Universitat des Saarlandes

Fachrichtung 6.1 — Mathematik

Mathematischer Preprint

On Markov Reward Modelling with FSPNs

Katinka Wolter and Andrea Zisowsky

Preprint No. 13
Saarbriicken 2000



Universitat des Saarlandes

Fachrichtung 6.1 — Mathematik

On Markov Reward Modelling with FSPNs

Andrea Zisowsky

Technische Universitat Berlin

Katinka Wolter Fachbereich Mathematik
. ) o . Strasse des 17. Juni 136
Technische Universitat Berlin 10623 Berlin, Germany

Institut fir Technische Informatik

Franklinstr. 28/29 Universitat des Saarlandes

}130;/?7,1]_3 ei{rhr.l,kG gmanyb lind Fachbereich Mathematik
-Mail: katinka@cs.tu-berlin.de Postfach 15 11 50

66041 Saarbriicken, Germany
E-Mail: zisowsky@num.uni-sb.de

submitted: 1.8.2000

Preprint No. 13
Saarbriicken 2000



Edited by

FR 6.1 — Mathematik
Im Stadtwald
D—-66041 Saarbriicken
Germany

Fax: + 49 681 302 4443
e-mail:  preprint@math.uni-sb.de
WWW:  http://www.math.uni-sb.de/



Abstract

In this paper fluid stochastic Petri nets (FSPNs) will be used for
modelling reward in a performability model. Two variations of a
known performability model are presented in order to demonstrate
the ability of FSPNs in modelling accumulated rate reward as well as
accumulated impulse reward. In the first model two fluid places are
used, one of which represents the profit (reward) obtained by oper-
ating the system and the other one the buffer, that is approximated
continuously. In the second model only one fluid place is used, rep-
resenting the costs (negative reward) arising due to repair of system
components. The costs increase continuously at deterministic rate
while the system is in state of repair (which is a rate reward in the
model). Additional costs incur each time the buffer fails (which is an
impulse reward in the model). With a numerical solution algorithm
the distribution of the reward and its mean are computed. The ac-
curacy of the numerical algorithm is studied by showing for the first
model the impact of the choice of the discretization stepsizes on the
obtained solution. Different boundary conditions are discussed for the
second model.

Key words: Accumulated Rate Reward, Accumulated Impulse Reward,
Stochastic Petri Nets, Numerical Methods, Accuracy.

1 Introduction

Fluid Petri net models have gained much attention over the last years and a
number of different classes of hybrid Petri nets have been proposed. For the
specification and qualitative analysis the autonomous non-timed and timed
Continuous Petri nets (ACPNs) [DA93] have been used. Performance and
dependability evaluation has been carried out with fluid stochastic Petri nets
(FSPNs) [TK93, HKNT98]. The discrete part of an FSPN taken on its own is
a generalized stochastic Petri net (GSPN) [ABCD95] and the continuous part
alone is equivalent to a fluid queueing system [New71, Kob74]. In FSPNs the
continuous model part is represented by fluid places and fluid arcs. The level
in the fluid places changes at deterministic rate. The stochastic behaviour of
the model is determined by the discrete part and the dependencies between
discrete and continuous sub-model. In this paper the formalism of FSPNs is
extended in so far as in some discrete states the fluid places are emptied and
filled at normally distributed rate [Wol99] and in other discrete states these



rates are deterministic. In consequence the underlying differential equations
are second order partial differential equations (PDEs) in states with normally
distributed in- or outflow and first order PDEs in states with deterministic
in- and outflow. Therefore, in the former states the model is called a second
order FSPN and in the latter states a first order FSPN.

Already in [Hor96] FSPNs have been used for modelling accumulated rate
reward. Reward structures are added to Markov models, giving Markov re-
ward models. The measures computed from a Markov reward model are the
accumulated reward and the completion time. Both are random variables fol-
lowing two different, but related unknown probability distributions [TR99].
In this paper only accumulated reward is regarded. Two kinds of reward can
be distinguished, rate reward and impulse reward. Rate reward is the re-
ward obtained while the model is in a certain discrete state. Impulse reward
is achieved with the completion of an action, that is with the transition from
one model state to the next. Both, rate and impulse can be instantaneous
reward — which is the value of the reward at some point in time — or accu-
mulated reward — the reward that has accumulated over a period of time.
Furthermore, transient and steady state reward are distinguished [SM91].

The mean accumulated reward is computed through integration over the
state probabilities of the Markov model multiplied with some reward rate
for each state. In states where no reward is obtained the reward rate equals
zero. In the computation of the mean impulse reward the state transition
rate, that gives the impulse is a factor in the reward rate. The moments of
the distribution of the accumulated reward are obtained by solving a differen-
tial equation using Laplace transforms. However, obtaining higher moments
of the accumulated reward distribution is difficult. It has been shown in
[Hor96] that the distribution of accumulated reward is computed by solving
a differential equation like those underlying an FSPN.

Accumulated reward can be modelled with an FSPN in a very natural way. A
fluid place holds the accumulated reward. In each state where rate reward is
accumulated, the fluid place is filled at the reward rate. The main advantage
of modelling reward with a fluid model is that the full probability density is
obtained automatically and from it the moments can be computed.

