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A note on the finiteness of certain cuspidal

divisor class groups

Ernst-Ulrich Gekeler

0. Introduction

The groups in question are the cuspidal divisor class groups of Drinfeld modular
curves. Like elliptic modular curves, Drinfeld modular curves M arise from com-
pactifying certain smooth affine algebraic curves M (defined through a moduli
problem) by attaching a finite number of cusps [5]. The cuspidal divisor class
group C of M is the subgroup of the Jacobian J = J(M) generated by the cusps.
Its finiteness (the analogue of the Manin-Drinfeld theorem) has been proven in
two important special cases in [4] and in [5]. The strategy of proof consisted
in both cases in the construction of a sufficiently large number of meromorphic
functions with effectively calculable divisors supported by the cusps. It was also
stated in [5] that a proof in the general case could be worked out by combining
the respective methods of [4] and [5]. Such a proof (straightforward, but la-
borious) would have the advantage to produce an explicit (albeit unreasonably

large) bound for the order of C.

Recent work of C. Schoen and J. Top [9] and of the author [6] as well as other
reasons now indicate the necessity of disposing of a complete proof, valid in the
general case, at least of the weaker qualitative statement, i.e., of the finiteness
of C without an effective bound. Tt is the aim of the present note to fill that
gap, see Theorem 1.2.

Surprisingly, the basic idea originally used by Manin [8] and Drinfeld [2] in the
case of elliptic modular curves also applies to our situation. Main ingredients
are the descriptions, given in [7] and [6], of J and C by means of theta functions,
and the analogue of Ramanujan’s conjecture, which provides control over the
eigenvalues of Hecke operators. All we have to do is to arrange this material
conveniently. Once the finiteness of C is established, the methods of [6] allow to
investigate its group theoretical structure and to find bounds for its order. A
brief account of this is given in the final section, Proposition 4.1.

1. The set-up.

We collect here the necessary notations and definitions. These, like the stated
results, are largely taken from [5], [6], or [7], to which we also refer for motiva-
tion and further references.

(1.1) We let K be a function field in one variable over a finite field F, with ¢
elements algebraically closed in K. We fix once for all a place “co” of K and
let A be the Dedekind subring of elements of K regular away from oco. The



completion of K at oo and its completed algebraic closure with respect to the
A

normalized absolute value | . | = | . |o are denoted by Ko and C =Ko, re-
spectively. The Drinfeld upper half-plane is Q := C' — K+, the set of C-valued
points of an analytic space labelled by the same symbol €.

The group GL(2, K ) acts as a matrix group from the right on K2 and from
the left on € through (ZZ)Z = ZIZ A congruence subgroup T of GL(2, K) is
some intermediate group I'(Y,n) C ' C ['(Y), where Y C K? is a projective A-
submodule of rank two, I'(Y) = {y € GL(2,K) | Yy =Y}, and I'(Y,n) C I'(Y)
is the kernel of the “reduction mod n” mapping for some ideal n # 0 of A. For
each congruence subgroup T', we let Mt be the (smooth connected affine) alge-
braic curve over C' with set of C-points Mr(C) = T'\ Q and ‘M its canonical
smooth compactification. The Drinfeld modular curves M are actually defined
over finite separable extensions of the field K. We will however only work over
C, and will, in view of the GAGA theorems, not distinguish between M, the as-
sociated analytic space, and the point set M(C). Elements of M(C)— My (C)
are called cusps, they form a set cusp(I') which is in canonical one-to-one cor-
respondence with the set '\ P'(K) of orbits of T on PY(K). By J = Jr, we
denote the Jacobian of Mr, by C = Cr the group of divisors of degree zero

on Mt supported by the cusps, modulo principal divisors. The purpose of the
present note is to prove the following assertion.

1.2 Theorem. For each congruence subgroup T of GL(2, K), the cuspidal di-
visor class group Cr is finite.

Fixing a base point x on Mt (for example, the cusp represented by co € P(K)),

we regard Cr as a subgroup of Jr. In order to describe the Abel-Jacobi mapping
with respect to x from Mr to Jr, we introduce some more material.

