [ [ Bewo(f6)7w) - f0f @) dedw. ©2)

RS 52
Note that Q(f, f) depends on ¢t and z only as parameters, so we have omitted
this dependence in (0.2) for conciseness. The following notations have been used
in (0.2): v,w € R® are the pre-collision velocities, e € S C R? is a unit vector,
v',w' € R® are the post-collision velocities and B(v,w,e) is the collision kernel.
The operator Q(f, f) represents the change of the distribution function f(t,z,v)

This work was completed in the University of Saarland, Saarbriicken, with the support of the
German Research Foundation under the project Sa77/71-1.



2 R. Duduchava and S. Rjasanow IEOT

due to the binary collisions between particles. A single collision results in a change
of the velocities of the colliding partners v,w — v',w' with

! 1 ! 1
v =§(v—|—w+|u|e), w =§(v—|—w—|u|e),

where 4 = v — w denotes the relative velocity. The Boltzmann equation (0.1) is
subjected to an initial condition

f(O,IL',U) = fo((lﬂ',/l)), T e Qa vE ]R3

and to the boundary conditions on I' = 9. The kernel B(v,w, e) can be written
as

(use)
lul
The function ¢ : Ry x [-1,1] = Ry is the differential cross-section and 6 is the
scattering angle. Some special models for the kernel are as follows:
1. The hard spheres model is described by the kernel

B(v,w,e) = B(|U|,/J/) = |U|O’(|U|,,u), n= COS(0) =

d2
B(lul, ) = T lul,

where d denotes the diameter of the particles.
2. The kernel

B(jul, 1) = |ul =4/ ™g(u), m>1 (0.3)

corresponds to the inverse power cut-off potential (see [6]) of the interac-
tion. m denotes the order of the potential and g,, € Ly ([-1,1]) is a given
function of the scattering angle only.

3. The special case of m = 4 in (0.3) corresponds to the Maxwell pseudo-
molecules with

B(lul, p) = 94(p) -
The collision kernel B(|u|, #) here does not depend on the relative speed
4. JIZ‘L}lle Variable Hard Spheres model (VHS) (see [1]) has an isotropic kernel
B(lu|,p) = Cylu], =3 <A< 1. (0.4)
The model includes as particular cases the hard spheres model for A =1
and the Maxwell pseudo—molecules for A = 0.

The collision integral (0.2) decomposes into the natural gain and loss parts

Q(f, flv) = Q+(f f)(v) —Q-(f,Nv),

where the bilinear operators Q4(-,-), @_(:,) are

/ / B(lul, 1) £ (v')g(w') de duw (0.5)

R3 S
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and
Q- (1.90) = [ [ Blul,mi@gw) dedw. 06)
R3 52
We will also consider the linear operators Q4 (f)[-] and Q_(f)[-] acting on g for
a fixed function f. Before we begin the study of the mapping properties of the
operators Q4+ (f) and Q_(f), we discuss the results known from the literature.

A. Bobylev and V. Vedenjapin [2] proved the following pointwise estimate for
the gain part of the collision operator

Q4(f, ) () < C [If | Lo / Buos(Jo — w]) f(w) duw 0.7)

with

Buou(jv — wl) = / B(Jul, u) de.
82

For Maxwell pseudo-molecules (0.7) leads to the boundedness

1Q+(f; ) | Lol < C Beot | [Looll [If [ La] -
T. Gustafsson [8] considered the weighted spaces

LY =L (R%) ={g: R® - C,()"g € L,(R®)} , (v)" := (1 + |v]*)"/?

and the following kernels

B(lu|, ) = u[*g(n), 0 <A< 1, g€ La([-1,1]). (0.8)
He proved that the operator
Q. : (L]<Lu+A> ﬂLI()u-‘r/\)) % (]Ié"H) mLI()uﬂ)) _ Léu) (0.9)

is bounded for the weighted L, spaces with 1 < p < oo and 0 < v < 0o. As we see,
T. Gustafsson proved that Q4 is an operator of the order 0.
P.L. Lions [10] proved the estimates

|Q+(£.9) W' < CIIf|Lll llg|Lall, (0.10)

|Q+(f,9) [WH| < CIIfIL| llg|Lall
provided the collision kernel B(|u|, u) satisfies

B(lul, p) € G&° (Ry. x [=1,1]); (0.11)
i.e. kernels are infinitely smooth with respect to both variables |u| and p and have
compact supports with respect to the variable u. It is easy to ascertain that the
conditions in (0.11) are too restrictive to cover the models of interaction described
above. The estimates (0.10) can be written in an equivalent and compact form as
the continuity of the mapping

Qs : Ly xLp = W, (0.12)
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where W' := W' (R?) is the Sobolev space (see Section 1). If f € L; is fixed, the
boundedness (0.10) shows that @ (f) is an operator of the order —1.

