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Abstract

A mathematical model for the heat transfer in a system of exhaust
pipes of an automobile is described. The forced convection of the ex-
haust gas, the heat conduction and the heat transfer due to radiation
are coupled. An effective numerical solution of the boundary integral
equation for the radiation heat transfer is presented. The analyti-
cal form of the matrix entries for the collocation method is derived.
Adaptive cross approximation is used for the compression of the sys-
tem matrix. Some numerical examples for the matrix compression are

presented.
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1 Introduction

Catalytic converters play an important role in the reduction of the pollution
gases in the exhaust of an automobile engine. Modern catalytic converters
are very efficient, the reduction of the CO, NO, and of the various hydro-
carbons contained in the exhaust being more than 90%. However, during
the warm-up cycle the temperature of the catalytic converter is too low and
the efficiency of the converter can be further improved by shortening the
warm-up cycle. There are different technical ideas for this purpose. One
of the most popular is to use the insulated exhaust pipes first introduced
in 1991 [1]. The insulating split between two pipes should prevent the en-
ergy produced by the engine from getting lost on the way to the catalytic
converter. The three-dimensional geometry of an insulated exhaust pipe 1s
presented in Figure 1.1. Because of current and future government regu-
lations for emission control there is permanent urgency not only to improve



Figure 1: The three-dimensional geometry of an insulated exhaust pipe

the efficiency of exhaust systems but also to predict output during the devel-
opment of new automobile models. Thus the mathematical modelling and
numerical simulation of exhaust systems become more and more important.
In the previous paper [6] we discussed the simplified situation of the straight
insulated exhaust pipe. The special structure of the problem leads to special
properties of the discrete system, i.e. the matrix is of Toeplitz structure.
Using these properties we have designed a fast numerical algorithm for the
numerical simulation of the warm-up cycle. In this paper we consider the
most general situation of pipes having the geometry which is really used in
industry.

The paper is organised as follows. In Section 2 we give a short description
of the mathematical model for the heat transfer in an insulated exhaust
pipe. In Section 3 we give a short review of the different approximation
techniques for full dense matrices. In Section 4 we present the main ideas
of our new approximation technique, called Adaptive Cross Approximation,
and finally, in Section 5, we present the results of computations and draw
some conclusions.

2 Mathematical model

We consider an insulated exhaust pipe of length L having the cross-section
depicted in Figure 2.1. We consider the following physical processes in the

pipe:

1. Heat transfer due to the forced convection in the inner pipe;



Figure 2: Cross-section geometry of an insulated exhaust pipe

2. Heat transfer due to conduction within and between both walls of the
exhaust pipe;

3. Heat transfer due to radiation in the insulating split.

The exact description of the first two equations, the corresponding boundary
and initial conditions as well as the standard numerical procedures can be
found in our previous paper [6]. In this paper we concentrate on the numerical
solution of the radiation heat transfer equation which can be written in the
following form:

(Z—(1—e)B)R(x)) (y) = (1 —¢) (BU(2))) (y)- (1)

Here R(z),z € T' denotes the reflected part of the radiation energy on the
inner surfaces of the insulating split I' the integral operator B is defined as

BREN W) = ¢ [ w2 Ry e )

™ |z —y|*

whereby the function U(z) is an abbreviation of
U(z) = eocT*x) = €T.

The constant € is the emissivity of the steel and o denotes the Boltzmann
constant

o =5.669-107%.

The numerical solution of equation (1) begins with the discretisation of the
surface I' using a system of plane, triangle panels

N
I~Ty, =T,
j=1



Figure 3: Computation of the element of the matrix

The centres of the mass of the panels T'; build the system of collocation points
Yi

1
ing(x,(-l)—l-x,(?)—l-fl?,@) ;i=1,...N.

The piecewise constant ansatz r for the unknown function R(z) and u for
the function U(z) leads to the following system of collocation equations

Ar=f, AcRMV ; fc RV,

The matrix A and the right hand side of this system are of the following
form:

A=I-(1-¢B, f=(1-¢Bu.
The elements of the matrix B are defined as

1 xy Y1 — ;9 — Yi
b, = _/ K,(.r,y,-) (n Y 'r)(ny; T — yi) ds,.
T

T |z — yi*

J

If the triangle I'; is completely visible from the collocation point y; then the
corresponding element of the matrix B can be computed analytically in the
following way. We first consider the situation where the projection of the
point y; into the plane defined by the triangle I'; coincides with one of its
edges. First we rotate and translate the system of coordinates in such a way
that the origin coincides with a projection of the point y;, the zy—axis 1s
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directed along the height of the triangle and the zz—axis is directed along
the vector n,. Let us denote the corresponding rotation matrix by V. In
these new coordinates, the unit normal vectors n, and n, take the following
form:

Vi, = (0,0, l)T, Ving, = (ozl,ozz,ozg,)T

This situation is depicted in Figure 2.2. The integral will be evaluated in
polar coordinates in the plane of the triangle I';. Using the notation from
Figure 2.2 we obtain

h
P2 cos(d)
aipcos(@) + azpsin(¢) — asd ,
b = — dpda.
3] T (p2+d2>2 p p @
¢1 O

After simple calculations we obtain the following expression for b; ;.