(1.3) The Bruhat-Tits tree T of PGL(2, Ks) is a homogeneous tree of va-
lency g + 1 on which PGL(2, K) acts (vertex- and edge-) transitively. Here
Joo = qdeg oo
says that each vertex of 7 is incident with precisely goo + 1 non-oriented edges.
The sets X(7) of vertices and Y (7) of oriented edges of 7 may be described in
terms of the group GL(2, K,) ([12] IT 1.3, [7] 1.3). Both Q and 7 are analogues
of the complex upper half-plane; in fact, 7 is some sort of combinatorial picture
of Q. This is expressed through the existence of a GL(2, K, )-equivariant map A
from € to the set 7(Q) of real points of 7 with rational barycentric coordinates
([7] 1.5). Moreover, the quotient graph T'\ 7 is “almost finite”; it is the union of
a finite graph with g(I') := genus of M1 independent cycles and a finite number
of infinite half-lines®e — — — ¢ — — — 6 — — — e — ---, one for each cusp of M

([12] T Théoréme 9, [5] V.2).

is the cardinality of the residue class field at infinity, and the above

(1.4) For each coefficient ring B (= 7Z,Q, (), we let H(7, B) be the B-module
of harmonic B-valued cochains on 7 as defined in [7] 1.7. Hence a harmonic
cochain is a function ¢ : Y(7) — B that satisfies ¢(e) + ¢(€) = 0 (€ = edge



e with inverse orientation) and Z ¢(e) = 0 for each v € X(7T), where the
summation is over the edges e Wit(h) origin v. A congruence subgroup T acts on
H(T,B), and we put H(7,B)' and H,(7, B)" for the submodules of invariant
cochains, of invariant cochains with compact support modulo I', respectively.
As is described in [7] sect. 3, elements of H(7, B)! and H,(7, B)' have an intu-
itive description as weighted flows on the quotient graph I'\ 7, as weighted flows
vanishing on the cuspidal half-lines of I' \ 7, respectively. If B is torsion-free
(as will always be the case),

H/(T,B)" H(T,Z)"®B
H(T,B)" = H(T,Z)"© B,

which are free B-modules of ranks ¢(T') and ¢(T') 4+ ¢(T') — 1, respectively. Here
¢(T) := #(cusp(T)) is the number of cusps. For a prime number [ # p :=
char(F,), H,(7,Q)" is “one half of HY(Mr,Q;)”, the l-adic cohomology of
Mr. (See [7] 4.13.1 for a precise statement. All the references to follow are with
respect to [7]). If B = C, these modules have an automorphic interpretation
(loc. cit. 4.7.6). In particular, they are provided with Hecke operators (see
(2.6)) and a Petersson product

( ’ ) : E(Ta'c)r X EI(T,C)F — C.

The latter is hermitian and positive definite on H, x H,, and integral-valued on

E(Ta Z)F X ﬂ! (Tv Z)F'

Let T be the maximal torsion-free abelian quotient of . By loc. cit. 3.3.3, there
is a canonical injection j : T < H,(7,7Z)" with finite cokernel. In fact, j is
bijective in all known cases, and presumably always.

(1.5) In loc. ecit. sect. 5, we associated a meromorphic theta function 6(w,n, z)
on  with each pair w,n of elements of Q. This was generalized in [6], where
the parameters w, 7 are allowed to lie in @ = QUPY(K). The 6(w,n,-) satisfy
the functional equation

6(“377’72) :C(W,U,’Y) 6(“3773 Z) (7 S F)

with a homomorphism ¢(w,n,) : T — C* that factors over T. The divisor
of @(w,n,) is T-invariant and, as a divisor on Mr, equals [w] — [n], where [w]
is the class of w € Q in Mp(C) = T'\ Q. Furthermore, for each a € T, the
function u,(2) = 6(w, aw, z) is holomorphic invertible, independent of w € Q,
depends only on the class @ of « in T, and satisfies Uap = Uq - ug. Ifeq(.) =
¢(w, aw, ) denotes its multiplier, the bilinear map from I' x [ to C'* induced

from (a, B) — ca(B) is symmetric and satisfies

(1.5.1) log, . [ea(B)| = (j(@), i (B)),

where the right hand side is the Petersson product and “| . |” the absolute
value on C' extending the normalized absolute value on K. In particular,



(o, B) = log,_ [ca(B)] is positive definite as a bilinear form on T. Hence
o — ¢, induces an injection

¢: T < Hom(T, C*)

into the C-valued points of the torus Tt := Hom(T', Gy, ) of dimension g(T'). The
following is one of the main results of [7] and [6].

