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Abstract

We collect some facts about Drinfeld modular curves for a polyno-
mial ring F, [T over a finite field IF;. These include formulas for the
genera, the numbers of cusps and elliptic points, descriptions of the
function fields and fields of definition, and other rationality properties.
We then show that any series of Drinfeld modular curves of Hecke type
Xo(Ng), where Ny € Fy[T] is coprime with 7" and deg(Ny) — oo,
gives rise to an asymptotically optimal series of curves over F..

0. Introduction. The maximal number N,(g) of rational points of a curve
X of genus g over the finite field I, is bounded as

(0.1) Ny(9) < q+1+9[2¢'?] (see [30]).

Here and in the sequel, a “curve” denotes a smooth projective geometrically
connected algebraic curve, and “rational” means Fy-rational. Motivated from
questions of coding theory, but also for intrinsic mathematical interest, one
would like to know the quantity

(0.2) A, = limsup Ny(g)/g.

g—0o0

It is obvious from (0.1) that A, < [2¢'/%]; however, Drinfeld and Vladut [6]
showed that in fact

(0.3) A < g? -1

holds, and it is due to Thara ([22], see also [31]) that we have equality in (0.3)
if ¢ is a perfect square.

In the last years, many papers have been published dealing with related ques-
tions, in particular, with the explicit construction of series of curves Xy /F,
that realize the above bound, a few of which are [31], [23], [32], [9], [7]. Such
series (Xj)ren Will be called asymptotically optimal. Usually, the X are some
sort of modular curves, and the difficulty lies in calculating or at least esti-
mating their genera. In [9], an asymptotically optimal series is constructed
through explicit equations, and the corresponding curves X are identified in
[7] as (essentially) reductions of very specific Drinfeld modular curves.

Now it turns out that each series of Drinfeld modular curves of Hecke type
(see (3.1)) over the polynomial ring A = IF,[T] gives rise to an asymptoti-
cally optimal series of curves X /F,2. The precise statement is theorem 10.1,
which is our main result. It is at the same time more general (allowing the
construction of many different asymptotically optimal series), more precise
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(in that it gives exact values instead of estimates), and, arguably, more con-
ceptual compared to some of its predecessor. Its essential ingredients can
be found in the author’s thesis of 1979 (published 1980 [11] in german lan-
guage), where the relevant invariants of Drinfeld modular curves have been
calculated, and in some other papers (e.g. [13], [14]) of the eighties.

As the above indicates, there is an obvious need to make the mentioned re-
sults and calculations around Drinfeld modular curves more widely available,
or at least to collect them at one place, which should be accessible to the
entire mathematical community.

It is the aim of the present paper to fill that gap. That is, we will give here
the necessary precise definitions, a few explanations, and the results about
the arithmetic and geometry (rationality questions, descriptions and num-
bers of cusps and of elliptic points, genera, reduction properties) of various
types of Drinfeld modular curves which should enable the reader (even with-
out an extensive background in algebraic geometry) to construct his or her
own favorite asymptotically optimal tower of curves. Among these results,
apart from (10.1), the following are new or at least appear for the first time
in print: (6.2), (6.3), (6.6), (6.7), (6.10), (6.11), (7.2), and (7.3). We will
give proofs only in few cases where no satisfactory reference is available (for
example, propositions 4.8, 6.2, 9.1); in all other cases, we restrict to giving
hints or appropriate references. Since these point to different articles with
different aims and notations, some translation has to be made by the reader
who wishes to consult the original papers.

We focus on modular curves X(N) of Hecke type since it is those which
enter into the construction of theorem 10.1. Other Drinfeld modular curves
like e.g. the X; (V) have so far not shown to be equally important. Never-
theless, we present also some results for such curves, which causes only small
additional costs, and may turn out useful for other purposes. In order to be
as readable as possible also for the non-expert, we avoid the use of Drinfeld
modules, except for the proofs of (4.8) and (9.1), which however are inessen-
tial for the understanding of (10.1). In that case, we use the definitions and
notation of [15] without further reference.

Acknowledgement. 1 am very grateful to Andreas Schweizer, who pointed
out an error in the calculation of numbers of rational cusps (propositions 6.6
and 6.7) in an earlier version of this paper.



