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Abstract

A special form of the Boltzmann collision operator for the hard
spheres model is introduced. The possibilities of fast numerical com-
putation of the collision operator based on this form and the Fast
Fourier Transform are discussed. A new difference scheme for the
Boltzmann equation for the hard spheres model is developed. The
results of some numerical tests and accuracy comparisons with the
Direct Simulation Monte Carlo (DSMC) method are presented.
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1 Introduction

An overwhelming majority of numerical methods for the Boltzmann equation
are based on Monte-Carlo-type particle schemes (see [7],[1], [10] for a review).
The main advantage of such schemes is their high efficiency, all algorithms are
linear with respect to a number of particles. Obvious disadvantages of Monte
Carlo schemes are stochastic noise and restricted accuracy. The Monte Carlo
methods are almost perfect if we are only interested in lower (hydrodynamic)
moments for the stationary problems. However, it is not that easy to obtain
more detailed information about non-stationary solutions of the Boltzmann
equation by using such methods.

On the other hand, the main disadvantage of deterministic methods is their
lower efficiency: the numerical work needed to calculate the collision integral
for all grid points in the velocity space is, roughly speaking, proportional to
at least N2, where N is a number of grid points in the velocity space.

How to overcome these difficulties? From the algebraic point of view, the
computation of the Boltzmann collision integral reduces on the discrete level
to the evaluation of a certain quadratic form having a rather complicated
matrix. One of the most effective algebraic tools for this purpose is the al-
gorithm of Fast Fourier Transform (FFT) (see [8],[9]). It requires a uniform
discretisation in the velocity space which is convenient for the Boltzmann col-
lision operator. It is natural to try to use FFT for our goals. In particular, it
is well known [2] that the Boltzmann collision operator for Maxwell molecules
is relatively simple in the Fourier representation. We used this property in
our previous paper [4] and constructed the fast deterministic scheme for this
special case of the intermolecular forces. Another attempt to use the same
simplification for the numerical solution of the Boltzmann equation was made
in [11]. However, the most widely used (and physically justified) molecular
model is the model of particles as hard spheres. Unfortunately, no serious
analytic simplification of the Boltzmann collision operator can be obtained
for this model by the Fourier transformation. In spite of this fact, we show
in the present paper that FFT can be applied successfully to construct an
efficient numerical scheme in this practically important case too.

Our scheme is based on the special representation (similar to the Carleman
representation [6]) of the collision integral for hard spheres. We derive the
corresponding formulae in Section 2. Then, in Section 3, we construct a
method (based on FFT) of calculation of the collision integral. In Section



4 the completely conservative numerical scheme for solving the spatially ho-
mogeneous equation is constructed. Some numerical results and their com-
parison with the results obtained by Bird’s DSMC method are presented and
discussed in Section 5. We note that our new scheme can be used for solving
spatially inhomogeneous problems on the basis of the splitting algorithm.

2 Transformation of the collision operator

We consider the following initial value problem for the spatially homogeneous
Boltzmann equation for the hard spheres model

L0 ) = QU1 10, v R, [(0,0)= fofv) >0 )
where
= [ [ 105w - fw s oy dude. @)

We use the following notations in (2)

— v,w € R® are pre-collision velocities;

— dw is the volume element in R ;

— e € 8% C R is a unit vector;

— de is the surface element on the unit sphere S

— wu = v — w is the relative velocity of collision partners;

— o', w are post-collision velocities defined by

1 1 1
v = U—i—§|u|e, w=U— §|u|e, U= §(U+w).

The first step in our considerations is to rewrite the Boltzmann collision
operator, given in (2) in the usual form, in a form which is more convenient
for the application of the FFT algorithm. To this end we first prove the
following technical lemma.

Lemma 1 The following identity holds for any appropriate test function
d(z): R® >R

[ o0 (s 2er)ao = [ o(uie—wiie, @
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where u € R® denotes an arbitrary vector, (z,u) the Euclidian scalar product
and §(x) is the one-dimensional Dirac delta-function.

Proof:
We begin the proof from the left-hand side of (3) noting that

/RS b(2)8 <(z,u) + %W) dz = 2/RS ®(2)6 (|2 + ul> — |ul?) dz.