®2

B ]_ O[]d+OZ3h 1 2 2 Qb
b,; = _QW\/W {arctan <h <vd +h tan(2)+d

]_ Ol]d + O[3h - -1 ¢
— gﬁ |:a1£tall (h (\/ d2 + h2 taIl<§) — d
2
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¢
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If the projection of the point y; does not coincide with one of the edges of
the triangle I'; then we can always reduce the calculation of the integral to
the calculation of the three integrals of the previous type. Thus we obtain
the analytical result in any case. If the triangle I'; is not completely visible
from y; then the visible part has a polygonal form and therefore the integral
can be computed using some decomposition of the visible part into a set of
triangles. This can be a very complicated and rather technical task.

3 Approximation of the full dense matrices

The system matrix A of the usual boundary element method has the fol-
lowing properties. The matrix is dense, i.e. the memory requirements are
Mem(A) = O(N?). N denotes the size of the matrix here. The matrix can
be asymptotically badly conditioned, i.e. in many applications the condition
number is k(A) = O(N). The numerical solution of the resulting system



of linear equations Ay = b using classical direct solvers is extremely expen-
sive, 1.e. the numerical work is Op(y = A7'b) = O(N?). The only possible
increase 1n the efficiency of the boundary element methods i1s due to using
iterative methods for the resulting system of linear equations. Two main
ingredients are needed for the iterative methods. The first is an effective pre-
conditioner B with x(B~*A) = O(1). The second is an effective procedure
for the fast matrix-vector multiplication with Op(As) = O(N). These two
problems have been of continuous interest in research over the last 15 years.
There are two main preconditioning ideas. The first is based on the spectral
equivalence of the boundary element matrices constructed using the same
discretisation of the same problem on different but topologically equiva-
lent surfaces. Thus one can choose some structured surface (i.e. surface
of revolution) to obtain a specially structured system matrix (i.e. multi-level
Toeplitz-like matrix) (see [5],[7],[8]). Since such matrices can be handled very
efficiently, the optimal preconditioner is constructed. There are clear disad-
vantages of this preconditioning. It is not easy to construct a well-structured
surface if the given surface is complicated (i.e. multiple connected, etc.).
The preconditioning will also require uniform discretisation on the struc-
tured domain and it can come into conflict with the necessity of the adaptive
discretisation of the given domain. The second preconditioning strategy is
based on using the operator of the opposite order on the same surface and
using the same discretisation (see [12]). It is much more convenient for the
majority of problems but the application of the preconditioning matrix is
now as expensive as the matrix-vector multiplication itself. Thus research
on fast matrix-vector multiplication becomes even more important.

The first fast matrix-vector multiplication tool, the Fast Multipole Method,
was presented in 1985 by V. Rokhlin [13],[14]. The problem was to compute
the force applied to each of the large number of charged particles in each
time step. The main ideas here were to divide the whole space into a near
and a far field and to cluster particles in the far field. The Fast Multipole
Method is widely used for many applications (see also [15]). The Panel
Clustering algorithms for boundary integral equations, first published by
Hackbusch and Novak [4], are based on very similar ideas.

4 Adaptive cross approximation

4.1 Matrix partitioning

Let P = {I'},..., 'y} be the set of panels. If we use a quadrature formula
to approximate the integrals, the approximant’s properties with respect to



availability of low-rank approximants come from the kernel. Thus we con-
centrate on the investigation of the matrices

A e RVXV, a;j = k(xi, xj).

We first subdivide the index set I x I, where I = {1,..., N}, into subsets
t x th, i = 1,...,n so that with S, = {z;, j € t} either the admissibility
condition

diam S;; < ndist(Si, Syi)

is fulfilled or one of the index sets ¢} and ¢, has just one element.

In [4] a set of clusters T that possesses a tree structure is used to suitably
subdivide the set P with respect to a fixed point. We will use a set of cluster
pairs having a tree structure for the partitioning of P x P (the Cartesian
product of the set of panels with itself). This set 7" is constructed from the
set T by applying the following recursion to (I'y,T'). Take a cluster pair
(ti,t2), t1,t2 € T. If t; and t; both have children ty7, t15 and ty, tgp in T
respectively, then assign the pairs (t11,%21), (t11,%22), (f12,t21) and (t12,%22)
as children to the cluster pair (¢1,¢;) and add them to 7'. Now repeat these
steps with each child. It is obvious that the covering of T'y, x T’y with the
smallest number of cluster pairs can be computed by the following algorithm.
Set D = () and call Partition((I,I), D), where Partition is the following

recursive procedure.

procedure Partition((t1,ts), D)
if (#1,1,) is admissible
then D =D U {(thtg)}
else apply the procedure to each of the children of (¢1,t;) in 7.

Each generated index pair (#1,%;) € D is admissible. Recently Hackbusch
and Khoromskij [2], [3] have proven that the storage requirement for such
matrices is O(N log N). However, they did not investigate the dependency on
the parameter n which is essential for our algorithm since the approximation
error will be controlled by this parameter.

