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Abstract

The classical Csiszar-Kullback inequality bounds the L'-distance
of two probability densities in terms of their relative (convex) en-
tropies. Here we generalize such inequalities to not necessarily nor-
malized and possibly non-positive L' functions. Also, our generalized
Csiszar—Kullback inequalities are in many important cases sharper
than the classical ones (in terms of the functional dependence of the
L' bound on the relative entropy). Moreover our construction of these
bounds is rather elementary.
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1 Introduction

In this paper we shall be concerned with proving Csiszar-Kullback inequali-
ties, which are estimates of the L!-distance of two functions in terms of their
relative entropy. These inequalities have at least 30 years of history in prob-
ability and information theory [Csi63, Csi66, Csi67, Kul59, KuLei51, Per57,
Per65, BaNi64]. Even if the main fields of application of these inequali-
ties are traditionally probability and information theory, there has been new
interest in the last years in the context of PDE’s. This recent interest in
Csiszar—Kullback inequalities stems from their importance in the study of
thermo-dynamical evolution equations (see [AMTU99] for an extensive dis-
cussion of the pertinent literature). Here, the dissipative nature of the system
is often reflected in the time decay to zero of the relative entropy, which is
a convex functional relating the state of the system to its thermo-dynamical
equilibrium state.

It is well known that the relative entropy of functions with equal mass
does not define a topology on L' ([Csi67]). Nevertheless it provides an up-
per bound for the L!-distance of those functions via the classical Csiszar—
Kullback inequality ([Csi63]). For determining the optimal L'-time decay
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rate towards equilibrium (using the entropy method, see [AMTU99]) one
needs optimal Csiszar-Kullback inequalities.

In [Csi67] (Theorem 3.1, page 309, and Section 4, page 314) the following
result (classical Csiszar—Kullback inequality) was obtained:

Theorem 1.1. Let ¢ : (0,00) — IR be bounded below, conver on (0,00),
strictly convex at 1 with ¢(1) = 0. Then there exists a function Wy, : IR —
[0,00) such that

1. Wy, is increasing.
W, (0) = 0.

W, is continuous at 0.

e e

For all non-negative u € L*(Q, S, u) (where (Q, S, 1) is a probability
space) with [, u dp =1 the Csiszar-Kullback inequality holds:

[ = 1| g1 gy < Was(ey(w)), (1.1)

where ey(u) = [, ¥(u) du is the entropy of u (relative to the state 1)
generated by the function 1.

For the generating function ¢(0) = olno — o + 1, e.g., it is known [Csi67]
that

W,y (c) < V2. (1.2)

By a rescaling argument the inequality (1.1) can be extended to functions
u € L*(du), v > 0, which are not necessarily probability densities: Excluding
the case u = 0, we replace u by u/([,u du), apply (1.1) and multiply by
J, u dp to obtain

u—/ud,u
Q

where ¢(0) = ¥( [, uduo).

The analysis of this paper aims at generalizing the above estimate. In par-
ticular we shall establish a generalized Csiszar-Kullback inequality of the

form
U — / udp <U (ew(u),/u du) , (1.3)
Q L(dp) Q

L (dp) = (/nu du) Wo (ev(u)).
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where the function U only depends on .

This main result deepens the insight into Csiszar-Kullback inequalities in four
ways. Firstly, inequality (1.3) is valid for all functions u with ey (u) < oo,
i.e. there is no normalizing condition [udy = 1 assumed and u is possibly
non-positive. Secondly, we shall prove an optimality result for the function U
and give an explicit construction of U for certain convex functions . Thirdly,
we shall prove that U is strictly increasing. Fourthly, the construction of U is
rather straightforward and requires no measure-theoretic background. Since
it is somewhat lengthy we defer it to the Appendix.

2 The generalized Inequality

Throughout this Section we shall make use of the following assumptions and
notations:

B.1 (92,8, 1) is a measure space and p is a probability measure on S,
ie. u()=1,pu>0.

B.2 ¢ : J — IR is strictly convex, continuous and non-negative. The (possi-
bly unbounded) interval J has a non-empty interior J°. If o := inf J ¢
J, then lim, ,, (o) = oco. If f:=supJ ¢ J, then lim, 5 (o) = co.

For functions u € L'(du) := L*(; du) we define the entropy of u relative to
[u] == [ udp as

2 i /Qz/)(u) dp—([u]) ifu(z) € J p-ae., 1)

ey
o0 else.

Remark 2.1. Suppose u € L'(du) with u(x) € J u — a.e. Since v is con-
tinuous on J the mapping x — (¢ o u)(x) is S-measurable whenever u is
S-measurable. Furthermore we have due to Jensen’s inequality

/Qw(U)duZw(/Qudu)-

Thus the right-hand side of (2.1) has a well-defined value in [0, +0o0].