Using the substitution z = Z — u, dz = dZ and immediately removing the
tilde sign we obtain in the spherical coordinates

z=pe, pe[0,00), e € S? dz= p*dpde

the assertion of the lemma

/Rg ®(2)0 ((z,u) + %|z|2) dz = Q/R3 Oz — u)d (|2]” — |ul?) dz

=2/ P8 (p° — |u|2)/ ®(pe —u)dedp = |u|/ O (|ule — u)de.
0 s2 2

u
The next lemma presents a particular form of the Boltzmann collision op-
erator which is very convenient for numerical computation using the FFT
algorithm. For simplicity we omit the dependence of the function f(v,t) on
the variable ¢ in the following considerations.

Lemma 2 The Boltzmann collision operator (2) for hard spheres can be
written in the following form

Qf, f) = /52 . §((e1,e2)) (2(v,e1)P(v,e2) — f(v)¥(v,e1,€2)) derdes  (4)

where the functions ®(v,e) and ¥(v, e, es) are defined as

B(v,e) = / plf (v + pe)dp, (5)
T(v,er,e0) = /°° /°° pillpal f(v+ pres + poco)dprdps. (6)



Proof:
Using the previous lemma for

O(jule—u) = f)f(w) = f(v)f(w)

= 7 (o+ M) £ (w- M) - rors

we obtain for Q(f, f) the following integral

Lo (e gae) (£ (o4 52) £ (0= 32) - F0 @) awas. @

Then using the substitution z = 2z and again immediately omitting the tilde
sign we get
QN =4[ 5z u+2) (Fo+2)fw=2) = ) W) dw
R3xR

The next substitution is w = y + z + v. Thus, using this substitution and
d(z) = §(—z) we obtain

QD=1 5+ 21w +5) ~ F0)f 0+ y+2) dydz
R3xR

Now we switch to the spherical coordinates
Yy = pie1, 2 = paeg, dydz = P%P%dﬂldmdﬁd@m

and obtain after simple transformations the following form of the collision

operator Q(f, f)
4/52 /52 6 ((e1, €2)) ((/000 pif(v +01€1)dpl> (/000 paf (v +P2€2)d02>

—f(v)/ / prpaf(v + prey + pzez)dpldpz) deydes.

o Jo

The last step of the proof is to remark that

46 ((e1, e2)) = 6 ((e1, e2)) + 6 ((—e1,€2)) + 6 ((e1, —€2)) + 0 ((—e1, —€2))

to use the substitutions e; = —€;, p1 = —p1, €3 = —€3, P2 = —po at the
proper places and to extend the integration in the inner integrals from [0, co)
to (—00, 00). Thus, the lemma is proved.

n



Remark 1 7o the best of our knowledge the collision operator Q(f, f) in the
form (7) (for general intermolecular potential) was first used in [3] to derive
a complete Landau expansion of Q(f, f). A formula similar to (4) (for a
more general case) was used in [5] to prove some inequalities for Q(f, f).
Howewver, the two short notes [3], [5] do not contain the proofs of (4), (7).
Actually, this sort of representation of Q(f, f) is already implicitly present
in Carleman’s paper [6].

Note that Q(f, f) has the special structure (4) only for hard spheres. We
have presented the short derivation of the formula (4) since it is the basis for
our numerical method.

The integral (5) is called the generalised X-ray transform of the function,
while (6) is the generalised Radon transform.

Note that the functions ®(v, e) and ¥(v, e, e5) defined in (5),(6) are integrals
of the convolution type and can therefore be computed efficiently using the
Fourier transform

o) = FIAEO) = | f()eDdv. (8)

The inverse Fourier transform is then

16) = FIel(0) = g [ el 0

The function ®(v,e) can be written in the following form
O(v,e) = FFID] (S e)](v,e)
= F! [/ @(U,e)e’(”"g)dv] (v,e)
R3

_ g [/_: 1o (/R Flo+ pe)ez(”’g)dv> dp] (v, €).

Using the substitution v + pe = v we obtain

200 = 77 [ol@) [~ ble ] (0.0 )

o0

= F 7 e(€)d((& )] (v, e),



where d((&, €)) denotes the one-dimensional Fourier transform of the function
|p| evaluated at (£,e). Since this Fourier transform does not exist in the
usual sense we are forced to consider it in the sense of distributions. The
distribution d can be computed analytically

d(C) = —é.