In [9] it is shown that under the assumption of a quasi-uniform panel set P,
1.e. there 1s a constant ¢, so that

cydiamI'; > h, for all T'; € P,

where h = maxr;ep diam I';, for the number of generated blocks N it holds
that

N = O(N™oy~20-1)) Vo > 0.
The partitioning of the matrix can be done so that the number of operations
for this purpose is of the same order as N



4.2 Low-rank approximation

If the generating function x : R? x R? — R is asymptotically smooth (see
[10]), i.e. there are constants ¢, ¢; > 0 and g € R so that for any multi-index
acNd

|0y sz, y)l < copty |z =yl p=lal,

it can be shown using a Taylor expansion that an admissible block can be
well approximated by low-rank matrices. It is known that the best low-rank
approximant is obtained by using singular value decomposition. But for SVD
1t 1s necessary to generate the whole block, which finally leads to a complexity
of order N2.

In [11] a result on the existence of low-rank approximants using only a small
part of the original matrix can be found. In this result the so-called maximum
volume submatrices are used. But to find them within a block in general
all entries have to be investigated. In [9] we proposed an algorithm that
computes the same kind of approximant but uses only a small part of the
original matrix.

Assume that we have an admissible block of dimension mxn. Fork =1,2,...
calculate

k-1
(’(Zk)l = Ii(l‘i, yjk) - ('Ul)jk(ul)l‘, L = 1, B 01
=1
U = <ak>z_k1 ﬂk
k-1
(vk); = Klxiy,y5) — (w)i,(v);, J=1,....n,

—
Il

1

where in each step jj is chosen so that uy # 0 and i, so that |(wg),, | > |(uk)il-
For the approximant Sy it holds that

k
Skz E ulvlT.
=1

Thus for the whole approximation we need only the evaluation of &(z;,y;,),
i=1,...,m, and £(z;,,y;), j =1,...,n. The rest are algebraic transforma-
tions, which are easy to implement, whereby it should be remembered that
the entries of uy at the positions i; and the entries of vy at the positions j,
[ < k are zero.

To obtain Si we need (m + n)k units of storage and O((m + n)k2) operations
to generate the approximant Sj.



In [9] it has been shown that using this method to generate an approximant

of accuracy ¢, l.e. ||A— g”p < ¢, we need
Ny = O(N'"*e™)

storage and the number of operations for a matrix-vector multiplication and
for the generation of the approximant must not exceed O(N't®e~?).
Although we will use a bounded number of iteration steps it 1s useful to
stop the algorithm if a prescribed accuracy is reached. Since we do not
want to calculate the whole original matrix we cannot compute the error
exactly. Thus a good approximation for the error is the only way to control
the algorithm.

Since
Np+1
R, =R, — Z wv
I=ny+1
and ||Rnp+1 |7 is of one order smaller than ||Rnp||p the value
Np4+1
1Y w|lr
I=ny+1

may be used as a good approximation to || Ry, | -
When computing || Z?p“ Ul’UlT”F 1t should be noted that

=np+1
Np41 Np41 m n
I wolli= > (Z(Ul)i(uk>i> (Z(Ul)j(vk)j) :
I=np+1 Lk=np+1 =1 7=1

d

p)2 operations.

The evaluation of the last expression can be made in (m + n)(r

5 Numerical examples

We begin this subsection with the following trivial situation. Let I' be the
inner surface of the unit sphere

F:{;UER3, |;c|:1}.

Then the kernel
1(nx7y _'$>(nya$ _'y)

m [z —y|*

of the radiation heat transfer equation can be simplified as follows:

Ng = —T, Ny =—Y
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Table 1: The results of the compression

Dimension MBytes MBytes Percentage

512 2 2 100%
1024 8 3.0 63%
2048 32 12.6 39.5%
4096 128 27.4 21.4%
8192 512 63.6 12.4%
16384 2048 163.8 8.0%
32768 8192 380.9 4.6%

and therefore

(1 - (J:,y))(l - (U7T>> _ 1

1
™ |z — y|? o B

1 (nxa Y- Jj)(nya T — U)

(2 =2(z,y))? 4m

Thus, any appropriate discretisation of this problem will lead to the matrix
B of the rank one.

For the numerical tests of the Adaptive Cross Approximation procedure we
will consider a geometry of a simple pipe given by the following parametric

representation
cos(2mt)
Fr={zeR? == sin(2m t) , (t,2) € (0, 1)2
4z

The panels are plane triangles appearing after the canonical discretisation
of the parameter domain (0,1)? using n; and n, discretisation points. The
whole number of panels 1s then N = 2n;n,. In the following table we
present the results of the matrix compression with accuracy ¢ = 107 in the
Frobenius norm achieved by the Adaptive Cross Approximation procedure.
The first column of this matrix contains the dimension of the matrix /V, the
second column gives the amount of memory in megaabytes which would be
needed without the approximation, the third the corresponding value for the
compressed matrix, and the last the percentage of memory saved.
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