J. Struckmeier [13] proved the boundedness property of the gain term of the
Boltzmann collision operator as being similar to (0.9) in the case B(|u|, u) = const
which corresponds to the Maxwell molecules

Q4 ¢ (Loo It x (Lo (L4 ) = L

B. Wennberg [17] proved the boundedness property of the operator Q4 (f)
as being similar to (0.12) for the collision kernel (0.8)

Q. : (LY/+1) m]Lg,H)) % (LY/H) ﬂL;(;yH)) Wb (0.13)

if there are the restrictions

1

— < .

2 <A<L1l,p> N1
F. Bouchut and L. Desvillettes [3] proved the following smoothing property

of the operator Q)+

Qs : LY LYY WL, v>0

for the collision kernel (0.8) with A > —3/2 and g € L([—1,1]). We use the
notation W) for the homogeneous Sobolev space considered in [3]. In contrast
the usual Sobolev space W! the homogeneous space is defined with a seminorm,
containing L, norms of only the derivatives of functions. This makes an essential
difference between the spaces and for the corresponding boundedness properties.

Using a different method, X. Lu [11] proved the smoothness result as being
similar to (0.13) for the gain term of the Boltzmann equation.

In the present paper we prove the following boundedness property of the
operator Q4 (f) in the scale of weighted Bessel potential spaces: the operators

1

Q4 : OO x ) o Bt -5 <AL, y>g+/\, (0.14)

Q4 : HLW x> S HPYY, —2<A<1, v>3+), (0.15)
forall ¢>0, —0<s<o

are bounded. In particular, are bounded

v v ]-
Qi : LY xLY SH,  —Z<A<I, u>g+x, (0.16)
Qs+ : LW XLy S H', -2<A<1, v>3+A. (0.17)

Note that constraints imposed on the density f in (0.14) are less restrictive on
the behavior of the density at infinity than the classical condition of finite kinetic



Vol. 99 (9999) Mapping properties of the Boltzmann collision operator 5

energy in the phase space Q x R®:

//|v|2f(t,x,v) dvd < oo. 0.18)

Q R3

In fact, if f(t,z,v) = O((v)~*), then conditions in (0.16) imply 2(v — p) < —3 or
p > 3+ v >3+ while condition (0.18) implies 2 — 4 < —3 or g > 5 even if
Q C R? is a compact set.

The paper is organised as follows. In Section 1 we introduce the function
spaces, the three-dimensional Fourier transform and the pseudodifferential opera-
tors. Furthermore we formulate the mapping properties of the pseudodifferential
operators using the asymptotic behaviour of their symbols. Then, in Section 2, we
deal with the gain part of the collision operator, construct its adjoint and prove
the main boundedness result formulated in (0.14). In Section 3 we consider the
loss part of the collision operator.

1. Preliminaries

Let g : R® — C be a complex-valued function, a = (a1, a2, a3) € N} a multi-index
of nonnegative integers and |a| = a; + a2 + az. We use 0%g to denote a mixed
partial derivative of g of the order |a]

a‘alg
02101 0%2050%v3

0% =
We will use the inequality o < 8 for two multi-indices in the following sense
ajﬂﬁa]’SBja .7:17253

Later we will need the Leibnitz formula for the multidimensional derivative of the
product of two functions f and g

0= (5 )@ @) (1)
B2
with the binomial coefficients
Otl! 042! OL3!

a —_—
( B ) Bl Ba! B3l (an — B1)! (az — Ba)! (as — B3)!

1.1. Function spaces

Let 1 < p < oo. The classical L, = L, (R®) space consists of functions g having
the property that the following Lebesgue integral is finite

L, = L,(R%) = {g: R® - C, /|g(v)|pdv < oo}.

R3
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The L, norm of the function g is defined by

1/p

lg | Lyll = / o@Pd| (1.2)

For p = oo, we use the canonical generalisation of (1.2)
llg | Loo || = ess sup |g(v)].
vERS
The following abbreviation will often be used
)7 =0+ PP, veR®, veR.