By analogy we get for ¥ (v, e, e5)
U(v, e, e0) = F ' [p(E)d((&, €1))d((€, €2))] (v, €1, €). (10)

Thus, the computation of the Boltzmann collision operator for the given
function f(v) involves the following steps:

1. Computation of the Fourier transform ¢(&) of the function f(v) as in
(8).

2. The double integral over the unit spheres (4) containing the —function
is in fact the averaging of the function

D(v,e1)P(v,e3) — f(v)¥(v, e, e9) (11)

over all possible pairs of unit, mutually orthogonal vectors eq, es. Note
that

/ §((e1, e2))derdey = 872
52 J g2

3. For the given pair ey, es the computation of the expression (11) re-
sults in multiplication of the function ¢(&) with d((£,e1)),d((£, e2) and
d((&,e1))d((&, e2)) as well as three final Fourier transforms as in (9),(10).

Since the function d(¢) is singular at zero we are forced to regularise it.
Instead of the infinite interval of integration in (9) we consider

R
dutz) = [ |ple"dp (12)
-R
This function can be computed easily and we obtain
dr(z) = 2 ((zR) sin(zR) + cos(zR) — 1) /?



Remark 2 The regularisation (12) means that we approximate the collision
integral (4) as

QUf, f) = Qr(f, f), R — oo, (13)

where Qr(f, f) is given by the same formula (4) in which the integrals (5),(6)
are evaluated over the finite interval [—-R, R] in (5) and over [—R,R] X
[—R, R] in (6).

One can easily check that the approximation does not change the principal
properties of the Boltzmann equation (conservation laws, H-theorem, equi-
librium solutions and even Galilee invariance).

To choose R we use the following simple criteria. Assume that f(v) = 0 for
|v| > Ry, then the maximal value |un,q;| of the relative velocity of particles
does not exceed 2Ry. Therefore Q(f, f) = Qr(f, f) if R > 2Ry. Roughly
speaking, the error of our approximation has the same order as the maximal
value of f(v) on the surface of the sphere |v| = R/2. Fortunately, the dis-
tribution function f(v) usually decreases, such as exp(—alv|?) for large |v|?,
therefore we need to estimate « for a specific problem and then choose R
such that aR? >> 4. For the equilibrium value o = 1/(27) this yields a
rough rule R >> 22T .

3 Computation of the collision integral

The form of the Boltzmann collision operator described above is well suited
for the fast numerical computation of the collision operator for the given
function f(v). Note that the main numerical work requires the computation
of three Fourier transforms for each pair of vectors ey, e5. Since the highly ef-
ficient algorithm of Fast Fourier Transform can be employed in this situation
we will get very high efficiency for the whole procedure.

The averaging over all unit, mutually orthogonal vectors e, e, can be done
in a deterministic or in a stochastic way. If we use a deterministic way we
introduce some discrete set of such pairs, compute the expression (11) for
each pair and then take the average. The stochastic Monte-Carlo simulation
is also very easy to perform. The pairs e, e5 are chosen randomly, and then
we take the average and control the stochastic fluctuations. In this paper we
concentrate on the deterministic way.



3.1 Generalised X-ray transform

The effective and accurate numerical computation of the generalised X-ray
transform (5) is obviously the most crucial step of our algorithm.

The numerical solution begins with the discretisation of the velocity space
R?® using the nodes on the infinite lattice h,Z3

=V +hyk, hy >0, k € Z>. (14)
Here, V' denotes the bulk velocity
o= [ et o= [ viwa. (15)
R3 R3
p = | fwdv= [ f(v)dv. (16)
R3 R3

Note that the density p, the bulk velocity V' as well as the energy density
per unit volume W

W=§ RERIOUE /\Mh (17)

remain conserved during the time evolution. h, denotes some positive dis-
cretisation parameter. Then the continuous Fourier transform (8) can be
replaced by the following discrete one

h,3 E f’()k Uk’
keZ3

In order not to overload the following formulae we omit the tilde sign from
#(€) having in mind that we are now dealing with some approximation for
the function (&) defined in (8).

