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THE PRINCIPLES OF THE CALCULUS OF VARIATIONS
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Glossary
R =RU{—oc} U{+oc}
i = { (1) ’ 2 f; (Kronecker symbol)
MmN space of (n x N)-matrices = R"N
Du differential (gradient) of u : @ — RV(R)
graph u :{(x,u(x)):JJEQ}CQXRNforu:Q—HRN
l-graph v = {(.r,u(z:),Du(;c)) RS Q} COXRY x MV for u: Q — RN
a.e. almost everywhere
ls.c. lower semicontinuous



Lr n—dimensional Lebesgue measure on R”
L™ — a.e. except for some set A with £L*(A4) =0
Lr(Q) space of Lebesgue — measurable functions v on € with finite LP—norm

1/p
lullr = ([ lurdzn) ™ 1<p <o
Q

L>(Q) space of Lebesgue — measurable and essentially bounded functions u on £} with
norm
el = esssup u(z)
€N
spt u = clos {x € Q:u(z) #0} (support of a function v on Q)
Cc'(Q) space of continuously differentiable functions on 2

Cx () space of smooth (= arbitrarily often differentiable) functions v on € such that
spt u 1s a compact subset of ()

BV(Q) subspace of L'(Q) — functions of bounded variation

H™?(Q))  Sobolev space of functions u € LP(Q) whose distributional derivatives of order
up to m also belong to LP(£)) with norm

m

[ellzmr = kE 2 D%l

=0 |a|=k

H"?(©))  completion of C*(Q) with respect to the norm || - ||gm.
Summary

Assuming the existence of a classical solution for a variational integral one derives a system of
second order differential equations, the Euler—Lagrange equations, which necessarily have to
be satisfied. To ensure the existence of, for example, a minimizer one uses the direct method
of the calculus of variations. This produces a generalized solution and therefore the question
of regularity arises. Here, the convexity of the variational integral is an important feature.
One method to tackle non—convex problems is the theory of ['-convergence. Topological
conditions enter when investigating unstable critical points.

1. Introduction

As Giaquinta and Hildebrandt write in the introduction to the first volume of their treatise:
" The Calculus of Variations s the art to find optimal solutions and to describe their essential
properties.” Examples from daily life are: which object has some property to a highest or
lowest degree, or what is the optimal strategy to reach some goal. The Isoperimetric Problem,
already considered in antiquity, is one such question: Among all possible closed curves of
a giwen length, find those for which the area of the enclosed inner region is mazimal. A
property shared by such optimmum problems consists in the fact that, usually, they are easy
to formulate and to understand, but much less easy to solve.

The principle of economy of means: ”What you can do, you can do simply” is an idea that
dominates many of our everyday actions as well as the most sophisticated inventions or
scientific theories. Therefore, it should come as no surprise that this idea was extended to the
area of natural phenomena. As Newton wrote in his Principia: ” Nature does nothing in vain,
and more is in vain when less will serve; for Nature is pleased with simplicity and affects not
the pomp of superfluous causes.” Similarly, in the first treatise on the Calculus of Variations,
his Methodus inveniendi from 1744, Euler wrote: ” Because the shape of the whole universe
18 most perfect and, in fact, designed by the wisest creator, nothing in all of the world will
occur in which no mazimum or minimum rule is somehow shining forth.” And, even in the
rational world of today’s science where apparently no metaphysics is involved, there remains



the fact that many if not all laws of nature can be given the form of an extremal principle.
Apart from this introduction, this article is divided into three sections. The first one, Classical
Theory, roughly covers the time from FEuler to the end of 19th century and is concerned
with so called Indirect Methods. The next section describes the relevant ideas developed
during the last 100 years and is entitled Direct Methods. An important ingredient here is the
introduction of functional analytic techniques. In fact, it was the Calculus of Variations that
gave birth to the theory of Functional Analysis. The third and final, extremely short, section
bears the title Unstable Critical Points, and 1s concerned with equilibrium solutions which
are no longer extrema. Here, an important role is played by topological methods.

In this overview of the Principles of the Calculus of Variations it was of course neither
intended nor possible to cover all the important contributions to the subject. However, in
the list of references I have tried to include some of these. In the material presented here I
necessarily had to restrict myself to exemplary model cases. For that reason, for example,
variational integrals depending on higher derivatives or variational problems with subsidiary
conditions are not included.

2. Classical Theory

Compared to the developments in the 20th century which will be the topic of section 3, this
part of the calculus of variations could also be called ”Indirect Methods”. The underlying idea
is the following: Suppose you know that a solution to a variational problem (e.g. a minimum)
exists. What can you say about such a solution? Which equation(s) does it satisfy? Which
properties (e.g. symmetry) of the corresponding variational functional does it inherit?

