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Abstract

It is well known that for Toeplitz matrices generated by a “suf-
ficiently smooth” real-valued symbol, the eigenvalues behave asymp-
totically as the values of the symbol on uniform meshes while the
singular values, even for complex-valued functions, do as those values
in modulus. These facts are expressed analytically by the Szegd and
Szego-like formulas, and, as is proved recently, the “smoothness” as-
sumptions are as mild as those of Lq. In this paper, it is shown that
the Szego-like formulas hold true even for Toeplitz matrices generated
by the so-called Radon measures.
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1 Introduction

We consider a sequence of Toeplitz matrices
A, =lan), o =ar—, 0<klI<n-—1, (1)

constructed from the coefficients of a formal Fourier series

fl@)~ Y age™™, (2)

k=—o00

and will be interested in the asymptotic behavior of their eigenvalues \;(4;)
(in the Hermitian case) and singular values 0;(A,) (in the non-Hermitian
case) as n — 00. Due to G. Szegd [5] and successive works [1, 6, 8, 9, 11] we
enjoy the following beautiful formula:

I 1

Jim ;F(Az(An)) = o [ F(f(2)) da, (3)
which is valid for any test function F'(x) from a suitable set F.
G. Szego proved (3) for a real-valued f € L., and F comprising all contin-
uous functions on the interval [ess inff, ess supf]|. For f € L, this interval
contains all A\;(A4,). Since this is not the case for f € L, with p < oo, it
was proposed in [8] to take up as F all functions uniformly bounded and
uniformly continuous for —oco < z < 00; a bit more restrictive choice for F
might be all continuous functions with bounded support [8]. For both cases,
the same formula (3) holds true for f € L, [8, 9] and even for f € L; [11].
If f is not necessarily real-valued, under the same “smoothness” assumptions
on f and the same F we have quite a similar formula for the singular values:

lim Y F((A) = o [ F(A@) de (4)

=1

An important and somewhat expected difference is that the eigenvalues be-
have as the valus of f(z) (when f is real-valued and in some special cases
of complex-valued f [10]) while the singular values do as the same values
in modulus. Formula (4) was proposed by S. Parter [6] and proved first for
a specific subclass of L; then it was extended to the whole of L, [1] and
further to Ly [8, 9] and even to Ly [11].

However, we have long suspected that L, is still not the ultimate extension.
For example, let

ap =1, k=0,+1,42, ....
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It this case f(x) (usually called a symbol or generating function) is not a
function in the classical sense (it is a multiple of the Dirach delta function).
Despite this, the eigenvalues of A, = A, (f) are easy to find explicitly:

AL = n; M =0, k=2,...n.

Therefore, the Szegd formula (3) gives the true asymptotic distribution even
for this case if only we set f(z) to zero in the integrand.
Thus, we obtain

lim - S"F(M(4,) = F(0) )

i=1

for any F' € F. From now onwards, let F be the set of all uniformly bounded
and uniformly continuous functions.

If A, is an arbitrary sequence of matrices satisfying (5), we say that the
eigenvalues of A, have a cluster at zero. An equivalent definition reads [8, 9]:
zero is a cluster for \;(A,) if for any € > 0 the number v, () of those i from
1 to n for which |X\;(A,)| > € is o(n) (that is, %T(g) — 0). To denote the
fact, we write A\(A4,) ~ 0. If (5) is fulfilled for the singular values, we write
o(4,) ~ 0.

The above observation might suggest that we could have a cluster at zero in
all cases when f is not a function modulo a function (that is, after subtracting
any function from an appropriate space). Of course, it gives just a flavour of
where we should look for a rigorous formulation. The purpose of this paper
is to propose one by making a step from functions to “non-functions”.

Let us assume that the Fourier coefficients are the values of a linear bounded
functional 7 (¢) on the space of continuous functions ¢ on the basic closed
interval Il = [—7, 7]. Such a functional is called a Radon measure [4]. It is
well-known that there exists a bounded-variation function g on IT such that

nw=/wwwwx (6)

where the integral is understood in the sense of Stiltijes. Thus, it is p that
can be viewed now as a symbol.