The function (&) will be evaluated in the discrete set of points

é-j:hgj, h§>0, jEZ3
as follows

= o(¢;) = W2tV &) 3 Foethohe(k, 7). (18)

kEZ3



where the abbreviation f, is used for f(vg). The algorithm of FFT requires
the following relation between the mesh sizes h, and hg

2
hohe = —, n=2"_n, €N. (19)
n

The last assumption is due to the especially effective FFT if n is a power of
two.
Now it is easy to see that the values

Y fe o (h9)
keZ3

are n—periodic with respect to each single component of the vector j. It is
therefore sufficient to compute them for

n n
o ——+ 1< <=, 1=1,2,3.
J 9 +tlsn=s 9
27 :
The values elW(k J) are also n—periodic with respect to the single compo-

nents of the vector k. Thus, if the parameters h, and n are chosen so that
the values of the function f(v) can be neglected outside of the cube
2L

Q=[-L,L?, 2L = hyn, h, = — (20)

then we restrict the infinite summation in (18) to

ei = ¢(&) =h3€l(v’€j)2fkezﬁ(k’j), (21)
n n
s ——+1<gE< - 1=1,23.
k 5 +1<k< 5 l ,2,3

Here we discuss how to choose the parameter L correctly. As in Remark 2
from the previous Section, we assume for the moment that f(v) = 0 for |v| >
Ry. Then we need to choose R > 2R, to get the equality Q(f, f) = Qr(f, f).
Moreover it can be shown that [Q(f, f)](v) = 0 if [v| > /2 Ry. Using the
Fourier Transform method we implicitly introduce a periodic extension of
the function f(v) outside of the cube [—L, L]*. Therefore we need to choose
the parameter L sufficiently large to avoid any contribution of neighbouring

10



domains (i.e. outside of the cube). Simple geometric consideration shows
that in order to obtain correct (non-zero) values of Q(f, f) inside the sphere
lv|? = 2R2 we need to choose

D)
3 +2f R,

LZ%(R+R0(1+\/§)> >

In practice it is reasonable to use the following values of R and L (for given
Ry): R = 2Ry and L = 2.5R;. Finally we can formulate the following
criteria of the choice of R and L without mentioning Ry: choose the basic
cube [~L, L]® and put R = 0.8L in the above formula, then the error of the
evaluation of Q(f, f) can be estimated as maxj,—r/2 f(v).

The next step is to rearrange the numbering of the components of the three-
dimensional vector f € R” as follows

fi=fe (22)

where the components of the vector k are defined

~ ki, k>0 _
kl_{n+kl hZp =128 (23)

Thus, there is a one-to-one correspondence between k and k. Using (22) and
the obvious property

we rewrite (21) as

. 2w
gﬁ; = gp(é']) :hiel(va 6]) Z fkez%(k’j)
keQn
or in the matrix form
¢ = hDyFf, ¢,feCY, N=n? (24)
Dy = diag(e’V-&), j e Q,), (25)

Fy € CN*V,

11



@y is the following set of indices
Qu=1{j€eZ’:0<j<n-1,1=1,23}.

The matrix F3 involved in (24) is the matrix of the three-dimensional discrete
Fourier transform. If n is a power of two as is required in (19) then the
computation of ¢ can be done with O(N log(N) = O(n?log(n)) arithmetical
operations using the FFT algorithm. Up to the constant factor the matrix
F3 is unitary
— 1 * 1 *

The numerical evaluation of the generalised X-ray transform (5) in the knots
v NOW results in

1 _ . .
% = Gt o e Sl ) (26)
JEQn
1 2T Ty . .
- (%)3;@ S et (k,7), z(V,fg)dR((gj,e))goj
J€Qn
or in the matrix form
. 1 e .
b= (%)3th Dy'D.,

where the diagonal matrix Dy is defined in (25) and
D, = dlag (dR((gjae))a .} € Qn) .

The components of the vector ® are related to those of ® in the same way
as in (22)

o; = .

Using (24),(19) and the commutativity of the diagonal matrices we finally
obtain

~ 1 " ~
&= F'D.Ff. (27)

12



The accuracy of the formula (27) is defined by three parameters: the cutting
parameter R in (12), the size L of the cube @ in (20) and the number of knots
in one direction n. There are therefore three different errors. The first error
is due to restriction of the infinite integration in (9) to the integration over
[—R, R] in (12). The second error is due to restriction of the infinite velocity
spaces R® to the cube (20). The last error is due to using the midpoint
rectangular quadrature instead of the exact integration over the cube (20)
and later, for the inverse Fourier transform in (26). Thus we have quadratic
accuracy for smooth functions. It is clear that the procedure can easily be
improved using other quadrature rules based on uniform discretisation such
as the Simpson rule. The only change in this case is an additional diagonal
matrix in (27) containing the weights of the quadrature.