The symbol |v| = (v} +v3 4+ v2)'/? denotes here the length of the three-dimensional
vector v. The weighted ]L,<)"> spaces are defined for 1 < p < 0o as follows
L) = L& (R®) = {g LR o C, (Vg€ L,,} .
The corresponding norm is
1L | = g 1L -
The classical Sobolev space W' = W (R?) consists of functions with the following
property

Wg:Wp(R3):{g: R > C, 8°%€l,, Va: |a|§m}. (1.3)
The norm in the Sobolev space W' is defined as follows
1/p

lgIWr [ =| X %9 L, 1” : (1.4)

la|<m
The corresponding weighted Sobolev space Wy = Wi (R8) is defined via
W) = wt) (@) = {g: B - C, 0°(()"g) €Ly, Ya: [a] <m} (1)

and has the norm

H9|er)n,<u>

1/p
= ( > ||3a((')"9)|]1'p||p> : (1.6)

lo|<m
For the Sobolev spaces Wi* and W;"’(") the notations W™ and W™ () are
used respectively.
o) s equivalent to norm (1.6):
1/p

= D 6oLyl

la|<m

Remark 1. The following norm in Wy~

H9|W?’(")
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The Schwartz space S = S(R?) of rapidly decreasing smooth test functions is
defined as follows:

S=S(®) = {g € C*(®): |(0)"0°9(v)| < Cmys }

with arbitrary m € No , 3 € N}, v € R® and with some positive constants C,, g.
A sequence {g,}, n € N of functions from § is said to converge to zero (g, — 0)
in S if for each compact set  C R?, and for all m € Ny, 8 € N} the sequences
{{(v)™8Pg,}, n € N converge to zero uniformly in Q. The adjoint space S’ = S/(R?)
is called the space of tempered distributions. If, for example, ¢ € C(R®) is a
continuous function with the property

pv) = 0((v)*), |v] = o0

for some a € R, then ¢ defines a regular distribution over S as follows:

(g:ha = [ 9PEIdv, Vges.
RS
We will use the same notation even for a non-regular distribution ¢ € S’ bearing
in mind the duality between the space of test functions and the space of distri-
butions under the integral. The space C3° = C° (R®) of smooth test functions
with compact supports is a proper subset of S and its dual space of distributions
D = I(R®) contains the space of tempered distributions as a proper subset

C(R*) C S(R?) C S'(R®*) C IV (R?).

Let 4 = m + v, where m = 0,1,... is an integer and 0 < v < 1. The space of
Holder functions C* is defined as follows

O =0 (®) = {g e OR) : [|lg| || < oo}
and is endowed with the norm

lole =3 sw l0*g@i+ 32 9%,

la|<m @ |a|=m

v p(z +h) — p(z)
o €= sup fp(a)| + _sup PEFDZ 2N
2€R? = hck |l

1.2. The Fourier transform and further spaces

The three-dimensional Fourier transform of the function g is defined as

(€)= Fuelo@)(© = [ g0)e ) ao,
R3
where (v, £) denotes the three-dimensional scalar product. The corresponding in-
verse Fourier transform is then

—1 [a _ 1 - —1(&,v
o) = P ON0) = g [ 0760 ae. (1.7

R3
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The Fourier transform § exists, at least, for g € I;. It is well known that the
Schwartz space S is invariant under the Fourier transform F and under its inverse
‘7:—1

Fr.s58. (1.8)

The further properties of the Fourier transform are
Fose[09(0)1(§) = (=1 6)*Foselgl(§) , (1.9)

0 Foselg()](€) = (1)1 ¥ Fuse[vg(v)](€)
which hold for the arbitrary test function g € S. From the well known Plancherel
equality
(o) = [ £ 7o = (27 F. g (110
R3

which holds for every f,g € Lo we obtain the well known Parseval identity
If | Lall = (2m) %2 | £ Lo | (1.11)

Thus, the mappings (27)~3/2F and (27)%/2F~! are isometrical isomorphisms in
I,. The Fourier transform of a tempered distribution ¢ € S’ is given by the
following definition

~

<ga(10)1142 = <ga90)]L2 3 v.g €S
and has the property

FE s 58

With the help of the Fourier transform we define the Bessel potential space H}, =
HE (R?), s € R, 1 < p < oo of the tempered distributions by

=B (®) = { s : ol <o),

where the norm in ]HI;’) is defined as follows:

=

o1 = (R/ Fod, [0 @1 W) dy

In a particular case p = 2, due to (1.11), the norm in the space H* = Hg(R?)
acquires a simpler form (modulo the factor (2x)~3/2)

M=

llo ||| = /(€)QSI¢(£)I2d€ : (1.12)

3



Vol. 99 (9999) Mapping properties of the Boltzmann collision operator 9

Finally, for all s,# € R we define the weighted Bessel potential space HZ’<U> =
Hy " (R?) (or Ho) = 3™ (R) when p = 2) via

B = ®) = {pes’: [olBm® | = [0eI B <o} (113)

For an integer s = m € N the Bessel potential spaces H* and ]HIZ’(”) become the

classical Sobolev spaces W' and W’I',”’<"> (see (1.3) and (1.5) respectively) with
the equivalent norms (1.4) and (1.6) (see [16, § 2.5.6]). The following embedding
property of the weighted Bessel potential spaces is almost trivial:

Hy®) CHE CHE™ . VseR, Vv>0, Vu<0, Vpe[l,o00),

while the next one is less trivial and is known as the Sobolev lemma (see [15, §
2.7.1]):

3
I 7 (R%) C C°(R®), V¥s>0, Vpel[l,o0). (1.14)
Note that if X* denotes the dual (adjoint) space to a Banach space X, then

*
and, in particular, (]HIS’(">)* = H*{~"). Here we expose a minimal information
about interpolation of operators which suffices to our purposes. For details we refer
the reader to [16].