2.1. The finite dimensional case

First, let us have a look at the finite dimensional situation. Let @ C R” be an open set and
f 2 = R a smooth function. Suppose f has a local minimum at a point zg € ), i.e. there is

a ball B,(z0) C 2, r > 0, such that
f(x) = f(xo) for any = € B, (xo).
Then, at such a point zo € © we have
Df(xo) = grad f(zo) =0 (1)

where grad f(z¢) € R" is the vector whose components are the partial derivatives of f at z.
A point zy € Q satisfying (1) is called a critical point of f.
Furthermore, using second derivatives, we have:

(a) If ¢ is a minimal point of f then D*f(xy) > 0, i.e. the symmetric matrix of second
partial derivatives is positive semidefinite.
(b) Suppose, x is a critical point of f and furthermore that D?f(z¢) > 0 (positive definite)

then xq is a minimal point of f.

2.2. One-Dimensional Variational Integrals

Let us now turn to the calculus of variations. We start with one—dimensional integrals, that
i1s we consider functionals F of the form

Flu] = /F(m,u(x),u'(:v))dx. (2)

1



Such functionals are called variational integrals. Here, I C R is an interval (in general I will
be bounded), F : T x RN x RN — R is called the Lagrange function (we write F = F(x, z, p)),
and v : I — R is supposed to be smooth. More generally, it suffices to consider the case
F € C'(U) with U C R x RY x R" an open set such that {(:If,u(;c),u’(x)) e eIy cU.In
this case, F[v] is defined for any v € C'(I,R") provided ||v— u||(;1(7) < 4 for & > 0 sufficiently
small.

Thus, for an arbitrary function ¢ € C'(I,RY) we see that

®(e) := Flu+ ey (3)
is defined as soon as |e| < o 1= §/|¢][cn (7). We get @ € C'(—¢0,¢€0) and easily compute

®'(0) = /{Fz(:l;, u,u') o+ Fy(z,u,u') - 'hda. (4)

In the following we call §F[u, ] := ®'(0) the First Variation of F at u in direction ¢. From
(4) we deduce that §F[u, ] is — with respect to ¢ — a linear functional on C'(I,RY).

Definition
A function u € C'(I,R") satisfying

/{FZ(:E, u,u') -+ Fy(z,u,u’) - ¢'}de =0 (5)

for any ¢ € C>®(I,RY) is called a weak C'-extremal of F. Note, that for v € CY(I,RY) we
have that (5) is equivalent to the fact that §F[u,-] = 0 on C>(I,RM).

O
With the above definition in mind we have the following first model result:
Theorem 1
Suppose, that u € C'(I,RY) is a weak minimizer of F, that is
Flu] < Flu+ ¢ (6)
for any ¢ € C°(I,R") such that l¢llery < 6 for some é € (0,1).
Then, u is a weak C' — extremal of F.
O

For the following considerations we assume that u and F are at least of class C?.
A partial integration in (5) then implies (I = (a, b))

0= /{Fz (JJ,TL(JJ),U,I(J,‘)) — %[Fp(m,u(x),u'(m))]} cp(z)dx (7)

for any p € C(I,RY).

We now need the so called



Fundamental Lemma (of the Calculus of Variations)
If h € C°(I,R") is such that for any ¢ € C>*(I,R") we have

/h(:v) o(a)da = 0, (8)

then h =0 on I = (a,b).
U

Because of the importance of this result in the calculus of variations we present the simple
Proof

We argue by contradiction, that is we assume there exists 19 € {1,... ,N} and z € (a,b)
such that A" (zo) # 0. The continuity of I then yields the existence of some number § > 0
with (zg — §, 20+ 0) C (a,b) such that

. 1 .
| (x)] > §|h’°(:1:0)| for |z — zo| < 4.
Now, choose € C>®(I,R") in such a way that
no(z) =0 for |z —z0| >,
n(z) >0 for |z — x| <,
n'(x) =0 for i .

Finally, define ¢ by ¢(z) := h'(x0)n(z) so that from (8) we get

b xo +5

0= afh(:z:) cp(x)dr = {5 R (z)h™ (zo)n(z)dx >
> LR (2)? xofj:n(;c)d:v > 0.

This is a contradiction and concludes the proof.

Remark
An important generalization of the fundamental lemma reads as follows: Suppose
h e LY(I,RY) (instead of C°(I,RN)) satisfies (7), then h(z) = 0 for L'-ae. z € I.
The proof is similar and uses the fact that C>°(I,R") is dense in L*(I,R").