3.2 Averaging procedure

The next step is the numerical realisation of the averaging procedure over all
pairs of unit, mutually orthogonal vectors e;, ey of the vector F(eq,es). i.e.
the computation of the integral

/52xs2 d ((e1,e2)) F(e, e9)de; des. (28)

The components of the vector F' are
Fk(el, 62) = (F*DlFf)k (F*DQFf)k — .fk (F*DlDQFf)k y k€ Qn (29)
Here we have used the following abbreviations

D, = diag(dr((§,e1)), Jj € Qn),
D2 = dlag (dR((gjaEQ))a jE Qn)

The vector (29) has the following important symmetry properties
F(@l, 62) = F(:l:@l, :i:€2) = F(Zlieg, :I:el). (30)

Thus, we are able to reduce the computational work using this symmetry.
Then we consider the following parametrisation of the pair of the unit spheres
in (28)

13



€1 (¢7 My Cl) = U(¢7 M) (COS(Cl): Sin(cl)a O)T ) (31)
62(¢a 2 C?) = U(¢a /1') (_ Sin(c2)a COS(CZ): O)T ) (32)
0<¢ < 27, =1 <pu<1, 0<G<2m 0< ¢ <27 (33)

where the three-dimensional rotation matrix U(¢, u) is defined as follows

p+sin?¢(1—p) —sindcosd(l — p cosg/n/l—
U(p,p) = | —singcosp(l —p) p+ cos®p(1 — ) sin /1 —
—cos /1 — p? —sin ¢y/1 — p? 1

and o’ is the transpose of a. The idea behind the above parametrisation is

the following. The vectors e; and e, define in the case e; # +e; a plane in
R3. Let

e1 X €9

€3 =

‘61 X 62‘

be the unit normal vector of this plane. The third column of the matrix
U(¢, 1) is exactly the vector e; with the usual parametrisation. The two first
columns of the matrix U(¢, i) build an orthogonal basis in this plane. Thus,
there are such angles (; and (, that the representation (31),(32) valids.

The scalar product (ej, e5) now takes the following form

(e1,€2) = sin((1 — (o)

which is convenient for further simplifications. Since the above transforma-
tion is orthogonal (de; des = d¢p dp d(y d(s) we obtain for the integral (28)

2 1 2 2
[ s [ au [ [ stintc - aPen 6. ealo GGG
Substituting ¢ = (1, z = sin(¢; — (») with the Jacobian

dCrdGy =

in the double integral with respect to (i, (, leads to

dc¢ dz
V1—22

/ / 5(2)F(e1 (6,1 C. O), ex(é, i, ¢ — arcsin 2))

14



Removing the §—function we now obtain the integral (28) in the following
form

2w 1 2w
| o [ dn [ Feom 0. et o (34)
Using the properties

er(m+¢,—p,—C+2¢9) = —eio,p,(),
ea(m+ ¢, —p, —C+28) = eap, p, (),
er(d, p,m+¢) = —eid, 1),
ea(d, i, ™+ () = —ea(d, 1, ),
er(g, p,m/2+C) = ex(d,p,0),
ea(d, 1, m/2+C) = —ei(d, 1, ()

and (30) we restrict the integration to the interval [0, 1] with respect to u
and to the interval [0, 7/2] with respect to ¢. Thus, (34) takes the form

2 1 /2
8A‘WAWA Fler (61, C), ealdh 1, C))dC.

The discretisation of the parameter domain [0, 27) x [0, 1] x [0, 7/2] is realised
using the nodes

(¢i1a/1’i2a CZ?,) = (h¢(21 - 1)a -1+ hu(iQ - 1/2)a hC(i?) - 1))a (35)
hy = 2% hu:i, he = —
Ng Ny 2n¢
where ng,n,,ne € N are new discretisation parameters. This choice of dis-
cretisation corresponds to the numerical integration using the midpoint rect-
angular rule and is therefore of the quadratic order of accuracy for smooth
functions.
Our numerical tests have shown that the above discretisation does not cover
all necessary symmetries which are naturally involved in the analytical form
of the integral (28). A completely symmetric integration rule for the unit
sphere should involve, together with an integration knot

(o, B, )7 € 52, (36)

15



all its permutations and changes of the sign:

(o, £6,49)7, (26, £, 7)", (£7,£6, +a)7,
(o, 17, +6)", (£7, +a, £0)", (+6, 7, +a)".

