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Abstract

An effective deterministic method based on the Fast Fourier Trans-
form (FFT) for the Boltzmann equation with Maxwell molecules is
considered. The global existence, uniqueness and boundness of the
discrete solution is proved. The analytical form of the first 13 mo-
ments of the solution is derived. An effective procedure for the con-
servation of the macroscopic quantities is described. The results of
some numerical tests are presented.
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1 Introduction

In this paper we continue the study of the numerical solution of the spa-
tially homogeneous Boltzmann equation [4] with Maxwell molecules using a
difference scheme which we have proposed in [2] (see also [9]). This scheme
is based on the uniform discretisation of the velocity space and the Fast
Fourier Transform (FFT) [5],[8]. The main advantage of this scheme is that
it requires only O(N 4/ 3) arithmetical operations per time step, where N de-
notes the whole number of discrete velocities in use. However there are some
difficulties. First of all our scheme is not completely conservative, only the
conservation of mass is guaranteed automatically. The correction suggested
in [2] leads to a scheme conserving some values which are connected to the
usual macroscopic quantities via Fourier transform. Thus, the scheme does
not conserve the momentum and energy exactly but also does not allow these
quantities to vary much. The initial and asymptotic values for the tempera-
ture are correct but in-between we can observe some deviation.

In the present paper we report a considerable theoretical and numerical
progress achieved by using this scheme. The treatment of the problem con-
sists of two main steps. First, we derive a large system of ordinary differen-
tial equations for the Fourier transform of the unknown function evaluated
at some knots in the frequency space. We show that this system has the
unique, global solution which is bounded from above by the numerical den-
sity. Furthermore, we prove the necessary and sufficient conditions for that
the asymptotic solution of this system is discrete Maxwellian. After that we
show how to force the system to be completely conservative. It is remarkable,
that the additional numerical work due to conservative properties is only of
the order O(N'/3). Then we consider slightly implicit difference scheme for
this system and show that it still has the above properties naturally adapted
to the discrete case.

The paper is organised as follows. In Section 2, we give a brief description
of the difference scheme suggested in[2] and prove its properties as we have
formulated before. In Section 3, we derive the exact formulae for the time
relaxation of the first 13 moments of the system. In Section 4, we use these
formulae and discuss the conservation of momentum and energy. Finally, in
Section 5, we present the results of some numerical experiments and draw
some conclusions.



2 Fourier transform for the Boltzmann equa-
tion

We consider the following initial value problem for spatially homogeneous
Boltzmann equation

%(U’t) = Q(faf)’ t>0, UERia f(UaO)Zfo(U) >0, (1)

where
QUf. f) = /]R3 /52 Bw,w,e) (f(v', ) f(w',t) — f(v,t) f(w,t)) dwde.  (2)

We use the following notions in (2)

— v,w € R® are pre-collision velocities;

— dw is the volume element in R? ;

— e € S? C R®is a unit vector;

— de is the surface element on the unit sphere S?;

— u=uv—w € R is the relative velocity of collision partners;

— ', w' are post-collision velocities defined by
1 1 1
v'=U+ §|u\e, w' =U — 5‘“'6: U= i(v +w);
— B(v,w,e) is the differential collision cross-section.
The differential collision cross-section depends on the physical model of in-

teraction between particles. Here we consider the special case of so called
pseudo-Maxwellian molecules with

B(v,w,¢) = g ((“’e)) |

Jul

where g(u) is some on the interval [—1, 1] non-negative and piecewise contin-
uous function. The most simple choice, which we will use, is

1
B(v,w,e) = i
T



One of the most important properties of the Boltzmann equation is conser-
vation of the density p

p(t) = | flo,t)dv= [ fo(v)dv=p, (3)
R3 R3
of the bulk velocity V
pOV () = [ v tido= [ vfa(wydv=pV ()
R} R3
and of the energy density per unit volume
1
W)= [ e / o[ fo(v)dv = W, (5)

during the time evolution of the function f(v,t) from the initial function
fo(v) to the final Maxwell distribution

lo—V]?