Let G be a category of Banach spaces X embedded in a common linear space
X C V. By an interpolation functor is meant a mapping which associates to a pair
{Xo, X1} in G (called an interpolation pair) a function space F({Xo,X; }) such that

1. Xoﬂxl C]F({X(],Xl})CXO-FXl;
2. For any two interpolation pairs {Xo,X1}, {Yo, Y1} in G any operator
Ae L(Xo,Yo) n ,C(Xl,yl)
restricted to F({Xo,X;}) belongs to L(F({Xo,X1}),F({Yo, Y1})).

Furthermore, if there is a constant C' > 0 such that for any interpolation
pairs {Xo,X;} and {Yo, Y;} in G and for any operator A € £L(Xo, Yo) N L(Xy,Yy)
the inequality

IA[L(F({Xo, X1 }), F({Yo, Yi})Il < CllA[L(Xo, Yo)I'= [ A]£(X1, Y1) ||’

holds, then F is said to be an interpolation functor of type 6 for 0 < 8 < 1. There
are known many interpolation functors in the literature, but we will apply only a
single one (see [16, § 2.4.7] for this result): for arbitrary sg,s1 € R, 1 < p < oo the
complex interpolation functor gives

F{H;, Hy'}) := [H Hp ], = G, (1.15)
where

s=(1-0)s¢ + 0s1, 0<0<1. (1.16)
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1.3. Pseudodifferential operators

In this subsection we give some basic definitions and properties of pseudodifferential
operators (PsDOs for short) for our subsequent applications.

The Hérmander class of symbols S§ o(R?) = S"(R?), r € R, which is encoun-
tered most frequently in the classical theory of PsDOs, consists of functions a(v, §)
with the following estimates:

007 a(v, )] < Capl€)”, Yo, N, W, eR.
For a symbol a € S™(R?) the pseudodifferential operator
A=Aww,D): S—§'

is defined as follows

D)) = G [ a0, OFcla@N(OeE de, g €.

R3

If a symbol a(v,&) = a(€) is independent of the variable v, we deal with a pure
convolution operator.

According the Calderon-Vaillancourt theorem (see, e.g., [14, Ch. XII]) the
inclusion a € S"(R?) ensures that the pseudodifferential operator

A(v,D): H — H*" (1.17)

is bounded for all s € R.

The operators which are connected with the Boltzmann equations are differ-
ent from the classical PsDOs because they have non-smooth symbols. Most general
results on the boundedness of such PsDOs are available in [12]. Again, these results
are useless for our purposes because they require some restricted smoothness of
symbols in the variable v.

The operators which we encounter in our investigation admit representation
as a Bochner integral from parameter-dependent convolution operators (see [7]). To
define such a parameter-dependent operator we consider a symbol a € C(R3,§/),
which is a continuous function a : R® — S'(R?), and write

A(u, D)[g](v) = Fi3, [a(u, §)§(€)](u,v), Vg €S. (1.18)

It is easy to ascertain that the definition (1.18) is correct, producing the operator
A(u, D)[g](v) : S(R?) — S'(R? x R?).

The next lemma is a simple consequence of the Parseval identity (1.11) and
plays an essential role in the subsequent section.

Lemma 2. Let r € R and assume the symbol a(u,§) is uniformly bounded

ess sup Ja(u, )] < Cal8)", VE € B (1.19)
u€ERS3

Then the pseudodifferential operator A defined as
A(u, D)lgl(v) = F3, la(u, ) Foe [9(2)] (6)] (u, ) (1.20)
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15 bounded
A(u,D) : H" — Ly
in the following sense

ess Sup lA(u, D) [g] | Le|| < Ca llg | H[| - (1.21)
u€R3

Proof. Using (1.20) and the Parseval identity (1.11) we obtain

M@ D)lg] Lo = |7, la(u. 03] L |
= (@n)° 3/2||a< 150) | Le|
(2m)7*2 lau, ) TG Lo -

Taking the supremum with respect to u, using (1.19) and the definition (1.12) of
the weighted Sobolev norm in H; = H" leads to the final estimate

ess sup [[A(u, D)[g] |Lall < (2m)~*Ca [I()73() | La |

u€RS3

= C,

2 L0730 e = Callg 1T .

2. The gain part of the collision integral

The next lemma is, perhaps, well known for experts in Boltzmann equation. Since
we were not able to find a relevant reference in literature and in our proofs we
quote Lemma 3 several times, below we expose the result with a proof.