1.6 Theorem. The Jacobian Jr of Mt is the quotient of It by the multiplica-

tive lattice ¢(T'). That is, we have an exact sequence
(1.6.1) 1 — T — Hom([', C*) — Jr(C) — 0.

The Abel-Jacobi mapping with base point [w] maps [n] to the class of c(w,n,)
inJr (w,n€Q).

Proof. [7] 7.4.1 and [6] sect. 2.

(1.7) We still need another link between functions on ©Q and on 7. To each
invertible holomorphic function f on Q we let r(f) € H(7,7Z) be the associated
harmonic cochain defined in [7] 1.7.3. It measures the growth of f, and is a
substitute for the logarithmic derivative of f. It is characterized by the short
exact sequence

1—C*— 0a(Q)* — H(T,Z)—0

(1.7.1) )

of GL(2, K )-modules, where the middle term is the multiplicative group of
invertible holomorphic functions on Q. For a € T, r(u,) is T-invariant, and in
fact,

(1.7.2) r(ua) = j(@) € Hy(T,7)"

(loc. cit., Theorem 5.6.1).

2. Reductions and preparations.

(2.1) Let Y C K? be an A-submodule of rank two. There exists an ideal 0 # n
of A sucht that both nY and nA? are contained in ¥ N A2. Therefore ['(Y,n)
and ['(A%,n) =: I'(n) are subgroups of I'(Y) N GL(2, A). Consequently, each
congruence subgroup I' of GL(2, K) has the property that its intersection with
I'(1) := GL(2, A) contains some principal congruence subgroup T'(n) of I'(1).
Since the assertion of Theorem 1.2 is obviously stable under passing from I to
overgroups I, we are reduced to showing (1.2) for groups of shape I'(n). We
therefore make the assumption, in force from now on:

I'=Tn)={y€GL(2,4) | y=1 (mod n)},

where n is a non-trivial ideal of A.

(2.2)



Then T has no prime-to-p torsion, which has the important consequence ([7]
Proposition 3.4.5):

(2.3) The mapj: I’ =, H,(T,7)" is bijective.

(2.4) A cuspidal theta function for T' is an invertible holomorphic function f on
Q subject to the functional equation

f(vz) = ¢er(v) f(2)

for v € T with some cy (7) € C*. Such a function has a well-defined zero order
ord[,) f at each cusp [s] of T' ([6] 3.3.2; here and in the sequel, we write [w] for
the class (mod T') of w € ﬁ) Hence we can associate with each cuspidal theta
function f its divisor div f € Dy := Z[cusp(T')]. Our assumption 2.2 implies
(loc. cit. 3.5, 3.9):

(2.4.1) The group of cuspidal theta functions is generated by C* and the func-
tions 0(s, 1, z), where s,t € P(K).

A fortiori (loc. cit. 2.14):

(2.4.2) The multiplier ¢ : T — C* of a cuspidal theta function f takes its
values in K7%,.

Let D% < D, be the subgroup of divisors of degree zero. Then

(2.4.3) div: H(T,Z)"/H(T,Z)" = D,
which is a special case of loc. cit., Theorem 3.8.

We briefly describe the isomorphism div. Each ¢ € H(7,Z)" may be written
as r(f) with some cuspidal theta function f; then div(class of ¢) := div(f) is
a well-defined element of D® . Conversely, we may associate with the divisor
[s]—[t] the class mod H,(T,7Z)" of r(6(s,t,-)), which yields the inverse mapping
of div. Hence, in terms of the description provided by (1.6), the cuspidal group
Cr < Jr consists precisely of the classes mod ¢(T) of multipliers ¢; of cuspidal
theta functions f. We now get a criterion for cuspidal divisors to be principal.

