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Abstract

This paper is concerned with the derivation and the numerical discretization of open
boundary conditions for the 1D Schrodinger equation in order to simulate quantum de-
vices. New discrete transparent boundary conditions are presented that are able to handle
the situation of a continuous plane wave influx into a device. Also, we give a review of
various formulations of boundary conditions that are used within the Schrédinger and the
Wigner formalism of quantum mechanics, and we discuss their mathematical properties.

1 Introduction

The electrical properties of many semiconductor devices of today’s nano-scale technology (reso-
nant tunneling diodes and quantum waveguides, e.g.) crucially depend on quantum mechanical
effects. Thus, one often has to use fully quantum mechanical models when describing the
carrier (electron) transport within such devices. Due to the intrinsic non-locality of quantum
mechanics it is far from trivial to impose physically correct boundary conditions (BCs) that
are also numerically tractable.

At the insulating portions of the device boundaries it is physically sensible to impose homoge-
neous Dirichlet BCs for the Schrodinger wave function, e.g. At device contacts, however, open
boundary conditions have to be employed. In recent years lots of progress towards the under-
standing of such open BCs has been made. In this paper we will give an overview of recent
mathematical results on open BCs for both the Schrédinger and the Wigner formulations of
quantum mechanics. We shall discuss modeling questions and present various analytical and
numerical results for stationary and transient problems. Our main focus will be new numeri-
cal results on transparent boundary conditions for the Schrodinger equation that are used to
simulate quantum waveguides.

For developing novel semiconductor devices it is already standard today to employ sophisti-
cated simulation tools during the designing process. There, engineers are interesting both in
stationary simulation results (I — V' curves, conductance, possible bistabilities, e.g.) and in the
transient behavior of the device (switching times, oscillation frequencies, e.g.). For an account
on the vast literature on this field we refer to [9], [10], [13], [20], [25], and references therein.

For the simulation quality of quantum devices (quantum waveguides and resonant tunneling
diodes, e.g.) a careful modeling and numerical discretization of the BCs are of paramount
importance. Throughout this article we shall assume that a quantum mechanical semiconductor
model (Schrodinger or Wigner equation) is given on a large (possibly unbounded) domain.
For practical purposes (numerical effort, e.g.) we then assume that the actual modeling and
simulation are confined to a finite subregion: for the examples we have in mind this might
be the active region of a quantum waveguide or the channel of a resonant-tunneling-FET. At
the boundary of this subregion one then introduces an artificial boundary condition, assuming
that the incoming flux of charge carriers is known. The “outside region” hence acts like a



quantum mechanical reservoir that is connected to the considered device by leads. While these
boundaries sometimes coincide with physical interfaces, we shall not discuss here the physics
of quantum contacts beyond the coupling to an exterior reservoir. Currently, several research
groups are investigating the possibility to couple classical and quantum mechanical models. For
such a quantum/classical coupling for a stationary kinetic model we refer to [7].

Now we briefly introduce the two evolution models that will be considered in this paper. Numer-
ical simulations of quantum waveguides and resonant tunneling structures are typically based
on the 1D or 2D Schridinger equation ([9]) or on the Wigner equation (so far only in 1D): [12],
[15], [17], [27]. For a recent review of numerical methods for quantum transport problems we
refer to [25].

The transient Schrédinger equation for the electron wave function i (x,t) reads

2
hap, = —h—A$w + V(z,t)yp, z€Q, (1.1)

2m*

where V' denotes the (possibly time-dependent) potential energy of the electron, m* its effective
mass, and A is the Planck constant.

The kinetic Wigner equation governs the time evolution of the Wigner function w(z, v, t):
1
wy+v-Vow——0[V]w=0, z€(0,L),veR, (1.2)
m

with the pseudo-differential operator

OV]w = iaV(a:,%,t)w (1.3)
— L ! i(v—v')m g, 1
o /an/Uf oV (z,n, t)w(x, v t)e dv'dn,
_om’ hn hn ))
ovV(z,n,t) = 3 (V(m—i— 2m*’t> V(x 2m*’t )

The (real valued) Wigner function resembles a kinetic phase-space distribution function. How-
ever, it may take both positive and negative values (cf. [20] for details). This phase-space
formulation of quantum mechanics is essentially equivalent to the Schrodinger equation, but it
allows for a simpler coupling of different pure quantum states by incorporating scattering terms
on the RHS of (1.2). Due to the numerical complexity of (1.2) only 1D Wigner-simulations of
quantum semiconductor devices have been carried out so far. So we shall also confine ourselves
here to the 1D case.