In this paper not only rate reward but also impulse reward is modelled with
an FSPN, which has not been done before. In the FSPN a special kind of arc,
the jump arc is introduced to model the instantaneous increase or decrease of
the level in a fluid place. The jump in the fluid level happens with the firing
of the transition at the arcs origin, the height of the jump is determined by
a probability distribution. The Dirac impulse gives a fixed height for each



jump.

Jump arcs are similar to the flush-out arcs in [BGGT99, GSB99]. But flush-
out arcs always empty a fluid place, whereas jump arcs remove or deposit
a variable amount of fluid and hence allow for more modelling flexibility.
In [BGGT99, GSB99] multidimensional fluid models are solved with an al-
gorithm especially implemented for this specific problem. The numerical
algorithms used for the computations in this paper are more general in that
they can solve any FSPN with one or two fluid places. Numerical solution of
second order FSPNs with two fluid places has for the first time been presented
in an earlier version of this paper [WZ99].

Two variations of the performability model taken from [Mey82] will be stud-
ied. The modelled system is a buffered multi-processor system, where both
the buffer and the processors can fail. The first model has two fluid places,
one representing the buffer content and the other one holding the accumu-
lated reward. The second model has only one fluid place representing the
costs arising from repair of system components (negative reward). As long
as repair is going on, inflow to the fluid place takes place. Each failure of the
buffer causes additional costs once. This is modelled with a jump arc, along
which a fixed amount of fluid is deposited.

An issue that is often raised in combination with numerical solution methods
and fluid models is the accuracy of the solution. The accuracy is determined
by the appropriateness of the model in representing the system and by the
accuracy of the solution methods for the given model. We will only address
the latter here. The order of accuracy of the discretization scheme can be
determined by Taylor series expansions of the single terms of an equation.
What this order means for a given model will be studied by using the first
performability model. It will be solved with different discretization stepsizes
and the solutions will be compared.

The numerical solution is always carried out on a finite domain. The larger
the domain, the more expensive is the solution process with respect to mem-
ory as well as run time. The use of appropriate boundary conditions may
help enormously in obtaining correct solutions, even on a small domain. We
will discuss the issue of boundary conditions and take the second model for
illustration, even though this is a topic of current research and no results can
be presented yet.

In the next section the second order FSPN formalism is introduced. In section
3, the main part of the paper, the two models will be discussed. For both
models the underlying differential equations are given. In the algorithm used



for their solution the equations are generated automatically from a (textual)
description of the Petri net. The transient evolution of the probability density
is given as a result for both examples. Together with the first model accuracy
of the solution and with the second model the different boundary conditions
will be discussed. With section 4 the paper concludes.

2 The FSPN Formalism

For the definition of second order FSPNs the common notations for GSPNs
[ABCD95] and for FSPNs [HKNT98] are taken over and extended as follows.

A second order FSPN is formally defined as an 8-tuple FSPN =
(P, T,A,mgy,r,b,g,w) where the set of places (P = P.U P,) is divided into
the fluid (continuous) and the discrete places. Discrete places (the elements
of P,) are drawn as single-lined circles and hold an integer number of tokens,
whereas the continuous, or fluid, places (the elements of P;) are drawn as
two concentrical circles and they hold a real-valued amount of fluid. The
set of transitions 7 = T U 7 is composed of the exponentially distributed,
and the immediate transitions, respectively. Exponentially distributed tran-
sitions are drawn as empty rectangles and the immediate transitions as black
bars.

The set of arcs A = A4, U A, U A; is divided into three subsets, the discrete
arcs (the elements of A,), the continuous, or fluid, arcs (A.) and the jump
arcs (A;). The discrete and the jumps arcs are drawn as single lined arrows,
whereas the fluid double-lined arcs are drawn like pipes. Discrete arcs can be
input, output, or inhibitor arcs, where the latter have a little circle at their
destination instead of the arrow head, while fluid and jump arcs can be only
input or output arcs. The jump arcs and the continuous arcs only connect
transitions and fluid places, and vice versa. Immediate transitions can be
connected to a fluid place by a jump arc only if the immediate transition is
also connected to a discrete place.

The marking m = (s,z) € M consists of a discrete part s = (#p;,1 € Py),
where #p; denotes the number of discrete tokens in the ¢-th discrete place
p;, and a continuous part, a vector representing the fluid level in each fluid
place, z = (zx, k € P.) € Z. The initial marking is mg = (8o, 2). The total
number of discrete states is S, the set of all discrete states is denoted S.

Ty p, Tpt - Aex M — IR? is the flow rate function along the fluid arc connecting
the timed transition ¢ and the fluid place p or vice versa. The flow rate



r = (u,0?) is a normally distributed random variable specified by expectation
p and variance o2. Expectation and variance are fixed and time-independent.
Let Z; be the fluid level in place £ € P.. The change rate of the fluid level
is again a normally distributed random variable with

dz,
o Yo mpm)— > rpu(m).

t enabled in m t enabled in m

Reflecting barriers assure, that the fluid level in each place stays within its
range [z™", 2™,

min
)

The jump height function by, by, : A; x M — F is a probability density
function associated to a jump arc. The size of a fluid jump is a random
variable drawn from that distribution.

g: : M — BB is the guard of transition t that can be a function of the discrete
and the continuous state. A\, : M — IR U {oo} is a function of both the
continuous and the discrete marking. Immediate transitions have firing rate
)\t = Q.