Let D € Z[P'(K)] be a divisor of degree zero on P'(K). Writing D as a linear
combination Y m, (s — t) of divisors (s — t) with s,¢ € P!(K), the function

0(D,z):= H O(s,t, z)"t

depends only on D but not on the presentation chosen.
We let cp :=[]e(s,t,-)"* € Hom(T', K%,) be its multiplier. If [D] denotes the
induced cuspidal divisor on M, we have:

(2.4.4) [D] is principal < There exists a € ' such that ¢p = ¢q,

as follows from (1.6) and the discussion above.



(2.5) Next, we need to discuss Hecke operators Ty,. These are naturally defined
for all the maximal ideals p of A coprime to n and act in a compatible way
on certain spaces of automorphic forms and, as correspondences, on the com-
pactified moduli scheme M (n) of Drinfeld A-modules of rank two with a level-n
structure (see [7] section 4). Now M (n) x 4 C splits into irreducible components
parametrized by Picn(A), the generalized ideal class group of A with conduc-
tor n ([5] 1T 1.8 4+ 1.4). Our curve Mt = Mrp(y is naturally identified with
the component corresponding to 1 € Picn(A). In general, a Hecke operator
T, doesn’t respect the above decomposition; it does so however if p = () is
principal and generated by some m € A that satisfies 7 = 1 (mod n). This
follows from the adelic description of T}, given in [7] 4.9. Such Hecke operators
T, are called admissible for brief; they are the only ones we presently need. The
action of admissible Hecke operators on the component Mt may be translated
from the adelic language into formulae that only involve Q, 7, and the groups
I' = GL(2, K). This is the background of the description given in the next
subsection. Some compatibility properties of T}, have been proved in [7] in the
special case of Hecke congruence subgroups I' of GL(2, A); the respective proofs
in the case of our present full congruence subgroups I' = T'(n) are identical.

(2.6) Thus let the prime p = (m) be principal, generated by = subject to
m =1 (mod n), and let 7 be the matrix (’(;(1)) € GL(2,K). Put A=Tnrlr 1,
and choose a system {a} of representatives for A\ T'. The p-th Hecke operator
is given

(a) as a correspondence on the curve Mr(C) = I'\ Q through w — Z ™ law;
{e}

(b) as a correspondence on the graph T'\ 7 through z — Zr_laa:. Here z
{o}

may be a vertex, an oriented edge, or a real point of T;

(c) as an endomorphism on H(7,7)" and its submodule H,(7,7)" through

(Trp)(e) = Y p(r ae).
(a1

Of course, the coefficient ring Z may be replaced by any subring B of C;

(d) as an endomorphism of T in purely group-theoretical terms as some sort of

Verlagerung ([7] 9.3);

(e) as an endomorphism of the torus T = Hom(T', G, ) through its action on
the first argument T.

In (a), (b), (c) we have chosen representatives for classes modulo T' of w € Q,
x €7T,e cY(T). Of course, the respective description of T, depends neither
on these choices nor on the choice of {a}. The different actions satisfy all kinds
of compatibilities, viz.,



(ab) T, commutes with the map

which is obtained from the map A referred to in (1.3) by dividing out T
This is obvious from the GL(2, K )-equivariance of A;

(cd) Ty commutes with the isomorphism j : T — H,(7,Z)" of (2.3) ([7] 9.3.2);

(ade) Ty induces via (a) an endomorphism of the Jacobian Jr of M, and the
exact sequence (1.6.1)

1 — T — Hom(T,C*) — Jr(C) — 0
is compatible with the respective Hecke operators (loc. cit. 9.4).

Furthermore, by its very construction, the isomorphism div of (2.4.3) commutes
with the action of Tj.

2.7 Remark. In all cases, T}, is represented as a sum over {r7'a | a € A\T},
or equivalently, over R(n, ) := {((]J 2)a | @« € A\T}, since the scalar matrix (82)
acts trivially. Now R(n, 7) is a system of representatives for the set S(n, ) :=
{y € Mat(2,4) | y = 1 (mod n), det y = 7} modulo left equivalence under
I' = T'(n). (This is a consequence e.g. of the elementary divisor theorem, or of
the strong approximation theorem for SL(2).) We may therefore represent T,
also as the correspondence z — {yz | v € R}, where R can be any system of
representatives for I' \ S(n, w). The descriptions given in (2.6) are chosen to be

compatible with those in [7] sect. 9, which allows to check the stated properties.