Lemma 3. An arbitrary partial derivative of the functions Q+(f, g)(v) can be rep-
resented as

Q:(f9)v) = Y ( 3 ) Q(0°£,0°Pg)(v). (2.1)
BRa

Proof. Using the identity
Q. 9)) = 22QU, ) +2)|_,

the invariance of the collision integral with respect to the Galileo transformation
Q.9)w+2) = [ [ Blul) (707 + g’ +2) = 10+ 2)glw +2) de
R3 52

and the Leibnitz formula (1.1) we immediately obtain the required property (2.1).
m

Corollary 4. The following important boundedness properties hold:
Qi, Q—, @ : SxS—=S. (2.2)
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Proof. Since the proofs for the operators Q4,Q_ and @ are exactly the
same, we will consider only the operator ). Due to definition (1.6) and to prop-
erty (2.1) we get

|@+ g1 Wt

2

=Y el

loe| <A

2

- > X (§)ee@nera|L

la|<m+1 |82

)2.

2
9%g | LY H

< 2 (Z (5) e noeairy

la|]<m+1 \Bla
Now using the boundedness (0.9) we obtain the estimate
2
| @ (lg w2 c ¥ |erig
lal,|B]<m

- ol [l e

2

IN

for some positive constant C. (2.3) can be interpreted as the following boundedness
property

Q4 @ WA S wm AN _ wyrth) ym e Ng, ,Wr € Ry
Due to the Sobolev embedding lemma (see (1.14))
3

W;m(l/) c C p=m— 5 (2.4)

W o ¢ p=m -3,
ie.

0 e W) — ()p e ) = pe Ot
Therefore,
ﬂ W;n,(V) — m b =§
meNo, vER LNy, veR

and from (2.4) we obtain the required boundedness (2.2). L]

In order to study the mapping properties of the linear operator Q4 (f) we
find the explicit form of the adjoint operator Q% (f).

Lemma 5. The adjoint operator Q*.(f) to Q4 (f) defined in (0.5) can be written
as

Q3 (f)[h](v) = /f(v — u)A(u, D)[h)(v) du (2.5)
R3
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where the parameter-dependent pseudodifferential operator A (cf. (1.20)) has the
following symbol

a(u,€) = ¢'558) [ B(ul, '3 e (2.6
SQ

and B is the collision kernel.

Proof. Using the well known identity

@9,y = [ [ [ Bl fw) g0) R de o
R3 R3 §2
we obtain
<Q+ (f)[g]a h>]L2 = <97 Qj—(f)[h])ﬂa
with
QO = [ [ Blul, w70 ') dedo.
R3 2
The inverse Fourier transform (1.7) for the function h(w')

h(w') = ﬁ / h(e)e= ') gg

R3
leads after the substitution w = v — u,dw = du to

Q) = [ Fo=w (ﬁ [ atw, b0 ds) du
R3 R3
with a(u, £) defined in (2.6). Thus the proof is accomplished. ]

Remark 6. The property (2.1) is also valid for the operator Q% .(f). This can be
checked directly using the representation (2.5)

el = X (§ ) [P0 0w DA
R3

B2

- > (§)@@neaw. )

Bl

We have used the obvious commutativity of the differentiation and of the convolu-
tion-type integral operator A.

The main result we can derive from representation (2.5) is the following.

Theorem 7. Assume the symbol a(u, &) in (2.5) can be estimated as

la(u,€)] < Cor ™

Tl 1" 28)
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1. If
(v) 1 3
fel, and —§<)\§1, u>§+)\, (2.9)
then the operators
Q)+ HT LYY, (2:10)
Qi) + LY »® (2.11)
are bounded.
2. If
feELY and —2<A<1, v>3+), (2.12)
then the operators
Qu = H' LYY, (2.13)
Qu(f) = LY o H (2.14)

are bounded.

Proof. Let us rewrite (2.5) in the followmg equivalent form

/f |1 ) s (u, D) g (v) du,

where the symbol of the operator A; can be estimated as follows

|ul 1
a1 (u,&)| < Cam W .

This symbol is uniformly bounded with respect to the parameter u

ess sup a1 (u, )| < 22C, (&) (2.16)
u€R3

(2.15)

and therefore fulfills the conditions of Lemma 2. To prove (2.16) we consider first
the case || < 1 and apply the obvious inequalities

1 1
PIGES] <1<22(¢)!

