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Finite modular forms

Ernst-Ulrich Gekeler

Introduction.

If K is a finite field, the "upper half plane” Q/K = P'/K — P'(K) shares some
features with the classical complex upper half-plane H or the Drinfeld upper
half-plane Qpyin. Therefore, a meaningful theory of finite modular forms may be
developed, i.e., of rational functions on /K with the familiar transformation
behavior under GL(2, K') and certain boundary conditions. It is some “kinder-
garten” variant of modular forms theory, deprived, of course, of any kind of
analysis, but with some remaining algebraic and combinatorial subtleties.

The principal motivation comes from Drinfeld modular forms. In the most sim-
ple case (see [1]), Drinfeld modular forms are rigid analytic functions defined on
Qprin, a one-dimensional symmetric space over the infinite completion of the ra-
tional function field K(T'). In contrast with classical elliptic modular forms over
Q, they may be reduced not only at finite primes p of K(T'), i.e., at primes p of
the polynomial ring K[T], but also at the infinite prime “oc”. Roughly speaking,
our finite modular forms are the reductions of Drinfeld modular forms at oo, see
[2], sect. 8. Hence they provide information about Drinfeld modular forms, no-
tably, about the location of zeroes of Eisenstein series and of other distinguished
forms.

In the present article, we study finite modular forms in their own right. Apart
from some fundamental properties (relation with rank-two lattices, structure and
dimensions of spaces of modular forms, j-invariant, “Serre derivative”, ...), which
are surprisingly similar to their elliptic or Drinfeld counterparts, we describe fi-
nite modular forms in terms of the (modular) representation theory of the group

GL(2, K).

Perhaps the most pleasant result 1s Theorem 9.5, where we construct an “Eichler-
Shimura” isomorphism of the space of cusp forms with a certain space of harmonic
cochains. It may be seen as a “finite” analogue of Teitelbaum’s isomorphism ([§]
Thm. 16) in the case of Drinfeld modular forms. As a main application, we find
in Corollary 9.7 the multiplicity of twisted Steinberg representations in the k-th

symmetric power Symk(F2) of the tautological representation of GL(2, K).

The largest part of the present results has been obtained while the author was a
guest at the “Centre Interuniversitaire de Calcul Mathématique Algébrique” in
Montréal, Canada. He gratefully acknowledges the hospitality of that institution.



0. Notations.

K = finite field I, with ¢ elements, of characteristic p
K

a fixed algebraic closure of K

K, = F,n = subfield of K of degree m over K

P!/K = projective line over K with K'-rational points P!(K")
(K" any extension of K)

Q = PYK)-PY(K)=K — K “the upper half-plane” over K

r = GL(2, K) the “modular group” that acts on P! and Q
throngh (£2)(2) = 22

B = the Borel subgroup of upper triangular matrices of T,

with unipotent radical U of strictly triangular matrices
Z >~ K™ the group of scalar matrices in T’

If the group G acts on the set X and = € X, we denote by G,, Gz, G\ X the
stabilizer of = in G, the orbit of z, the space of all orbits, respectively.

1. Lattices and Goss polynomials.

Most of the statements collected in this section are well-known. Missing proofs

can be found e.g. in [1] or in [4] Ch. 1.

A lattice in K is a K-subspace A of finite dimension. With A, we associate the
polynomial

(1.1) ea(X) = XT (1 = x/N),

AEA

where [ denotes the product over the non-vanishing elements of A. We do not
distinguish between e, (X) and the map on K it induces. It is additive and even
F,-linear and thus has the form

(1.2) ea(X)= > X7,

0<e<lr

where r = dim A, ag = 1, o, # 0, and the a; = o;(A) depend on A. They are
homogeneous of weight ¢* — 1 in A:

(1.3) ai(ch) = T ay(A), ce K.

(1.4) Consider the K-algebra of all polynomials ) a; X? ¢ with coefficients a; € K,
where the product (fog)(X) of two such polynomials is defined by f(g(X)). Writ-
ing ¢ for X', it may and will be identified with the non-commutative polynomial
ring K {7} with commutator rule 7 o ¢ = ¢ o 7 for constants ¢ € K. Note that
its identity is 70 = X. Write K{{r}} for the “formal power series” in 7, and let

(1.5) log, (X) =Y AiX"

i>0



be the inverse of ey with respect to “o”, which exists in K{{r}}. We have for

kE>1: Z ozfﬂgi =0= Z a?jﬁj, in particular,

k—j
=2 il

i<k
Moreover (see e.g. [1] 2.8, 2.9),
Br = —Ep_1(A),
where
(1.6) Ei(A) = A
AEA
is the Eisenstein series of weight [ for A. (We use the convention Ey(A) = —1,

which fits with the preceding and following formulas.) For A as above, write
t=1t) = i Taking logarithmic derivatives in (1.1), we find

(1.7) fa(z) = Zzix

A€A

The following basic observation is due to David Goss ([3] Ch. VI).

