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1 Introduction

Let K be a field, and > be a well-ordering on the monomials of polynomial
ring R = K|[z1,...,2,] in n variables, which is compatible with the semigroup
structure of the monomials. Let F = @!_ R -7; be a finitely generated free
R-module with a given basis 51,...,7;. Consider a monomial order > on F
compatible with the monomial order on R. A set G = {f1,..., fs} of elements
in F is called a Grébner basis if the ideal generated by L(f;) is equal to the ideal
L(I). Here, I = (f1,...,fs), and L(g) denotes the leading monomial of g with
respect to the monomial ordering, and L(I) is the monomial ideal generated by
L(g) for g # 0 and g € I. Without loss of generality, and for simplicity, we
will assume that the leading coefficient of f; is one for all i. The well-known
Buchberger criterion gives a characterization of Grobner bases. To formulate
this, consider the so—called S—polynomial of f and g:

lem(L(f), L(g)) . lem(L(f), L(g))
S \ = / 7 _ / / .
R 7 R 7 B
This is only defined if L(f) = z%n; and L(f) = zfn; with the same i. In this
case we say that L(f) and L(g) lie in the same summand. If this is not the case,
we formally put S(f,g) = 0.

Theorem 1.1 (Buchberger, [1]). The set G = {f1,..., fs} is a Grébner ba-
sis for (f1,..., fs) if and only if for all pairs i # j the remainder on division,
or normal form, NF(S(fi, f;)|G) of S(fi, f;) by G is zero.

Therefore, to show that a certain set {f1,..., fs} is a Grébner basis we have
to do, a priori, 5(32_1) checks consisting of divisions with remainder. Since
these are computationally often very expensive, it is important, from a practical

point of view, to reduces these number of checks. Therefore, it would be nice




to give criteria for reducing these number of checks. Known are the so-called
product and chain criteria. In this paper, we propose a new criterion, which
is a generalization of the chain criterion. The main idea is to use the second
syzygies between the leading monomials. We use them to show that, under
suitable assumptions, if S(f;, fx) and S(fi, fx) are reduced to zero then S(f;, f;)
reduces to zero, without actually doing the calculation.

This will be done in the second section.

In the third section we will consider syzygies. Schreyer [4] proved that if
fi,---,fs is a Grobner basis, then we can also find a Grobner basis of the
syzygy module syz(fi,..., fs) if we use the so-called Schreyer ordering. We
will give an algorithm for computing syzygies, while computing some second
syzygies along with it. This will, hopefully, be particular useful for computing
resolutions. We hope to report on implementations in the (near) future.

2 A criterion for S—polynomials to reduce to
Zero.

We fix a monomial well ordering on the free R-module F, where R is the
polynomial ring in n—variables. For an element f € F we denote by L(f) its
leading monomial. We need two definitions.

Definition 2.1. For a subset GG of the polynomial ring K[z1, ..., z,] we define
V(G) = {z; : z; | L(f) for some f € G).

Definition 2.2. Let f;, f;, f; be nonzero elements of F, whose leading mono-
mial lie in the same summand of F. We define

ooy em(L(fi), L(f;), L(fx))
Oz(la.?ak) = lcm(L(fl,L(fk)) .

Thus «(i,j;k) € R. We denote by B the set of elements of type (i,j) with
1 <i< j<ssuch that L(f;) and L(f;) lie in the same summand.

Theorem 2.3. Consider a set G = {f1,..., fs} of elements of F. Let D be a
subset of B such that for all (i,j) € D we have NF(S(f;, f;)|G) = 0. Suppose
that for all (i,j) € B\ D there exists a k € {1,...,s} and a subset G(i, j; k) of
G such that

1. NF(S(fp, f)|G(i, 43 k) = 0, for all f,, f; € G(3, j; k), that is, G(i,j; k) is
a Grébner basis of (G(i, j; k)).

2. N ( (f“fk)|G( ,], ) NF( (f]afk)|G(27]ak)) :0’
3. ali,ji k) ¢ V(G(i,j; k
Then NF(S(fi, f;)|G (3, j; k)

)
(i
)
)
)=

. In particular G is a Grobner basis.