The weight function w; : § — IR is defined for immediate transitions. The
firing probability of each of the enabled immediate transitions in a vanishing

state is wy(s)/ > wy(s).

tienabled in s
The enabling rules for the transitions are the same as in discrete Petri net
models. The fluid and the jump arcs act only on the fluid places and do
not influence the enabling conditions of the transitions, other than through
a guard function.

2.1 The Model Parameters

The dynamics of the CTMC underlying the discrete model part are defined
through the generator matrix Q, whereas the continuous dynamics are de-
fined by the fluid change rate % that describes the change in the fluid level
over time. The change in the fluid level is determined by the difference be-
tween the inflow and the outflow, each of which is assumed to be normally
distributed or deterministic, if the variance of the normal distribution equals
zero. The fluid flow is specified separately in each discrete state of the CTMC.
The parameters of the normal distribution are either specified by the user
or calculated as the diffusion approximation to the discrete transition at the

origin of the inflow arcs and at the destination of the outflow arcs [Wol97].



Let p, and o2 be the expectation and variance of an arbitrary inter arrival
time distribution of the discrete input transition to the fluid place P;. Then
the infinitesimal mean and variance of the fluid inflow rate are
1 2 o
Mo = —, O = 7 37 (1)
* Ha “ (ma)?

and for the fluid outflow rate s and o are analogous. (See [Kle76, New71]
for a derivation of this formula).

All the incoming and outgoing streams in one marking are added and for the
flow rate Ry(s,z) of the fluid place &k in every marking s € S the following
parameters are valid

Hi,s = Z Mo — Z s Vk e P.,seS, (2)
inflows outflows
tokins of kin s

Oy = Z o2 + Z o3 VkeP.,seS, (3)
inflows outflows
tokins of kins

Note, that this simple linear combination only holds, because all the single
fluid streams are normally distributed. No covariances are needed because
the PDEs (9) and (13) only hold on the interior of the domain, where in-
flow and outflow can be assumed to be independent of each other. In the
boundary points, where restrictions on the relation of in- and outflow have
to be imposed, the PDEs are replaced by the boundary condition (11). The
expectations and variances for each fluid place are collected into diagonal
matrices (if there is none in a discrete state, the entry is equal to zero):

M), = diag(p,1, - - -, 1k,s), (4)

5} = diag(0f,, ., 0%s). (5)

If a hybrid system is modelled jio,02, 5 and o3 are given by the user and
(1) is not needed.

The jump height function b(.) can have an arbitrary probability density. For
all discrete states the functions are collected into a diagonal matrix B =

diag(b:(.), ... ,bs(.)).



3 The Models

Two models shall be studied in this paper. Both are based on the performa-
bility model of a buffered multiprocessor system presented in [Mey82]. The
first one uses two fluid places, one for the buffer content and the other for ac-
cumulating reward, that flows in as long as servers and buffer are operational.
The second model has only one fluid place, that represents the costs arising
from repair of processors and buffer. As in reference [Mey82], in the first
model processors and buffer may fail but no repair is considered. Opposed
to this in the second model both processors and buffer can be repaired.

Reward increases at constant speed in each discrete state. Therefore the
inflow rate to the fluid places representing the accumulated reward has zero
variance. In the first model the buffer is represented by a fluid place which is
emptied and filled at randomly varying rate. So, the first model is a second
order FSPN in all states that have an in- or outflow of the buffer, whereas
the second model purely is a first order FSPN with fluid jumps.

3.1 Two-dimensional Fluid Rate Reward Model

In this section at first the model will be described in detail. Then the corre-
sponding differential equations and their solutions are explained. At last, in
a separate subsection, accuracy of the obtained solution will be studied. In
the performability model there are three processors that may fail indepen-
dently at rate A,. The buffer has L stages that can fail independently at rate
Xp- If one of the stages fails, it causes a crash of the complete system. The
failure rate of the whole buffer is therefore L.

Jobs arrive to the system at rate a and they are served at rate § per processor.
So the buffer is being filled as long as it is operational, even if all servers are
down. There is an outflow of the buffer as long as at least one processor is
operational. Reward is accumulated at rate r per operational processor and
while the buffer is not empty. The reward inflow r, is a function of the global
state of the system and is specified in each discrete state of the model.

In this model the buffer is considered as being filled with a large number of
items, that are measured in some unit. So the arrival and service processes
can be seen as continuous streams entering and leaving the buffer. The inflow
and outflow rates of the fluid place representing the buffer are approximations
computed from the corresponding discrete streams.
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Figure 1: FSPN model of the performability model

Figure 1 shows an FSPN model of the system. The buffer is represented
by the one fluid place. Its capacity is L = 4. When the buffer is down all
processors are put into the set of failed processors and the system terminates
because none of the transitions is enabled. Complete failure of the system
is an absorbing state. The second fluid place represents the accumulated
reward. The rate function r, is defined in such a way, that there is an inflow
of 0.1 units per operational processor and per time unit only if the buffer is
not empty. Hence the fluid flow rate accumulating reward depends on the
content of the buffer.