Due to the small time and length scales of the considered quantum devices, the transport
regime is mostly ballistic for such applications. Hence we shall not include scattering terms in
our discussion of open BCs. But since they are typically local in z, they do not complicate the



situation very much, anyhow. For an analysis of absorbing BCs for the Wigner equation with
a relaxation term we refer to [1].

This paper is organized as follows: in §2 we discuss transparent BCs for the stationary 1D
Schrodinger equation from the analytical and numerical point of view. Numerical examples
illustrate how they ‘work’. In §3 we investigate transparent BCs for the transient Schrodinger
equation, in particular when a plane wave inflow into the computational domain is prescribed.
Our main emphasis will be on their stable and accurate numerical discretization. With these
BCs we then simulate the transient response of a quantum waveguide model when applying a
bias. In §4 we review inflow BCs for the stationary Wigner equation and absorbing BCs for
the transient situation.

2 Transparent BCs for the stationary Schrodinger equa-
tion

First we consider the stationary Schrodinger equation on the real line:

2
—2%% +V(z)y =Ey, z€R, (2.1)

where E' is the (constant-in-x) energy of a steady state. We assume that the “device region”
(a resonating cavity of a quantum waveguide, e.g.) is represented by the spatial interval (0, L)
and it is connected to two leads on either side. For simplicity we shall assume here that the
(real valued) potential V' (x) is given, and not self-consistently coupled to the wave function.
But a Schrodinger—Poisson coupling within the device region would not change our discussion
of the boundary conditions. Further, we assume that V' is constant in the leads:

V() = 0, z<0,
V(.T) = VL, .IEL

Let the (stationary) scattering state ¢(x) be the result of a plane wave entering the device
region via the left lead:

Y (x) = e** 1 <0, (2.2)

with the wave vector £k > 0 and the energy E = ’;ZLZ . This incoming wave gives rise to a
reflected plane wave .

YT (z) = Rpe™™*, 2<0 (2.3)

and a transmitted wave

P(z) = Tpe' V2 Viie s (2.4)

In the left lead the steady state solution hence takes the form
Y(z) =y (z) + 4" (x), z<O0. (2.5)
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The (complex valued) reflection and transmission coefficients satisfy |Rg|* + |Tx|? = 1 for any
k > 0 and they are obtained by solving the Schrédinger equation (2.1).

After formulating the stationary whole space problem for ¢ (z), x € IR we now turn to the
equivalent problem with transparent boundary conditions (TBC). The idea of TBCs is to refor-
mulate the above problem on a finite spatial domain by introducing artificial BCs at (or outside
of) the boundary of the device region. This should be done in a way such that the solutions
of the two problems coincide on the bounded domain. Since the potential V' is constant in the
leads we shall place these artificial BCs at x = 0 and = L. The TBCs can now be obtained
by eliminating the a-priorily unknown coefficients Ry, and T}, from (2.5) and (2.4), resp. For a
fixed wave vector k of the incoming wave this yields the boundary value problem (BVP)

2 242

90'(0) + ikgo(()) = 2ik,
(L) = ik — 2m*V, /h2p(L).

v, O0<z<I, (2.6)

This BVP admits a unique solution ¢ € W*°(0, L) for any potential V € L*(0,L) and any
k > 0 (cf. [8]). Asintended we have ¢)(z) = ¢(z) on (0, L). Such TBCs (in 2D) were introduced
in [18] to numerically solve the stationary Schrodinger equation using a finite element method.
Here we are interested in a finite difference discretization of (2.6) and particularly of the two
TBCs. This will serve as a basis for our transient calculations in the next section.

For notational simplicity we shall set 7 = m* = 1 for the rest of this section. With the uniform
grid points z; = jAz, j = 0,....,J (L = JAz) and the approximation ¢; ~ ¢(z;) a simple
scheme for the Schrédinger equation (2.1) reads

Ly =20+ @i
2 Az?

=(E-V))p;, j=1,..,J—-1, (2.7)

with V; = V(z;).

First we consider the case V = 0 which, by assumption, holds in the left exterior region x < 0.
There, (2.7) admits two discrete plane wave solutions of the form

pi=0o/,  j<0,

with

a0 =1— EAz® +£iV2EAz? — E2Ax?. (2.8)

Under the assumption Az < \/% we have |a| = 1, as needed for a (discrete) plane wave.

This assumption is no real restriction, but anyhow necessary for a reasonable resolution of the
(continuous) plane wave with wave length A = w\/% . (2.8) can also be written as

) = ezkAz’ Qay = e—zkAz’



where the discrete wave vector k > 0 satisfies

1= cos kAx

FE
Az?