Proof. We have the following identity between the S—polynomials
a(iaj; k)s(fza f]) = O‘(ia k,J)S(fza fk) - a(ja k; Z)S(f]a .fk)
Using the assumptions, this shows that

NF((a(iaj; k)S(f], fk)|G(laJa k)) =0,

By assumption « (%, j; k) is a non-zerodivisor of (L(G (3, j; k)), and G(3, j; k) is a
Grobner basis. So it follows that NF(S(f;, f;)|G (4, 4; k)) = 0. O

Remarks 2.4. 1. Our proof of the theorem in fact has a little bonus. Sup-
pose that for a certain S—polynomial (f;, f;) there exist a k with (7, k) and
(4, k) in D, but our criterion does not apply because the third condition
is violated. Then we have to start reducing the S—polynomial S(f;, f;).
Take an element in fin G(4, j; k), and say it occurs in G(7, k). At a certain
point in the calculation of the reduction of S(f;, fx) we have done all the
reductions we had to do with f. ;From this order on, we can drop f from

the set G(¢, k), and therefore the set G(¢,7;k), and hence V(G(, j; k))

might get smaller. Then our criterion might hold from that point on, and
we do not have to reduce the S(f;, f;) until the end.

2. Suppose F is graded and we have a graded monomomial order on F. Then
our criterion works degree for degree, that is we only have to know that
the g; form a standard basis up to the degree of the S—polynomial.

3. In the same vein as the previous remark, we only need that «(7, j; k) ¢
V(G'), where G' = {g € G(i,j;k) : L(g) < L(S(fi, f;))}. This makes the

criterion somewhat stronger.

4. The chain criterion criterion corresponds to the case that «(i,j; k) = 1.
In this case the first condition can be dropped.

Remark 2.5. It is now quite obvious how to use our criterion in an algorithm.
We take the usual Buchberger algorithm, and remembers which elements G(i, j)
were used to reduce S(fi, f;j) to zero. If we take a pair (4, ), we search for a
k such that S(fi, fx) and S(f;j, fr) have been reduced to zero. Then one looks
whether G(i,k) U G(j, k) is a subset of a certain set G(,j; k) such that all
S(fp, fq) with fo, fg € G(4,j;k) are reduced to zero using only elements in
G(%,j; k). If this is the case then one checks the variable criterion (i, j;k) €
V(G(i, j; k)) holds. If this is the case, one can reduce S(f;, f;) to zero by using
elements of the set G(4, j; k). If the criterion does not apply we have to reduce
S(fi, f;) in the classical way. It is quite obvious that one needs good strategies
for choosing the pairs. Also, in an implementation, one has the cost of book-
keeping, as one has to remember which elements have been used to reduce
S—polynomials to zero.



Example 2.6. We take the cone over the rational normal curve of degree four,
given by the elements

fi = a:f — ZoTo
f2 =23 —ras
f3 =3 —xomy
fi =ziz2 — 2023
fs =axaw3 —ximy
fo = x173 — ToT4.

We wish to use our criterion with respect to the graded reverse lexicographical
ordering. The product criterion says that we do not have to consider the pairs
(1,2), (1,3), (2,3), (1,5), (2,6) and (3,4). We calculate and find that the S—
polynomials for the pairs (f1, fa) and (f1, fs) reduce to zero modulo G(4,6;1) =
{f2, f5, fa}, and we get V(G(4,6;1)) = (22,23). Our criterion asks whether
z1 ¢ (22, z3), so it applies and we do not have to reduce the S—polynomial of
(fas f6). Similarly by considering (f2, fs) and (f2, f4) we see that we do not
have to calculate (f4, f5). The chain criterion gives that we do not have to
calculate for the pair (fs, fs). The remaining pairs (fs, f5) and (fs, f6) remain
to be calculated, and in fact we already did that in the proof of the fact that
for example G(4,6;1) = {f2, fs, fa} is a Grobner basis. So we gain the non-
computation of the reduction of two S—polynomials.

Remarks 2.7. 1. It is quite obvious that our algorithm works well if we can
assure that V(G(4,j;k)) is small. The chance for this to be the case is
probably the biggest for the lexicographical ordering.

2. If our criterion applies, we proved that a certain S(i,j) reduces to zero
modulo a certain set G(3, j; k). The actual set might in fact, and probably
will, in many cases, be smaller. Thus it might be better not to use our
criterion in the “beginning” of the algorithm, so that we can collect more
information. Experiments have to show what the best strategy is.