0 (2.15). Now let |£] > 1. Then we rewrite (2.15) in the following form
L
(u) [ul [€] +1

lu| < (u),

|(11 (ua §)| S Ca

and obtain the estimate (2.16) since
1 ul B 1

— <1, =
lul €] +1  |€] +1/]ul

< <l <29
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To prove (2.10) we proceed as follows. Let f, denote {-)” f(-). Then we obtain
|z ™
2 3
/ L/ ) i o =) 1o = 0 A, D)gl(0) du] dv
R3 3
<2%

/ L/ fufl A |fo(v u)||A1(u,D)[9](U)|d“] dv

R3
Above we have applied the inequality
(u—v)" <22 (u)y (), Yu,veR®, (2.17)
which is an alternative form of the Peetre inequality
(u+ ) < 25 (W) )" | Yu,0 e B, peR. (2.18)

Further we apply the Schwarz inequality and accomplish the estimates

|@stgr 1™

< 5[//|fyv—u|2d / e 141w DY) dudvr

R3 R3

v 2 1-v)
2% ||f, |]Lz|| |2(1 » /|A1 (u, D)[g](v)|* dv | du

K ” ( )2(1 v) p D
28 £ L") / oy essjgﬂ&nA(u, )lg) Lo

-

I (2.19)

due to Lemma 2 (see (1.21) and (2.16)). Moreover, the conditions in (2.9) ensure
the convergence of the following integral

o [ T(A+3)T(v=-A-3)
Cxwn —/ MRSy du = 27 o) : (2.20)
3

The inequality (2.19) accomplishes the proof of (2.10). To prove (2.13) we start
similarly to the foregoing case. Since f € Lé'é), using

[f @ < 1f L& Iw) ™
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we get

|

< g | L/ <v>—”|u<|?>x<v—u>—"A1<u,D)[g](v)|du] dv

R3 3

1
2

1
2

< 28| | LY /L/%IAl(u,D)[g](v)ldUI dv
R3 3

Above we have applied the inequality (2.17). Next we apply the inequality

/ L/w(u,v) du]2 dv : S/{R/wQ(u,v) dv}E du, (2.21)
s Zs s

R3

proved in [9, Theorem 202] for a non-negative function w(u,v) > 0, and accomplish
the estimates

| @ (9l 15

2¢||f | LY / i L |1, D) g0} dv] du

<281 L/ o du] ess sup [A(w. D)lg] Ll

H (2.22)

due to Lemma 2 (see (1.21) and (2.16)). Moreover, the conditions in (2.12) ensure
the convergence of the integral (cf. (2.20))
w)'”

CX,V,Z = /? | du =27

D5 ()

The inequality (2.22) accomplishes the proof of (2.13). (2.11) and (2.14) follows
from (2.10) and (2.13) by duality because H!' and LY’ are the dual spaces to H !
and ]Léf"), respectively. n

Lemma 8. For the VHS model (0.4) the symbol a(u,&) defined in (2.6) can be
written explicitly:

a(u, &) =4r C’Ael%(u7’$)|u|’\sinc (%|u| |§|) , (2.23)
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where the notation
sin(y)
Y
has been used. The symbol a(u,§) in (2.23) fulfils the estimate (2.8).

sinc(y) =

Proof. Using the obvious inequality

|sinc(y)| < ,y>0

3
2y +1
we deduce from (2.23) the estimate (2.8) with the constant C, = 127C). L]
Lemma 9. If the collision kernels of the inverse power potential type (cf. (0.3))
B(Jul,p) = [ugm(p), A=1—4/m, m>1

has the additional property

gm € H%([_lu 1]) ;a>1, (2'24)
for its symbol a(u, ) there holds estimate (2.8).

Proof. The symbol a(u, &) now has the following form

1 1
a(u,€&) = &2 > /gm(u)615|“|(e’£) de .
S2
Thus it is sufficient to estimate the integral over the unit sphere

/gm(u) ealule ) ge < ¢,

7|u| 1 (2.25)
S2

Assuming |u| €| < 1 we immediately obtain this estimate with the constant

Cr = 4m|gm | La ([=1,1])] -
The estimate for |u| || > 1 is a little more delicate. We use the following parametri-
sation of the unit sphere in (2.25)

cos sinf
e=Q | sinp sinf ,0<p< 2, 0<0< 7, de=sinfdpdf,
cosf

where the orthogonal 3 x 3 matrix @) is compiled from the following columns

(Exu)x§ Exu &
€ xul €] 7 1€ xul” [€]

Thus we get
T 1 T
Qe =161(0,0,1)", Q" =1 (l6 x ul.0, (€:w)

and

w=pu(p,0) = % = W1|u|(|§ X u| cosy sinf + (§,u)cos€) .
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The integral (2.25) transforms into

2w

// ulep, 0 e 2|u| |€|Cosasm0dcpd6

Integration by parts with respect to 6 leads to

™

/ g (19, 8)) 2111 €1 €088 i g gp — 2 [gm(u)ezam €] cos®
/ [ul €] 0

2 /ﬂ ' Op(,8) 1l|u||€|cosb
+ m 70 e’2 do .