0

As a consequence of the fundamental lemma we get

Theorem 2
Suppose u € C*(I,RY) is a weak extremal of F and that F is of class C*(U) where U is an
open set containing the 1-graph of u. We then have

d

%[Fp(x,u(z,‘),u'(m))] — F, (.7:,71,(.16),11,'(3:)) =0 onl (9)



Remark
Note, that (9) is a system of ordinary differential equations, the so called Euler—Lagrange
equations:

4R i(:v,u(:c),u'(:v))] — F, (:zz,u(:v),u'(:c)) =0, +=1,...,N. (9%)

dzl™ P

To be more precise, we get a system of N quasilinear ordinary differential equations of second

order for the N unknown functions u!,... , u".

O

At this point let us discuss several
Examples

1. The Lagrange function F(z,z,p) = w(z,2z)4/1 4 |p|? with N =1 and w > 0 leads to

the variational integral

b

Flu] = /w(;v,u)\/l + (u')2dx

and the Euler-Lagrange equation

!

d u
o [w(m, u)il )

This can be written as

kwy/1+ (u)? = w, — v'w,

where

—w,(z,u)y/14 (u')? =0.

Ul

d
dz

R =

is the curvature of the curve graph u C R2
In case w = 1 the variational integral F is just the length of graph u and we get kK = 0,
i.e. u” = 0. Thus, the weak extremals of class C? of the length functional are the (affine)
linear functions u(z) = az + § (o, 8 € R).
N .
2. The choice F(z,z,p) = F(p) = |p|> = 1 > Ip'|*, N > 1, leads to Dirichlet’s integral:

1=

—

b
1
Dlu] = §/|u'|2d;v

and the Euler-Lagrange equations

d . .
—(u') =(u')"=0 ¢=1,...,N.
d

x

Again, we identify the extremals as the affine linear functions.

3. A classical problem in the calculus of variations is the so called brachistochrone problem

first formulated by Galileo in 1638:



Find a curve, connecting two given points A and B, on which a point mass
moves without friction under the influence of gravity in the least possible time
from the initial point A to the end point B below A.

Galileo believed the optimal curve to be a circular arc. However, this is wrong and the
correct solution was finally found by Johann Bernoulli in 1697:

Suppose, that in a Cartesian coordinate system with gravity acting in direction of the
negative y-axis, A = (z1,y1), B = (22,42), 1 < 22, y1 > y2. Then, for a function
w: [r1, x2) = R with u(z;) = y; and u(z) < y; for « € (1, 23], the time needed by the
point mass to slide from A to B along the graph of w, starting at A with zero velocity,
1s given by the quantity

14 [w/(2)]?
y — u(z)

where ¢ denotes the acceleration due to gravity.
The solution turns out to be a cycloid, which in parametric form can be given as

{x(f) = x1+k(t —sint),

€ [0,T]
u(t) = y1 — k(1 — cost).

Here, the constants k and T' are determined by the conditions z(T') = x5 and u(T') = ys.
O

In addition to the Euler-Lagrange equations there are further conditions for a minimum
(compare the beginning of this chapter).
The necessary Legendre — condition:

ZF Ju'(2)) €€ >0 (10)

1,k=1

for any vector £ € RY and every z € I. (Follows from ®”(0) > 0.)
The sufficient Legendre — condition:
There is a number m > 0 such that

Z Fyip (z z,pff >m|£|2 (11)
i,k=1

for any vector £ € RY and every (z,2,p) € R x RN x RV,

2.3. Multiple Integrals

We now turn to multiple integrals in the calculus of variations. Again, we start with necessary
conditions.

Suppose that Q@ C R" is open (and in most cases bounded), u : @ — RV is a smooth function,
and that

f:f(;v,z,p):QXRNxM"XN%R



is a Lagrange function. Thus, the corresponding variational integral is given by
Iu] := /f(;c,u(x),Du(x))dE"(;c)
Q

For ¢ € CH{Q,R"Y) und & > 0 sufficiently small let
D(e) == Ifu+ ey]

and denote by
01[u, ] := '(0)

as before the First Variation of I at u in direction ¢. A calculation yields

N n
'(0) = / D (i@, u, Du)p' + > fi (w0, u, Du)gha]dL(z)
Q =1 a=1

N n
= [ Sl Du) = Y s o, Dl L),
o =1 a=1

where we used partial integration.
Again, we have a corresponding fundamental lemma and are thus led to the system of Euler-
Lagrange equations for a weak extremal of the variational integral I:

For i € {1,... N} we have

Z di fp z, u( ),Du(;c))] — fai (x,u(;c),Du(x)) = 0.