That means that a non-trivial integration knot (36)

a#tBFEyHD

requires 47(!) additional knots in order to keep the symmetry of the problem.
Fortunately, most of them are automatically involved in our integration rule
having the knots (35) in the parameter domain because of the reduction of
the initial domain of integration and if we choose ng as a multiple of 4. Nev-
ertheless, two additional permutations are necessary to keep the symmetry.
We introduce three permutation matrices

1 00 1 00 0 01
PP=|010]),PR=1001],FPR={010
0 01 010 100

Then an approximation for Q(f, f)(vx) can be computed as

3 Mgy, N¢

Z Z ( FiD1¢), (F5 D)y, — fk(F§D1D2‘P)k) . (37)

J=1 11,i2,43=1

3n¢nun4

Here we have used the following abbreviations

1 -
D, = diag(dr((§), €1,jirinis)), 7 € @n) (39)
D2 = dlag (dR((gja e?,j,il,iz,is))’ .7 S Qn) ) (40)

€1,j,i1 2,03 = PjU((bh ) :uiz) (COS(Cis)a Sin(Cis)a O)T

€2,5,i1,62,83 = PJU(¢Z1 ) ,uiz) (_ Sin(Cis)a COS(Cia)’ O)T :
Note that the diagonal matrices Dy, D, do not depend on the problem and
therefore can be computed once in advance and stored in the computer for

further use. The arithmetical work for the numerical evaluation of the Boltz-
mann collision operator at all knots in @, is O(ngn,nen® log(n)).

16



4 A difference scheme

In this section we discuss an explicit difference scheme for the initial value
problem (1) and investigate its conservation properties.

4.1 An explicit scheme

Using the initial condition in (1) we compute the initial vector using the
nodes (14)

fOERY, f) = folve), k: k€ Qn.
Then the time steps are
M= f"4r¢™ >0 m=0,1,..., (41)

where the vector ¢™ is defined in (37). Note that now we use f™ in (38)
instead of f. It is obvious that the time step parameter 7 should be chosen
small enough to guarantee that all components

Mg sTp T

1— 3%%%2 Y Re(FyDiDyp™),

J= 1 41,82,43=1

remain positive during the time steps. This is the usual time-step restriction
for explicit schemes.

4.2 Conservation properties

One of the most important properties of the Boltzmann equation is the con-
servation of the density p, bulk velocity V and energy density W (15),(16),(17)
during the relaxation. The numerical form of these macroscopic quantities is

o= h3> M,
J
ph(Vh)l = th(vj)l Jm’ l:152a33
J

(B = By (i)’ f 1=1,2,3, (42)

J

Wi = - ((Ph)1u + (Ph' )22 + (Ph')33) - (43)

N | —

17



We first remark that the density p, is conserved because of the following
considerations. We use (41) and obtain

Pt = h,?’z fomtt :hng,z"—i—ThzZq,T
k k

3 T Moy,

87T2h3 .
=pr+T——23 > (F;Dip™, F;Dag™) — (f™, F3 D1 Dyp™).
3n¢n“n< j=1 i1,22,i3=1

Since
FF; = n’l, (44)
we obtain with (38)
(F5D19o™, F3 Do™) — (f™, F5 D1 Dy™) = 0, Vi, g, 13, J-

Thus, the numerical density is conserved.
Using (14) and the numbering of components as in (23) we can represent the
above quantities as the following scalar products

pn = g0 ™), (
d9 = e®Re®ecRY, (
pn(Va)r = RS (V)i (g™, f™) + k3 (g™, F™), (47
¢V = a®@execRY, (
i = h((Va))2 (¢, F™) + 203 (V)1 (™, F™) + ki (g®, F™),(49
¢® = b@e®ececR. (50

Here ® denotes the Kronecker product. The n—dimensional vectors e, a and
b are defined as follows

e = (1,1,..., )T e R,

a = hy(0,1,...,n/2—-1,0,—n/2+1,...,-1)T e R",

b = h2(0%1%...,(n/2 - 1)% (n/2)% (-n/2+1)%...,(-1)})" e R,
Using (45) in (47) and then (42),(45) in (49) we rewrite these conditions as

ph = h3(g(° ™), (51)
0 = Ay f~ ), (52)
M — (Vi) = h2(g®, fm™). (53)
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Our next aim is to rewrite (51),(52) and (53) in terms of the Fourier transform
@™ of the vector f™ with

1
SOm:E

Fyf™.
The three-dimensional Fourier transform matrix F3 fulfils
QDm:th_?,fm, F3:F1®F1®F1. (54)

Here Fi denotes the matrix of the one-dimensional Fourier transform having
the elements

2n
flmzeZWZm, Im=0,...,n—1.