For coarse discretizations, the discrete F(k) relation may differ substantially from the analytical
E(k) function. Depending on the considered application one hence has to choose between E
and k as the fixed input parameter of the problem (2.6). In the sequel we shall consider F as
given. For later reference we also assume that Az < %, which is again no practical restriction.

In the right exterior region (x > L) we have V =V}, = const, and (2.7) again admits solutions
of the form

with

Biz=1—(E—Vp)Az? £i\/2(E — V) Aa? — (E — V2 Az, (2.10)
Depending on the sign of E — V), these waves are either traveling or evanescent.

We now turn to the discretization of the two BCs of (2.6). Using one-sided finite differences, a
first order discretization reads

—npo+e1 = 2ZikAz, (2.11)
wj-1— s = 0,

with v = 1 —ikAx and v, = 1 — iv/k? — 2V, Az. Using centered finite differences one obtains
a second order discretization of the BCs. They are also of form (2.11) (after eliminating the
‘ghost points’ ¢_; and ¢ 4 via (2.7)) with vy = 1 —ikAz— %Am and v = 1 —ivk? — 2V, Az —
(% — V1 )Ax?. However, both of these discrete BCs would not be satisfied by the above discrete
plane waves. And this would introduce spurious oscillations in the numerical solutions as we
shall illustrate later. Hence we should rather find the appropriate discretization of the BCs on

the discrete level, by considering the discrete plane waves in the vicinity of the two boundaries.

From (2.9) we readily see that the discrete transparent boundary condition (DTBC) at x = L
reads

pr1— B lps =0, (2.12)
where the positive sign in (2.10) corresponds to our right traveling waves.

For deriving the DTBC at © = 0 we proceed as for the corresponding analytical TBC (2.6):
In analogy to (2.5) the solution of the discretized Schrédinger equation (2.7) ‘close’ to the left
boundary and in the left exterior region (j < 0) is a linear combination of the incident and the
reflected (discrete) waves: _ _

p;j=0ao]+Ray?, j<L (2.13)

Eliminating the discrete reflection coefficient R from ¢, and ¢; yields the desired DTBC at
z=0:
—oi o+ 1 = — oy (2.14)
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We remark that this DTBC cannot be obtained by replacing in (2.11) k by £.

Concerning the solvability of the numerical scheme we have

Theorem 2.1 Let E, {V;}, j =0,...,J be given, and assume Az < min (\/%, %) Then the

discrete BVP (2.7) with either the BCs (2.11) (of first or second order) or the DTBCs (2.14),
(2.12) has a unique solution {¢;}, j =0, ..., J.

The simple proof is a discrete analogue of the proof of Proposition 2.3 in [8].

The discrete BCs (2.11) and the DTBCs (2.12), (2.14) are both second order consistent dis-
cretizations of the analytical TBCs in (2.6). And one easily verifies that both resulting schemes
are convergent for the BVP (2.6). However, the approximation quality is very different for the
two discretizations of the BC, as the next example will show.

First we consider the trivial example of (2.6) with V' = 0 on the interval z € (0,1) and we
assume that the incoming plane wave has £ = 2000 and k¥ = 63.24. The BVP (2.6) has the
simple solution ¢(x) = €, which is plotted in Fig. 1 (real part and absolute value). In the
graph this analytical solution coincides with the numerical solution obtained with the DTBCs
(2.12), (2.14) on a grid spacing Az = 1/150 (implying k = 63.72). Using the first and second
order discretization (2.11) of the TBCs, however, introduces strong spurious oscillations of
|p(x)|. We remark that the amplitude of these oscillations would be reduced for finer spatial
discretizations. While these oscillations are caused by the inadequate discretization of the
TBCs, they propagate all across the interval (0,1), revealing the wave propagation character
of the (stationary) Schrédinger equation (2.6). This situation would be very different for an
elliptic two-point BVP.

This simple example already illustrates how important it is to use discrete transparent boundary
conditions instead of an ad-hoc discretization of the analytical transparent boundary conditions.

In the second example we consider an incoming plane wave with energy F = % = 656.49
that hits a potential barrier of height V.., = 656.49, located in the z-interval (20,30). The
computational interval is (0, 50) with J = 300 equidistant grid points. Fig. 2 shows the absolute
value of the solution calculated with our DTBCs. Left of the potential barrier one sees the
interference pattern of the incoming and the reflected waves.