1.8 Proposition. There exists a series Gy = Gy a(X) of polynomials with coef-
ficients in the field K(A) generated by A such that

> ﬁ = Gr(ta(2)).

We have

(i) G is monic of degree k;

(i) Gi(0) =

(i) Gu(X) = X* if k < g

(iv) Gpr = (Gy)P (p = char(K)), and, putting G, = 0 for k <0,
(v) Ge(X) = X(Grot + a1Grg + -+ + iGr_gi + ) (k> 2).

Further, if k = ¢ — 1 then

(vi) Gr(X) = Y gixe7

0<i<j



(For a proof, see [1] sect. 3.) O
The next two examples are crucial for modular forms.

1.9 Example. Consider A = K itself, and omit subscripts A. Then ¢(X) =
X — X% log(X) = ZX‘IZ, hence

i>0
Guio1(X) = Xo-1y xa-a 4 x@-aT
A quick calculation yields more generally
GX) = Y (AR e
0<i<(k=1)/q

(1.10) Let us determine, for arbitrary A, the expansion of o s a formal power

series in z. By (1.7),

z z roz/A ! ek
ea(z) - Zz—/\:1_zl—/z/)\:1_z(z)\_ )z

AEA A A k1

= 1-) Ei(A):"

E>1

1.11 Example. Let A have dimension two. Up to scaling, we may assume that
A is the K-span (w,1) of w and 1, where w € K — K = . The function e, can
be written

ea(z) =z — g(w)z? — A(w)zqz,
where A(w) # 0 for each w. Using (1.5) and (1.6), we find

g(w)=—Ej1(w), Alw)=—Ep_i(w) — ngll (w) with

Ee(w) = Bul(w.1)) = 3 '—

a,be K (aw + b>k7

the k-th Eisenstein series, considered as a function in w.

Conversely, (1.10) yields the recursion
Eiroy = gEy—q + AE,_p,

valid for k& > 1, which allows to express the Ej as polynomials in ¢ and A. The
functions Ej, g, A are prototypes of finite modular forms.

(1.12) Next, suppose that A is a lattice of dimension r, contained in K, r < [.
Let A* be the lattice ex (L)), of dimension I — r. The two polynomials e, and
eax © ep have the same degrees, kernels, and linear terms, and therefore agree,
ie.,1—71 =ep0ex. In K{{r}} we have

ear = (1 =7 olog, =log, = — Z Eyi_ (AT

0<i<l



modulo the ideal (7!) generated by 7. In view of deg, (ex+) = dim A* =1 —r,
we find

(1.13) E,i_i(A) vanishes for [ —r <1 <.

Applying this to the situation of example 1.11, i.e., r = 2 and the functions
Ei(w) = Ex({w,1)), yields the following result.

1.4 Proposition. E,_;(w) vanishes on the subset K;11 — K of . [

2. Modular forms.
(2.1) The orbits of T on PI(F) = IP’I(K) U Q are described as follows:

e P!(K) forms one orbit, of length ¢ + 1; its elements are called the cusps of
Q.

1
e K, — K forms one orbit, of length ¢* — q; its elements are the elliptic points;
e K — K, splits into orbits of equal length (¢* — 1)q.

The stabilizer of # € PY(K) is isomorphic with B, with Kj, with Z = K*,

29
respectively, according to whether z is a cusp, an elliptic point, neither a cusp
nor elliptic.

2.2 Definition. Let k be a non-negative integer and m a class_(mod g—1). A
modular form of weight k and type m is a function f: Q@ — K such that

1 is a rational function in the coordinate z of P' (without poles on );
p 5

(ii) f satisfies the functional equation

az cztd)* a
() = e f(2) fory= () €T;
(iii) f is regular at the cusp co.

We denote by My, the K-vector space of forms of weight k& and type m.

2.3 Remarks. (i) Condition (i) is the substitute for the usual holomorphy
condition. Condition (iii) distinguishes the cusp oo from the finite cusps. Modular
forms according to the present definition arise naturally from reducing Drinfeld
modular forms over a rational function field A(T') at the infinite place T = oo
[2].