The reachability graph is shown in figure 2. Only the discrete states are
labelled, the components for the two fluid levels are omitted. The numbers
in the small circles denote the numbering of the discrete states as it is used
for the parameter vectors and the results. The failure rate of the buffer has
been set to A\, = 10~* per hour and the processor failure rate is A\, = 103
per hour. The mission time is 100 hours.
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Figure 2: Reachability graph of the FSPN model

For the computation of the fluid change rates (1), (2) and (3) have been used.
In all states s where the buffer is operational the expectation y; of the fluid
change rate of the buffer is computed following (2):

[y = o — FFSETVEIS_up - fis

and the variance o} equals according to (3)

2 _ 2 2
o, = 0, + #servers_up - 0y.

For the exponential distribution (1) evaluates to u, = @ and 02 = «. The
same holds for the exponentially distributed service with rate §. With o =
0.75 and 0 = 0.5 the fluid flow parameters evaluate to

M, = diag(—0.75, —0.25,0.25,0.75, 0.0) (6)
and
¥? = diag(2.25,1.75,1.25,0.75,0.0). (7)

Reward is accumulated at constant rate of 0.1 per operational processor.
Hence, the fluid flow parameters for the second fluid place are

Mr = diag(03 *Trew 0.2- Trews 0.1- Trew, 00, 00) (8)



with

1.0 ifz >0.2
Trew =
0.0 else

and ¥? is the matrix with all entries equal to zero.

The reachability graph gives a graphical representation of the stochastic pro-
cess underlying this model. Augmenting it with two continuous variables,
one for each fluid place, gives a description of the full stochastic process
which is formally defined as

{(S(t), Z:(t), Z2(1)), t € Ry},

where S(t) is the discrete marking at time ¢, and Z,(t) is a random variable,
representing the fluid level in fluid place k£ at time .

At time ¢ the transient probability of the model being in discrete state ¢
with fluid level in an infinitesimal interval around (z1, 23), is called the fluid
density and is denoted by 7; (¢, 21, 22) = 8%1 %P(S(t) =1, 7Z1(t) < 21, Z(t) <
29). This density is the component-wise solution of the following differential

equation in vector form

— + B (ﬂ(t, 21, ZQ)Mb(Zl)) + 97 ('n'(t, 21, ZQ)MT(ZQ))
1 02
2022 (’”(t, 21, 22)21%(21)> —m(t,21,2)Q(z) =0

VE,Vz € Q= (2" 2" x (25", 25). (9)

Note that there is only one matrix of variances while there are two matrices of
means, one for each continuous direction. Eqn. (9) is a system of diffusion-
convection equations, also called Fokker-Planck equations. The system of
equations is coupled through the generator matrix Q of the discrete Markov
process. The expectations M define the drift and the variances X2 define the
diffusion.

An initial as well as a boundary condition on either end of the domain must
be imposed. The initial condition is defined by the model’s configuration at
time zero, whereas the boundary conditions are determined by the fact that
the integral over a density always evaluates to one.

Let mg be the vector of initial discrete state probabilities and let zy be the
vector of initial fluid levels, then the initial conditions are

ﬂ'(O, 21, 22) =Ty - 5(21 — 2170)5(22 — 22’0), (].0)

10



where §(zx — 2x,0) is the Dirac impulse at zj, = 2.

The boundary condition is equivalent to a reflecting barrier at the origin and
at the upper bound [CM65]

D

2
10
[ ﬂ'(t: 217'22)2%(21:22) _ﬂ-(t: 217Z2)Mk(’21722)] =0.
k=1

202 2= {znin pmax} x {pmin ymax}
(11)

Equation (9) subject to (10) and (11) has been discretized and solved nu-
merically [Zis98]. The discretization scheme will be described in some detail
in the following subsection when regarding the accuracy of the solution.

1
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2 hoo
-8 (:
S 00001 f/!
& s
B 1e05 { . Sate0 ——
o state 1 -
Le - sae2 -
10 :5 state 3
: state 4
1607 }i
1e08 L w ‘ ‘ ‘
0 2 40 60 80 100

time

Figure 3: Discrete state probabilities

The result after applying the numerical algorithm is in each discrete state
a two-dimensional density, that evolves over time'. The sum over all dis-
crete states is a two-dimensional probability density at each time point. The
discrete state probabilities are obtained by integrating over both continuous
dimensions for one discrete state at each point in time. The state probabili-
ties for all discrete states are shown in logarithmic scale in figure 3.

1Strictly speaking this is a density only after normalization. Nonetheless, we will call
the fractions of a density also density.

11
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Figure 4: Transient probability density in state zero

The left column of Figure 4 shows the probability densities in state zero at
selected time points. The probability mass in this state decreases with time.
Therefore the scaling of the z-axes could not be kept constant. It can be
seen, that the accumulated reward increases, while the probability of the
buffer being full rather decreases.

In state four, shown in figure 4 in the right column, the buffer is down and
less reward is accumulating. One does not see the behaviour the system
would show, was it in that state for a long time, because failures can happen
at any time with reward having been already accumulated and the buffer

12



being already filled. Therefore even in states where buffer and processors are
down one will still have a small probability of an accumulation of reward and
of the buffer not being empty.