In this section (as well as in Section 3) we chose a uniform space discretization of the interior
problem (i.e. for 0 < j < J), only to simplify the presentation. The DTBCs at z = 0 and
x = L are unchanged for a non-uniform discretization inside the interval (0, L).



1.2

0.8~ b

0.6~ B

Re phi(x),  [phi(x)|

0.4 b

0.2 b

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Figure 1: Numerical comparison of the DTBCs and discretized TBCs. Oscillating and straight
dotted line: Rep(z) and |p(z)|, respectively; the analytical solution coincides with the numerical
solution obtained with DTBCs. Solid and dashed line: absolute value of the numerical solution
obtained with discretized TBCs of, resp. first and second order; they both shows spurious
oscillations.

3 Transparent BCs for the time—dependent Schrodinger
equation

In this section we will carry out the analogous program of §2 for the time-dependent Schrodinger
equation. We start again with the 1D whole space problem

hQ
Zh’l/)t = _2—’]’)1*1[)]:]: + V(l‘,t)’(/), T € B, t> 0, (31)

@b(x’ 0) = '@/Jl(x)

It models the transient behavior of electrons in a quantum waveguide, e.g., and we assume that
the (possibly time-dependent) potential V is given. For ¢! € L?(IR,) and V € C(IR;}, L*(IR,))
(3.1) has a unique mild solution ¢ € C(IR;, L*(IR,)) with [|¢(.,?)||r2(m) = [¥"|lr2m), t > 0
(see [23]).

In order to deal numerically with (3.1) one has to reduce it to a problem on a finite (computa-
tional) domain, say (0, L), by introducing artificial BCs outside of the device region (i.e. in the
leads of the waveguide). Such BCs, however, should not change the solution of the problem on
the interval (0, L). Therefore we shall assume that supp(x') C (0, L) and that V is constant
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Figure 2: Reflection and transmission of a plane wave at a potential barrier (dotted line). Solid
line: absolute value of the numerical solution obtained with DTBCs.

in the leads:

V(z,t) = 0, x2<0,t>0,
V(z,t) = Vi, z>L,t>0.

Otherwise data of the whole space equation would unavoidably be lost in the reduced problem.

In the 1D case such a transparent BC for the transient Schrodinger equation was derived in
several different application field, such as quantum mechanics ([6], [16]), optics ([26]), and
(underwater) acoustics ([22], [3]).

At the left boundary x = 0 the TBC reads

[2m*  ..d [t (0,
Y(0,) = ;iefzz%/o ib/g__idr, (3.2)

where the convolution term can be interpreted as a fractional (%) time derivative:

Ld e, fd
vrdtJo JE—1 T \dtT
Similarly, the right TBC is given by

_ @ -t iVLt/hi/t w(LaT)eiVLT/h
Yp(L,t) = —/ poe e G i dr. (3.3)
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These BCs allow the wave packets of the initial wave function to freely leave the computational
domain without being reflected at the artificial boundaries. The BCs are non-local in ¢ and of
memory-type, thus requiring the storage of all the past history at the boundary in a numerical
discretization.

Under some mild regularity assumptions on %! it has been shown that the Schrédinger-BVP
(3.1) with the TBCs (3.2) and (3.3) is uniquely solvable, and its solution coincides on the
interval (0, L) with the solution of the whole space problem (3.1). As expected, ||%(.,?)||r2(0,1)
decays monotonically in time. For details we refer the reader to [2], [11].

In this paper we shall be mostly interested in inhomogeneous extensions of these TBCs, mod-
eling the continuous influx of a plane wave from the left device contact. The (homogeneous)
TBC (3.2) was derived for modeling the situation where an initial wave function is supported
in the computational domain (0, L), and it is leaving this domain without being reflected back.
If an incoming wave function ¢™(z,t) is given at the left boundary, the inhomogeneous TBC

$ul0,0) — 90, 1) = | @ [00.6) = 4™ (0)] (34)

has to be prescribed at z = 0. The right TBC (3.3), however, would be unchanged if no wave
enters the computational domain at x = L. A typical example for 4™ is a right traveling plane
wave

wi”(x,t) _ ei(kwfwt), <0, w= _ = (3_5)

entering the computational domain at the boundary z = 0.