(ii) Applying the functional equation to scalar matrices, we see that My ,,, # 0
implies & = 2m(mod ¢ — 1).

(iii) Contrary to intuitive expectation, the different spaces Mj, ,,, fail to be linearly
independent (see 2.4 (ii)). We therefore cannot form a graded algebra of modular
forms as a subring of the ring of functions on ).

Some examples of modular forms are easily written down.

5



2.4 Examples. (i) The Eisenstein series

! 1
B = o

abeK

defines an element Ejy € My, non-trivial iff £ = (0 mod ¢ — 1) (see (3.1) for
Ey #0).

(ii) As in (1.11), let A = (z,1) be the lattice spanned by 1 and z € €, and put
a;(z) := a;((z,1)), Bi(z) := Bi({z,1)). Then a3 = —g, ay = —A, o; = 0 for i > 2,
Bi = —E4_y, and «;, 8; € My_, 4. Here condition (2.2) (ii) is the translation of
(1.3), condition (iii) follows from its validity for Eisenstein series. Note that e )
vanishes on 1, which yields the relation

1—g(z)—A(z)=0

identically in z, i.e., a relation between modular forms of weights 1,q — 1, ¢* — 1.
(iil) t(z) = @ = ﬁ defines an element ¢ of M,y . Here we only have to
verify condition (ii). Since its validity is stable under multiplications and T' is
generated by B and w = ((1) é), it suffices to check it for matrices in B (for which
it is obvious) and for w (which is a one-line calculation).

We next introduce expansions around the cusp co. From now on, e(z) = z — 29
and t(z) = ﬁ = == = D ek = denote the functions associated with the
one-dimensional lattice A = K.

Note first: The subfield F(Z)U of U-invariants of the rational function field F(Z)
equals K (¢) = K(t). Since any modular form f is U-invariant, i.e., f~(z) = f(z+b)

for b € K, it may be written f(z) = f(t) with a rational function f.
2.5 Lemma. In the above situation, f is a polynomial in t.

Proof. Since f is regular at z = oo, fis regular at ¢ = 0, i.e., an element of
K(t) N K[[t]]. Any non-constant factor in the denominator of f would give rise
to a pole of f on Q. [

2.6 Definition. For any modular form f, we call the polynomial f the t-
ezpansion of f. (For obvious reasons, we cannot use “g-ezxpansion”.) For 0 #
f € My, we let v,(f) be its order at z € Q, voo(f) the vanishing order of f(t)
att =0, and d(f) the degree of f. Clearly, v,(t) depends only on the T'-orbit of

2.
The relations between the different quantities are described in the next result.

2.7 Proposition. Let f # 0 be a modular form of weight k and type m. Then

. * VE(f) VOO(f) d(f)
(i) Z Vz(f)+q+1+q2_1 - @ -1

z€'\Q
i *1/ Vﬁ(f) VOO(f) — k
(i) ;ﬂ AR e s wl s



where € € Ky — K is a fized elliptic point and the sums >." are over the non-
elliptic orbits.

Proof. Equation (i) multiplied by the degree ¢ — ¢ of the ramified covering
P! — T'\ P! yields

(1) S v(f) (@ — vl f) + avelf) = o

Z€EQN

Since the divisor of ¢ as a function on P! is g(occ) — Z (2), the left hand side

z finite cusp

of (I') is the degree of the zero divisor of f, whereas the right hand side is the
degree of its pole divisor, which agree.
For the proof of (ii), we may assume that & = 0 (mod ¢*> — 1), m = 0, replacing
f by a power if necessary. Since t € M,y 1, the function F(z) = f(z)t_k/(q‘H)
on P! is T-invariant. Moreover, the Q-parts of the divisors of f and F agree.
Therefore,

D vf) + (¢ = vl £) = deg(div(f)la) = deg(div(F)la).

2€Q
Since F' is invariant and holomorphic on 2, the right hand side equals the degree
of the pole divisor of F' on P!, which is

—(g+1) ord.oc F(2) = —(q + 1)g(veo(f) — q+—1) = —(¢+ Vv (f) + qk.

Dividing by ¢* — ¢ yields the result. O
2.8 Corollary. For 0 # f € My, we have k — d(f) = q - vao(f). Furthermore,

Proof. The equality follows from comparing (i) and (ii) in the proposition, the
inequality from considering elements of My, as polynomials in . [

We call an Eisenstein series Ej, special if the weight k has the form ¢* — 1 for some
.