For comparison reasons the density in state 3 at time ¢ = 100 is shown in
figure 5. In this state all processors are down but the buffer is still operational
and is being filled.

t=100.0, state 3

prob. density
00001 -

PPPPPEPPP

005

115
buffer cofted® 3 35 0
Figure 5: Transient probability density in state three

The mean accumulated reward increases constantly with a gradient of 0.25,
whereas the mean amount in the buffer increases slowly and always stays
below 1.4. Both can be seen in figure 6.

25
20
15 |
10 -

mean buffer content —
5F mean accumulated reward ---—

time

Figure 6: Mean buffer content and mean accumulated reward
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The density of the accumulated reward is obtained by integrating at each
time point over the buffer content, the second continuous dimension. The
resulting function has one dimension less, and its numerical approximation
can be plotted over time (see figure 7).

p&)BSQensi ty

Figure 7: Marginal density for the accumulated reward in state one

In figure 7 oscillations at early times can be noticed. They disappear with
time, which shows the smoothing property of the diffusion-convection equa-
tion. It also means, that at early times a finer grid would be better, whereas
after 60 time units larger stepsizes would probably do quite as well as the
used ones. Here, the benefit of adaptive stepsizes becomes apparent. This
is, however left for future work.

New information obtained from this model compared to known solution
methods for Markov reward models is the shape of the distribution of ac-
cumulated reward. Having an approximation of the full density allows for
the computation of quantiles and higher moments of the distribution. The
basic measures, such as the state probabilities and the mean accumulated
reward have been obtained before.

3.2 Accuracy of the algorithm

At this place we will discuss the accuracy of the applied algorithms. First we
briefly describe the discretization scheme and its theoretical properties. It is

14



not possible to make an a-priori estimate on the accuracy for a given model
solution. Only the order of accuracy for one discretization step can be given.
The theoretical results will be illustrated using the two-dimensional reward
model from this section.

Discussing the accuracy of the obtained solution poses at first the question
whether the model forms a correct picture of the system to be analyzed. We
will not address this issue here, because there is no metric in which to measure
modelling quality. Instead we will elaborate on the solution quality for a given
model. More specific, the difference between the analytical formula and the
computed numerical approximations will be regarded. The accuracy of the
numerical solution is influenced first by the quality of the discretization of
the differential equation and second by the accuracy of the solver for the
system of linear equations.

The discretization of the system of differential equations is carried out on an
equidistant grid with stepsize k£ in time and stepsizes hi, ho in the two space
directions.

The system of equations has been discretized using a #-scheme. The param-
eter 6 weighs two neighbouring time levels. It can take on all values between
zero and one. Depending on € the discretization is explicit (# = 0), implicit
(0 = 1) or the well-known Crank-Nicolson scheme (6 = 1/2).

For the first derivatives in space an upwind scheme is used. Upwind means

that forward and backward differences are used, weighed with the upwind

parameter p and (1—p), respectively. The parameter p depends on the sign of

the convection parameter p. This is motivated by the fact that if e.g. u(z;) >

0, the mass moves to the right and the backward difference is more apropriate

in describing this motion. Hence, a reasonable choice of p is the following:
psj(z) >0:  0<ps; <3  backward difference weighs more,

s,i(2) < O: T<psi<1 forward difference weighs more.

For the second space derivatives the second order difference quotient and for
the time derivative the forward difference is used. The coupling term 7Q is
discretized explicitly, using the two previous time levels. Therefore the set
up system of difference equations can be decoupled. A separate system of
linear difference equations is solved for each discrete state, and the coupling
term appears in each one as an inhomogeneity.

The system of linear equations is for two-dimensional models solved with a
LU factorization using pivotizing, for one-dimensional models a sparse least
square roots method with iteration precision 1072 is used. The solvers for
the systems of linear equations are taken from the package meschach [SL94].

15



The accuracy of these solvers can not be measured separately. We can only
study their accuracy in combination with the discretization of the differential
equation.

Following [Str89], the main criterion for the quality of a discretization scheme
is convergence. A discretization scheme is convergent if the numerical solu-
tion approaches the analytical one as the stepsizes are decreased.

For a given discretization convergence is in general not easy to show, but
equivalently two related properties can be proven, stability and constistency.
A discretization scheme is convergent if and only if it is stable and consistent.
Stability is the property, which describes the robustness of the algorithm to
small changes in the initial conditions or small random fluctuations. The
algorithm is consistent with the equation it describes, if the discrete equation
approaches the continuous one for decreasing stepsizes.

Both properties can be shown for the differential equations underlying an
FSPN by using the methods in [Str89]. Here only the two-dimensional fluid
model will be considered.

Taylor series expansions of the single terms are used to determine the order of
consistency. In general the order of consistency is O(k, h1, hs). For the Crank-
Nicolson scheme the order is O(k?, hy, ho), and setting the upwind parameter
to p = 0.5 yields the central difference for the first space derivatives and also
an order of two in each space dimension.