1. Notations. The following notation will be used throughout.

(11) A = F,[T] = polynomial ring over the finite field with
q elements, of characteristic p
K = F,(T) = field of fractions of A
Ky = F,((T')) = completion of K at the infinite place, with
natural absolute value “| . |7; |T'| = ¢
Cxw = completed algebraic closure of K, with the
canonical extension of “| . |” to Cy and its
“Imaginary part” |z|; :=inf |z — z| = min |z — z| (z € K)
Q = C(Cy — K the Drinfeld upper half-plane, with its structure
as an analytic space over K, ([5], [8], [24])
(1.2) I'(1) = GL(2,A) the modular group, which acts on
through (2))(2) = 28

For functions f on (2, an element v = (Zb) of I'(1), and a weight k& € Z, we
put

Fini(2) = (ez +d) " f(v2),
which defines a right action of I'(1) on functions.
(1.3) Let now N be a non-constant monic element of A. We consider the sub-

groups I'(N) C T'1(N) C To(N) of T'(1) of matrices (Zb) that are congruent

to ((1)(1)), ((l)i), (3 ") modulo N, respectively. A congruence subgroup with con-

ductor N of T'(1) is a subgroup I" that contains I'(N), i.e., ['(N) c T' C I'(1).

(1.4) For N as above, we briefly write A/N for the finite ring A/N A, which
contains I, as a subring. If N = P happens to be prime, we let Fp be the
finite field A/P. We next put

G = G(N)=GL(2,4/N), G'={ge G| detgeF;}
= B(N)={()eG} B =Bn¢
€G|deF} J ={())eGlacF}

B

T

H = {(NeGladeF}=InJ, U={()) G}

Z = A{( 2) | a € F,}, regarded as a subgroup either of
I'(1) or of G(N).

(1.5) Let N = H P[* be the prime factorization of N, i.e., the P, are
1<i<s
different monic irreducible polynomials in A, with degrees d; := deg(F;),
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r; > 1,1 <4< s=s(N). We further put ¢; := ¢%, and define the arithmetic

)
functions -
o(N) = Ilg" (a—1)

e(N) = Il (@ +1)
K(N) = H(qz[ri/ﬂ_i_qz[(ri—l)/?])_

Here all the products are over 1 < i < s (thus ¢, ¢, k are multiplicative), and
“[ . ]” denotes “greatest integer”. Finally, we put r(N) = 1 if all the d; are
even, and r(N) = 0 otherwise.

(1.6) Quite generally, if a group G acts from the left on a set X, we let G,
be the stabilizer of x € X and G\ X the set of orbits. The multiplicative
group of a ring R is denoted by R*, the algebraic closure of a field L by L.
“Points” of a variety X over L are geometric (i.e., L#&-valued) points. If X is
a variety over Cy,, we do not distinguish between X, its associated analytic
space, and its set of C'y,-valued points.

2. The j-line ([19], [11], [16]).

(2.1) An elliptic point e on € is one whose stabilizer I'(1), in I'(1) is strictly
larger than F;, = Z < ['(1). Equivalently, e is I'(1)-conjugate to some
element of Fp» —F, < §, in which case I'(1), is isomorphic with Fy,. We
choose once for all a fixed elliptic point e € F,2» — F, and let S :=I'(1).. By
abuse of notation, we also write S for its isomorphic image in G(NN) under
the natural map from I'(1) to G(N).

(2.2) A modular form of weight k (and type 0, see [16]) for I'(1) is some
function f: Q — C that

(i) satisfies f (%) = (cz + d)* f(2) for v = (‘0‘3) e I'(1)

(i.e., f[7]k = f),
(ii) is holomorphic, and
(iii) is bounded on {z € Q | |z|; > 1}.

(The last condition is equivalent with the familiar “holomorphy at co” con-
dition, since I'(1) has only one cusp, see (2.5) and (3.3).)

(2.3) The Eisenstein series of weight k for I'(1) is defined as
! 1 '
Er(2) = Z L (Z = sum over (a,b) # (0,0))

(a,b)eAxA az +b



for z € Q. The series converges locally uniformly and defines for 0 < k£ =
0 (mod ¢ — 1) a non-zero modular form of weight & for I'(1). From these we
get the following analytic functions on €2:

9(z) = (T?-T)E4 ()
(2.4) A(z) = (T7 —T)Ep_i(2) + (T — T9)EI(2)
i(z) = g (2)/A(2).

Their most important properties are: g and A are modular forms of respec-
tive weights ¢ — 1 and ¢? — 1, A vanishes nowhere on Q (so j is a well-defined
holomorphic and I'(1)-invariant function on ), and j induces a biholomor-
phic map labelled by the same symbol

(2.5) j: T\ Q = Cu.