Differentiating, we arrive at

n N )
2 [ piae (@0, Du) + 37 fizi (@, w, Du) Daw’ +

a=1 =
‘o " (13)
+ > fpipﬁ(:zz u, Du)D,Dsw?] — f.i(x,u, Du) = 0.
7=1p8=1 a
Remark
The most important term in this expression is f (;c u, Du).
O

Here are two
Examples

1. For n > 1 and N =1 the Lagrange — function

1
f($727p> - f(p) = §|p|2

again leads to Dirichlet’s integral:

1
Dlu] = §/|Du|2d£”.

Q



Because f,, = pa we get f,,,; = dap and therefore the Euler — Lagrange equation is

Z D,D,u=: Au=0. (14)
a=1

We may conclude that the extremals of Dirichlet’s integral are the harmonic functions.

2. If we choose

fz,z,p) = f(p) = V14 |p]?

for n > 1 and N = 1 we are led to the area integral
Alu] = /\/1 + |Du|?dL",
Q

Pa

that is Afu] = area of graph u. From f,, = s we get the Euler-Lagrange equation
p

zn: d D,u & Du 0 (15)
= 1V R — = .
Z @ \ /17 Dup VIt DuP

Equation (15) is the famous minimal surface equation.

O

The analogue to the necessary Legendre—condition (10) in the one—dimensional case is now
called the Legendre — Hadamard condition:

3737 fpn (e ule), Du(2)E € ans > 0 (16)

i,k:l 0{,6:1

for any z € Q, £ € RY, n € R™. Again, (16) is necessary for u to be a minimum of the
variational integral associated with f. Alternatively, (16) can equivalently be written as

YD frg(wsule), Du(z)) wirh > 0 (16

k=1 a,f=1

for any « € Q and every matrix 7 = (ﬁ;);zll’ N ,, of rank one. Note, that 7 has rank one if and

only if # = £ @, i.e. m = £'n,. The strict or suﬁcwnt Legendre — Hadamard condition reads

N n
% Yo D ot (@ u@), Du(@)E € nans = AEP | (17)

t,k=1a,f=1

for some number A > 0. In this case, the Lagrange function f is said to be strongly elliptic on
the function u : Q — RV,
We call f = f(z,z,p) (uniformly) strongly elliptic if

5 Z S Frins (2D € s > A€ (18)

zk 1a,=1



holds for some A > 0 and for arbitrary =, z,p, £, 7.
In contrast, f(x,z,p) is called (uniformly) superelliptic provided

N n
1 :
LSS (e spimial > Anf (19)

i,k:l a,ﬁ:l

holds for any matrix # € M™¥. Note, that (19) is equivalent to the fact that
M™N 3 p— f(x,z,p) is a convez function.
O

3. Direct Methods

Suppose, you want to find a harmonic function v with given boundary values f, that is you
want to solve the Dirichlet problem, let us say on a ball B C R™:

Au=0 m B,
(20)

u=f on 0JB.

Using the fact that Au = 0 is the Euler-Lagrange equation for Dirichlet’s integral Dlu],
you might try to minimize D[] in a suitable class of functions. This approach is known as
Dirichlet’s principle. However, as Weierstrass pointed out at the end of the 19th century this
1s not always possible because you first have to ensure that a minimum actually exists.
Furthermore, the fact that you have to work on infinite dimensional spaces in general implies
that the functionals you consider are no longer continuous. This was first pointed out by
Lebesgue at the beginning of the 20th century who observed that the area functional is not
continuous but merely semicontinuous with respect to uniform convergence of surfaces. A
one—dimensional analogue is a sequence of zig-zag curves c(t).

You start with the curve

1 1

o) =5l -l

t 1
5 5 € [0,1]

which is extended periodically to all of R. Now, define ¢ by
cr(t) =27%¢(2*) for t €[0,1] and k € N,.

We then have
Llex) = V2

while their uniform limit is ¢(t) = (¢,0), ¢ € [0, 1], so that

1 =L(c) <liminf L(ex) = V2.

k—oo
3.1. Tonelli’s Program
It was Tonelli who noted that the Arzela—Ascoli compactness result and Baire’s concept of

lower semicontinuity can be generalized from real functions (of one or several variables) to
variational integrals. We describe his approach:

10



Tonelli’s method (~ 1911)
Aim: A functional Flu] defined on a non-empty class C (of functions) has an absolute

minimum on C.
Step 1: Prove that F 1s bounded from below on C, that is

Flu] > ¢o for any u €C.
This implies that

inf{Fu] : v € C} € R.

Step 2: Show that F 1s weakly lower semicontinuous with respect to a suitable kind of se-

quential convergence, that 1is:
If up, — u in C then Flu] < li]:;n inf Flug].
-0

Step 3: Verify the compactness of C with respect to this kind of weak convergence:
For every sequence {uy} C C there exists a subsequence {uy,} and uy € C such that
ug, — up 1n C.
Alternatively:
Show that C contains at least one convergent minimizing sequence, that is:
There is {ugx} C C and ug € C such that u; — ug and klﬂﬂgJ Flug] = il(}f F.