2.9 Corollary. Let Ey, (k = ¢'—1) be a special Eisenstein series. Then Ex(z) =0
if and only of z € K11 — K, and all these zeroes are simple.

Proof. The vanishing of Ej on K,;; — K is (1.14). The fact that these are the
only zeroes, and their simplicity, follows from (2.7) (ii). O

3. Some t-expansions.

Let us first calculate the t-expansions of the Eisenstein series. Assume that

0 < k=0 (mod ¢g—1). Then Z/ak = Z/l = —1 and
a€K

(3.1)

Ei(z) = Z (az+b Zb_ +Z _kz z—|—b/a = —1 - GHE);

a,be K a#0
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where Gy, is the k-th Goss polynomial of the lattice K. We see from Gj(0) = 0
that v (Ex) = 0. Suppose that k = ¢/ — 1. Then (1.9) yields

(3.2) Ep(z)=—(1+ ) tr9)=— Y '
0<i<y 0<i<y

Using this, we can give a direct proof of Corollary 2.9. VlZ for z € Q, t(z)
() £ 0, and Bi(z) =0 Y 177" =0 Y e Dm0 =

0<i<y 0<i<y

0
=z E I{]‘+1.

Next, we consider the two modular forms g(z) = —a1({z,1)) and A(z) = —ay((z,1)).
By (1.5), (1.11), and (3.2),

2
= By =14t = 2=
(3.3) i _ g E—‘I;“ S
/ = _ q2_1 - q—l —_ —t — _(z—zq)q_l

Two lattices A, A’ of dimension two are similar if A’ = ¢- A for some ¢ € K . As
usual, the mapping z — (z,1) induces a canonical bijection of I' \  with the
set L of similarity classes [A] of such lattices.

3.4 Lemma. The map j: L — K; [A] — g7 (A)/A(A) is well-defined and
bijective.

Proof. j 1s well-defined in view of the homogenity properties of g and A, there-
fore only its injectivity needs to be checked. Suppose that g?t'(A)/A(A) =
g (A)/A(A). Upon scaling A and A, we may assume that A(A) = A(A') =
Then g(A) and g(A’) differ by a (¢ + 1)-th root of unity. Scaling A further with
(¢> — 1)-th roots of unity €, we get A(eA) = 1, g(eA) = €7 'g(A), and with an
appropriate choice of €, g(eA) = g(A’). But g and A determine A = kernel of
ea(z) =z — g(A)2?7 — A(A)z?", hence A’ = €A, and we are done. [

Combining the above, we get a I'-invariant map
j:Q — K,
z — g(2)"™"A(z)
the modular invariant, which identifies T\ Q = £ with K. Its t-expansion is

(3.5) ey = LT

Inserting t = z_lzq

the subfield of I'-invariants of F(z)

3.6 Proposition. The subfield of I'-invariants of the rational function field F(z)
iS F(Z)F = F(])} ’where ] — _M_ D

(z—29)2*+1

Note that this property descends from K to K, i.e., for each subextension K C
K'C K, K'(2)" = K'(j) holds.

3.7 Proposition. The modular invariant satisfies

8



(1) 7(2) = 0 & = elliptic
(ii) j(z) =00 & z a cusp

)
)

(iii) j(Ks — K) = {1}
) K(j(K4 — K)) = K,
)

(iv

(v) K(j(K, — K)) = K, ifn > 5.

Proof. (i) and (ii) are obvious, (iii) follows from A = —Ep_; — Egi—ll since
Ep_(K3 — K)={0}. If z € K4 — K then j(z)‘f = j(z). But Ky — K contains
g+ 1 T-orbits, thus (iv). Similarly, if n > 5, K,, — K contains strictly more than

q"~3 orbits, which implies (v). O

4. The vector spaces My ,.
In order to describe the spaces My ,,, we observe:

(4.1) Let f € My,, have t-expansion Sa;it'. I a; # 0 then i = m (mod ¢ —1).
In particular, d(f) = ve(f) = m (mod g — 1).

4.2 Theorem. Let k be a non-negative integer with representative k* (mod ¢* — 1)
(ie., 0 < k* < ¢*—1, k=Fk" (mod ¢ —1)), and 0 < m < ¢ — 1 such that
kE=2m (mod ¢ —1). Then

(1) Mitgtimer = tMygm m # —1 (mod ¢ —1)
tMgm ® KEgigp1 m=—1 (mod ¢g—1)

(i) dim My, =0 k* <m(g+1)

1 otherwise, in which case g"t™ with n = k-m(g+l)

18
. qg—1
a basis vector.