We know that any function p of bounded variation is a sum of three functions
(see, for example, [5])

W= o+ s + 1j, (7)



where pu, is an absolutely continuous function, us is the so-called singular
function (a continuous function with zero derivative at almost every point),
and p; is a function of jumps. All three components are of bounded variation
as well. The derivative f = p, of i, exists almost everywhere in the Lebesgue
sense and belongs to L;. The derivatives of ;1; and 1, are almost everywhere
equal to zero. Consequently, p/ = pl almost everywhere. Recall that, by
definition, p; is a sum of a countable number of jumps:

pi@) = hg+ > R,

TSk T>Sk
where
o0
E |hE| < o0.
k=1

(The values at © = s do not count.) Note that f = pl is determined

uniquely as a function from L.
Our main result is the following theorem.

Theorem 1.1 Suppose that p is a function of bounded variation on 11, and
f =y € Ly is its derivative. Let A, be Toeplitz matrices of the form (1)
where

1

ac =3 / e du(z). 8)

Then, for any F € F, the relation (3) holds true, provided that u is real-
valued, and (4) holds true in case p might be complex-valued. The test-
function set F consists of all uniformly bounded and uniformly continuous
functions.

In other words, in the real-valued case the eigenvalues of A,, are distributed as
the values of f(z), and in the complex-valued case the singular values of 4,
are distributed as the values of |f(x)|. Compared to the previous knowledge,
a new message is that f in the Szego-like formulas is not a generating function
for A,. It is the derivative of the Radon-measure symbol u, and it is y that
generates A,. The Fourier series (2) is not associated with any function in
the classical sense. However, at least in the Radon-measure case, it can be
juxtaposed to some function from L; that describes the spectral distributions
precisely by the Szego-like formulas.



2 Preliminaries

Given a matrix sequence A,, we try to associate it with another sequence B,
for which (3) or (4) is easier to prove and which is close, in a certain sence,
to A,. By definition, two sequences of n-tuples {ag")};;l and {,81-(")}?:1 are
equally distributed if, for any F' € F,

n

tim = 3 (F(a) - F(™)) = o 9)

=1

We capitalize on the following lemma [9].

Lemma 2.1 Let G(x) be a continuous, nonnegative, and strictly increasing
function for x > 0, and G(0) = 0. Let ¢; and cy be positive constants.
Given two matriz sequences A, and B,, assume that for any € > 0, there
exists N such that for all n > N, the difference between A, and B, can be
split

A, — B, = E,+R, (10)
so that
Y G(oi(E,) < cien (11)
=1
and

rankR, < coen. (12)

Then the singular values of A, and B, are equally distributed.
If A, and B, are Hermitian, assume that E, and R, are Hermitian and,
instead of (11), that

Z G(N(E,))) < cien. (13)

Then, the eigenvalues of A, and B, are equally distributed as well.

An important example is G(z) = x?; in this case (11) is equivalent to the
Frobenius-norm (Schatten 2-norm) estimate

Bl < cien. (14)



Another useful example is G(z) = z; in this case (11) is equivalent to the
Schatten trace-norm estimate (see [2, 7])

|| Enller = Z%(En) < cen. (15)
i=1

Once having (14) or (15), from the Weyl inequalities we infer that (13) is
also valid (for the respective G(z)).