Result:  Combining the three steps we get:
inf F < Fluo] < lim inf Flu] = inf F,
that is
Fluo] = inf F

so that wug 1s the desired absolute minimizer of F on C.
]

To be more precise, Tonelli assumed that the Lagrange function F(z, z, p) of the variational

integral
b

Flu] = /F(:c,u(x),u'(:v))dx, [a,b] C R,

a

satisfies the conditions
Fop(z,z,p) >0 (convexity)
and
F(z,z,p) > colp|™ —c1, m>1, ¢g >0, ¢1 >0 (coercivity).

For the class C of competing functions he then chose a suitable subset — determined by the
boundary conditions — of the space of absolutely continuous functions defined on the interval
I = [a,b]. The notion of convergence he employed was uniform convergence.

We get the following

11



General Existence Theorem

Let F:C — R U {+4oc} be a functional defined on a non-empty set C equipped with such a
notion of convergence that C is sequentially compact and such that F is lower semicontinuous.
In this case there exists a minimizer of F on C, that is there exists uy € C such that

Examples

1. Minimize Dirichlet’s integral

Dlu] = %/|u’(;c)|2d;c

within the class
K, :={uecC’(I)nCY(I) : u(0) = o, u(l) = B}
where o, 8 € Rand I = (0,1).

2. Minimize the length of the image or of the graph of mappings u : [0,1] — R with
prescribed values at 0 and 1:

E[u]:/1|u'|dx or A[u]:/l\/mdm

0

in K; orin Ky = {u € C°(I)NDY(T) : u(0) = a, u(1) = B}. Here, D! denotes the class

of piecewise C!'-functions.

3. Minimize the length of the image or of the graph of mappings from [0,1] onto S' C R?
which map 0 and 1 to (1,0) € S*. Here, S' = {(z,y) € R* : 2% + y* = 1} is the unit
circle in R? centered at the origin. In this case, the class K3 is given by

Ky = {uc COT,RY)ND"(I,RY) : u(T) = S, u(0) = u(1) = (1,0)}.

O
Remark
In general F-bounded subset of the classes K; will not be sequentially compact with respect
to C'—convergence. Thus, one needs a weaker notion of convergence 7; but then the K; will
no longer be T—complete.
We therefore have to complete the classes K = K; with respect to 7, that is we are forced
to work in a class K of generalized functions (no longer continuous, not classically
differentiable, ...). Furthermore, we have to extend our fundtional F to a new functional
F(ry defined on K(;). In general, there will be several ways to achieve this. How should one
proceed?
To summarize, we are faced with the following problem: If we want to use direct methods we
are forced to work in classes of generalized functions, and thus to accept minimizers which
may not be smooth.

12



3.2. Hilbert’s Problems

This was already pointed out by Hilbert in his celebrated lecture at the International Congress
of Mathematicians, held in Paris in 1900. Hilbert’s 20th problem, stated at this Congress reads
as follows:

Has not every reqular variational problem a solution, provided certain assumptions
regarding the given boundary conditions are satisfied, and provided also if need be
that the notion of solution shall be suitably extended?

Let us return to the Examples above.

In example 2 for a =0, 8 =1 and

11
0 ) 0 S xT S 27 %
T T I e
1 , gtpsesl,
we have v € K.
Obviously,
sup Llug] < oo,  sup Alug| < oo,
k k
and
0, 0<z<i
: ) _J 1 _1
;}Lrﬁlo up(z) =1u(z) =4 3 , T=3
1, ;<z<1l.
For 7 = "pointwise convergence” we then get u € Ky(;); but for the pointwise derivative

u' = 0 (which exists on [0,1] — {1/2}) we have
Lu] = 0.

On the other hand, for arbitrary v € Ky we get L[v] > 1.
In example 3 we have uy € K3, where

(1,0) L 0<a< ]
up(z) = (cos 2rk(z — 1), sin2rk(z — %)) , 2<a <141
(1,0) , gt <e<l

The weak limit of the uy is the constant function u(z)
hand for v € K5 we have

(1,0) so that L{u] = 0. On the other

Lv] > 27. 0

We turn to the problem of eztending the given functional F to a new functional F ;.
For simplicity, let us assume that F already is 7—lower semicontinuous on K.
We are not looking for any extension of F but for the best one, that is we are interested in

13



the largest lower semicontinuous extension of F on K(;y. (That is what Lebesgue did for the
area functional.)
The so—called 7—relazation of F is given by

Firylu] := inf{li]{ninf}"[uk] K 5 up — u}.
—+00

Immediately, we are faced with the following problems: Is F(;y a variational integral? If so,
how to calculate the corresponding Lagrange function F(y(z, z, p)? This is certainly necessary
if, for example, we want to work with the Euler-Lagrange equations.