(i) dim My =[] + dim Mo, = [S58] 41,

(iv) The monomials g*t* such that a,b > 0, a(g — 1) +b(g+ 1) = k, b
m (mod g — 1) form a basis. Each f € My, may uniquely be written as

an isobaric polynomial F(g,t) of weight k in g and t.

Proof. f m # —1 (mod ¢ — 1), each f € Mjt441,m+1 has a t-expansion divisible
by t. If m = —1, Ej1441 has a non-vanishing constant term in ¢, thus (i) in both
cases. Let 0 # f € Mygs . Then from (2.7) (ii), (¢ — D)ve(f) + (¢ + v f) = £,
and from (4.1), veo(f) = m. Therefore, &* — m(q+ 1) = (¢ — 1)ve(f) > 0 and,
again from (2.7) (ii), f/t™ = const. g*(/). Conversely, if k* — m(q+ 1) > 0, then
g"t"™ € My m. As to (iii), it follows from (¢ — 1) times applying (i). Assertion
(iv) results e.g. from induction on k. [

4.3 Corollary. The following three filtrations F* on My, agree:



(a) FiMim ={f € Mpm | volf) 2 i(qg—1)}

(b) FiMhm = {f € Mk,m | d(f) S kE— l(q2 - q)}

(¢) F'Mym = (g*t* | b= i(q—1))
Proof. This is a restatement of (iv) above, together with the equality of (2.8).
[
4.4 Corollary. Let P,(u) = Zdim(Mk,m)uk be the Poincaré function that

k>0
encodes dim My, ,, where 0 < m < g—1. Then

ym(at1)
Prn(u) = (1 —ut=t)(1 —u?-1)’

Proof. Immediate from (4.2) (iii). O

4.5 Corollary. With hypotheses as in (4.2),

dim F'Myyo2me1 = dim My, kZm(qg+1) (mod ¢* — 1)
dim My, —1 k=m(g+1) (mod ¢*> — 1),

and thus
> dim(F' Mz mer Ju* = u?™" Py (u).

k>0

Proof. In the first case, each of the basis vectors gt* of My, contains at least
one factor g. Replacing it with ¢ yields the basis {g*~"#**'} of F'Mj19.m41. In
the second case, the argument is similar, but we have to omit the basis vector
tklatl The last equation follows from P, (u) — "m(q;ﬂ)l = uq_le(u). O

1—u? —

5. The derivative 0.

Similar to the classical case, we construct new modular forms from given ones
through derivation. First note that

dt d 1 1
1 — = — = — = —t*
(5.1) dz  dze(z) e(z)? ’
since €'(z) = 1. Therefore, % = —t2% and
A’ t'
5.2 — —t=__
( ) A t Y

where ()" denotes £( ). Asin [1] or [2], we get through a straightforward

calculation:
5.3 Proposition.
(1) For f € My, put Of = Ouf = f' + k%,f. Then Of € Myy2,m+1-

10



(11) For 1 = 172 let fz S Mki,mi' Then akl+k2 (flfl) = akl (fl)fz + flakz(f‘z)- 4

For example, g = —t, 0t = 0, and therefore 9(¢g*t*) = —ag® 't**!. More
generally, if f € My, ,,, is written as F(g,t) with an isobaric polynomial F(X,Y)
of weight k then

oF
5.4 of = ———(g,t)t.
5.4 r=-2 0
If thus gy, = —FE,x_; denotes the normalized (gr(oc) = 1) special Eisenstein series
and hy = Jgi its “derivative”, (3.2) and (5.1) yield
(5.5) he=—t Yy 4770 = —tgl_.
1<i<k

Hence the zeroes of hy, are precisely the points of K}, — K, and they all have order
q.

6. Generating polynomials for Eisenstein series.

Since Ey € My and A = —t77", there exists an isobaric polynomial r4(X,Y") of
weight k (where wt(X) = ¢ — 1, wt(Y) = ¢* — 1) such that —Ey = ri(g,A). We

calculate ry.

Let A be the two-dimensional lattice (z,1). The formal identity

X _ 2
X = eA(X) . EA(X) = (— Z EZ(A)X’)(X . g(A)Xq _ A(A)Xq )
i>0
gives the recursion for £ > 1:
(61) I — gEk_q + AEk—q27

where all the terms depend on A, ie.,on z, Fg = —1, and By, = 0if k < 0. In
terms of the rg,

re = XTk,—(q—l) + YTk_(qz_]).