Here we shall consider two scenarios where such inhomogeneous TBCs have to be employed. In
the first example we model the transition from the vacuum initial state to the steady state with
given influx for a quantum structure with time-independent potential V' (z). This situation is
described by the BVP:

2
iy, = —j¥wm+V@Wu z€(0,L),t>0, (3.6)

¥(z,0) = 9 € (0,L),

_ezlca: ’
Ys(0,8) — ¥i*(0,8) = d Vhl 0,1) ¢m0ﬂ] t>0,
YolLt) = —\/2%%-%%-”“/’1@[@&@,t)eiVLt/h], i 0,

with ¢™ given in (3.5). To avoid a discontinuity at the space-time-corner (0,0) we assume
compatibility of the initial and boundary data at that point. In other words, the incoming wave
is assumed to already ‘leak’ a bit into the computational domain at ¢ = 0. The monotonously
decreasing cut-off function x € IR satisfies x(0) = 1, suppx = [0, €] for some 0 < ¢ < L. As we
shall illustrate later numerically, the solution of (3.6) converges as t — oo to the unique steady

9



state ¢(z) of the BVP (2.6) if the stationary whole space Schrédinger equation (2.1) does not
admit bound states. This can be guaranteed by the assumption V(z) > min(0,V}), e.g.

Our second model concerns the transition behavior of switching between two steady states. We
start with a stationary initial condition 1!(z) that corresponds to the incoming plane wave
Y™ (z) = e** 1 < 0 impinging on the potential V' (z). In the leads the incoming and reflected
plane waves of ¢’ (at z < 0) and the transmitted wave (at x > L) satisfy (cf. (2.2)-(2.5)):

eikz + Rke—ikm, T < 07

I —
w (1") - { Tke" /k2*2m*VL/fL2$’ x > L (37)
Under the whole space Schrédinger equation (3.1) this steady state would evolve as

) (@, t) = ' (z)e™, (3.8)
hk?

with w = #%=. At t = 0 we now instantaneously switch the potential to some W (z), which
is again constant in the exterior regions x < 0 and x > L. For simplicity we assume V(0) =
W(0) = 0, but V;, and W, may be different. Due to the switched potential the time evolution
of the plane waves (3.7) in the leads changes to

(eik;c + Rke—ikw) e—z’wt) T < 0’

pw _
w (.”E,t) - { Tkei\/mwef’iwl,t’ T > L’

with hwy, = E4+W;—V;,. The TBCs (3.2), (3.3) are designed for initial-boundary value problems
(IBVPs) with an initial condition supported in (0, L). Hence we have to subtract from the wave
function (z,t) the plane waves (3.9) in the leads which then yields inhomogeneous TBCs at
both boundaries:

(3.9)

h2
hyy, = —2—W¢m + W(zx)y, =xe€(0,L),t>0, (3.10)

@b(x,()) = lbl( )7 .’L‘E(O,L,

z )
2m*  x. |0
¥(0,t) — ¢85 (0,8) = 4/ P 4’\/%[1&(0,0—1%“’(0,7&)], t>0,

Yo (L, t) — PP (L,t) = —y /¥6_%i€_iwu/h\/g[(¢(lz, t) — (L, 1)) eWrt/h ’

t>0.

We remark that, in this formulation of the inhomogeneous TBCs, we only need the value and
the first z-derivative of the plane wave ¥P* at £ =0 and z = L.

If V, = W, the potential switch could take place at any ¢ > 0, and the solution of (3.10)
will converge as t — oo to the steady state corresponding to W (z) with incoming plane wave
Yin(x) = ek If Vi, # Wy, the potential switch has to take place at ¢ = 0 since the right
exterior potential W, enters the formulation of the TBCs.

10



Now we shall turn to the numerical discretization of the TBCs for the time-dependent Schrodinger
equation (3.1). For the rest of this section we shall again set # = m* = 1. We consider a Crank—
Nicolson finite difference scheme for the Schrodinger equation. With the uniform grid points

; = jAz,t, = nAt, and the approximations ¢] ~ t(z;,t,) this scheme reads for the whole
space problem

i n n— 1 n n n n—
AW U = R (e — 2 R R 20 )
1,1 '
+ 5V PWi+Yi), jeZnel, (3.11)

with 1
V'ni5 = V(xj,tnié).

J

For our analysis one of the main advantages of this second order (in Az and At) scheme is its
unconditional stability, and it preserves the discrete L2-norm:

19715 = Az 3 [¢5 .
JEZ

As in §2, our main concern is the adequate discretization of the TBCs (3.2), (3.3). In fact,
the situation is even more delicate here, as these TBCs involve a convolution with a singular
kernel. In [6] and [21] two ‘ad-hoc’ discretizations of the analytical TBC have been proposed.
As we shall illustrate below, the resulting schemes introduce spurious numerical reflections at
the boundaries and it is only conditionally stable (cf. [21], [2] for details). In [26] a TBC for
the (in ¢) semi-discretized Schrédinger equation was derived which strongly reduces reflections
from the boundary.