Remark 2.2. a) The required continuity of 1 as well as the assumed behav-
ior of Y(0) as o tends to the boundary of J deserve a few more comments.
Let 1[; : JJ — IR be convex on the interval J, which has a non-empty interior.
Then 1& is continuous on J° and possible points of discontinuity are contained
indJNJ. Ifa € R and if (o) remains bounded as o approaches o, then we
can (re-)define 1(a) = limy o (). We obtain a convez function, less or
equal to the original one (i.e. the entropy decreases), which is continuous at
a. The same procedure applies in cases where (3 is finite and (o) remains
bounded as o approaches 3. The cases « = —o0 or = oo are discussed in
b).

b) Not every strictly convez, continuous function 1& : J — IR on the (possi-
bly unbounded) interval J with non-empty interior satisfies B.2. However,
we can normalize the generating function 1& as follows. Due to the strict
convezxity of 1/; there exist for each oy € J° a constant b € IR such that the
function

A

Y(o) = 1/3(0) — 1p(09) — b(o — ay)

is non-negative on J and (o) = 0. Furthermore we have for allu € L' (dp)
the equality ey(u) = ed;(u) which shows that v and 1) generate the same
entropy.

Remark 2.3. Let us assume that 2 C IR", n € IN is a Borel set, S is the
Borel sigma algebra on €2, and p is a probability measure on S, which is
absolutely continuous with respect to the Lebesque measure. In this case the
Radon-Nikodym deriwative of pu with respect to the Lebesgue measure exists:

_ dp(z)
g9(z) = P

To keep things simple let us assume that g(x) > 0 for almost all x € Q. Now

consider a function f € L*(2, dx) which satisfies

U$'=@ a.e. on
(z) : g(x)eJ.. Q.

Then ey (u) is the relative entropy of f w.r.t. g (see [AMTU99]):

ot =es (1) = [wtssogas—v ([ ras).

fQ f dx needs not to be normalized here. In the case of ¥(o) = olno — o +1,
and f(x) > 0 with [, f dz =1 the inequalities (1.1) and (1.2) combine to

1f =gl < W




In the sequel we shall need the following 1-dependent constants. For any
o € J° we define:

wlo+2) ~u(o)

Qiv(o) := zlggo . 0,00], if =00,
Q_Y(o) = zlggo o - Z; —v(o) € (0,00], ifa=—o0,

( 00) ~B(0) + (0~ Qo) ifa(0) € R, = oo,
V(B) ~ (o) + (- )@ vlo) i B,U(5) € Roa=—ox,
v e R e B f2.8.4(e). 90 <

(with the convention ¢ oo = oo for all § > 0), and
2(0 — a) ifae R, (=0
2(8—o0) ifa=—-00,0€ R
Usup(a) = 2(5 — 0')(0' — a)
08—«

ifa, € IR

We now collect the essential properties of U in the following theorem; its
elementary proof is given in the Appendix.

Theorem 2.4. Under the assumption B.2 there exists a function U : [0, 00) X
J — IR such that

P1. U s continuous.

P2. For allo € J: U(0,0) =0.

P3. For all o € J: The mapping ¢ — U(c,0), ¢ € [0,00), is increasing.
Pj. For alloc € 0JNJ and all ¢ € [0,00) the identity U(c, o) = 0 holds.

P5. For all o € J°: The mapping ¢ — U(c,0), ¢ € [0,00), is strictly
increasing on [0, co(0)).

P6. For all o € J°: lim U(c,0) = Ugyy(0).

c— 00



P7. For all o € J° and all ¢ € [co(0),00): U(e,0) = Ugyy(0).

We note that 0J N J (see P4.) may be empty. In P7. we use the convention
[00,00) = (). The main result of this Section is:

Theorem 2.5. Assume B.1 - B.2. Then we have for all u € L*(dp) with

ey(u) < oco:
u— /Qu du i <u (ew(u),/ﬂu d,u) . (2.2)

ProOF: We introduce some abbreviations. Recall that [u] := [, u dyu. Since
ey (u) < oo we have u(z) € J p-a.e. Hence [u] € J. We set

Qf ={z€Q:ulx) >}, Q :={reQ:ux)<u}

and define
wi=u—[u] , a::/ wdp 9= u(Q)-
ag

We note 9 € (0,1] and p4(Q7) = 1—49. Since [, w dpu = 0, we have [, w dy =

—a and
u—/udu :/|w|d,u=/
Q Lidy) JO Q

(This factor 2 also appears in the definition of U.) We proceed by a case-
distinction. The first case is probably the most interesting one.