As By = 0 for k # 0 (mod ¢ — 1), we need only consider ri with &k divisible by
qg—1. Put

(6.2) pr(Z) = rig-1)(X, V) /XF,
a polynomial in Z := Y/ X! that satisfies

Pk = Pr=1 + Zpp—(q+1y (K >1, po=1, pp =0if k£ <0).
By construction,

A
g‘I+1

—EByq—1y = 9" pr(—) = ¢ pr(5™")

11



and

pr(z)=0& 2 =j(2)"
with a non-elliptic zero z of Ej(,—1). An easy calculation shows that more precisely
(6.3) Vz(Ek(q_1)> = ord,px

-1

for z non-elliptic, z = j(z)~". About the vanishing of Ej at elliptic points, we

have:

6.4 Lemma. Ej vanishes at an elliptic point € if and only if k # 0 (mod ¢* — 1).

Proof. Let k be divisible by ¢* — 1. Then Eji(e) = Z Ia_k = —1. Conversely, if

aEI&"z
Ey(€) # 0, the functional equation of Ej, applied to some non-scalar (ZS) erl.,
yields (ce + d)* = 1. Therefore, ¢® = 1 for each element ¢ of K,, and so

k=0 (mod ¢* —1). O
Some properties of the pp are summarized in the next result.

6.5 Proposition.

@) p(2)="3 ("2

0<i<[k/q+1]

(ii) ppr = (pr)?

coe k‘—l’é(E q—l)
(iii) deg px = %

Proof. (i) may be shown e.g. by induction on k, (ii) reflects E,; = (Ej)P, and
(iii) comes from (6.3), counting zeroes of Eyg-1. O

The polynomials p;, also enjoy the following mysterious property, which seems to
be difficult to prove without their relationship to Eisenstein series.

6.6 Proposition. Let k = "5%11. Then pr(Z) is separable with splitting field K if

1=1o0r2, Kyifi=3, and K;11 if 1 > 4.
Proof. (2.9) + (3.7), combined with (6.3). O

6.7 Remark. Knowledge of the zeroes of our present Eisenstein series allows,
through reduction, to locate the zeroes of certain distinguished Drinfeld modular
forms, see [2]. In contrast with the case of special Eisenstein series described
by the proposition, the zeroes of non-special Eisenstein series behave in a rather
unpredictable way. Neither are they simple (e.g., Eyg—1) = —(E,2-1)? indepen-
dently of ¢), nor can we prescribe the field they generate. If for example ¢ = 2,
the splitting field of py st Ks, Ko, K14 for & = 25, 35, 45, respectively. Also,
Ve(Ej(g-1)) can be strictly larger than & — (¢ + 1)[(11—1], e.g. for ¢ =2, k = 11,
Z/E(EH) = 5

12



7. Homogeneous description of M ,.

In this section, we identify Mj, ,,, in terms of homogeneous polynomials.

(7.1) We consider finite-dimensional K [F] modules C, for which C* = Hom(C, K)
denotes the contragredient module, C™ = {z € C | v = (det 7)™z}, and
C(m) = C ® (det)™, the module C With the action twisted by the m-th power

of the determinant character. Note that C” is a right I'-module under f o~ or a
left I-module under vf = f oy~" if T acts from the left on C (y € T, f € G").

(7.2) Let V = K’ be the two-dimensional vector space over K with standard

basis {e1, €2}, Sym(V) = @ Sym* (V') its symmetric algebra, provided with its
k>0

natural I-action ((:3)61 = aey + bey, (ZS) ez = cey + dey), and put for brevity

Sk = Symk(V)A, Sk =80 = Symk(V) (k > 0). We regard Sy as the space of

forms of degree k in the coordinates x and y of V.

7.3 Lemma. Let n € Sy41 be the form n(z,y) = zy? — 2%. Thenn € S and

17
as a form on P', it has its zeroes at P'(K), all simple.

Proof. The second assertion is obvious. As for the first, it suffices (see (2.4) (iii))
to verify noy = (det y)pfory€ Bory=(},). O

Let f € My, be a modular form for I', and consider

F(z,y) =y " Flzly).

Note that we may insert z/y into the rational function f. The condition f € My,
translates to f* o~y = (det )™ f* for v € I'. Now since f has no poles on 2, we
must have

(7.4) fr=Fmn"

for some n, where F € 5’

q+1) _- Using de I'Hopital’s rule, the condition f(oo) #

oo gives deg, F(z,y) < gn.