In [2] the (uniquely determined) discrete transparent boundary conditions (DTBC) for the
Crank—Nicolson discretization (3.11) of the 1D Schrodinger equation were derived from the
fully discrete scheme on the spatial grid {z;}, j € Z. The left (at j = 0) and right (at j = J)
DTBCs are discrete convolutions over the past evolution:

n n
=Y Yol Ul Wi = W =Y, n>1, (3-12)
m=1 m=1
with
n o _ P05\ <0 N ERIAYS! , —m(p-Pn(/lj)—Pan(/Lj)
;i = (1—22—1—2)5n+(1+7,2+2)5n+a]e i o — 1 , n =0,
_ 4Ag? _ aretan 2P +2) B p* +4oj + 07
Po= Ty T AeAn e, — g2 M T IV =
P o, = o] 0P D Tt )
0 = 280, 0= +[og +4P) e, =0, 7

where P, denotes the Legendre polynomials (P_; = P, = 0), and &/ the Kronecker symbol.
With our assumptions we have V5 =0 and V; = V.

11



The P, only have to be evaluated at the two values p and p s, and hence the numerically stable
recursion formula for the Legendre polynomials can be used. Alternatively, the convolution
coefficients can be calculated from the simple recursion

_2n-3

n— el
¥ - pie L

n—3
n

—i2p; 1n—2
e TS, n2> 4

Using asymptotic formulas for the Legendre polynomials one finds If, I? = O(n~%2) which
agrees with the decay of the convolution kernel in the analytical TBCs (3.2), (3.3) (after an
integration by parts).

Due to the way our DTBCs are constructed, the Crank-Nicolson scheme (3.11) (forj = 1,..., J—
1) together with the DTBCs (3.12) exactly reproduces the discrete whole space solution of (3.11)
(for j € ZZ) on the computational grid z;, j =0, ..., J. The resulting scheme hence satisfies

J-1

[z = Az Y W7 < 195, n>1, (3.13)

=1
and thus it is unconditionally stable.

We remark that the discretizations from [6] and [21] and our DTBCs (3.12) are all consistent
discretizations of the analytical TBCs (3.2), (3.3). However, the approximation quality is very
different for these two strategies, as the next example will show.

Fig. 3 shows snap shots of the time evolution of the right traveling Gaussian beam (!(z) =
exp (1004 £ —30(z—0.5)?)) evolving under the free Schrodinger equation (V' = 0) with the rather
coarse discretization Az = 1/160, At = 0.00002. Discretizing the analytic TBCs as in Mayfield
[21] or as in Baskakov & Popov [6] introduces strong numerical reflections. Our DTBCs (3.12),
however, yield the smooth numerical solution to the discrete whole space problem, restricted
to the computational interval [0, 1]. The Gaussian envelop of the wave packet crosses the right
boundary at x = 1 without any reflections.

Similar calculations for the transient scattering of wave packets at potential barriers were done
in [14]. However, since TBCs were not known then, the authors had to put the problem into a
big ‘computational box’, assuming homogeneous Dirichlet BCs at its edges.

Next we shall discuss the discretization of inhomogeneous TBCs. Considering the form of the
inhomogeneous TBC of the two models (3.6) and (3.10) we first have to discuss the discretization
of the plane waves ¥ (x,t), "% (z,t) and of the static state 1% (z, ).

The discrete analogue of the right traveling plane wave 1™ (z,t) (cf. (3.5)) with energy F is
g = eilbei=ot) 5 <, (3.14)

Since V; = 0 for 7 < 0 the plane wave energy and the discrete wave vector k are connected as

242 .
’; h” The discrete plane wave
m

in§2 by F = %, compared to the analytical analogue E =
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(3.14) solves the Crank-Nicolson scheme (3.11) for the free Schrodinger equation (V; = 0) in
the left exterior domain with the discrete radian frequency
2 AtE

@(F) = Y arctan 5

We remark that the evolution frequency of the corresponding analytical solution of (3.1) would

be w = % We hence have the discrete dispersion relation

2

&(k) = — arctan 1 — coskAz)| . (3.15)

At (
At 2Az?
Next we consider a discrete steady state {¢;}, j € ZZ solving (2.7) with given E and {V}}.

Then one easily verifies that -
pje Wi je Z,n e INy, (3.16)

solves the whole space Crank-Nicolson scheme (3.11). Assume now that {¢;} is a discretization
of the initial steady state ¢!(x) from (3.7), and that it satisfies the discretized stationary
Schrodinger equation (2.7) with energy E. (3.16) is then the sought discretization of % (z, t)
n (3.8).