That is, the “Riemann surface” I'(1) \ Q2 has a structure as an algebraic curve
Y (1) isomorphic with the affine line over C, and with j as a coordinate. Its
natural “compactification” X (1) is the projective line P! (Cy.) = Cy U {00},
where the added “cusp” oo corresponds to 5 = oo and the class of elliptic
points to 7 = 0.

3. Modular curves ([18], [13], [15]).

(3.1) For each congruence subgroup I', the Riemann surface Yr =T\ Q is a
finite cover of Y'(1), and is thus endowed with a unique structure of smooth
affine algebraic curve over C,. We let X1 be its smooth projective model.
Such curves are labelled as Drinfeld modular curves. If I is one of the groups
[(N), T1(N), Th(N), we write Y(N), Y1(N), Yo(N) and X (N), X;(N),
Xo(N) for Yr and X, and call Yj(N) and X((V) the (affine and projective,
respectively) Drinfeld modular curve of Hecke type with conductor N.

(3.2) An elliptic point of X will be the class of an elliptic point of Q in
Yr < Xp. (This notation is unusual but practical for our purposes.) A cusp
of Xt is a point of Xr — Y. Set-theoretically, we have (e.g. [15] V 2.4)
Xr =T\ (QUPYK)), and therefore

(3.3) {cusps of Xr} =T\ P}(K) =T \T(1)/T(1)s,

since I'(1) acts transitively on P! (K). Here I'(1)oo = {7 € T'(1) | 7(00) = o0}
={(¢9)} cI'(1). Similarly,

(3.4) {elliptic points of Xr} =T \T'(1)/S.



(3.5) Now suppose that I' has conductor N, and let T be its image in G(N).
Note that the natural map from I'(1) to G(N) is NOT surjective (a pop-
ular mistake even in published literature), but is onto G'(N). Therefore,
X(N)/X (1) and X(N)/Xr are Galois covers with groups G'(N)/Z and
T - Z/Z, respectively. Putting (A/N)2;, for the set of primitive vectors
in A/N x A/N (those that span a direct summand # 0), the rule (Sg) —
(a,c) induces a bijection from {cusps of X(N)} = I'(IV) \ I'(1)/T'(1)s to
(A/N)2.m/F;. The natural action of G'(N) on this set extends to G(N),
where the stabilizer of the cusp oo (i.e., the class of co € P'(K), or of the
element (1,0) of (A/N)2. ) is G(N)y = J(IN). We thus get bijections

prim

{cusps of X(N)} = G'(N)/G'(N)oo = G(N)/G(N)oo — (A/N)}siua/T;

prim
and finally
(3.6) {cusps of Xr} =T\ G(N)/G(N)o — T\ (4/N)2;.n /T
Similarly,
(3.7) {elliptic points of Xp} — T\ G'(N)/S,

where S = Fy, is the image in G'(IN) of I'(1).. In section 6, we will give
formulas for the numbers of cusps and elliptic points of X (N), X;(N), and
Xo(N).

4. The function fields. In this section, we describe the function fields over
Cw and over K of our curves.

(4.1) Let ' be a congruence subgroup of conductor N. A modular form for
[' is a function f : 2 — C4 that satisfies conditions analogous to those
in (2.2), i.e., (2.2)(i) is supposed to hold for v € T only, and (2.2)(iii) is
replaced by “fp,;, is bounded on {z € Q| |z|; > 1} for all v € I'(1)”, which
takes care of all the cusps of Xr, since these are conjugate under I'(1). The
only example we need of such a form is as follows.

(4.2) Let u,v € K be two elements, not both in A, and with NV as a common
denominator. Put

1
Bl = 2, oyp

(a,b)EKXK
(a,b)=(uw,v) (modAxA)



an Eisenstein series of weight one. It depends only on the class of (u,v)
modulo A X A and satisfies

Eu,v(/yz) = (cz + d)E(u=U)7(z)

for v € I'(1). In particular, it is a modular form of weight one for I'(V), and
has the additional property that it vanishes nowhere on Q ([11] 3.3.5).

(4.3) The function

_ _9(2)
P BT
is invariant under I'(/V), that is, a meromorphic function on X (N) with poles
at most at cusps. Two such, f,, and f, ., agree if and only if (v/,v") = (u, v)
in (N~'/A)? mod F; (loc. cit.). The covering group I'(1)/T'(N)-Z = G'(N)/Z
of X(N) over X (1) acts on the function field C (X (2V)), and for an element
of that group represented by v € I'(1) we get

(4.4) a0(2) = fuw(12) = fuwy(2)-

(4.5) In order to state the next result, we need to introduce some more
notation. Let K (NN) be the N-th cyclotomic field extension of K [21], which
may be characterized as the field of N-division points of the Carlitz module
([20] ch. III4+VII), or through abstract class field theoretical data. It is an
abelian extension of K with group (A/N)*, and which ramifies precisely in
oo (provided that ¢ > 2) and the places dividing N. Let further K, (N) be
its “maximal real subfield”, i.e., the splitting field of oo, which is also the
fixed field of F; — (A/N)*.