7.5 Lemma. Suppose that n is minimal subject to (7.4). Then n = d(f). In
particular, n < k.

Proof. Let f have t-expansion Y a;t' (0 <14 < d, ag # 0). Calculation yields

Flaoy) =n%™ ) ay @ty

0<2<d
thusn =d. O

Hence, suppressing the mlnlmahty condition, each f* can be uniquely written as
54/77 )where F(z,y) € Sk]; m) S,(C;n) (smce E=2m (mod ¢ —1)if 0 # f €
km

Next, we let L, be the space of rational functions on P!(K) that have their poles
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at K — P'(K), all of order less or equal to k, and L} the subspace of functions
that vanish at oo and have poles of order strictly less than k. Obviously,

(7.6) dim Ly = kq+ 1, dimLj, = (k — 1)q.
7.7 Proposition.

(1) Ly is a right T-module under
fop = fpu(2) = (ez + d) ™ f(y2) (v = (23) € T);

(i1) Ly, is a T-submodule of Ly;
(iii) The left T-module attached to Ly, (vf := fiy-17) is isomorphic with Sk, under
iv: [ F, Fz,y) = n(z,y)*y" f(z/y).

Proof. (i) and (ii) are obvious or result from a straightforward calculation. The
map iy is a well-defined bijection from Ly to Sk,, and i( fj)) = F o 7, thus (iii).
0

7.8 Corollary. M; ,, = Lém).

Proof. My, is contained in Ly since by (2.8), each f € My, has degree d(f) < k
int(z) = =

clear that as a subspace of Ly, it agrees with L,(Cm). O
7.9 Theorem.

(1) The restriction of iy to My, identifies My ., with SLE;").

(ii) Under iy, the filtration F' of (4.3) on My, is mapped to the filtration on

S defined through divisibility by powers of 1.
(iii) The diagram
M,y X Miym, — Mi, 4k my4ms

3 3

m my my +my
Sl(clq : X Sl(czq : — S((kl-l-kz)q)

s commutative, where horizontal maps are multiplications and vertical maps
are the different maps 1.

(iv) For f € My, the identity ig2(0f) = (%)—Ik(f> holds. Hence 0 corre-
sponds to the differential operator ("—)ai on @ Skq-

Yy
k>0

Proof. For k # 2m (mod ¢—1), both My, and S,g;n) are zero. For k = 2m, items
(1) and (ii) follow from (7.5), (7.7) and (7.8), as is easily seen. (iii) is immediate

from the definition of ix, and (iv) results from a straightforward calculation. O
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In view of the theorem, we are entitled to identify My ,, with S,(C;n) through ;.
In contrast with the various My ,,, the S,(C;n) are linearly independent, and we can

form S = @ SLSZI), which we regard as an analogue for the classical algebra of
k,m

modular forms. Note that S is the algebra of semi-invariants (i.e., of invariants

under SL(2, K)) of @ Sk — Sym(V"). Such rings of invariants are described

E>0
k=0 (mod gq)

through Dickson invariants (see [6] Ch.VIII, [10]), to which our functions are
closely related.

7.10 Example. We list the elements F' € S}E;n) to which some standard modular
forms f correspond.

flt A g Gk hi, = Ogx

3 3 FFT EFT
F | nt _nq(q—l) zy? —a y | ay?

—z7 "y
n n

ght!

k41
x0Tyl — gy

Here the first two are obvious, the assertion about ¢ and gy follows from (2.9)
and gx(oo) = 1, the last one from calculation.

8. The representations St(m).

In order to describe the relations with modular representation theory of I', we
recall some known facts, proofs of which may be found in [7], see also [9]. Our
notation will not distinguish between representations and the spaces on which
[' acts. We are especially interested in the so-called Steinberg representation
St = S,-1, which is characterized as follows.

8.1 Proposition. St is equivalent with the canonical representation of T' on the

space Co(PY(K), K) of K -valued functions ¢ on P'(K) that satisfy Z e(z) = 0.
z€P(K)

It is projective, simple and self-dual. If 1g (resp. 1r) denotes the respective

trivial one-dimensional representation, the induced representation Ind%(lB) splits

as St 1. O

Here the first assertion results from the fact that each function on K = F, is
induced by a unique polynomial of degree < g — 1. The occurrence of St on
Indg(lB) now comes from the isomorphy of the two I'-spaces PY(K) and T'/B.
This also shows the projectivity and self-duality of St.

We want to determine the number
(8.2) ar(m) = multiplicity of St(m) := St @ (det)™
in a composition series of the I'-module Symk’(V).