3 Computing Syzygies

We will use similar ideas to compute syzygies, that is, we will use second syzygies
to compute first syzygies. More precisely, we try, whenever possible, to compute
a first and second syzygy simultaneously. For simplicity, we will first assume
that we have a standard basis fi1,..., fs of an R—module M, where R is the
polynomial ring k[z1,...,z,] for k a field. Consider the map

p:®i_R-es — M
€; i—)fz

The kernel of ¢ is called the syzygy module between the fi,..., fs, which we
denote by syz(f1,...,fs). On &;_, R-e; we define a monomial order, called the



Schreyer ordering, see [4]. Tt is defined as follows:
m-e; > n-e;j if either L(mf;) > L(nf;) or L(mf;) = L(nf;) and i < j.

We recall Schreyer’s Theorem for computing syzygies. Let (i,j) € B and con-
sider the S—polynomial
_ lem(L(fi), L(f3)) , _ lem(L(fi), L(f5))

S =T Gy T

As fi,..., fs is a Grobner basis, the S(f;, f;) reduce to zero modulo fi,..., f;.
Hence we can find a; € R (depending on 7 and j) such that

fi.

S(fisFi) + Y axfs =0
&
with L(ax fi) < L(S(f;, f;)) for all k. Thus we get the syzygy

R(i,j) == S(i,j) + Y _ arex
k

where S(7, j) by definition is

S, j) = lcm(L(fi),L(fj_))ej _ Jem(L{fi), L(5))
L(f) L(f)
Theorem 3.1 (Schreyer). The R(¢, j) for (i,j) € B form a Grébner basis for
the syzygy module syz(fi,..., fs) with respect to the Schreyer order.

(From now on we will always use the convention that R(z,j) = —R(j,7). We
consider the map

Vi Dujech iy — B R e
Eij — R(l,j)

The kernel of ¢ is called the second syzygy module. We now present our algo-
rithm for computing syzygies.

Algorithm 3.2.

Input: A Grébner basis {f1,..., fs} of M.
Output: The syzygies R(7,j) for (i,j) € B together with some of the second

syzygies S(i, j; k).

Initialization
B := {{i,j} : L(f;) and L(f;) are in the same summand of F, 1 < i <
j<s}
R(i,j) :== S(i,j). D:=10

Iteration

WHILE B # () DO



IF there does not exists a k with {i,k} and {j,k} in D and L(f;), L(f;)
and L(f) lie in the same summand of F
THEN
COMPUTE R(i, j).
ELSE
Take k with {i,k} and {j, k} in D, and L(f;), L(f;) and L(fx) lie

in the same summand.

R(i,j) == —a(i, k; j) R(i, k) + (5, k; i) R(j, k) + a(i, j; k) R(3, 5)
S(t,j; k) == ali, jik)ei; —a(i, ks j)ein + a(d, k;i)ejn

WHILE R(i, j) # 0 DO

Let m be the leading term of E(l,j)

IF i ji k) | m

THEN _

Find (e, B) and vy with m = 27 L(R(a, B)).
IF {a, f} € B THEN COMPUTE R(a, f) FI
IF {a, B} # {1, j}
THEN _ ~
R(i,§) := R(¢,j) — 2" R(a, B)
S(i, g5 k) := 81, j; k) — x7eap
ELSE _
R(i,7):=10
B =B\ {{i,i}}
D= DU{{i i1

Here by COMPUTE R(i,j) we mean computing the syzygy in the standard
classical way, as described above.

Proof of the correctness of the algorithm. The algorithm runs as in the classical
case, except that we treat the case that we have a triple (¢, , k) whose leading
terms lie in the same summand, and of which two syzygies, say R(i, k) and
R(j, k) have been computed. Note the following identity in @j_, R - e;.

—aliy k; j)S(i k) + a(j, k1) S0, k) + (i, j; k) S(i, ) = 0

By assumption we calculated R(i,k) and R(j, k) which are syzygies whose
largest terms are S(i,k) and S(j, k). Tt follows from our initialization that
a(i, j; k)S(4,§) — R(4,7) is a syzygy. As the {fi,...,fs} is a standard ba-
sis, we can lift the R(i,j) = S(4,j) to R'(i,j). Thus we can write S(i,j) =
R'(i,j) — A(3, j). Hence, a(i, j; k) R'(4, j) — R(i, j) + a(i, j; k) A(4, j) is a syzygy,
and thus —R(%, j) + (i, j; k) A(7, j) is a syzygy. Thus we see that if the leading
term of R(i,j) is not divisible by «a(%, j; k), then it must be divisible by the
leading term of R(«, ) for some (e, 3). Note that in the first case L(ﬂ%) is



smaller that the terms in S(7, j). In this case we subtract off m for Eij and also
the R(i,j) and thus A(i,j) are changed accordingly. In the second case we can
reduce E(z, J) with R(a, B), thereby also computing a part of the second syzygy.
What remains is still a syzygy. O