Assuming that the direct method can indeed be applied to K(;y and F(;) we are forced to
compare the relazed problem: " F(ry — min in K(;)” with the original minimum problem:
"F — min in K7. This leads to the regularity problem for minimizers, a question which also
was addressed by Hilbert in 1900. Hilbert’s 19th problem reads as follows:

Are the solutions of reqular problems in the calculus of variations always necessa-
rily reqular?

As an example for an existence theorem we have

Theorem 1
Suppose ! C R” is open, and that f: Q) x R” — R satisfies the following assumptions.

(1) f(-,p) is measurable for any p € R";
(ii) f(z,-) is convex for almost every = € Q;

(i) f(z,p) > blp|™ — a(z) for almost all x € Q, any p € R", where a € L'(Q2), b > 0, and
m > 1.

Furthermore, let g € H'?(Q) and A := g + Hé’p(Q).
Then, there exists an absolute minimizer of

f[u]:/f(x,Du(;c))d;c

on the class A, that is there is ug € A such that

Flug] = inf Flu].

u€A

For Dirichlet’s integral (rm = 2, b =

1
Dlu] = §/|Du|2d£”
Q

Theorem 1 provides us with a minimizer ug within the class g+ Hé’2(ﬂ) satisying the following
Euler-Lagrange equation

/Duo(x) - Do(z)de =0 for any ¢ € C(Q). (21)
Q
But we only know ug € H'*(Q), so that Duy € L*(2) and we are not allowed to perform a

partial integration. Thus, we cannot apply the fundamental lemma to conclude that Aug = 0.
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We need a regularity result.

Theorem 2 (Weyl’s Lemma, 1940)
Suppose, u € L'(Q) and that

/u(x)Anp(:L')dw =0 forany ¢ € C>(Q). (22)

Q

Then, u € C*(Q), and the fundamental lemma implies Au = 0 in . That is, u is harmonic
in €.

]
Remarks

(1) The coercivity condition (iii) in Theorem 1 ensures that minimizing sequences in H''™
stay bounded provided F # occ.
The convezity condition (ii) implies the lower semicontinuity of F on H'™ with respect
to both the norm-topology and the weak topology on H''™.
Since bounded sequences in H'"™ possess weakly convergent subsequences we see that
every minimizing sequence has a weakly convergent subsequence. From the lower semi-
continuity it follows that its weak limit is a minimizer of F.

(ii) The proof of Theorem 2 involves smoothing u. That is, one considers for A > 0 the
function

up(r) = 7" /P ('x - y') u(y)dy,

where p = p(:) = p(|-]) >0, p(z) =0 for |z| > 1 and

Rn By (0)

Such a function is called a Friedrichs — mollifier. For given ¢ in (3) choose
0 < h < dist (spty, Q) and, using Fubini’s Theorem we get

[ (@) Apla)ds - Jh (=52t Aoty -

A@h (]

Il
Dy
ﬁ

Note, that we used the fact (Ap)n, = Ay, which is easily checked because p is
rotationally symmetric and the Laplace operator A is invariant under rotations. Since
up € C™ the fundamental lemma may now be applied and yields Aup = 0. Letting
h | 0 and using the mean value formula for harmonic functions we get the result of
Theorem 2. O

3.3. Regularity Theory

After Morrey’s fundamental regularity result for minimizers of double integrals, probably the
most important contribution to Hilbert’s 19th problem was the celebrated regularity theorem
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by De Giorgi and Nash around 1957 concerning multiple integrals (n > 3) depending on
scalar functions. Their result reads as follows.

Theorem 3 (De Giorgi 1957, Nash 1958)
Suppose A = (ag)af=1,..n, Gap = Gga € L(Q), & C R" is open, such that

n

Z aap(2)E°EP > |€]* for ae. z € Q. (23)

a,f=1

Ifuce Hl’z(ﬂ) 1s a solution of

Z aapDouDgpdr =0 for any ¢ € C°(2) (24)

0 0‘7ﬂ:1

then v 1s Holder—continuous in f2.

Theorem 3 can, for example, be applied in the following situation.
Counsider

Flu] = /F(Du)dx.

Q
We assume that (L > 0)

(i) FeC*(R),

() 3 Fyupy(p)ats > €] for any p,€ € R™,

a,B=1
(i) [Fypl < L.

If w is a minimizer of F in H"?(Q) then u is a solution of
/Z F,.(Du)Dypdz =0 for any ¢ € C°(Q). (25)
Q a=1

Using difference quotients one can then show rather easily that
2,2
uw € H)/(Q).