3. Proof of the main result.

Let now n be any non-trivial ideal of A. Tt suffices to prove Theorem 1.2 for
Mrp = Hr(n), i.e., to prove that the cuspidal group € = Cr is finite. Choose
a prime ideal p of A generated by m € A that satisfies 7 = 1 (mod u). Such
a p exists by the K-version of Dirichlet’s theorem. We let T' = 1}, be the
corresponding admissible Hecke operator and m := q9¢8 ¥ 4 1.

3.1 Proposition. The subgroup C of J = Jr is stable under T', and T' restricted
to C is multiplication by m.

Proof. (i) With notations as in (2.6), T is given by summation over some set R
of representatives of I'\ S(n, w). It is straightforward that #(R) = m. In view of
the descriptions of C and T given in (2.4) and (2.6), it suffices to see that R can
be chosen such that each v € R stabilizes each class [s] in '\ P}(K) = cusp(I).

(ii) Consider first the analogous question for I'(1) = GL(2, A). In that case ([1]



VII 4.10), s —> class of P; induces a bijection

cusp(['(1)) = T(1) \ PY(K) = Pic(A).

Here the invertible A-module P is the intersection with A2 of the line K's C K2
corresponding to s € TP’](K). Let v € S(n,m) and s € TP’](K). Since det vy = m,
we have an exact sequence

0 — y(A?) — A — A/p — 0.
Hence P, fits into an exact sequence
0 — KysNy(A®) — Py, — X — 0
with X isomorphic to one of A/p or 0. Now since multiplication by v yields
P, = KsN A2 =5 Kvys ny(A?)

and p is principal, the classes in Pic(A) of P, and P, agree in either case. Thus
~ stabilizes at least s (mod T'(1)).

(iii) Let G be the subgroup of GL(2, K) generated by I'(1) and the fixed element
~v of R, and put G(n) := {& € G | @ = 1 (mod n)}. Then ' = I'(n) =
T(1) N G(n). By (i),
r(1)\PY(K) =5 G\ P'(K).
It remains to verify that also
cusp(D(n)) = [(n) \ PY(K) =5 G(n) \ P'(K).
Let s € PY(K) have stabilizer B in G. The orbit
I'(1)s=Gs — G/B=T(1)/T(1)NB
decomposes modulo G(n) into G(1n)\G/B and modulo I'(n) into ['(n)\I'(1)/T(1)

NB = I'(1)NG(n)\I'(1)/I'(1) N B, which agree since G' = I'(1)B. Hence v even
stabilizes s (mod T'), as was to be shown. [

3.2 Remark. Note that, as soon as 1" = 1}, is constructed as a correspondence
on I' \ 7 preserving the simplicial structure, each vertex v is mapped under T'
to a collection of m vertices v’ whose distance from v is uniformly bounded by
deg p. Given the structure of T'\ 7 as a union of a finite graph and a number
of half-lines h[;) indexed by [s] € cusp(I'), T' cannot but stabilize each of the
[s], i.e., associate m times [s] to [s]. Thus (3.1) corresponds to a quite intuitive
geometrical fact.

Next, consider the endomorphism 7' on ﬂ!(’T,Q)F. All its eigenvalues ¢ are
known to satisfy the Ramanujan bound

(3.3) le| < 2q9¢8 #/2.

This fact is essentially due to Drinfeld [3]; it follows from combining



(a) the observation that H,(7,Q;)" is a T-stable subspace of HL(M(n) x4
C,Q;). Here ! # p is a prime number, and the admissibility condition
(2.5) on T' =Ty, is crucial;

(b) the Eichler-Shimura relation [3] 5.5 that links 7" to the action of the Frobe-
nius endomorphism F}, on the first l-adic cohomology of M (n) x 4T (Fp =
algebraic closure of Fy, = A/p);

(c) “Weil’s conjecture”, proved by Deligne, which states that
el = g5 2
for eigenvalues ¢ of F,.