Remarks 3.3. 1. A little generalization of the algorithm shows that we can
drop the assumption that {f1,..., fs} is a Grébner basis, as we can com-
pute a Grobner along with it. Indeed, we just have to change the procedure
COMPUTE R(%,j). In this case then we compute the reduction modulo
the set {f1,..., fs}. If nonzero, the set {f1,..., fs} and the set of pairs
B is extended.

2. Our algorithm also works when the ground ring is a quotient ring R/.J
of the polynomial ring, as soon as we proved that «(i,j; k) is a non-

zerodivisor of R/J.

3. We can iteratively use our algorithm to compute a free resolution (of course
truncated if not finite) in the obvious way. In the graded case we can do
the computations degree by degree. Moreover, suppose that, in some way,
we computed a third syzygy, and look at its components, which correspond
to second syzygies. Suppose that all but one of those syzygies have been
computed. Then we can use the third syzygy to compute a monomial
times the second syzygy, and thus the second syzygy itself. Then the
computed second syzygy can be used to eventually compute first syzygies.
These ideas are very much related to the ideas of La Scala and Stillmann.
Thus probably our algorithm can be combined with that of La Scala and
Stillman [3]. They have the strategy of, if possible, computing higher order
syzygies first. Other strategies for computing resolutions can be found in

[2] and [5].

4. Of course we can make all kind of variants of this algorithms. Which of
those will work best in empirical examinations have to show.

Example 3.4. We will consider the cone over the rational normal curve of

degree four given by the following six elements in K[zo, ..., z4]
fi =i - wors
J2 = 235 — T1T3
fs =xi—wmy
fa = z122 —T073
f5 = Z2¥3 — T1T4q
fo = z123 — 2024

We already know that it is a standard basis with respect to the graded reverse
lexicographical orderings. It is known that the syzygy module is generated by
the eight elements. We do not have to consider the pairs (1,2), (1,3), (2, 3),



(1,5), (2,6), (3,4) and (4,5). We start off by computing R(1,4) and R(1,6).

The result is

R(1,4) = xq1e4 — x2e1 —x0e2 = S(1,4) — zoer
R(1,6) = zies — x3e1 + xzoes = S(1,6) + xpes.

Now we use the second syzygy between the leading monomials
S(1,4;6) = z3e14 — z2€16 + T1€46
so that
x3S(1,4) — 225(1,6) + 215(4,6) = 0.
Plugging in (1) and (2) we get the syzygy

roX3z€a — Xor2€y =+ I15(4, 6)

(1)
(2)

(3)

In particular «(4, 6; 1) = z1, and R(4, 6) = zoxaes — xox2es. The monomial zq
does not divide the leading term of R(4,6). We see from R(4, 6) that we now

have to compute R(2,5) and multiply it with zq, so we do that:
R(2,5) = xge5 — x3€3 — 21€3.

We add zoR(2,5) from (3) and get the syzygy

215(4,6) — zoxies.
Now E(4, 6) = —xoxqas is divisible by 1. We thus get the syzygy
S(1,4) — zoes

which is equal to R(1,4). Note that we also computed the second syzygy
T3€14 — T2€16 + T1€46 + T0E25-

Similarly, we see that we can compute simultaneously the syzygy

R(5,6) = S(5,6) — zaeq,
and the second syzygy

T1€35 — T2E36 + L3E56 — T4E24-

Note that we now computed all eight syzygies, and two of the three second

syzygies.

It is a curiosity that we can compute also syzygy by using a non-minimal second
syzygy. For example, we compute R(1,4), and we know R(1, 2) from the product

criterion without doing any calculation. Thus we get the two syzygies

R(1,4) = 5(1,4) — Xp€2
R(l,?) = 5(1,2) — Zoxgey + r1x3€71.



We have the identity

S(1,2) + 215(2,4) — 225(1,4) =0

so by plugging in we get the syzygy

215(2,4) — (—xowaes + x123€1 + Torer) = £15(2,4) — xq23€1.

Dividing by z1 we get that R(2,4) = S(2,4) — x3e1. It is unclear whether
computing syzygies in this way will speed up the computation of the syzygy
module.
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