For arbitrary v € C(Q) and s € {1,...,n} define ¢ = Dyp € CF(Q). Inserting ¢ in (25)

and performing a partial integration leads to

> Fpups(Du)Ds(Dyu) Dot da = 0.,

0 0‘7ﬂ:1

Now, with aqs(z) 1= Fpp, (Du(”c)) and @ = D,u Theorem 3 is applicable. Therefore, u is
Holder—continuously differentiable.

U

16



An important contribution to the results by De Giorgiand Nashis due to Moser (1960/61) who
introduced Moser’s iteration technique and who succeeded in proving a Harnack inequality
for positive solutions.

The corresponding regularity problem for vector valued solutions of variational integrals how-
ever still remained open. It came as quite a surprise when finally in 1967 De Grorgr, Giuste
and M. Miranda found examples of elliptic variational problems with irreqular weak solutions.
For example, Giusti and Miranda showed that for the variational integral

Flul - /{Z D+ [ 3 (6 + mﬂ?]} e
Q

1,j=1 1,j=1

for n > 3 the vector-valued function u(z) := |f:—| is a solution to the corresponding system of
Euler-Lagrange equations which is clearly not a smooth solution in any neighbourhood of
the origin; in fact, u 1s not even continuous near 0.

Thus, it became clear that in certain situations one necessarily had to expect singularities.
Therefore, instead of attempting to prove full regularity one first tries to prove partial
regularity. A generic result in that direction could read as follows.

Partial Regularity Result
Suppose, u : @ — RN,  C R” open, is a generalized minimizer of a variational integral.
Then, there exists an open and dense set ' C © such that v € C°(Q').

]

Of course, one can then try to improve such a result, for example by estimating the size of

the difference set '\ Q'.
3.4. Non—Convex Problems

While convexity is a natural condition to ensure the existence of a minimizer, not every
interesting functional in the calculus of variations is necessarily convex. Already Bolza
pointed out the following

Example (a non-convex variational integral)

Q=(0,1) CR,u:(0,1) > R, u(0) =0 = u(1)

1

Flu] := / [u(;v)z + (u'(x)z — 1)2] dz.

We then have
inf {Flu] : u € HSA((O, 1))} = 0.
This can be seen as follows. Consider the sequence {u,} given by

r—5 2k <2z <2k+1
tn() = |

—;v—l—k’% , 2k 4+1<2nx <2(k+1).

Since u,, is Lipschitz—continuous, i.e. u,, € HY*((0,1)), we also have u,, € H"*. Furthermore
n p 5 n 5 s n s
we get (u, is a zig-zag function)

0<u, < %, u,(0) = 0 = u,(1),
lul,(z)] =1 fora.e. z € (0,1).
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We conclude

1
F [Un] < an?
and thus
lim Flu,] = 0.
n—oo

On the other hand there obviously does not exist any v € H"* such that Flu] = 0, because
this would imply

u(z) =0 a.e. as well as [u'(z)] =1 ae.

Remark
Expressions such as (u’(m)z — 1)2 frequently occur in technical problems. An example is
cruising with a sailboat.

]
To deal with non—convex problems one has the choice to modify the problem, to generalize
the notion of solution, or to do both things simultaneously.
An example is the idea of relazation:
Suppose X is a topological space, and F : X — R. The lower semicontinuous envelope (or
relazed function) sc™F of F is defined for every z € X by

(sc™F)(z) :=sup {®(z) : ®: X — Ris Ls.c. and & < Fon X }.

Thus, sc™F is the largest lower semicontinuous function below F on X. In particular, we have
Fis ls.c. if and only if sc™F = F.

We have the following fundamental existence result.

Theorem 4

Every accumulation point of a minimizing sequence for F is a minimizer of sc”F. Thus, if F
1s coercive, sc” F attains a minimum value, and

min s¢” F = inf F.
X X

O
Remark
For example, in case
Flu] = /f(Du(;c))d;c
Q
one can show — if suitable assumptions are satisfied —
(sc™F)[u] = /(cvx_f)(Du(J:))dJ:,
Q
where cvx™ f 1s the largest convex function below f, that is
(cvx™ f)(p) = sup {g(p) : g convex , g < f}.
O
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3.5. I'-Convergence

A different approach to non—convex problems is the theory of I'-convergence introduced by

De Giorgi and his school.

Suppose, X is a topological space satisfying the first axiom of countability, and F, : X — R

(n € N) is a sequence of functionals.
The sequence {F,} is called I'-convergent to F:

F=T— lim F,,

n—oo
if the following conditions are satisfied:
(i) for every x € X and every sequence x, — & we have

Flz] < liminf F,[z,];
n—oo

(ii) for every = € X there ezists a sequence x, — x, such that

Flz] = lim F[zn).

n—oo

Remark
An important application of I'-convergence is the theory of homogenisation.