With a von Neumann analysis [Str89] we showed, that the scheme is uncon-
ditionally stable for # > 0.5. For all other choices of # the condition

k k

k k
1-20) (07, — —p1s(2p15 — 1)+ 05 ;5 — —pin,s(2 3—1><1
(1=20) (s~ oo~ )+ s — oo — 1) <

must hold for every state s in each grid point 7 for the scheme to be stable.
Furthermore the following conditions must hold

2

of.
I . if u; >0 12
pij < gies’ if p55 >0, (12a)
o2,
> 1— 1 if p; <0, 12b
Pij = 2hz’|ﬂi,j| Hi,j ( )

where ¢ = 1,2 is the index for the space direction. This can be assured by a
suitable choice of the upwind parameter p.

Since the used algorithm for solving (9) could be shown to be stable and
consistent with (9) we can conclude, that smaller stepsizes will yield a better

16



approximation. The solution obtained with the smallest stepsize can there-
fore be taken as a reference solution.

The following table lists the different models that have been solved, where
always # = 1, and p was determined according to (12).

Model nr.  h;  hy k 11-norm (¢ = 60.0)
0 0.01 0.01 0.01 -
1 0.05 0.05 0.01 0.99999992913917101767

la 0.05 0.1 0.01 0.99999991856169989646
1b 0.05 0.05 0.05 0.99999999507102010909

2 0.1 0.1 0.01 0.99999998987893468083
3 0.2 0.2 0.01 0.99999999550397478121
4 0.5 0.5 0.01 0.99999998341952289760

Table 1: List of different models and their 11-norms

As it can be seen in table 1, the 11-norm? of the numerical solution of each
model is even at ¢ = 60 (which means 6 - 10° time steps) very close to one.
This is achieved through especially developed discrete reflecting boundary
conditions. In deriving the boundary conditions the conservation of prob-
ability mass is used as a condition that must be fulfilled. This makes the
commonly applied normalization step obsolete. Model number zero could
not be solved due to memory overflow, but it is used in the discussion.

In the following we will compare the solutions obtained by using the differ-
ent stepsizes. We will use in each model the sum over all discrete states,
instead of the densities in single discrete states and compare the estimates
of the absolute error. The solution of model number 1 is used as the refer-
ence solution, the solution that is closest to the real one. We compute the
difference of each density to the reference solution by taking the difference
in each grid point. The obtained data are the curves (model_la - model 1),
(model_1b - model_1), and so on. For each of the difference data we compute
the maximum value, the 11- and the 12-norm as a measure for comparison.
They are listed in table 2.

At a first glance it seems surprising, that taking five times the stepsize in
time (model_1b) gives a solution that differs much less from the reference

2The norms are computed as 11-norm = hy - hy - Z T

2 2 all grid points
and (12-norm)? = hy - hs - E T all states

all grid points
all states
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Data maximum absolute error 1l-norm 12-norm

diff(1a,1) 0.042586117000 0.216551 0.002705
diff(1b,1) 0.013350898600 0.066889 0.000233
diff(2,1) 0.119628770000 0.890237 0.040651
diff(3,1) 0.154807305500 1.251118 0.066130
diff(4,1) 0.192311555200 1.832396 0.102005

Table 2: Maximum absolute error, 11- and 12 norm of the deviation data

solution than the solution obtained with twice as large stepsizes in space
(model_la). The reason becomes apparent, if one considers the number of
grid points, which was chosen to discretize space and time variables (see table
3). The discretization in time of model_1b is already sufficiently small (1200
grid points), that it causes no large error. Whereas the reduction from 601
to 301 grid points in space leads to an inadequate resolution, especially since
there is no smoothing in z, direction (X2 = 0).

Model nr. 2z 29 t
0 401 2701 6-10°
1 81 601 6-10°
la 81 301 6-10°
1b 81 601 12-10?
2 41 301 6-10°
3 21 151 6-10°
4 9 61 6-10°

Table 3: Number of grid points

It would have been desirable to solve modelO, but the discretization in space
results in a grid with more than a million gridpoints, so in each time step
and for each discrete state there is a system of over one million equations
to solve. Here again one sees the need for improvement of the numerical
methods. There are discretization methods known that use only the sum of
the gridpoints in each direction not their product, the alternating direction
implicit (ADI) schemes. Implementation of such a scheme is also left for
future work. A smaller timestep increases the runtime, but does not need
additional memory.

Besides that, model 2, model 3 and model 4 have all stepsizes with a devi-
ation of one order of magnitude from the reference solution and their max-
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Figure 8: Deviation curves (a)

imum error is almost equal, while the norms differ roughly by a factor two.

Figures 8 through 11 show the probability density for the whole model,
summed over all discrete states, at time ¢ = 60.0. Each plot shows two dif-
ference curves in the order of the stepsizes. So, figure 8 shows diff(1a,1) and
diff(1b,1), which shows that the error diff(1b,1) is substantially smaller. In
figure 9 diff(1a,1) and diff(2,1) are compared, showing that the error signif-
icantly increases with larger stepsizes, as can also be seen in figures 10 and
11.

It becomes clear, that by choosing too large stepsizes the solution can be up
to 0.25 off a good numerical solution. That corresponds to roughly 10% of
deviation. Furthermore, the order O(k, hy, ho) can not be directly translated
into a relation of the stepsizes with the error. It can only be said, that the
maximum error and its I1-norm is significantly larger than the largest stepsize
used in the models involved in the comparison.