4.6 Theorem ([11] 3.4.1, [13] sect. 2).

(i) The function field Coo(X(N)) of X(N) is generated over Cpo(X (1)) =
Cwo(j) by the functions fu, ((0,0) # (u,v) € (N~1/A)?).

(ii) The algebraic closure of K in Cy(X(N)) is isomorphic with K, (N).
Upon identifying, the field KK(N) == K (N)(j, fup) provides a K (N)-
model of Coo(J, fup) = Coo(X(N)) and thus a K, (N)-structure
X(N)/KL(N) of X(N).

(iii) The action of G'(N)/Z = Gal(C(X(N))/Cx(j)) =
Gal(K(N)(X(N))/K4+(N)(j)) given by (4.4) extends to an action of
G(N)/Z given by the same formula, and which identifies G(N)/Z with
Gal(K(N)/K (7))



(iv) G(N)/G'(N) = (A/N)* [T, acts on K (N)(j) over K(j) like the
Galois group (A/N)*/F; of K (N) over K.

(v) The cusps of X(N) are K (N)-rational points.

4.7 Remark. Note here an important difference with the case of the classical
elliptic modular curve X, (IN), which is defined over the N-th cyclotomic field
Q(e?™/N) but not over its real subfield.

The assertion (4.6) for X (V) implies similar ones for the curves X;(N) and
Xo(N).

4.8 Proposition.

(i) The function fo n-1 satisfies a Cog-irreducible equation of degree %

with coefficients in K(j).
(i) Coo(X1(N)) = Coo(d; fon-1)
(iii) The field K(j, fon-1) provides a K-model X1(N)/K of X1(N).

Proof. We see from (4.4) that f := f, y-1 is invariant under v € G(N)
if and only if v € I(N). Restricting to G'(IN), we get Coo(X1(N)) =
Coo( X (N)HWN) = Co(4, f), since T'1(N) - Z = G'(N) N I(N) = H(N),
i.e., assertion (ii). That field has degree [G'(N) : I'1(N) - Z] = W(]Z_CI(N) over
Cw(j). Let now ¢ be the “generic” Drinfeld module over K S]) defined by
¢r(X) =TX +X9+71X7. Then ¢n(X) = NX +- -+ j-@=D/¢*-1) x*
(with d := deg N) has coefficients in K (j), and may be written as

on(X) = @VEIX ] dur (X0,

M

where M runs through the non-constant monic divisors of N and ¢, collects
the ¢-division points of precise order M, grouped in orbits under F,. We

have ¢ (X) € K(§)[X], of degree %. Since f is a zero of ¢y ([11]
p. 65), it is the minimal polynomial of f both over K(j) and Cu(j). This

simultaneously shows (i) and (iii). O

In a similar fashion ([14] 3.2), we may describe the function field of Xy(NV).
Let jn be the function jy(z) := j(Nz).



4.9 Proposition.

(1) jn s invariant under Uo(N) and satisfies the equation ®(jyn,j) = 0
with the “modular polynomial” ®n5(X,Y) € A[X,Y].

(ii) Coo(XO(N)) = Coo(jajN)
(iii) The field K(j,jn) provides a K-model Xo(N)/K of Xo(N).

4.10 Remark. In both the cases of X;(N) and Xy(N), the plane equa-
tions satisfied by j and fy y-1 (resp. j and jy) may be explicitly worked out.
This is straightforward for X;(/V); some material on the modular polynomial
&y (X,Y) may be found in [26], [1], [2] and also in [33], where the nature of
its singularities is studied.

5. Reduction properties.

Quite generally, the curves X(N)/K,(N), X;(N)/K and Xo(N)/K have
good reduction at those places of their field of definition that do not divide
the conductor N. This follows from their modular interpretation, i.e., the

existence of a modular scheme, say, M~ (N) over A such that X(N)/K,(N)
is one component of HQ(N) x4 K (N). See [5] sect. 5, [3] II, III, or [25] for
details.