The Sobolev lemma in the one-dimensional case reads as follows: (cf. (1.14))

H (R) c C(R), s >1/p.

Thus condition (2.24) means that the function g,, is continuous on [—1,1] and
therefore |gn, ()| < Co. Using the inequalities

’ du(p, )
! 7
‘gm (M(%@)‘ < Co, /0 . (u(cp,G)) ‘ @ <y, |80 <
we get the estimate
Cy 2C,
9m e 2|u|(e §)d€ < <

/ w |UI|€| [ul |§] +1°

SZ
with C4 = 87 (Co + C3). Thus (2.8) holds with the constant C, = max(C1,Cy) .

|
Now we can prove the main result of the paper.

Theorem 10. Let the collision kernel B(|u|,u) be such that estimate (2.8) holds
and

020, —0<s<o.
1. If
1 3
—§<)\§1, V>§+)\ (2.26)
then the operators
Qy : HW xHH - HE, (2.27)
QL : HW xET o HH Y (2.28)

are bounded.
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2. If
—2<A<1, v>3+)\ (2.29)
then the operators
Qy : HZW xHH™ - EEH (2.30)
QL ¢ HLW x I - HH Y (2.31)

are bounded.

Proof. If s = o0 = 0 the proposed boundedness properties have already
been proved in Theorem 7. For non-negative integers s = ¢ = 0,1, ... the proof
follows with the help of (2.1) and (2.7).

By interpolation (see (1.15)-(1.16)) we derive the proposed boundedness
properties for arbitrary s,o > 0 fixing g and f one after another, we make Q4 (f, g)
into a linear operator Q4+ (f)[g] or Q+(g)[f], applied to g and f respectively. To
apply the interpolation result (1.15)-(1.16) we still need to remove the weight. For
this we note that the operator

Q+(f) : H — Ho(W (2.32)
is bounded if and only if the operator
QIMM(f) + Hy - H) (2.33)

is bounded, where

Q" (Nlgl(w) == () Q+(H() 7 gl(v),
p=2,00, w,0€R andeither y=v, u=0 or v=0, u=—-v.

Now applying the interpolation (1.15)-(1.16) we accomplish the proof for 0 < s < ¢

For Q.
For )} and positive parameters 0 < s < o the proof is similar.

Since the spaces H**) and H~%(~*) are dual for arbitrary s,v € R, from
(2.27) and (2.28) we get by duality that the operators

QL : HW xH T s H

Qs : HOW xH*® o H-H

are bounded. These are the boundedness results (2.28) and (2.27) for negative
—o < s <0, respectively.

The boundedness results (2.30) and (2.31) for negative —o < s < 0 follow
from (2.31) and (2.30) for positive 0 < s < o by duality. L]
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3. The loss part of the collision integral

The bilinear operator ) _, which corresponds to the loss part of the collision inte-
gral defined in (0.6), can be written in the following form

Q-(f,9)(v) = /Btot(|U — w|)f(v)g(w) dw = f(v) Blg](v),
R3

where the linear integral operator B

Blg)(v) = / Bios(|v — w))g(w) duw (3.1)
R3

is of the convolution type. In order to study the mapping properties of the operator
(3.1) we need to investigate the kernel. For the inverse power potential model (cf.
(0.3)) the kernel By, is

u,e —4/m
By = |U|174/m/9m (( )) de:gm,totlu|1 4 ; (3.2)
SQ

[l

1
Im,tot = QW/gm(H)d/J/
—1

and with A =1 — 4/m the operator B takes the following form

Blgl(®) = g tot / - wPgw)dw, —3<A<1.
RS

In the special case of the Maxwell pseudo-molecules the integral operator (3.1)
degenerates into the functional

Blgl(e) = 9o [ 9(w)dw = 091
R3
where ¢ denotes the “density” which corresponds to the function g.
The mapping properties of the operator B can now be formulated as follows.