wdp,—/ w dp = 2a.
+ _

0

Case 1: 9 # 1. If [u] € 0J N J, then u = [u] and therefore ¥ = 1. This is
a contradiction since we have assumed ¥ < 1. Hence [u] € J°. Furthermore
we obtain from the definition of a, [u] and ¥:

a < min{d(8 — [u]), (1 = 9)([u] — o)},
and therefore

< Usup2([U]) _B- [u])2([u] —a) e |- a




Now we apply Jensen’s inequality:

00 > ey(u)

> inf{¢([u],a, ) : 9 € J([u],a) N (0,1)},

where

J([ul, a) = 4

.
\

St wa) Tered
g Ee) fe#sred
(75 frma) Hecaies
(52~ a) s

We distinguish three cases.

Case 1a: 0 < a < Ugyy([u])/2. In this case the interval J([u],a) N (0,1) has a
non-empty interior. We have

ep(u) > inf

= inf

(s
v

qmaﬂ)ﬁejmmwnmﬁg

(whart):ve (5251 i)
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and therefore with the notations of the proof of Theorem 2.4

[lw — [l 21 ap)
2 7

I(ey(u), [u]) > a=
which gives due to the definition of U

Uley(u), [ul) = [lu = [u]l|Li(an)-

Case 1b: a = 0. This case need not to be considered, because a = 0 implies
u = [u] and therefore ¥ = 1.

Case 1c: a = Ugyp([u])/2. Since a € IR we have o € Ror € R. If a € IR
and § = oo we will obtain ¢ € [0,0) = ), and if @« = —oo0 and § € IR we
will obtain ¢ € [1,1) = (). Hence, the only remaining case is «, § € IR. We
obtain ¥ = ([u] — @)/(8 — a) which gives

([v] —a)v(B) + (B — [u])y(a) o
08—«
([u] = )yp(B=) + (8 — [u])¥(a+)
60—«

[u])
= ¥([u])

ey(u) =
>
= co([u)),
and therefore by the definition of U and U,y ([u])
U(ey([u]), [u]) = U(co([u]), [u]) = Usup([u]) = 2a = [Ju — [u]|| 11 (ay)-

Case 2: ¥ = 1. In this case u = [u]. Hence, ey(u) = 0 = ||u — [u]||z1(4y) and
therefore

U(ey(u), [u]) = U(0, [u]) = 0 = Jlu = [ulll 2 (4p)-

We shall discuss inequality (1.3) now.

2.1 Optimality

A natural question in connection with (1.3) is the following. Is it possible to
improve (1.3), i.e. is there a function U* : {(¢,0) : 0 € J°,c € [0,¢y(0))} (for
reasons explained in Remark 2.7 below we exclude the cases ¢ € [co(0), 0)
and o € 0J N J here) such that



1. for all uw € L'(dp) with ey (u) < oo ||u — [u]||L1(gy) < U*(ep(u), [u]),

2. there exists a u* € L'(du) with ey (u*) < oo and
U*(ep(u*), [u*]) < U(ey(u®), [u*]) ?

Under the assumption B.3 (see below) the answer to this question is no.

Theorem 2.6. Assume B.1, B.2, and furthermore
B.8 For all ¥ € (0,1) there is Sy € S with u(Sy) = .

Then for all o € J° and ¢ € [0,co(0)) there exists a sequence (Upm)memw in
L'(du) such that

1. For allm € IN: [uy,] = 0.
2. For allm € IN: ey(un) = c.

3. Wll_r)réo | tm — [tm]|| L2 (@ = U(c, 0).

PROOF: Let us consider the case 0 < ¢ < ¢q(0) first: There exists a (uniquely
determined) a € (0, Uyy,/2) such that

~

¢ ﬁe(a/(ﬁ—afg(a/ww))) #(o,a,9),

where ¢ is defined as in the proof of Theorem 2.5. Clearly, 2a = U(c, o).
We note that the mapping ¥ — ngS(a, a,?) is not constant and the mapping
a — infye(a/(8—0),1—(a/(0—a))) é(o, a, V) is increasing. Furthermore, ¢ is contin-
uous. We can therefore choose a sequence (¢, )mem in (0,1) and a sequence
(@m)memw in (0,a) such that 1[1(0, Um, Um) = ¢ and limy, o0 @, = a. Now we
choose a sequence (Sp,)menw in S such that u(Sy,,) = 9, for all m € IN. We
set for all m € IN

Uy @ 2 — IR

(@m/Um) + 0 if z € Sy
e {—(am/(l—ﬁm))+a ifreQ\o

We easily verify that [u,,] = o and ey (u,,) = c¢. Furthermore,
i i — [l = 20 = Ue, )

This finishes the proof for the case 0 < ¢ < ¢g(0). If ¢ = 0 we choose u,, = o,
which gives [u,] = 0, ey(un) = 0= c and

s = sy = 0 = U(0,0) = Ulc, o).