foolv) = W‘; 2T

The Fourier transform of the function f(v,t) is defined as
o61) = (71 = | 10,0 . ©)
The inverse Fourier transform F ! is then
) = [F Al = (s [ 6070 O
The simplified Boltzmann equation (cf. [1]) for the function ¢(&,1) is

Pen- [ (o550 o (S50 - voeten) ae. @

This equation is subjected to the initial condition

#(6,0)= [ o)™ v = o)



The formulation of conservation laws (3),(4) and (5) in terms of the function
(&, t) is given by
p = ¢(0,2) = @o(&) le=o;
pV = —igradgp(0,t) = —1gradepo(§) |e=o;

1 1
W o= _§A§g0(0,t) = —§A§<P0(§) le=o -

Since the function f(v,t) is up the factor p a probability distribution function,
the function (&, t) fulfils the following well known necessary conditions

lo(€, )] < ¢(0,t) =p€R,

(& 1) = (=&, t), VEER.

We begin the numerical solution of the equation (7) by the restriction of the
R? space of the variable ¢ to the lattice

heZ? = {& € R, & = hek, k € Z°} . (8)

The next step is the numerical solution of the integral equation (7) over the
unit sphere S2. The main problem here is the following. For the given point
&, only some of e € S? provide points &, &_ such that

_ Ek + [€kle _ &k — |&kle

¢

again belong to the lattice (8). To be precise, we introduce an equivalence
relation on the set Z3

k~miff |k| =|m|and (k+m)/2 € Z* 9)
and define the disjoint decomposition of Z? in the equivalence classes
Cl(k) ={m: meZ’ m~k}. (10)

The number of elements in the class Cl(k) will be denoted by ny = #CI(k).
The approximation of the equation (7) on the lattice (8) can now be written
as

2 2

awgt(t) B ni 2 (90“ (t)¢p=m (t) —psok(t)), kezd  (11)



The initial conditions for the infinite system of ordinary differential equations
(11) are defined through the given function ¢g(£) and fulfil

or(0) = o(&k), (12)
loK(0)] < o(0) = p, (13)
er(0) = ¢_(0), ke Z (14)

We begin with the analytical study of the system (11) subjected to the initial
conditions (12) having properties (13) and (14).

Lemma 1 The system (11) conserves the values

wo(t) = »p, (15)
Pe, (t) = Pe; (0) = P—¢; (t) = P—¢; (0)’ J=123, (16)

where e; denotes the j—th column of the 3 x 3 identity matriz.

Proof:
The equivalence class C1(0) contains only one element, the vector 0 itself.
Thus, we get from (11) the following initial value problem for the function

vo(t)
@o(t) = @5(t) — peo(t), @o(0) = p.

The unique solution of this problem is () = p and (15) is proved.
The equivalence classes for the vectors e; contain each exactly two elements

Cl(@j) = {ej, —ej}, j = 1, 2,3
The corresponding initial value problems are
. 1
Dae; (1) = 9 (@re, )0 (t) + @o(t) e, (1) — 2004, (t)) =0,

because of (15). This proves the lemma.

[
Therefore three complex values and one real value are conserved by the sys-
tem (11). Our next step is to introduce an appropriate substitution to this
system. Let us denote the values .., by

Pte; (t) = paj62h§Uj7 .7 = 172537

6



where the values a; satisfy
0<a; <1, j=1,2,3

because of (12) and u = (uy,us,u3)? is some real vector. The following
substitution

i (t) = pe™ R e (D), T = pt (17)

transforms the system (11) to the form

o) _ 1 3~ (%_m(z)@kTm(f)—m(f)), kezd,  (13)

ot n
k meCl(k) 2

having the initial conditions

@o(0) = 1, (19)

Pie;(0) = aj, 1=1,2,3, (20)

and the corresponding initial conditions for the other components satisfying
[2(0)] < 1, (21)

ok(0) = &-4(0)

because of (13),(14). For simplicity we omit the both tilde symbols by @y ()
in order not to overload the formulae having in mind the substitution (17).
There are several possibilities to prove the existence of global solution of the
system (18). May be the most elegant is using the “Wild-Sum” [11].