Of course, these observations hold only for the given model and will be dif-
ferent in numbers for all other models that will be regarded.
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Figure 9: Deviation curves (b)

3.3 Rate and Impulse Reward Model

The second example investigated in this paper is another variation of the
performability model. The buffer is modelled with a discrete place so there
is only one fluid place. This fluid place represents the costs that arise from
repair of the processors as well as the buffer. Each failure of the buffer costs
an additional price once, whereas the repair costs per unit of time. The
failure rate of the processors is again A, = 0.001 per processor and the repair
rate is set to ¢, = 0.25. The failure rate of the buffer has been increased
by two orders of magnitude and is now set to A, = 0.04. This has been
done because otherwise the effect of the fluid jumps is not visible in the
solutions at all. For the same reason the repair rate of the processors has
been chosen rather small. For realistic failure and repair rates there is hardly
any accumulation of costs, because the probability of the system being in
a failed state is extremely low. Repair of the buffer takes on the average 6
hours (r, = 1/6).

The arrival rate to the buffer is & = 0.75 and the service rate is § = 0.5
per operational processor, as in the first model. The costs that are incurred
by the repair of processors and buffer are deterministic at rate 0.1 per failed
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Figure 10: Deviation curves (c)

processor and rate 0.5 for the repair of the buffer and maintenance of the
whole system. In consequence, the inflow to the fluid place representing the
costs has only a mean, but no variance. Each failure of the buffer costs an
additional deterministic amount of 0.5 units.

The buffer has only L = 2 stages. The failure rate of the whole buffer is
again L)\, and the repair rate of the whole system after a buffer failure is
rp. Upon failure of the buffer data is saved, so that the system can continue
processing after repair. With the repair of the buffer the whole system is
checked, so that subsequently all processors are up again. It is assumed that
there are enough repair facilities to even fix all processors, should they all be
down.
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Figure 11: Deviation curves (d)
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Figure 12: FSPN model of the second performability model
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Figure 12 shows an FSPN model of the system. The costs are represented
by the fluid place. A jump arc connects transition fail_buffer with the place
costs. When the buffer is down all the failed processors are put back into
the set of operational processors. As long as repair of the buffer takes all the
processors are in maintenance and repair, and the transition representing
the processor failure is disabled as is the arrival of jobs. The main difference
between this model and the first one is that the fluid place is not only filled
through the fluid arcs but also through a jump arc.

The reachability graph of this model is shown in figure 13. It can be divided
in three blocks, each of which represents the system with a different number
of tokens in the buffer. Transitions between the blocks are due to arrivals to
the buffer and the service of tokens from the buffer. To make the figure a little
clearer these transitions are drawn with dashed arcs and have double arrows
to represent two arcs. Again the states are only labelled with a description
of the discrete state and the continuous variable is omitted. The numbers in
the small circles are the numbering used for the results. The model is solved
transiently until time 170.0.

® 35~ 35,
3 servers, buffer up I 3 servers, buffer up
0in buffer b Lin buffer Ty I
A
% 1 % P %
= - ;;26;;“*> /‘,r‘///;;‘ “~2\6\>
2 servers, buffer u 2 servers, buffer u 2 servers, buffer uj
©) Oinbutter ® Linbute - AL D) Zinbutter y
o N b e
A buffer down A buffer down A buffer down
in buffer 1in buffer in er
% P 0in buf % P in buf % P 2in buf
ApL )\/L" — )\/L’
b b b
@ 1 server, buffer up / @ @ 1 server, buffer up @ @ 1 server, buffer up
0in buffer S-__a = Lin buffer ~-_a _,87 2in buffer
— S -5 A
AL
% Ap ApL ) [ Ap % b
©) S R “a . —
no server, buffer up no server, buffer up no server, buffer up
0in buffer Lin buffer @ 2in buffer

Figure 13: reachability graph of the second performability model

The fluid flow parameters are the same in all three blocks. There is only
an inflow to the fluid place, so (2) is given by the Kronecker product
M, = diag(u,, + pr,) = I ® diag(pu) where I is the (3 x 3) identity matrix,
p = (0.0,0.1,0.2,0.3,0.5) and £?, = 0. The jump height matrix is B =
I ® diag(b), where b = (det(0.5), det(0.5), det(0.5), det(0.5),0.0) and finally
the jump rates are A = I ® diag(\), where A = (0.04,0.04,0.04,0.04, 0.0).
The jump height distribution det(z) denotes the deterministic jump height,
implemented by the Dirac impulse at x.
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The stochastic process under consideration is a Markov process similar to
the one in the first example with only one continuous component. The fluid
density in state i is m;(t,2) = d/dz P(S(t) = i, Z(t) < z) and the equation
describing the models dynamics is in vector-matrix notation

Onlt,2) 0 (7t 2M(2)) —7(t.2)(Q() — A(2)) -

ot 0z ]
/ 7(ty)Bz—y)dyA(z) =0  VEVze Q. (13)
min
The derivative terms are equivalent to those of the first example reduced to
one dimension. Note that there is no second order derivative and no variance.
The integral is similar to the integral in the Takacs integro-differential equa-
tion [Tak55], it is the convolution of the jump height distribution with the
fluid density function, multiplied with the rate A a jump occurs at. These
rates have to be subtracted from the diagonal elements of the generator
matrix. This means that some mass is removed from the state probability
vector and added again through the convolution in a different place on the
continuous axis. The convolution gives the density of the sum of two random
variables. Here these two random variables are the state vector m and the
random variable B of the jump height.

state 4 state 14

Prob. density Prob. density

1
05

Figure 14: Transient probability density in selected discrete states

For the solution of the differential equation part of (13) the equivalent algo-
rithm to the two-dimensional one is used. The integrals are solved explicitly
on the known time step with a simple rectangular summation.