Remark 2.7. In Theorem 2.6 the cases o € 0J N J and o € J° with c €
[co(0),00), co(0) < oo are not included. Indeed, if o € 0J N J, then u = [u].
Hence, ey(u) = 0 and in this case the estimate (1.3) is optimal, too:

[l =[]l 1y = 0 = U(0,0) = Uley (w), [u]).

If o € J° and ey(u) > co(o) we will trivially obtain for all u € L' (dp) with
u(z) € J p-a.e. and [u] = o

[l = [ulll Lt () < Usup([u]) = Ulco([ul), [u]) = U(c, [u]).

We note that this inequality is strict in cases where a« = —o0 or [ = 0.

2.2 An extension of the inequality

A closer screening of the proof of Theorems 2.4 and 2.5 shows that the core
of all estimates is the fact that for all 0 € J° and all a € (0, Uy,,/2) the strict
estimate

~

inf o(o,a,9) >0
V€(a/(B—0),1~(a/(0~a))) ( )

holds. For fixed o, € J° this is the case iff ¥ is strictly conver at o,, i.e. iff
there exists a constant b € IR such that the strict estimate

¥(0) > (00) + blo — 05)

holds for all o € («, 3), 0 # 0,. We can therefore extend Theorems 2.4 and
2.5 in the following way:

Theorem 2.8. Assume B.1 and

B.2” ¢ : J — IR is convez, continuous and non-negative. The (possibly

unbounded) interval J has a non-empty interior J°. If a:=infJ ¢ J,
then lim, o ¢(0) = oco. If B :=supJ ¢ J, then lim, 5 (0) = oo.
Furthermore assume that 1 is strictly convex at o, € J°.

Then:

a. There exists a function Uy, : [0,00) — IR such that

P1. U,, is continuous.
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P2. U,,(0) = 0.

P3. U, is increasing.

Pj. U,, is strictly increasing on [0, co(0s)).

P5. lim Ug, (€) = Usyp(os).

P6. For all ¢ € [cy(05),00): Uy, (¢) = Ugup(0o)-
b. Let u € L*(du). If ey(u) < oo and [u] = o,, then

u—/ud,u
Q

We note that an optimality result as Theorem 2.6 also holds for U,,.

As an example consider the function ¢(c) = |o| which is strictly convex at
0, = 0. In this case we obtain e|(u) = [ |u|dy and Uy(c) = ¢ which trivially
gives for all u € L' (du) with [u] =0

Jullca < Vo ) = Va( | Juldwd = [ Juld

2.3 An example

The calculation of U involves a minimizing procedure. If v is differentiable
this will lead to the problem of finding roots of transcendental equations.
Hence there is no hope for an explicit presentation of U in general.

In some cases, however, the function U can be found explicitly, at least for
special values of [u] = [,u dp. If ¥(o) = |0 —1*, p € [1,00), on J = IR,
we have for all admissible u with [u] = 1:

1/2p
o= s < ([ Qa2 =1) au)

In the situation described in Remark 2.3 this becomes with the additional
requirement [, f dz = 1:

1/2p
If = 9llz1(de) < (/ \f—g|® g™ daz) .
Q

For the special case of p =1 and [u] = 1 the above two inequalities read:

|u — 1||L1(du) < \//Q (u* = 1) du,
11




and respectively,

|f = gllz1(de) < \//Q(f —9)tg tdx.

2.4 Asymptotic behavior of U at 0

As mentioned before, U can in general not be expressed in terms of elementary
functions. For ‘small’ values of e, (u), however, one can obtain an asymptotic
expansion of U. Let us recall the following result of [Csi67]: If ¢ € C?(J),
1 € J° and ¥"(1) > 0, then the Cszisar-Kullback inequality holds:

{ K19 > 0:Vu € L'(dp),u > 0,[u] =1: If ey(u) < K, then
lu — 1||L1(du) < Kiy/ey(u).

In [Csi67] the investigations are specialized to the case 1(0) = o Ino. In this
case the constants can be specified:

(2.3)

For all uw € L'(dp) with u >0, [,udp=1:

= g gy < 4/2 /ulnud,u.
V Je

We note that ¢"”(1) > 0 was essential to obtain (2.3). Otherwise one can, in
general, not obtain an estimate of the form

||U - 1||L1(du) <K (e’lﬁ(u))na Kﬂ? € (Oa OO),

even for small values of e,(u) (to keep things simple we consider only the
case [oudp=1).