Since the (constant) potential in the right lead is switched at ¢ = 0 from V7, to W, one has to
adapt the evolution frequency of the transmitted plane wave. Following our discussions above,
the adequate discretization of ¥**(z,t) in (3.9) reads:

—idt .
n __ one.na jSl,TLEWQ,
65 = { pje”@rtn 5> J—1,n€ Ny, (3.17)
with At(E+ W —V,
OL(E) = Earctan (E+ 5 L L).

Now we can formulate the discretization of the inhomogeneous TBC from (3.6) and (3.10),
resp. The DTBCs are obtained by simply replacing 7 in (3.12) by Y7 — @7, where ¢7 is given
for the first example by (3.14) and ¢} = ¢"}_; = 0, and for the second model by (3.17):

YT — @Y = —o) T = W =), n>1, (3.18)

Yo -, = Z — e = (Wi — 1), n>1.
=1

3

The convolution coefficients " for the right DTBC are given in (3.12), where the potential V;
equals either V;, or W, in our two examples.

We shall now present simulations for the two models (3.6) and (3.10) to illustrate how these
DTBCs work. For both calculations we consider a quantum waveguide of length I = 50nm

13



with a 10nm thick rectangular potential barrier of height V., = 0.3eV (corresponding to
an Al,Ga;_,As barrier within GaAs bulk material). The effective mass of the electrons is
m* = 0.0667m, (corresponding to GaAs) and it is assumed constant in the device region. We
use the discretization Az = 0.167nm and At = 0.288fs.

EXAMPLE 1: As described by (3.6), a right traveling plane wave with & = 0.7247(nm)~! (and
k= 0.7251) is scattered at the potential barrier. The wave energy is E = ’;22 = 0.3eV. At
t = 0 the incoming plane wave reaches until x = 16.7nm, and we have chosen a piecewise cubic
cut-off x(z) (cf. (3.6)). Fig. 4 shows snap shots of this temporal evolution. At ¢t = 14fs one
sees the starting interference of the incoming and the reflected plane waves. At t = 202fs a
steady state has already been reached, and it coincides with the steady state calculated with the
stationary Schrédinger equation (see. Fig. 2). We remark that the shown numerical solutions
coincide exactly with the numerical solution on the spatial grid z; = jAz, j € Z, as intended

by DTBCs.

Fig. 4 also shows the temporal behavior of the electric current through the device (averaged in
z € (0,L))
h -
J(2,1) = 2 Tm(ypdy).

2m*
It indicates that a steady state is reached after about 0.2ps.

EXAMPLE 2: Here we consider the switching behavior of the quantum structure when applying
a linear bias of —0.1eV across the device subinterval [10nm,40nm]. Using Wigner function
models similar situations were studied in [27] for a single potential barrier and in [12], [15] for
a double potential structure.

Here we solve the system (3.10) with our inhomogeneous DTBC (3.17), (3.18). The initial
condition ! is the steady state from Example 1, and at ¢ = 0 the bias is switched on instan-
taneously, yielding the potential W (z). Fig. 5 shows snap shots of the evolution of the wave
function. The time behavior of the current indicates that the new steady state is reached after
about 0.2ps.

The plot of the current also shows the temporal behavior of the current for the reverse switching.
When switching off the applied bias at ¢ = 0 the current first overshoots and reaches a stationary
level again after about 0.2ps.

4 Boundary conditions for the Wigner equation

In this section we review several options for prescribing BCs for the Wigner equation in 1D:

1
wy +vwy, — —OV]w=0, z€(0,L),velR, t>0, (4.1)
m
w(z,v,0) =w'(z,v), z€(0,L),veER,
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with the pseudo-differential operator (1.3) and the initial Wigner function w!(z, v).

Due to its kinetic structure we have to prescribe BCs for the Wigner function w(z, v,t) at those
boundary parts of the phase space slab that correspond to incoming velocities: (x = 0,v), v > 0
and (z = L,v), v < 0. The simplest strategy is to use inflow boundary conditions, where one
specifies the distribution flowing into the device region through the boundary (either in the
stationary or the time-dependent case):

w(0,v,t) = fT(v,1), v>0,t>0,
w(L,v,t) = f (v,1), v<0,t>0. (4.2)

Typically, f*(v,t) are the thermal equilibrium distribution functions (Fermi-Dirac) of the
electron reservoir, which is coupled to the device at the contacts. Although rather simple, such
BCs were successfully employed in the Wigner simulations of resonant tunneling structures ([12],
[13]) and quantum waveguides ([27]). We remark that these BCs are not completely satisfactory
from the modeling point of view, as they usually cannot guarantee that the resulting Wigner
function will correspond to a positive density matrix operator (cf. [4], [20]). However, this
does not pose a serious problem in simulations, if such (classically inspired) inflow BCs are
not placed too close to heterojunctions or discontinuities of the potential V', as those are the
dominant ‘sources’ of quantum effects.