Using (44) we rewrite (38) as

and the scalar products (51),(52) and (53) as

pn = (g0, Fyo™) = b3 (F39, ™),
0 = KW, Fyp™) = h3(F3g™, ™),
P —pn(Va)r = h3(g@, Fyo™) = h3(F3g@, o™).

Thus, we need to compute the Fourier transforms of the vectors (46), (48)
and (50). Using

fim = fin-m, m=1,...,n/2
and the well-known property
(A® B)(C® D) = (AC) ® (BD)
of the Kronecker product we get

F3g(0) = (F1®F1®F1)(6®6®6):F1€®F16®F16,
F3g(1) = (F1®F1®F1)(CL®€®6):F1G®F16®F161
Fyg? = (FIFF)(bee®e) =Fb® Fie® Fie.
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Therefore the problem remains to compute the one-dimensional Fourier trans-
forms of the vectors e, ¢ and b. The Fourier transform of the vector e is trivial

(we)l - (Fle)l = TL(Sl,o, we = (7’),, Oa ) O)T

where 6;,, denotes the Kronecker symbol. The following technical lemma
will be useful to compute the Fourier transform of the vectors a and b.

Lemma 3 The following relations are valid

n/2—1 0 , 7=0
> ksin (2—”1@7) = | , (55
k=1 n H(=1)*tcot (25) , j=1,...n—1

n/2—1 ﬁ(n —2)(n—=1)n , =

> k? cos (%%;) = (56)

k=1 (=1 (% —sin™? (%j)) , J=L...n—1
Proof:
We use the equality
=t
k=1 ¢—1
for
q= ezkx

differentiate it once for (55) and twice for (56) and finally evaluate it at

2T .
T =—"1].
n

The real parts of these expressions lead to (55) and (56) correspondingly.
n
Now we compute the Fourier transforms of the vectors ¢ and b using the
property (55).
n/2—1

n—1
Bi = (Fia); =Y arfix="hy Y k(fin— Fint)
k=0 P
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n/2—1 n/2—1 U
= 2uh, Z kIm(f;x) = 20 hy Z k sin (ij>
k=1 k=1

0 , 7=0

ZhU%(—l)j_HCOt (Zj) , j=1,...,n—1
Note that
/61:/677,/2:05 ﬂj:_ﬂnfj: .7:1’7”/2_1

Thus, for the three-dimensional Fourier transform of the vector ¢ we get
the following result

1
(Fsg); = F 39((j1),j2,j3) = 1"B,0j2,00j0

The equation (55) now takes the form

n/2—1 n/2—1
. T
Jji=1 Jj1=1

The Fourier transform of the vector b can be computed similarly

n/2—1

n—1 2
n
v o= (Fib); =Y bifin=h: o Jims2 + > k(fik+ fin k)
k=0 k=1

2 n/2—1
n .
= R (-1 +2 > E’Re(fx)
k=1
= h n—Q(—l)j + 2"/22:1 k? cos (2—7Tk )
v 4 n
k=1
n(n?® + 2) .
— 12 , 7=0

F(=1)7sin? (Zj) , j=1,...,n—1
Note that
Vi = Yn—js J=1,...,n/2—=1
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Thus, for the three-dimensional Fourier transform of the vector ¢‘® we get
the following result

2
(Fog™); = F 39((j1),j2,j3) = 1°7,0}2,0045,0

The equation (55) now takes the form

n/2—1
(pZ")n - Ph(Vh)l = thg 7090%,0,0) + Z ’le(wgl,o,o) + ngz—jl,o,()))
=1
n? 4+ 2 1 iy . o (T m
=n*h] 19 P + 5 P(n/2,0,0) + Z (—1)7 sin™? (ﬁjl) Rew (0,0

ji=1
Using (57) and (57) we obtain the formulae for the functions ¢, | = 1,2,3

n/2—1

m m m T m
Impy’ = tan - mZZQ (—=1)™ cot (ﬁm) Tme]r, (57)
mo_ 2l (o — pn(Va)i | n*+2 1,
Re@e, = Sin ; <— ’[’L3h15} + 12 Ph + 5@0,”/281 (58)
n/2—1 .
+ Z (=1)™sin~? (ﬁm> Repme, | (59)
m=2
O_eg = g, 1=1,2,3.