Example 2.9. Let Q =[0,1], du = dx. Let

v:R—-R |, ai—>/a¢(s)ds
1

with
0] R — IR
—(c—=1) , o€ (—0,0],
el o e (0,1),
o 0 , o=1,
eo/le=) 5 e(1,2),
e?(o—1) , o€l2,+00)



Certainly, v is bounded below, strictly convez at 1 and belongs to C?*(IR) with
Y1) =¢'(1) =¢"(1) =0. For k € IN let

Uk [0,1] — R

1+ (1/k) , oel0,1/2]
o {1—(1/k) L oe(1/2,1]

For allk € IN we have uy, € L*(dz), up > 0, [ouy dz =1 and [lug — 1| 111,y =
1/k. Furthermore, for all k € IN:

et (5) 0 (57)

Jim flug =11y = lim ey (u) =0.

Hence,

Now let n € (0,00). Then a simple application of the de I’Hospital rule gives

-1 1/n
i [ ||Ll(du) _ 2 lim o' Y7t = oo,
k—oo ew(uk) n(l+e) oo

The core of this example is the fact that all derivatives of ¢ vanish at 1.

However, if ¢ is m-times, m > 2, continuously differentiable in a neighbor-
hood of [u] € J° with

V() = ... = " V([u]) = 0,9 ([u]) > 0

(due to the convexity of 1, 1™ ([u]) has to be non-negative), we can use
the observation that for all [u] € J°, all sufficiently small a € (0,00) and
€ (a/(B—[u]),1—(a/([u] — @))) (see the proofs of Theorems 2.4 and 2.5):

¥ ([l +8) = o) | (] = 1%5) ~ ¥(E)

i ==
s lul+ 62 — () | ¢ (- 62 — ¥([u])

(2.4)

Now we can use a Taylor-expansion argument to obtain

1/m
o | m! ey (u)
if mis even: |[ju— [, u d/'l’”Ll(du) (I+0(1)) < 2 <4¢(m) (fJ,u du)) ’

if m is odd: ||u — [yu d’u”Ll(du) = o((ey(u)/m+D),
(2.5)

13



as ey(u) — 0.

The upper estimate can be refined in the following cases.

Case 1: Let ¢([u]) = ¥'([u]) = 0, ¥"([u]) > 0 and let ¢ have a logarithmic
sub-entropy Y, i.e.

o+b B
[u] +b

Y(o) > x(0) :=a(o +b)In a(o — [u])

for some a@ > 0 and b > 0 (see §2.2 of [AMTU99] for details). Then the term
0(1) in (2.5) can be ignored and the estimate

o 2 ew(u)
|lu— | ]”Ll(du) < P ([u])

(2.6)

holds.

Case 2: ¥([u]) = ¥'([u]) =0, ¥"([u]) > 0, and ¥" > 0 in a neighborhood of
[u] = [, u dp. Then the term o(1) is nonnegative and we obtain (2.6) for all
admissible u with [u] € J° as ey(u) — 0. We note that this estimate holds
for all ey(u) € [0, 00] whenever ¥ € C3(J) with " ([u]) > 0 and ¢" > 0 on
J. As an example consider ¢(c) = e” — e 0. We have

lu— 1||L1(du) < \/2/Q (et —1) dp,

for all admissible u with [u] = 1.

Let us keep the assumption that 1) is three times differentiable in a neigh-
borhood of [u] with ¢”([u]) > 0. Then the estimate (2.5) is in general not
optimal. Consider e.g. ¥ (o) = o (Ino — In[u] — 1), where [u] € (0,00). We
obtain from (2.5) for all admissible u:

= [0l g (1 0(1)) < \/m] ([ ) — 2 )

where due to ¢ < 0 the term o(1) is negative, while on the other hand (as
mentioned above) we have for all admissible u with [u] = 1:

v =11 < 2/ulnu du.
V Ja

14



The reason for this is the fact that the Taylor series argument used to obtain
(2.5) provides in general only a (not necessarily sharp) upper bound for U.

If the function ¢ is not differentiable at [u] = [, u du € J°, then 9% 4p([u]) —
0~ ¢([u]) > 0 and we obtain from (2.4)

u—/ud,u
Q

We can draw the following conclusion from this discussion: The more deriva-
tives of ¥ ([u]) vanish (where [u] € J°), the slower u converges to [u] in L (du)
as ey(u) — 0.

< 2 ey(u)
s 0T Y([u]) = 079 ([ul)

as ey(u) — 0.