The solutions are plotted for two selected discrete states. The left plot in
figure 14 shows the density in state 4 (buffer down and empty). This is a
state where repair at high costs takes place. As opposed to the first model
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in this model the discrete transition rates are comparable with the fluid flow
rates. Therefore the initial peak is transferred partly to the neighbouring
states and dominates the curves in those states as well. States 3, 9 and 13
have zero probability still after 170 time units. Only in state 14 (buffer down
and holding 2 tokens), shown in the upper right plot of figure 14 the impact
of the jumps can be seen clearly. The data for this plot has been slightly
manipulated in that all solutions after time 120.0 have been dropped, in order
to show the irregular shape of the curve more clearly.
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Figure 15: Density of the costs and mean accumulated costs

The left plot in figure 15 shows the fluid density summed over all discrete
states. Here all data for the accumulated reward less than 5 units has been
dropped. This is done to remove the peak near the origin so that the plot
scales differently and the rest of the shape becomes visible. The contribution
of state 14 can be faintly seen.

The mean costs are shown in the right plot in figure 15. The curve is plotted
only for the first 20 time units. The mean costs increase at slightly rising
pace as long as the discrete state probabilities are not yet in steady state.

3.4 Boundary Conditions

Looking at the probability density in state 14 in figure 14, one can easily guess
the problems concerning this example: Although the modeled accumulated
costs z are not necessarily bounded from above, we use reflecting boundary
conditions. To obtain reasonable results, we had to choose the domain of
computation large enough, such that the accumulated mass at the boundary
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had no influence on the solution in the selected output range. This procedure
causes a lot of unnecessary numerical effort.

To remedy this situation, so called discrete transparent boundary conditions
can be used, which are capable of modelling solutions on unbounded domains
exactly. The derivation and implementation of these boundary conditions is
currently under investigation. The basic idea is to solve the z-transformed
(using a discrete Laplace transformation) difference equation for z > z™*
and to match it at the boundary z = 2™* with the numerical solution. If the
model parameters are constant for z > 2% this can be done analytically,
since the transformation with respect to the time variable yields an ordinary
second order difference equation with constant coefficients.

We note, that in consequence of these transparent boundary conditions the
11-norm on the computational domain will no longer evaluate to one after
probability mass has reached the boundary.

The concrete formulation of these boundary conditions and their application
to FSPNs will be presented in a subsequent paper.

4 Conclusions

Two models have been presented in order to demonstrate the modelling power
of FSPNs in Markov reward modelling. Both are modifications of a well-
known performability model. It has been shown that not only accumulated
rate reward can be modelled with an FSPN, but also accumulated impulse
reward.

Rate reward is accumulated in an FSPN through the inflow along a fluid
arc to a fluid place while a transition is enabled, whereas impulse reward is
added upon the firing of a transition as indicated by a jump arc. Jump arcs
are labelled with a probability distribution. An amount sampled from that
distribution is added to the content of the fluid place at the destination of
the jump arc upon the firing of the transition at its origin. The example
in this paper uses the Dirac impulse as probability distribution to model
deterministic jump height.

The underlying equations are differential equations that also include convo-
lution integrals if jump arcs are present in the model. A numerical discretiza-
tion method has been used to solve the equations. The numerical algorithm
is also able to handle models with two fluid places. Therefore in the first
example it was possible to use one fluid place for the accumulated reward
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and the other one for a continuously approximated buffer. The result after
applying the numerical algorithm to the differential equation is a probability
density at each time instant. For models with one fluid place this density is
supported on one continuous dimension and for models with two fluid places
on a plane of two continuous dimensions. The means over the continuous
dimensions, the state probabilities and for the two-dimensional models the
marginal densities have been regarded.

The accuracy of the discretization scheme has been studied by using the
first model. It could be seen that by choosing larger stepsizes in space a i
considerable error is caused, while a larger stepsize in time did show hardly
any negative effect. The insight we gained from this study is that if a solution
process shall be speeded up a larger stepsize in time might be more advisable
than taking larger stepsizes in space. Although, this might not hold for all
models.

With the second model we discussed the issue of boundary conditions as the
commonly used reflecting boundaries limits the continuous variable, which
might not be the desired model behaviour. Transparent boundary conditions
let probability mass pass through the boundary and still do not only cut
the information. Thus they offer the opportunity to calculate the density
function, which is posed on an unbounded domain, on a finite computational
domain. However, the work at these boundary conditions is still in progress.
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