Thus, the formulae (57),(58) and (60) allow the components ¢, [ = 1,2,3 to
be defined such that all numerical moments of the distribution function are
conserved during the computation. The imaginary parts of these components
are prescribed (this conserves the bulk velocity) as well as the sum s of the
real parts (this conserves the energy, cf. (43)). In order to find the concrete
values r;, | = 1,2, 3 of the real parts for the given 7, [ = 1,2, 3 we minimise

the norm of the difference ||r — 7||5 under the condition (r,e) = s, e =
(1,1,1)". Simple computation yields the following correction
1

r=7-— 5((7‘,6) —s)e.

What is remarkable is the very low computational work required by these
formulae: it is of the capital order O(n) because only the knots placed on
the axes are involved.
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5 Numerical examples

In this section we calculate an example of the relaxation using our difference
scheme. The initial distribution fy(v) is given by

=gy (o0 (15 ) +er (457))

where
Vi=(2,20)7 V= (-2,2,0)".

The initial and asymptotic values of nontrivial moments of the distribution
function f(v,t) and the conserved macroscopic quantities for this example
are

p 1, V=(0,1,0)", T =8/3,
p11(0) 2, pn(OO) = 8/3,
p12(0) = 2, p1a(o0) =0,
p22(0) 3, p22(00) = 11/3,
p33(0) = 1, ps3(o0) = 8/3,
q1(0) 4, q1(o0) =0,
q2(0) 13, go(00) = 43/3,

where
pi(t) = / viv; (v, £)do,
Ra
w(t) = /vi|v|2f(v,t)dv, =123 (60)
R3

In order to obtain the reference solution of this problem we use the standard
DSMC method [1] with 10000 particles and generate N, = 10, 100 and
1000 independent trajectories. The next figures display the confidence bands
for some of the above moments for N,., = 10 as well as the numerical solution
obtained using our scheme for L =10, R =7, n = 16, ng = 16, 1y, = 4 and
ne = 4.
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In Figure 1 it is clear to see that just 10 independent trajectories of the
DSMC already lead to sufficient accuracy in the computation of the time
evolution of the second moment. The computational time of the DSMC
method is only about 2% of our method.

0 0.1 0.2 0.3 0.4

Figure 1 Relaxation of p;; and the confidence bands for N,., = 10.

24



However, the situation changes if we are interested in computing the time
evolution of the third moment, as shown in Figure 2. The width of the
confidence bands indicates that the accuracy of the computation using 10
independent trajectories is rather low in this case. There is only the pos-
sibility to increase the accuracy using more independent trajectories. The
increase of this value to 100 and finally to 1000 leads to better results which
are presented in Figure 3.

14.5 ¢

14
13.5 ¢

13 +

0 0.1 0.2 0.3 0.4

Figure 2 Relaxation of ¢, and the confidence bands for N,., = 10.
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This figure shows the empirical means for 10,100 and 1000 trajectories of
DSMC (thin lines) as well as the curve obtained by our method (thick line).
There is very close agreement in the results for N,., = 1000. However, the
computational time of the DSMC method is now twice that of our method.

14.2}
14}
13.8;
13.6}
13.4}
13.2}

131

0 0.1 0.2 0.3 0.4
Figure 3 Curves for V,., = 10, 100, 1000

It is also important to consider the memory requirements of the method. We
need to store 2n® components for the vectors f™ and ¢™ in (41). It is also
useful to store all diagonal matrices (39),(40) (2n®ngn, nc components) in
order to accelerate the computations. Note that these matrices can be used
for all spatial cells if we are solving a spatially inhomogeneous problem. Some
additional but rather small storage is required by FFT. Since the parameter
n is at least 16 the memory requirements of the method presented are quite
high. Especially for the spatially inhomogeneous problems this can lead to
serious problems if the variation of the macroscopic quantities in the physical
space becomes large. It is clear that the DSMC method is almost free of these
difficulties.
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