Mathematically, the transient and stationary Wigner equation with inflow BCs was analyzed,
respectively, in [19] and in [4]. Using semigroup techniques it was found that the transient
IBVP is well-posed in C([0,00), L?((0, L) x IR)) under very mild assumptions on the boundary
data and the potential.

The stationary situation, however, is much more delicate: in [4] the authors considered a
velocity semi-discretization (with velocity grid points {v;}, j € Z) of the stationary Wigner
equation

1
VW, — %G[V]w =0, z€(0,L),veR. (4.3)

The resulting ODE-BVP is well-posed only if zero is not chosen as a discrete velocity (0 ¢ {v,}).
In the continuous velocity situation the stationary Wigner BVP (4.3), (4.2) is well posed under
some technical assumptions on the boundary data ([5]). This contrasts the classical counterpart
situation - the stationary BVP for the Liouville equation, which may have closed trajectory
loops ([7]). Consequently, the classical solution is not determined by the boundary data on
such closed trajectories.

In [24], [1] a hierarchy of absorbing boundary conditions (ABCs) have been devised for the
transient Wigner equation as a refinement of inflow BCs. They account for the coupling of the
incoming and outgoing distribution at the boundary in quantum kinetic models. These ABCs
are non-local in time and the lowest order ABC reads:

wt(0,v,t) = fH(v,t) + /Ot(le_)(O,U,T)dT, v>0,t>0, (4.4)

¢
w(L,v,t) = f~ (v, 1) +/ (Myw™)(L,v,7)dr, ©v<0,t>0,
0
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where we have used the notation
w(v) = w(v)H(xv), ve€ R,

with the Heaviside function H(v). In Equation (4.4) f* denote the prescribed inflow into the
domain (0, L), like in (4.2). The pseudo-differential operator M; is defined as

_ B 7 0 P v , ,
(Myw™)(0,v,t) = T /_oo(f,,(?V)(x—O,v v,t)v,_vw (0,7, t)dv', v >0,
Myw™) (L - /oo F, =L — v (L, !

(M) (L. 0) = o [V = Lo! 00w (L, v <o

with F, denoting the Fourier transform w.r.t. the variable 7.

Using semigroup techniques it was shown in [1] that the IBVP (4.1), (4.4) has a unique solution
w € C([0,00), L((0,L) x IR)) for initial data w’ € L?((0,L) x IR) and inflow data f* €
L2.((0,00), L2(IR*, |v|)). The main ingredient for this result is the boundedness of the boundary

loc

operator M, from L?(IRF,|v|) into L?(IR*, |v|). This boundedness holds if V| F,V € L*(IR,),
e.g.
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Figure 3: Gaussian wave packet, traveling to the right. Top left figure: Ret!(x) (solid line),
|¢I(x)| (dashed line). Remaining figures: numerical comparison of |¢(xz,t)| calculated with
DTBCs and discretized TBCs at t = 0.002, ¢ = 0.006, and ¢t = 0.008. Solid line: The numerical
solution obtained with our DTBCs coincides with the exact analytical solution. The solution
obtained with the discretized TBCs of Mayfield (dotted line) and Baskakov & Popov (dashed
line) shows strong numerical reflections from the right boundary.
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Figure 4: Right traveling plane wave scattered at a potential barrier (dotted line). Top left
figure: Rew!(z) (solid line) and [¢)!(z)| (dashed line). Top right and bottom left figure: wave
function [y (z,t)| calculated with inhomogeneous DTBCs at ¢t = 0.014ps and ¢ = 0.202ps (solid
line). Bottom right figure: time evolution of the average current j(t).
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Figure 5: Switching the applied bias. Bottom right figure: time evolution of the average
current j(¢) when switching from 0eV to -0.1eV (solid line) and from -0.1eV to 0eV (dotted
line). Remaining figures: evolution of the wave function |¢(z, t)| calculated with inhomogeneous
DTBCs at t = 0.026ps, t = 0.052ps, and ¢ = 0.202ps (solid line) as a response to switching the
potential from V(x) to W(z) (dotted line) at ¢t = 0.
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