The main vehicle to relate the eigenvalues with the symbol p is the next ob-
servation. Consider the following one-to-one correspondence between vectors
and polynomials:

Do n—1
p=| ... < p(x) :Zpix’.
Pn-1 i=0

If A,, are Toeplitz matrices with the elements aj, of the form (8), then
1 f izy|2
(Anp,p) = o [ ()" du(2)- (16)

We take advantage of special probe vectors p for which the “kernel” |p(ei®)|?
can be expressed explicitly. As in [11], these are the columns of the Descrete

Fourier Transform matrix:
e—i%"k-o
) _ 1

D = —— - ,
\/ﬁ e—i%"k-(n—l)

On having made this choice, we obtain

™

n n 1 n) iz
Al ) = [ @ulka)du(o), Buhiz) = o V)7 (19

A direct calculation yields [11]
sin?(H, (k, z)n)

&, (k,z) = : , 19
(k. z) 2mnsin® H, (k, r) (19)
where ok +
rk + zn
Hy(k,z)= —F1.
(k,x) 5

We use this formula to prove an important lemma which all the constructions
hinge on. This is a touch-up of the result from [11].
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Lemma 2.2 Let 0 < 6 < m. Then, for any n,

01(5) 1
P, (k, < , 0) = ——
js%%éa (k,7) < n e1(9) 27 sin?

: (20)

N[>,

for all k € {0, ... n— 1} except for at most codn + 1 indices with co = 2/7.

Proof. Denote by v, the number of £ € {0, ... ,n — 1} for which (20) does
not hold, and let 7,, be the number of those & for which the denominator in
(19) is strictly less than n/c;(5). That means that

o .0
_min_sin H,(k,z) < sin 3" (21)
Since (20) takes place whenever (21) does not, we conclude that v, < 7,.

To estimate 7,,, assume by the moment that 6 < 7/2. Then (21) amounts to

the claim that
) < 7k N z < 0.
=g n g S gTmm

for some integer m and x € [—0, §]. The latter implies that

7k

™m—90 < —— < d+7mm.
n
Since 0 < k < n — 1, it is possible only when m = 0 or m = —1. Thus, we
can estimate 7,, by counting how many indices k satisfy
o k k 0
l-— < —<1 or 0= < —.
™ n n T

Thus, 7, < 2776” + 1. The same estimate stands also when 7/2 < § < 7. O

3 Main results

We call a Radon measure nonnegative if the corresponding symbol u is a
monotone nondecreasing function. The general case can be reduced to those
because an arbitrary function of bounded variation is a difference of two
monotone nondecreasing functions.

For a Radon measure, a point is called essential if the full variation in any its
neibourhood is nonzero. The closure of the set of all essential points is said
to be a support of this measure. We are going to show that a “small” support
for a nonnegative measure means that the eigenvalues of the corresponding
Toeplitz matrices are “almost clustered” at zero.

7



Lemma 3.1 Consider a nonnegative Radon measure with symbol u, and as-
sume that it is supported on a closed interval of length §. Then the Toeplitz
matrices A, = An() generated by u can be split

Ay = Ain + Ay, (22)
so that
o(Ain) ~ 0 (23)
and, for some ¢ > 0 independent of 0 and n,
rankA,, <cdn (24)
for all sufficiently large n.

Proof. Assume, first, that the interval of length ¢ is inside [—4,d]. Set

P, = [P, Pyy,), where Py, contains all the columns pin) for which (20) is

fulfilled, all other p{™ being relegated to Py,. Then

t APy, 0

_ P 0 =

* ok

}p;, Ao = P, [ ]p;.

i From (16) and thanks to the nonnegativeness of the Radon measure, A,
are Hermitian nonnegative matrices. Obviously, Aj, is also a Hermitian
nonnegative matrix. Hence,

n
Z o (A1) = trace Ay, = trace P}, A, Py,
k=1

and by Lemma 2.2,

™

trace Py, A, Py, < ¢1(9) /du = o(n).

-7

Consequently, o(A;,) ~ 0 and, from Lemma 2.2, the rank of Ay, does not
exceed (co + 1)dn for all sufficiently large n.

If 7 is an arbitarily located interval of length §, then we choose a shift s so
that s + Z C [—6,6]. Thus, the said-above splitting is taken for granted for

Toeplitz matrices A, generated by u(s + ). As is readily seen from (8),

eis-O

A, = D; A, D,, where D, =
eis-(nfl)



is a unitary diagonal matrix. Having had /Nln = Aln + Agn, now we set
Aln = DHA].TLD:LJ A2n = D’ILAQH‘Dzﬂ

which complets the proof. O

Lemma 3.2 Assume that Toeplitz matrices A, are generated by a nonnega-
tive Radon measure with a compact support of the Lebesque measure §. Then
A, = Ay + Agy, so that (23) and (24) are valid.