If P € Ais a prime not dividing N, the reduction X;(N)/Fp is a (smooth,
projective, geometrically connected) curve over Fp with the same genus
as X;(N)/K, and provided with a reduction map red : X;(N)(K?8) —
X1(N)(F%8) on geometric points. (We have here already simplified the nota-
tion, omitting the obvious fields of definition K and Fp.) Similarly, there are
curves Xo(N)/Fp and affine curves Y;(N)/Fp and Yy(N)/Fp with analogous
reduction mappings. The next two results again follow from the modular
interpretation.

5.1 Proposition. For ¢ =0, 1, the reduction maps red induce bijections

{cusps of Xi(N)} = Xi(N)(Cau) — Yi(V)(Cuc)

= X;(N)(K™8) = Y;(N)(K"8) 25> Xi(N)(Fp#) — Yi(NV)(F3*)

= {cusps of X;(N)/Fp}.
A similar property holds for elliptic points. Note first that elliptic points on
any modular curve are algebraic, as is obvious from definitions. If we define

an elliptic point of Y;(N)/Fp to be one that lies above the point j = 0 of
Y (1)/Fp = Spec Fp|j], we have:



5.2 Proposition. For ¢ =0, 1, the reduction maps induce bijections

{elliptic points of X;(N)} =>{elliptic points of X;(N)/Fp}.

red

5.3 Remarks.

(i)

(i)

Of course, similar reduction properties hold for X (/N). But since these
involve constant field extensions, they are slightly more complicated to
state, and are therefore omitted.

Roughly speaking, a point = on such a modular curve X/Fp corres-
ponds to a Drinfeld module (with some supplementary structure) ¢ of
rank two over F%8. We then have Aut(¢) = Iy, if z is elliptic and
Aut(¢) = F; otherwise, regardless of the “characteristic” P of Fp. In
particular, these automorphism groups are always abelian. Hence there
is no Drinfeld analogue to the occurrence of unusually large automor-

phism groups of supersingular elliptic curves in characteristics 2 and 3.

6. Number of (rational) cusps.

We also want to know the fields of definition of the cusps of X;(N) (i = 0,1),
which lie between K and K, (V). Let us first make the following definition.

(6.1) According to personal taste, a cuspidal prime divisor of X;(N) will be
either one of

(a)
(b)
(c)

a scheme-theoretic point of X;(N)/K above the point j = oo of X (1)/K;
a place of the function field K (X;(N)) above j = oo;
an orbit under Gal(K##/K) on {cusps of X;(N)}.

(The three sets are in canonical bijection.)
For the curve X; (V) the following description results.

6.2 Proposition.

(i)

(i)

The cuspidal prime divisors of X1(N)/K correspond bijectively and
canonically to I(N)\ G(N)/G(N)s, whereas the cusps of X1(N) are
given by H(N)\ G(N)/G(N) .-

Let © be a cusp of X(N), i.e., an element of G(N)/G(N)so, with
stabilizer I(N), (resp. H(N)y) in I(N) (resp. H(N)). Let further
[] = I(N) - z be its orbit under I(N), regarded (cf. (i)) as a cuspidal
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divisor [x] of X1(N), with residue class field K([z]). The isomorphism

I(N)/H(N) — (A/N)*/F; induced by the determinant gives rise
to an inclusion I(N)y/H(N); — (A/N)*/F;, whose cokernel equals
Gal(K ([z])/K). In particular, [x] corresponds to a K-rational point iff
[I(N)g : H(N),] = 25 holds.

Proof. (i) is obvious from (3.6), (4.6) and the descriptions of function fields
and Galois groups, notably Gal((N)/K(X,(N))) = I(N)/Z, which is a
consequence of (4.8).

(ii) In the extension KC(N)/K(X1(N)), the fixed field of I'y(N) - Z/Z =
H(N)/Z is the constant extension part. Hence I(N),/H(N), = Galois group
of K, (N) over K([z]), and the assertion follows. [

With similar reasoning, we get the corresponding result for Xy(V).
6.3 Proposition.

(i) The cuspidal prime divisors of Xo(N)/K correspond bijectively to
B(N) \ G(N)/G(N)s, whereas the cusps of Xo(N) are given by
B'(N)\G(N)/G(N)c-

(ii)) If 2 € G(N)/G(N)wo is a cusp of X(N) and [z] the cuspidal divisor
of Xo(N)/K corresponding to the orbit B(N) - x, then the cokernel of
B(N),/B'(N), <d—t> (A/N)*[F; equals Gal(K ([x])/K).

(6.4) The double cosets that appear in (6.2) and (6.3) and their cardinalities
may be determined as either

(a) the set of orbits of I(N), H(N), B(N), B'(N), acting from the left on
G(N)/G(N)oo = (A/N)3rim /T, or

p

(b) the set of orbits of G(N)y = J(IN) on I(N) \ G(N), etc., acting from
the right.