2.5 Passing from weak to strong convergence in L!(du)

Inequality (1.3) allows to pass from weak L'(du)-convergence to strong L (dpu)-
convergence in the following sense. Given a sequence (ug)gen in L'(dp) and
a K € IR with

i) [qur dp — K as k — oo (this is, e.g. the case if uy — u as k — oo
weakly in L!(du), where u € L(dp)).

ii) There exists a strictly convex and bounded below function ¢ : J — IR
(J is not necessarily open) such that:

ii.a) For all sufficiently large £ € IN: ug(z) € J p-a.e.,
i.b) lim / (ug) dpp = (K).
Q

k—00

Then
ur — K strongly in L'(du) as k — oo.

The non-trivial fact is that no growth conditions on v are imposed. Consider
e.g. the case where ¢(c) = €77 and let (hg)rew be a sequence in L!(dz) and
let h € L'(dz) such that h(z) > 0 for almost all x € Q. Then by setting
du = h(x)dz we see that

lim | hyg d:v:/hdx
Q Q

k—o00
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together with

lim [ e MM/R pdy = 7P [p)]

k—00 o)

implies hy — h strongly in L'(dz) as k — occ.

2.6 The optimal inequality for the logarithmic entropy

Now we consider the case (o) = olno — o + 1 with J = [0,00) = [a, ),
¥(0) = 1 and [u] = 1. We recall that in this case we have for all u € L' (du)
with ey(u) < oo the estimates

lu — 1| prga < U </ u Inu du, 1) , (2.7)
Q

lu — 1| p1(gp) < 2/ u lnu dp, (2.8)
V Ja

(Csiszar-Kullback inequality). In the following plot (Figure 1) we compare
the functions U(c, 1) (solid line) and /2 ¢ (dashed line).

We observe that for all v € L'(du) with [u] = 1 and u(z) > 0 p- a.e. the
estimate

(from (1.3)) and

||U — 1||L1(du) < 2 = Usup(l) = 2(1 — 0)
holds. Hence the estimate given by (2.8) provides no information when
ey(u) > 2. From (2.7), however, one obtains a non-trivial bound of ||ju —
1||z1(4p) for all finite values of ey (u).

2.7 Entropy-type estimates on ||f — g||11(4p)

In this subsection we investigate possibilities to estimate ||f — g||11(qu) in
terms of

es(f1g) = / $(f/9)g di,

where we make the assumptions

16



Figure 1: U(c, 1) (solid) and v/2 ¢ (dashed) for ¢(0) = olnoc — o0 + 1

B.1 (92,8, 1) is a measure space and p is a probability measure on S,
ie. p()=1,pu>0.

B.2” ¢ : J — IR is convex, continuous and non-negative. The (possibly
unbounded) interval J has a non-empty interior J°. If o :=inf J ¢ J,
then lim, ,,%(0) = co. If B := supJ ¢ J, then lim, ,g¢(0) = oo.
1 € J°, ¢ is strictly convex at 1, and (1) = 0.

B.3 g € L'(dp) is positive for p-almost all z € Q and [, g dpu = 1.
B.4 f e L'(du) satisfies f(z)/g(x) € J for p-almost all z € (.

If we additionally assume that v is strictly convex, then we obtain from
Theorem 2.4

1f = 9lleraw < U (ex(flg) = »(FD, [FD) + [T =11, (2.9)

with the notation [f] = [, f dp.

(2.9) can be applied whenever ey (f|g) and [f] are known. The question arises
whether ||f —g||11(4u) can be estimated just in terms of ey (f|g). We will give
the surprisingly simple, affirmative answer to this question below. To prepare
the discussion we shall introduce some abbreviations first. We define

Jri={o€l0,0):1+0€J} , J :={o€[0,00):1—0€ J},

17



and set
Yt o Jt = [0,00) v o J = [0,00)
o o w(o) = vl +0) o - (o) = v(l-0)

Clearly 1* are continuous, non-negative, convex functions which are strictly
convex at 0. Their respective epigraphs

epi(v) = {(0,2) : 2 2 ¥ (0)}

are due to B.2" closed and convex subsets of IR?. Following [EkTe74] it is
easy to see that the closure of the convex hull of epi(¢)t) U epi(¢™) is given
by

co (epi(1F) Uepi(yp)) = epi(co(y™, ¥ 7)),

where the function co(¢t,¢~) : JtUJ~ — [0, 00) is the envelope of all affine
functions lower or equal to 1, respectively. Some properties of co(v™, 1)
are collected in the following lemma.

Lemma 2.10. Assume B.2”. Then:

a) co(ypt, ™) is conver.

b) co(v™ 1) is continuous.