Lemma 2 There is the global solution of the system (18) which satisfies
e <1, >0, ke Z’ (22)

Proof:
If we substitute

or(t) = e hp(r), T=1—¢", 7€]0,1), k€ Z?

then the system (18) transforms into

OT) _ L S~ e (Dim (1) = S ), k€8, (23)

or g 9 9



with obvious initial conditions
¥ (0) = ¢x(0), k € Z°
and having the property (cf. (21))
0e(0)] <1, ke Z’
The bilinear operator S (v, () is defined as

and satisfies

S (¥k, G)| < 1 (24)

for || <1, |(x| < 1. We will look for the solution of the system (23) in the
form of power series

Ye(r) =Y o7, ke’ (25)
=0
and remark that

log”| = [ (0)] < 1. (26)

The time derivative of the function ¢y (7) is of the form

O (T <. .
akf ) = Z(] + 1)a/§-]_c|_)17'j, keZ? (27)
=0

and we obtain from (23) and (27) the following recursive relation for the
(k)

coefficients o >

1 J
afth = 7 DS al), g =12, (28)

m=0

Thus we get by induction from (26),(24) and (28)
Pl <1, j=0,1,..., ke Z® (29)

The power series (25) converge therefore absolute for all 7 € [0,1). This
completes the proof.
n



Remark 1 The inequalities (29) imply also

ee®)] = et aPa—et)| <ty -t =1, keZ,
=0 §=0

i.e. the initial property (21) remains valid for all t > 0.
Remark 2 The initial property (14) also remains valid for allt > 0
(pk(t) = @,k(t), ke Z3,

because of Cl(k) = Cl(—k) and if m € Cl(—k) then —m € Cl(—k). Thus, the
equations for og(t) and ¢ (t) are identical but the initial conditions are as

in (14).

The form of the system (18) allows to construct the solution recursively
using the classes (9),(10). There are some preliminary remarks necessary.
The recursion will be according to the squared length of the integer vector k

M = k> =k} + ki + k3.

The system is already solved for M = 0 and M =1 (cf. (15),(16)). Cor-
responding to results of additive number theory obtained in [10],[7],[6] the
number of integer solutions of equation

mi+ms+ms =k +ks+ks=k>=M (30)

(i.e. the number of the elements in the equivalence class Cl(k)) tends to
infinity with |k| — oo having almost the order O(|k|'~¢) for any € > 0.
There are two exceptions. There is no solution of the equation (30) if

M =48 +7), i,j € N. (31)

Such M cannot appear in our scheme because we have always at least two
solutions (for |k| # 0) of the equation (30) namely m = k and m = —k. The
second exception is that the number of solutions (30) remains the same if we
increase k by factor 2. This exception does not play any role for the recursive
consideration of our scheme. Let M be some natural number not of the form
(31) and the system (18) is solved for all classes Cl(k) with |k|? < M. We

9



consider now the equation (18) for some k with |k|? = M and rewrite it using
the properties +k € Cl(k), ¢o(t) =1 as

Gorlt) _ (1 - 3) o+~ Y oem@eeal. ()

n n
k K mECl(k),m;é:l:k

Since

+
‘k T < k|, Ym € Cl(k), m # +k,

2

(32) is a linear differential equation with a well defined right-hand side be-
cause of induction assumption. The unique solution of this initial value
problem is therefore trivially guaranteed. Using the abbreviations

2 1
M=1-= St =— > OrimO)Prm(t)
Nk Nng
meCl(k), m#+k
we rewrite the equation (32) as follows
() + Mepr(t) = Sk(t)

where the source Si(t) is known. The solution of this equation is

¢
or(t) = gok(O)ef)"“t +/ e”\k(t’T)Sk(T)dT.
0

If |p(t)] < 1 for |k| < M (this is true for M = 0,1 because of (19),(20))
then

—2
1Sk(t)] < £

N

and therefore

IN

t
@] < luO)le + / M|, (1) dr
0
S e—)\kt + (1 _ e—)\kt) =1

for |k| = M. Thus we again have proved the property (22). The solu-
tion ¢ (t) is in general a sum of negative exponents probably multiplied by