That number has been calculated in [5], see also [8], provided that m = 0. (In
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fact, Kuhn and Mitchell found the multiplicity of the Steinberg representation of
GL(r, K) in Sym" (Fr) for any r > 2.) We will use an idea similar to Teitelbaum’s
to also cover the twisted representations St(m).

We have St" = St and, more generally, St(m)* = St(—m). Now, as St(m) is
still simple and projective,
ag(m) = dimHomp(St(m), S_x) = dimHom(St(m), S_k)r

(dimension of invariants under the canonical left action

v :=(po 7_1) of T on Hom(st( ) S_k))
= dimHom(St, 5_ )_m = dlmc

(8.3)

where Cy, := Co(P'(K), S_x) is the K-space of functions
¢ : PY(K) — S_j that satisfy Z o(z) = 0.
z€P(K)

Here the left [-action on C} is as follows:

(8.4) (@) (s)(F) = (y™'s)(F o)
for y €T, s e P(K), F € S.

9. The residue map.

We define a map res = resy, from Ly to Cy_y (k > 2) as follows:

(9.1) (res f)(s)(;ciyk_z_i) = resszif(z)dz.

Here {z'y*=27" | 0 < < k — 2} is the canonical basis for Sy_,, z the coordinate
in P}(K), and the right hand side is the residue in s € PY(K) of the differential

2 f(z)dz

9.2 Lemma. With the left T-actions on Ly and Cy_y described by (7.7) and
(8.4), we have

res(yf) = (det ~)y(res(f))
fory eT.

Proof. Let v = (:2) € I'. Tt suffices to verify that both sides evaluate equally on
the basis elements of Si_3. Now

() = es(fy ) = rs((GEE 12, e

res(f)(s)(2'y ) = res,((Fo5) ™" (771 2)d2)

—vta)=k(~n2)if(2)dyz)  (invariance of the residue)
)

( det v
(cz + d)* (225 F(2) (S d2)

(

(

= (det 7)res,— ((az+b) (cz—l—d)k 2- ’f(z)dz)
= (det 7)(res f)(y7"s)(a"y" 7 0 9)

= (det y)(y es f)(s)(z'y*=*7"). O
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9.3 Corollary. resy : Ly — Cy_2(1) is a I'-morphism. O

The kernel Ry, of resy is easy to find. In view of the residue theorem:

Z ress f(z)dz =0 for any f € Ly,

s€PL(K)

it is the set of those f € Ly such that res,p(z)f(z)dz = 0 for all s € K and all
polynomials p(z) € K|[z] of degree < k — 2, and is freely generated by the linearly
independent functions (z — s)7*(s € K) and the constants in Lj. Therefore,
dim Ry = ¢+ 1, and the sequence of [-modules

(9.4) 0 — Rp — L =5 Cr_y(1) — 0

is exact, for dim Ly = kg + 1, dim Cr—» = (k — 1)q. Moreover, since obviously
L, N Ry =0, (9.4) splits and resy restricted to L yields a ['-isomorphism of L},
with Cr—2(1). Now

L’,(Cm) = {f € My, | f has poles of order < k at finite cusps}
= F'My» = {cusp forms in My .} (see (4.3)),

and we have proved the following main result.

9.5 Theorem. Let k > 2. The residue map resy, identifies the space F' My, of
cusp forms of weight k and type m with C,Er_n%(l) = Clgg_l) = Co(PHK), Sy_i)m~1),
O

Together with (8.3) we get:

9.6 Corollary. The multiplicity ar(—m) of St(—m) in Sym*(V), where k > 0,
equals the dimension dim F'Myio i1 of the space of cusp forms in Mgtz mt1-
O

Now the dimension in question has been determined in Corollary 4.5. We finally
find the following formula for the Poincaré function.

9.7 Corollary. Let m be the representative with 0 < m < g— 1. Then
umlat)+e-1

Zak(—m)u = A=A =) O

k>0

Remark. Since Rj contains the constants, on which B C I' acts through the

character yi : (83) — d_k, Ry 1s the induced representation IndE(Xk). We

have R,(cm) # 0 if and only if K = m = 0 (mod ¢ — 1), in which case R,(cm) =
R! = KEj is the one-dimensional space spanned by the Eisenstein series Ej, of
weight k. The splitting Ly = Ry & L} of I'-modules, along with its interpretation
through modular forms, may be viewed as a simple but not trivial analogue
of the splitting (familiar from classical modular forms) of the SL(2,R)-module
L*(SL(2,Z)\ SL(2,R)) into (essentially) “Eisenstein series” and “cusp forms”.
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