¢) co(vt 1) is strictly increasing.

d) co(¥,147)(0) =0 and co(yt,¢ ") (o) >0 for allc € JTUJ, 0 > 0.

The proof of Lemma 2.10 is deferred to the appendix.

Remark 2.11. Due to a) and d) of Lemma 2.10 the function co(yt,9™) is
strictly convez at 0. One may ask whether co(vt, ™) is strictly convex on
JT U J~ whenever ¥ and 1~ are strictly convex. The following example
gives a negative answer to this question: Let ¢T : [0,00) = IR,0 — o2 and
let ¥~ : [0,00) = IR,0 — o*. Then it is easy to see that

co(t,p7) : [0,00) — IR

q»#
Q
m
=)
N
9

N—r
&
N—r

o — 3v3

) o-% , 06[

16

>

QNJ
Q
m
m N |
o> >
8
N—

i.e. co(y 1) is not strictly conver.
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We set
ey, = sup co(¥™,v7) (o).

seJtUT~
The main result of this subsection is
Theorem 2.12. Assume B.1, B.2” and B.3. Then:
a) For all f € L'(dp) satisfying B.4 the following estimate holds:
[co(w™ )] (e(fl9))  eul(flo) <€
max{1l —a,B -1} , ey(flg) > e}

b) If there exists for all 9 € (0,1) a set Sy € S such that fs,g g du =1,

then there exists for allo € JTUJ™ a sequence (fn)nemwv tn L' (du) such
that B.4 is satisfied for all n € IN and

| fn — 9ller@ny =0 forall nelN

If = gllzran < {

o= lim [co(",v7)] " (eu(fal9))-

The proof of Theorem 2.12 is deferred to the appendix. Part b) of Theo-
rem 2.12 is an optimality result (the knowledge of ey (f|g) does not allow
to conclude more about ||f — gl|;1(4,) than stated in Theorem 2.12) which
applies, e.g. for the n-dimensional Lebesgue-measure du = dx. The calcula-
tion of co(yp*, ™) is very simple in cases where ¥~ > ¢* with J~ C J* (or
Yt >~ with J* C J7) holds. In such situations we have

ol U =0t (or ey, 47) =4
As an example consider ¢(0) = ¢ (Ino—1)+1. Then J~ =[0,1], J* = [0, 00)
with
pHo)=(1+0)(In(l+0)—1)+1<(1=0)(In(l—0)—=1)+1=7 (0),
for all o € [0,1]. Thus co(yy",¢¥ " )(0) =(1+0) (In(l +0) —1) + 1 and we
obtain

Proposition 2.13. Assume B.1, B.2” and B.3. Then for all f € L'(du)
with f > 0 the estimate

(T +If = 9llzrw) I + [|f = gllzr@aw) — 1) + 1
< [ utt/s) du+ [ (7= 9) du
holds.
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3 Appendix: Proofs of Section 2

PROOF OF THEOREM 2.4:

Step 1: We shall first construct an auxiliary function ¢. We introduce
M :={(0,a,9) € J° x (0,00) x (0,1) : a < min{d(8 — o), (1 — ) (0 — ) }}.

We note that M # () consists exactly of those (o, a,9) € J° x (0,00) x (0,1)
for which o + (a/9) and ¢ — (a/(1 — ¥)) belongs to J°. We define

¢o: M — IR,

8(0,0,9) =0 (¢ (0+%) — (o)) + (1= ) (w (0— 119) —1/1(0)).

For fixed o € J° let Pr,(M; o) be the projection of M onto the a-axes and
for fixed o € J° and fixed a € Pr,(M;0) let Pry(M;o0,a) be the projection
of M onto the ¥-axis. Then we can easily verify that

Pr,(M;o) = (0, Us“;(a)> , Pry(M;o,a) = (5;;1 - f a).

Due to the assumed strict convexity of 1) we observe that for all (o,a) €
7 (0, gt

2

inf 0,
ﬁEPrfgI(lM;U,a) ¢(0-, % )
R a(w(o+%a)—w<o>+w(o—§)—w<0>)
19EP1‘,9(M;0',0,) 3 19

> 0

Step 2: We define

H:J°x <0, Usu;(o)) — (0,00), H(o,a) = inf &(o,a,).