10



some polynomials (if some resonance case occurs). Thus, we deduce that the
asymptotic solutions

pr = lim (1), k € A

exist and fulfils the following system of algebraic equations

Yo = 1a (33)

Per; = Gy, .7: 152,35 (34)
1

= —m, k| > 1. 35

o= > Prim P, [ (35)

meCl(k), m#+k

Note that this system is of triangle form, i.e. the solution is given by the
initial values (33),(34) and the recursion (35). In the next lemma we prove
an important criteria that the asymptotic solution is a discrete Maxwellian.

Lemma 3 The solution of the algebraic system (33),(34),(35) is a discrete
Mazwellian

= 6_5"“'2, seR, s>0, (36)

if and only iof
ap=ay=a3=a, 0<a<l. (37)

Proof:
The conditions (37) are trivially necessary because of the initial conditions
(34). If (37) is fulfilled then we obtain

0= Peyj = emsexil’ = ¢

and therefore s = —In(a). Thus, the form (36) of the solution is true for
M =0,1. For |k|> = M > 1 we get from the induction assumption, recursion
(35) and using |k|? = |m/|?

1 _s k4+m |2 s k—m
P = nk—2 Z e ‘ 2 ‘ e ‘ 2
meCl(k), m#+k

_ 1 D SRl
n —_—
i meCl(k), m#+k

‘ 2

11



The proof is herewith completed.

[
The next interesting question is to clearly the following question. Define
some space of functions ¢ () : Z* — C so, that if the initial function ¢ (0)
belongs to this space then the time evolution of this function corresponding
to the system (18) will belong to the same space for all times.

Definition 1 Let ¢ > 0 be a non-negative number and the function oy, fulfils
op 1 72 — C, (38)
v = L (39)

Then the class A(e) of functions (38),(39) is defined as

Ae) = {sok o] < e*E"“'Z} :
Now we are able to formulate the last result of this section.
Lemma 4 The Cauchy problem

Ao (t 1
wgt() = > kim () orm(t) — @x(t), k € Z?,
* me Clik)

ee(0) € Ale)
is uniquely solvable in A(e) for all e > 0.

Proof:
Using the substitution

() = e oy (1)
we rewrite the system (40),(40) as

N 5 2
mECl(k)
[Yr(0)] < 1

which is identical with (18). Thus, there is the global solution v (t) satisfying
|Ye(t)| < 1 or equivalently v, (t) € A(0). Then @i (t) € A(e).
n



3 The exact time evolution of the moments

If f(v) is a distribution function with

/R%f(v)dvzl

then we denote the weighted averaging of a given function g(v) as

< g(v) >y= / g0)f () dov

We consider the following Maxwell distribution function

1
(2rT)32°

fu(v) =

-V
T

Its first 13 moments can be computed as

<1 > fur
<V >fy

T
< vV >y
|2

<vlv|® >y,

I denotes here the 3 x 3 identity
useful

<v—=V > =
<w=-Vw=V)">; =
< |v|2 Sy =
<|lw-VP>;, =
<w=-Vh=V]2>;, =

1;
= V;
= TI+VVT,
= BT+ |VPHV

matrix. The following formulae are also

0;

TI;

tr < vl >p,= 3T+ V%

tr< (v—V)v—-V)' >p,=3T;
0.

13



The moments of the solution of the equation (1) satisfy the initial value
problem for the following system of ordinary differential equations

d
— <1 ) = 0 40
o <1> (1) ; (40)
d
il t) = 0: 41
<> (1) 0; (41)
d 1 1
&<UUT>,¢ t) = —§<UUT>f (t)+§(TI+VVT) (42)
d 1
o <vlf>p () = -3 <vlof >, () (43)
1

1
— < > OV +2 (T+ §|V|2) V.