We restrict to giving the results of the (cumbersome but elementary) calcu-
lations, along with some comments. The quantities in the following formulas
refer to the prime factorization (1.5) of N.

p(N)e(N)

(6.5) #{cusps of X(N)} = [G(N) : G(N)w] = —1

6.6 Proposition. (i) The number of cusps of X1(N) is

e(N) | ¢(N) Tl
2q_1+(q_1)2 I ri+1 qi) 2] .

1<4<s

11



(ii) The number of K-rational cusps is 2, if deg N =1, and

oY) M)
¢—1 (¢-1)
otherwise. The quantity « vanishes unless ¢ = 2 and T(T — 1)|N, in which
case it is 2 'p(N) with t = 0,1,2 if none, one, or two of T and T — 1 are
multiple divisors of N.

—1
S#{i| g =qand r; = 1}+QT#{Z' |¢; =qand r; > 1}+a«

6.7 Proposition. (i) The number of cusps of Xo(N) is 2° + ”(]:_#.
(ii) If P; is a prime divisor of N of degree one, put t; = 0,1,2 if r; = 1,2,
larger or equal to 3, respectively. Then the number of rational cusps of Xo(N)

18
25 4y 951 Z t+ 2372111,

where the sum s over the prime divisors of degree one of N and u = tq - to
if(g=2and P, =T, P, =T — 1 are divisors of N), and u = 0 otherwise.

6.8 Remarks. (i) (6.5) is of course trivial, and is included for completeness
only.

(ii) The genus g(Xr) and the number of cusps of a modular curve Xr agree
with similar invariants of the almost-finite graph I'\ 7", where T is the Bruhat-
Tits tree of PGL(2, K ), see [15] V, Appendix, for details. More precisely,
we have g(Xr) = hi(I'\ T) (= first Betti number of I'\ T), and the cusps of
Xr are in bijection with the ends of I' \ 7. Their calculation may therefore
be carried out on the graph I' \ 7, which is the point of view of [17].

(iii) The numbers of C-rational (= K (IV)-rational) cusps are calculated

e in [11] sect. 3.4 for Xo(N), based on (6.4)(a);

e in [17] (2.14)-(2.16) for Xo(V) and in [17] (5.2)(iii) for X;(V), based
on approach (6.4)(b), and making use of our present remark (ii).

(iv) Note that the group we here call I';(N) is the group labelled I'{(N) in
[17].

(v) We take here the opportunity to rectify a misprint in [17] prop. 5.2(iii)(b).
The formula in line 7 should read

?

¢(n) H g — 1
(¢ —1) <ics 4
0<h;<r;
i.e., the condition on 7 that 0 < h; < r; has erroneously been suppressed.
The following formulas, in particular the one in line 11, are correct.
(vi) If N has no prime divisors of degree one, the numbers of K-rational
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cusps simplify to % for X;(NN) and 2° for Xo(NN). The special role of ¢ = 2
results from p(N) =1=¢q—1for N=T,T —1,T(T — 1) in this case.

(vii) The numbers of K-rational cusps stated in propositions 6.6 and 6.7 are
so far nowhere in the literature. In order to obtain them, we must analyze
the canonical maps between the double cosets in (6.2) and (6.3), respectively.
This is again unpleasant but elementary, and is therefore omitted. However,
for the convenience of the reader who wishes to check the calculations, we
state below the two lemmas 6.10 and 6.11, which give the essential interme-

diate steps between #{cusps} and #{K-rational cusps}.

(6.9) For M € A, let hy(M) € {0,1,...,7;} be the truncated P;-adic val-
uation of M, that is h;(M) = j if P!||M and j < r;, and hi(M) = 1,
if P/*|M. For z = (U,V) € (A/N)?m, we put hj(z) := h;(V) and h(z) :=
(h1(x), ..., hs(z)) € Ny, which is invariant under the action of F; on (A/N)? ;..

We specify which x under (3.6), (6.2) and (6.3) give rise to K-rational cusps
of Xl(N) or X()(N)

6.10 Lemma. An element x = (U, V) of (A/N)2,,, gives rise to a rational
cusp of X1(N) if and only if
either: h(z) = (0,...,0) (i.e., V is a unit in A/N)

or: there exists precisely one i (1 < i < s) such that h;(z) > 0,
and then h;(z) =1 and ¢; = q
or: g = 2, and there are precisely two i such that h;(z) > 0,

and then h;(z) =1 and ¢; = g = 2.