9€Pry(M;o,a)

We note that H is defined as the infimum of a bounded-below, continuous
function (recall that each convex function 1 is continuous on the interior
of its domain) over an open set where two entries are fixed. Hence H is
continuous. Furthermore, by the strict convexity of ¢, the function

H(o,.): (o%@) — (0,00), ars H(o,a)
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is for all fixed o € J° strictly increasing. It is not very difficult to check that
for all 0 € J°:

lim H(o,a) =0 lim H(o,a) = (o).

a—0 a— Usu;) (o)

For fixed o € J° we can therefore define the generalized inverse mapping (see
[BeLo76])

Uy (0) [ (A@) @ e ©a)
2 >’I(C, 7" Lsug(a) if ¢ € [eo(0), 00)

1(.,0) : (0,00) — <0,

We note that I(.,0) is increasing, strictly increasing on (0, co(0)) and that
the mapping (o,¢) — I(c,0), 0 € J°, ¢ € (0,00) is continuous. Furthermore
it is easy to check that lim._,o I(c,0) = 0. Let us note that

lim I(c,0)= Usw(a).

c—co(0) 2

Step 3: Now we are in the position to define U.

2I(c,0) ifce (0,c0(0)),0 € J°
U:[0,00) x J = [0,00), U(c,0) =1 Ugy(o) if c € [e(0),00),0 € J°
0 ifc=0orifocedJnJ

The verification of P1. -P7. follows from the previous remarks and can there-
fore be left to the reader. O

Proor orF LEMMA 2.10:

a), b) co(y*,17) is the envelope of a family of affine functions. Hence
co(y*,17) is convex and continuous, see [EkTe74].

d) ¥* > 0 and ¥*(0) = 0 implies co(x)*,%~) = 0. We easily deduce from
B.2” that (01 %) (o) > (o) /o forallo € J*, o > 0. Foreach o € JtUJ™,
o > 0, there exists a ¥ = ¥(o) € (0,1) such that o € J* N J~. We set
K, := min{(0T¢")(90), (071 7)(Jo)}. Then it is easy to verify that for all
s €J" and all s, € J:

Vv (s1) > K, (s1—90) , ¥ (s2) > K, (s — J0).
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Hence, by definition, co(¢*, ¢~ )(0) > K, (0 —¥0) = (1 = 9) K, 0 > 0.

c) Let 01,00 € JT U J~ with 01 < 0. We have to prove co(¢*,¢)(01) <
co(pt,97)(0o2). If o1 = 0, this estimate will follow from d). If o7 > 0, we
set ¥ := 1 — (01/02). Certainly ¥ € (0,1). We calculate co(¢™,v™)(01) =
co(¥™,¢7) (0 0+ (1 =) 03) < Jeo(yp™,97)(0) + (1 — D)co(™,97)(02) <
co(™, 1) (03), since co(p™,47)(0) =0, 1= € (0,1) and co(vb*, 1) (02) >
0. U

PROOF OF THEOREM 2.12:

a) After the previous remarks it suffices to prove: For all f € L'(dpu) satisfy-
ing B.4 and ey(f|g) < oo, the pair (|||, e4(.)) = (I[f = gllz1(aw), ex(f19)) €
co(epi(yp™) U epi(vp™)). Since both epi(¢)*) and epi(¢)~) are convex (subsets
of IR?) we have
co(epi(¢) Uepi(y7))
={(Wot+(1 =00 ,2):0t € Jt,0” € J,9€0,1],
2> (0T)+ (1 -9y (07)}.

Let Qf := {f > g} and Q := {f < g}. We define 9 := fﬂo+g dp. Then
¥ e [0,1] and 1 =9 = [, g du. We introduce w := (f/g) — 1 and set
a:= fﬂé“ w g dy, as well as b:= — [,_wg du. Then a,b € [0,00) and

Il = a+b.
We assume for the time being 9 # 0,1. Then

=1 94 _ 9 9
W)= [ ww) Gaus (-0 [ viaw)

> 91 (%/ﬂg(ﬁwg) du) + (1 -9y (ﬁ/_(gﬂvg) du)
:0¢(1+%)+(1—19)¢ (1-%).

dp

Setting

we obtain

Il =d0" + (1=, ey() 20 (e")+ 1=y (o), (3.1)



where 0" € J* and 0~ € J~. The reader may wish to verify (3.1) in case
of 9 =0ord =1 for some " € J* and 0= € J . Hence (||.||,ey(.)) €

co(epi(¥") U epi(y7)).
b) For all 0 € J* U J~ we have
co(¢™,¢)(0)
=inf{9 (o) + (1 - (07 ):0" €J 07 € J,9€[0,1],
dot + (1 -390 =0}

Hence it is possible to choose a sequence (9, 0,7, 0, Jnew in [0,1] x JT x J~
with

Inot + (1= 9,0,

n

—=¢ forall nelN |,

lim 9,07 (o) + (1 —9,)¢ (0,) = co(v™, ¢ ) (0).

n—o0

By assumption we can choose for all n € IV a set S,, € S with fsn g du =1,.
Setting for n € IV

fn: Q -5 IR

finishes the proof. O
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