Lemma 11. Assume

3 3 3

with ¢' = q—gf and 1 < g <oo. Then

B: L — LY
is continuous and the inequality

8191 12| < Craa 91047 |

holds for all g(v) € Lg”).
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Proof. We suppose 1 < g < 00. For ¢ = 0o the proof is essentially the same
with obvious modifications concerning the supremum norm
Hg | L H = ess sup |{(v)*g(v)].
vER3
We proceed with the Holder inequality as follows:
[(v) *Blgl(v)| = gm,tot/(v)’AIU — w|Mw) *(w)*g(w) dw

1
o

Im, tot (R[ (%)q, dw Hg|L‘<lu> H )

For A > 0 we use the substitution w = v — w, dw = dw in the last integral.
Removing the tilde sign it turns out with (cf. (2.17))

o —w|* < (v —w)* < 222 (V)* (w)*

IN

that the integral

v —w|? ¢ 2 N
[ () aw<2 [0 7an<oo
R3 R3

is finite because of the assumption of the lemma (1 — A)g’ > 3.
For A < 0 we similarly find with

o] < 2720 — ) o)
and using the substitution @ = v — w, dw = dw again

v —w \* (v — )~
/ <<v>*<w>u WS | T o (e O <0
R3

R3

The last integral converges for w — v because of the assumption —g¢'A < 3 and for
w — oo because ¢' (A + p) > 3 (see (3.3)).
The remark that for A = 0 the function B[g](v) is constant (see (3.3)) com-
pletes the proof with the final estimate
@) Blgl(©)] < Croag 91 L7 ||, -3 <a<1.

Remark 12. The condition (3.3) is not restrictive for the solution of the Boltzmann
equation f(t,z,v) > 0 which represents the distribution of particles in the phase
space Q X R® and, therefore, f(t,x,v) maintains a finite kinetic energy (0.18).

Corollary 13. If the condition (3.3) holds, the operator
B : HA) — HEN

is bounded for all s > 0.
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Proof. For an integer s = m € Ny the proof is a direct consequence of the
foregoing lemma because

0*Blgl(v) = B[0°g)(v), a €N}, |a] <m

(see (2.1)). For arbitrary s > 0 the proof then follows by interpolation (see (1.15)
and (1.16)).

Corollary 14. Let (3.3) hold and 0 < s <o, 1 <p< oo, v € R. Then the bilinear
operator

Qi . Hg)<u> X HZa(V) — ]H[;;(fo) (34)

is bounded.
In particular, the loss term (0.6) of the Boltzmann collision integral (0.2) has
the following boundedness property

Q, : }H[;;(‘O X ]H[;;(”) _>]H§s)a<y_k)7

forall 0 < s <o provided the conditions (3.3) hold with ¢ =p and p=v.
Proof. First let us prove the following assertion:

a€HL, o e HE™)  yield ap € HHWH) . (3-5)

The assertion can easily be verified for integers s, = 0,1,..., s < 0. Now we
fix a € W m € N, interpret (3.5) as a boundedness of the multiplication
operator al, and extend the boundedness property to an arbitrary 0 < o < m by
interpolation (1.15) and (1.16). After this we fix ¢ € Hix” and extend similarly
the boundedness property for arbitrary 0 < s < ¢. This accomplishes the proof of
(3.5).

For integers s = n, 0 = m € Ny the proof of the asserted boundedness (3.4)
is a direct consequence of property (2.1) and property (3.5).

For arbitrary 0 < s < o the proof then follows by interpolation, applied twice
as in the proof of assertion (3.5). m

Remark 15. It can be proved that the operator

B : H ., » I

q,com q,loc

is bounded for arbitrary s € R. In fact, the symbol a(§) of the operator of the
convolution type B

Blgl(v) = / Buor(|v — w]) f (1) dw

can be computed as the Fourier transform of its kernel

a(§) = Fu—e[Bror(|u])](€)
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(cf. (3.1),(3.2) ). Thus the symbol of the operator By can be written as

a(&) = gm,tot IUIAeZ(u’E) du .
/

The result is (see e.g. [5])

—(27)%ga,t0t 6,‘%?') , forA=0,

a(§) =
—4r (A + DT'(A + 1) sin ()\Tw)gm’wtm% , for X#0.
In the case of the hard spheres model (A = 1) we get
8n2d?
a(é) = —
© =g
Thus the symbol a(§) always has singularity at £ = 0. By cutting out the neighbour-

hood of 0, with the help of a cut-off function with a compact support we decompose
the operator B in a sum

B=BY 4+ B®
where B has no more singularity at 0 and, having the order —3 — X, maps
BWY W, - HASHA

q,com q,loc
The operator B(()Z) is smoothing
6(2) - P N (coo C HS+3+)\

q,com q,loc

because the symbol has a compact support, but functions BP[f](v) might have
problems with integration at infinity.
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