Perhaps the discussion given in [7] sect. 4 is helpful, where some more details
are given.

Since 2¢4°8 P/2 « m = ¢9%8 ¥ 4 1, the operator T — m - id is invertible on
H,(7,Q)" and has a finite cokernel if restricted to H,(7,Z)". Taking into
account (1.6), (2.3) and the compatibilities (2.6), the corresponding endomor-
phism 7' — m - id on J is an isogeny. Hence there exists a quasi-inverse, i.e., an
endomorphism @ of J that satisfies

Qo(T—m-id)=n-id
for some natural number n. By (3.1), n-id restricted to C is trivial, thus nC = 0,
and Theorem 1.2 is proved.

4. Consequences and remarks.

For brevity, we write H, C H for the groups H,(7,7)" C H(T,7Z)T, respec-
tively, where T' = T'(n) is as in the preceding sections. We further let E.J‘ be
the orthogonal complement of H, in H with respect to the pairing (, ) of (1.4).
Then E.J‘ is a quasi-complement of H, in H, i.e., the index of H, ® E.J‘ in H is
finite. Recall that ¢, = q9°8 > denotes the size of the residue field of K at oo
and ¢(T') = # (cusp(I)).

4.1 Proposition. For I' = T'(n) there exists a short exact sequence
0— U — Cr — H/(H, @ H") — 0,
where U is a factor group of (Z./(qeo — ]))“(r)_l.

Proof. Let P be the subgroup of H that under the map div of (2.4.3) corresponds
to the principal divisors in DY . Then P contains H,. We show that

(¢oo — VH;" ® H, C P C H" ® H,,

which in view of E.J‘ >~ 7T)=1 will imply the assertion.



Suppose that ¢ = r(f) € H represents a principal divisor under div. By (2.4.4),
the multiplier ¢; : T — C* of f equals ¢, for some a € T, and g := f-u' is
T-invariant. In terms of the pairing (, ) this reads

0 = (gaj(f)) = (gai')'

That is, ¢ = r(g) + r(u,) lies in H* ® H, C H.

Conversely, let ¢ = r(f) € ﬂf‘, where f has multiplier ¢; : I' — C*. From

(the extension to H x H, of) formula 1.5.1, |cs(y)| = 1 for v € T. By the
finiteness of C and (2.4.4), there exists n € N and o € T such that (c;)"” = ¢,.
Hence |cy ()| = 1 for 4 € T', and, in view of (1.5.1) and the non-degeneracy of
(, )on Hy, ¢ = 1. Thus finally f* is T-invariant and ¢; takes its values in
the n-th roots of unity, but also in K%, (see 2.4.2). Together, (c;)9=~! = 1 and
therefore (g — 1)p € P. O

4.2 Corollary. The p-components of Cr and of H/(H, GBE.J‘) agree.

4.3 Remarks. Some more material about Cr and its relationship to
H/H, @ E.J‘) and to the component group of the Néron model of Jr (even
for more general congruence subgroups) can be found in [6] sections 4 and 5.
Corollary 4.2 remains valid for arbitrary congruence groups I'. The case of Hecke
congruence subgroups over polynomial rings A = TF,[T] is studied in detail. Of
course, it would be desirable to know more about the group U that figurs in
4.1, e.g., does it vanish? In that case, Cr had a description entirely in terms of

the graph I'\ 7.

Theorem 1.2 is about the curve M, where T is a congruence subgroup of some
GL(Y). The hypothesis was used twice; first for the reduction to the case of
I' =T(n) C GL(2, A) and secondly, to have the frame in which we can apply
the crucial property (3.3). As is proved in [12] IT Théoréeme 12, there is an
abundance of non-congruence subgroups I' of finite index in GL(2, A). Nothing
seems to be known about the corresponding curves Mr = I' \ Q. By analogy
with the case of non-congruence subgroups of SL(2,Z) ([10], [11]), it appears
unlikely that their cuspidal groups Cr are finite.
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