Proof. Since the support of the Radon measure is a compact set, it can be
covered by finitely many (say, m) open intervals (a;, b;) so that

i(bZ —ai) < 26.

=1

Let u; = pon [a;, b;] and an appropriate constant elsewhere so that = > ;.
i=1
Now we obtain

An(p) = ZAn(Ni)

and apply Lemma 3.1 to every A, (u;). The claim follows immediately. O

Denote by var p the full variation of p. By meas supp p, it is meant the
Lebesgue measure of the support of y. The next lemma is a rather well-
known assertion [5] (we give a bit more straightforward proof).

Lemma 3.3 Let i be a singular function or function of jumps coupled with
a nonnegative Radon measure. Then for any e > 0, u can be split

= i+ o (25)
so that
meas supp p1 < € (26)
and
var po < €. (27)

Moreover, the support of uy is a union of finitely many closed intervals.



Proof. We know that ' = 0 almost everywhere. Therefore, the set of those
x where p'(x) > €/2 or does not exist is of zero Lebesgue measure. Thus, for
any 6 > 0, it can be covered by a union of countably many non-intersecting
open intervals (a;, b;) such that

o0

Z(bZ —(J,i) < 0.

=1

Denote by var (u; a;, b;) the full vatiation on the interval [a;, b;]. Since

o0
Zvar (u;a5,b;) < varp < + oo,
=1

o0
for a sufficiently large m = m(e) we obtain > wvar(p;a;,b;) < /2. Set
i=m+1

m
E = lai, b;] and write g = py + po so that p; is supported within E and
i=1

1 = pon E. It is clear that meas supp 1 < ¢ and, also,

o

1

var g < E var (u; a;, b;) + oy / w(z)dr <e.
. m

e [—m\E

The choice § = £ completes the proof. O

Lemma 3.4 Let p be a symbol of a nonnegative Radon measure. Then
1 ; (Ap) < 1 (28)
E I L.
2 or(An 5 Var i

Proof. We take into account that A4, = A} > 0. Hence, the singular values
coincide with the eigenvalues, and their sum is equal to trace A,. Since A,
is a Toeplitz matrix, it is sufficient to show that a¢ < i var u. This trivially
emanates from (8). O

Proof of Theorem 1.1. Assume, first, that u is a monotone non-decreasing
function. Then p = p, + ps + 15, where p, is an absolutely continuous
function, p;s is a singular function, y; is a function of jumps, and all three are
also monotone non-decreasing functions. Apart from A4, = A,(u), consider
Toeplitz matrices B, generated by u,. We intend to show that A, and B,
enjoy the premises of Lemma 2.1.
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Take an arbitrary € > 0. Using Lemma 3.3, we can write jis+ p1; = 11 + g S0
that (26) and (27) are fulfilled. Denote by 7,, and U,, the Toeplitz matrices
generated by u; and pus, respectively.

Due to Lemma 3.2, we have T, = Ty, + Ty, with traceTy,, = o(n) and
rank75, < csen. By Lemma 3.4, trace U, < isn. Thus, setting up E, =
U, + 11, and R, = T5,, we obtain, for some ¢ > 0,

||Enlltr < cen and rankR, < cen

for all sufficiently large n. As Lemma 2.1 states, A, and B, are bound to
have equally distributed singular values (and eigenvalues).

In the general case, we write 4 = 4 — u—, where p, and p_ are monotone
non-decreasing functions. Then, we consider the above splittings and make
use of the triangular inequality for the trace norm and that the rank of a
sum does not exceed the sum of ranks. The Szegd-like formulas for Toeplitz
matrices generated by the absolutely continuous component of © were proved
in [11]. O
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