6.11 Lemma. Some = as above gives rise to a rational cusp of Xo(N) if
and only if the following holds: for each i (1 < i < s), hi(zx) € {0,r;} or
(d; = deg P, = 1 and hi(x) € {1,r; — 1}), and there exists at most one i
(g > 2) or at most two i (¢ = 2) such that h;(z) & {0,7;}.

7. Number of elliptic points.

In a similar fashion, starting with (3.7), we calculate the numbers of elliptic
points. Again, we content ourselves with writing down the results. The cases
X (N) and X (V) are trivial or easy, respectively; the more complicated case
of Xy(NV) has been treated in [11], pp. 77/78.

(7.1) #{elliptic points of X(N)} = [G'(N) : S] = w

7.2 Proposition. X;(N) has precisely % elliptic points. These are all

ramified over X (1) with ramification index q + 1.

13



&(N)+qr(N)2s(¥)
pas]
Among these, there are r(N)2°N) unramified over X (1), the others are ram-

ified with index q + 1.

7.3 Proposition. The number of elliptic points of Xo(N) is

7.4 Remark. Similar to our investigation of cusps, we could work out the
fields of definition of the elliptic points of X (N), X1(N), X¢(/N). Both the
statements and the proofs would require more material about the arithmetic
of Drinfeld modules. Since we are mainly interested in the rationality of
the corresponding points reduced modulo P, for which other arguments are
available (see sect. 9), we reserve this for future work.

8. Genus formulas.

Using again the arithmetic functions introduced in (1.5), we can express the
genera of our Drinfeld modular curves as follows.

8.1 Theorem.

(i) g(X(N)) =1+ W(N)E(N%(Uf‘_q_l)

q2—

(i) g1 (V) = 1+ 20 [e(N) = (g + 1) (g =2+ T, ey (ri+ 1 = 550))]

q;

(i) g(Xo(N)) =1+ €(N)*(Q+1)F~(N)*25‘;2[7L(iV)Q(q*1)+(Q+1)(qf2)]
8.2 Remarks. (i) It follows from the description of the function fields of
X(N), X1(N), Xo(N) over Cy, and over K, (N), K, respectively, that these
curves are conservative, i.e., their genera do not change under constant field
extensions. A formal proof of this fact can be found in [27]. We therefore
simply write g(X) for the genus of such a curve X without specifying the
field of constants.

(ii) Uniform proofs of the three formulas that use remark 6.8(ii) are given
in [17] sections 2 and 5. These proofs depend on knowledge of the struc-
ture of the graphs I' \ 7. In that paper, the fibers of the ramified graph
coverings I' \ 7 — I['(1) \ 7 are calculated for I' = ['(N), I';(IV), T'o(2V).
The formula for g(X(N)) = hy(I'(INV) \ 7) may also be found in [29] IT 2.7.
Proofs that avoid reference to the equality “g(Xr) = h1(I'\ 7)” and work
directly on the modular curve are given in [18] theorem 4.4 and [11] Satz
3.4.8 for X(N) and in [11] Satz 3.4.18 for X(NN). These proofs are based on
the Riemann-Hurwitz formula and proposition 8.3 below. It states that the
canonical coverings of Drinfeld modular curves have the least amount of cus-
pidal ramification allowed by the group-theoretical structure of stabilizers of
cusps. Since the only possible ramification is at the elliptic points (where it
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is tame in view of [S : Z] = ¢+ 1) or at cusps, we can first calculate g(X (V))
from the covering X (N) — X (1) = P* and then g(Xr) from X (N) — Xr.
Again, by lack of symmetry, the case of Xo(N) is the most involved.

The next proposition, which is Satz 3.4.7 of [11], might be useful also for
other purposes. We therefore state it separately.

8.3 Proposition. Let z be a cusp of X(N) and G, its stabilizer in G :=
Gal(X(N)/X (1)) =G'(N)/Z. Then the second ramification group ([28] IV)
G2 18 trivial.

Since all the cusps of X (N) are conjugate under G, we can restrict to consid-
ering £ = oo, in which case G, = G'(N)w/Z = H(N)/Z, and for divisibility
reasons, the first ramification group G, is its p-Sylow subgroup U(N)-Z/Z.

9. The elliptic argument.

Let P be a monic prime of A coprime with N. We put ]Fg) for the quadratic
extension of Fp = A/P.