Let us close this section by a famous

Example (Modica — Mortola, 1977)
Define F, : L'(R™) - RU{} by (k € N)

J{LDul? + ksin®(rku) }L® | ue HY N L!
fk[u] = R™

00 otherwise;

and let F: L'(R") — R U {oo} be given by

2 [ |Dul = 2| Dul| , ue€ BV(R")
Flu] := R

%) otherwise.

b

On L'(R") we then have

F =T - lim F;.

k— oo

4. Unstable Critical Points

In this last—extremely short—section we are concerned with critical points, that is solutions of

the Euler-Lagrange equations, that are neither minimizers nor maximizers. Thus, the direct

methods discussed in the previous section are no longer applicable. Here, we want to present
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only one method, the so called Palais—Smale Condition.
Let V be a Banach space, and suppose F € C'(V,R). Then, F is said to satisfy the
Palais—Smale condition (PS), provided the following is true.

Every sequence {z,}neny C V such that
(1) |Flzn)| < ¢ ({2} is F-bounded),
(i) [|[DF[zn]l| = 0 as n — oo,

contains a convergent subsequence.

O
Remark
If zg 1s the limit of such a sequence the continuity of DF iumplies that zg 1s a critical point
of F, that is DF[zo] = 0. An immediate consequence of the definition above is the

Lemma
Suppose, that F : V — R satisfies (PS). Then, for any a € R the set

Ky :={z €V :Flz]=0a, DF[z] =0},

that is the set of critical points of F belonging to the value «, is compact.
An important application of the Palais—Smale—condition is the

Theorem 1 (Mountain—Pass Lemma, Ambrosetti-Rabinowitz 1973)
Suppose, that F € C'(V,R) satisfies (PS), and that F[0] = 0.

Furthermore, assume that
(1) there exists p > 0, 8 > 0 such that ||u|| = p implies Flu] > 5;
(ii) there exists u; € V such that ||u;|| > p and Flu;] < S.
If we denote by I' the set of paths in V' connecting 0 and u;, that is
[={yeC’0,1,V):4(0) =0, y(1) = w },

then we have:

a:=inf sup Fly(r)] (= F)

Y€l r¢f0,1)
is a critical value of F. Thus, there exists ug such that
Flug] = o and DF[ug] = 0. 0

Let us close this section with a nice application of the Mountain—Pass Lemma to a semilinear
elliptic boundary value problem.

Theorem 2
Suppose, that & C R” is bounded and that 2 < m < 2% (respectively m < oo for n = 1,2).
Then, the Dirichlet-problem

Au+|u/™?u = 0 in Q
u = 0 on 9N
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has at least two non—trivial (i.e. Z 0) solutions. Note, that if « is a non—trivial solution so is

the function —u.

O

Remark

(1)

(iv)

For the proof one considers the variational integral

1 1
Flu] = 5/|Du|2cw”— E/|u|mcw“
Q Q

naturally defined on Hy”?(€) (because of the Sobolev imbedding theorem and the choice
of m).
Note, that the direct method is not applicable in this case because

inf F=—-0cc0 and supF = +oo.
Hy? L2
0

To see this, first take any u; € Hé’z(ﬂ) such that

/|u1|md£n > 0.
Q

For u* = \u; we then have
A2 Am
Flut] = = / | Duy [2dL™ — — / luqg|™dL™,
2 m
Q Q

so that — because A > 2 - lim Flu}] = —oo.

A—o0
To see that F can become arbitrarily large choose a function u € Hy* () that oscillates

wildly while sup |u| < 1.
Q

Using the same method one can treat the eigenvalue problem

Au + |u,|m_2u =Au, X>0.

For m = 2 we get the linear equation
Au+u=0

and the non—trivial solutions turn out to be the eigenfunctions of A corresponding to
the eigenvalue -1.

The critical case is m = 57"2, the limit case of the Sobolev-inequality on H'2. In this
case, the Palais—Smale condition is no longer satisfied.

An example is the so called Yamabe problem from differential geometry (For a given
Riemannian metric ¢ on a manifold is there a conformal one ¢ with prescribed - for
example constant — scalar curvature R'?) which leads to the equation

1 "
n Au + Ru = R'uﬁ.
n—2

4

Here, one looks for a positive solution u, and the new metric is then ¢’ = u"%g.
These limit cases where the Palais—Smale—condition fails seem to be typical for the most
interesting problems (e.g. minimal surfaces, harmonic mappings, Yang-Mills—fields). O
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Apart from the Palais—Smale Condition important other methods are: The Minimax Princi-
ple, Index Theory, Ljusternik—Schnirelman Theory, and Morse Theory.
O
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