9.1 Proposition. Suppose that P has odd degree. Then all the elliptic points
of Xo(N)/Fp are ]Fg) -rational.

Proof. Let z be such a point. Using the interpretation of Xo(N)/Fp as a
coarse moduli scheme, z is represented by a triple (¢, u, ¢'), where

(a) ¢ and ¢' are rank-two Drinfeld A-modules over F4¢ with j-invariants
§(8) = j(¢) = 0, and

(b) u : ¢ — ¢' is a separable isogeny with kernel isomorphic with A/N.
This fact (i.e., that any point on the moduli scheme comes from a modular
object) is similar to the analogous statement for elliptic curves. In that con-
text, it is proved e.g. in [4] VI prop. 3.2, and the proof given there applies
also, mutatis mutandis, to our case of Drinfeld modules. (It even drastically
simplifies, cf. remark 5.3(ii).) Replacing ¢ and ¢’ by F4-isomorphic Drinfeld
modules if necessary, we can assume that ¢ = ¢’ and that P acts via ¢ as
¢p = F32, the square of the Frobenius Fp of Fp. Here we use the fact ([12]
Satz 5.9) that j = 0 is supersingular in characteristic P if deg P is odd, and
therefore ¢p is purely inseparable. But then u commutes with F3, i.e., has

coefficients in Fg), and z is ]Fg)-rational. Il

9.2 Remark. The assertion (9.1) may be considerably generalized, ad-
mitting primes P of arbitrary degree and replacing “x elliptic” by “x su-
persingular”, i.e., the point z of Xo(NN)/Fp lies above a point of X(1)/Fp
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with supersingular j-invariant ([12] sect. 5). Then again z is Fg) -rational,
and the same proof works except that the Drinfeld modules ¢ and ¢’ in the
triple (¢, u, ¢') representing z are in general non-isomorphic. But still we can
achieve ¢p = ¢, = F2 by replacing ¢ and ¢’ through suitable F8-isomorphic

modules, which has the same consequence that u has its coefficients in IFSDQ).

10. Conclusion: Asymptotically optimal series of curves over F,..

We keep the notation of the last section, i.e., ]Fgg) & Fpe is the quadratic
extension of Fr.

10.1 Theorem. Let (Ny)ren be any series of elements of A that are co-
prime with T and whose degrees tend to infinity. Then the series of curves
Xo(Nk)/IF'gg) is asymptotically optimal. That is, the ratio

#{Fg?) — rational points of Xo(Ng)/Fr}
9(Xo(Nk))

Proof. The precise value of g(Xo(Vi)) is given by (8.1)(iii); it is % +
0(| Nx|*?), where €¢(N) > |Ni|. On the other hand, by (5.2), (7.3) and (9.1),
we have H%[G(Nk) + qr(Ny)25(V)] ]Fg?)-rational elliptic points and by (5.1)
and (6.7) a certain number of Fg?)—rational cusps on Xo(Ng)/Fr, that is,

more than €(Ny)/(q+1) F*) -rational points. We conclude with the Drinfeld-
Vladut bound (0.3). O

tends to g — 1.

10.2 Example. Let N, = P* where P # T is a prime of degree one, e.g.
P =T — 1. Then our formulas yield:

k-1

2‘1?_1 k odd

g(Xo(Ny)) =14 £ 274 — '

qg—1

k k_4
q2+q2 -2
qg—1

#{F&?) — rational points of Xo(N;)/Fr} > ¢* 1 +4if k > 3.

k even,

The tower formed of the Xo(Ny) is very close to Garcia-Stichtenoth’s tower
[9]. In particular, explicit equations for the Xy(/Ny) may be worked out
without too much difficulty. For some related considerations, see Elkies’
forthcoming paper [7].

10.3 Remark. Whereas towers X(/Ny) as in (10.1) are asymptotically opti-
mal, the individual curves Xy(NN)/Fr fail to present particularly high ratios

#{]1?5?) — rational points} / genus for small genera g. For g < 50, these
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ratios are usually in the range of 50-80% of the maximal values allowed e.g.
by the tables in [10].

(10.4) In the following table, we present a few values for the curves of ex-
ample 10.2, for ¢ = 2 and 3, augmented by the maximal number known so
far of F2-rational points for the given pair (g, g), and the theoretical upper
bound for that number. The latter data are taken from [10].

Table: | k | g(Xo(T*)) | #{F,-rational points} | maximal | upper
larger or equal to # known | bound
q=2 3 1 8 9 9
4 3 12 14 14
) 9 20 26 26
6 21 36 41 47
7 49 68 81 90
7=3 |3 13 20 20
4 8 31 38 47
) 42 85 118 161
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