The initial values of the moments are defined by the initial distribution fy(v)

<1>5(0) = <1>p=1;
<v>5(0) = <v>p=V;
<o’ >;(0) = <w’ >y,

1
T = gtr<(v—V)(v—V)T > o5
<op]>>;(0) = <olv]* >y, .

The derivation of the system (40)-(43) can be done using the following well
known identity

/Ra 9)Q+(f, f)(w)dv =<<< g(v') >52> 1(0)> s(w) - (44)

where v' = 0.5(v + w + |v — wle) is the post-collisional velocity, < g(e) >g2
denotes the averaging of the function g(e) over the unit sphere

1
< g(e) >g2= el g(e)de

and @ (f, f)(v) denotes the gain part of the collision integral

14



Q+(f, f)lv) = i[w y F@") f(w")dw de.

We remark that in our case the loss part of the collision integral leads to

[ 9@ () =< 15 () < g0) >, 0

Therefore the averaging of the Boltzmann equation leads to

d
7 <90) > (1) = <<<g(t)) >92> 5> ) (1)

— <1>5(t) <g(v) >f (%)

Now we will use this equation for g(v) =1 and obtain

d
7 < 1> (t) =<<< 1 >9>50)>fw) (1) — < 1> (1) <1>5(t) =0.

Thus we obtain the equation (40) and conclude that

<1>p(t)=<1>;(0)=<1>p=1. (45)

In the following we will need the following simple property

<e>g=0. (46)

Using g(v) = v as well as (45) and 4.36 we obtain

d 1
5 <U>s ) = <<< 5(’0 +w+ v —wle) >g2> ) > fw) (1)— < v > (1)
1 1
= 5 <V ey T <W >jwy — <V >y (t) = 0. (47)

15



Thus we get

<v>p(t)=<v>5(0)=<v>p=V. (48)

Before we derive the equation for g(v) = vvT we will see that the averaging
of g(v) = |v|? remains conserved.

1
1 < o]+ Jw|* + v — w|* + 2(v, w)

+ 2/v—w|(v,e) +2|v — w|(w, e) >g2

1 2
< Z|v+w+\v—w\e\ > g2

1
S (ol + )
The space averaging leads to the equation
— <*>; () =0
and therefore to the expression
<P > @) =< |v]? >p,= 3T+ V% (49)
Here we have used the Maxwell distribution

fM(U) = tlif&f(vat)'

First nontrivial differential equation we will get for g(v) = vv”. Here we will
use that

1
<eel >p= §I, (50)

where I denotes the 3 x 3 identity matrix. The function to be averaged over
the unit sphere is now

16



1 1
g <§(v +w+|v— w|e)) = (vv" + v’ + v — w|(v+w)e”  (51)
+ wol +ww’ +
+ v —wle@” +w") + v — w|’ee”)
The averaging of the third and sixth summands in (51) over the unit sphere
disappears corresponding to (46) and we get using (50)

(0" + v + wo” + ww”

§|v - 'w|2])

Thus we obtain after the double averaging over the space

1
<y (§(v+w+ \v—w\e)) >S5 =

—_ =

+

(<’ >p(t) + <v>p(t) <v>} (1)

DO | =

b (< lP 0= <vs 0P, 6

Using (48) and (49) we get finally

1

5 (v’ > () +VVI+TI)

and therefore the equation (42). The derivation of the equation (43) is a bit
longer but completely similar to the previous and we will omit this.

Thus the solution of the system (40)-(43) is

<1>p(t) = 1;

<v>p(t) = Vi
<l >; (1) = <’ >p e (TT4+VVT) (1 —e7?);  (53)
<vp2>p(t) = <ol >p e+ BT +|VPV( —e?)

+ 2< v’ >p —VVT =TV (e™? —e73).  (54)

17



As an example we consider the initial distribution fy(v) as a mixture of two
different Maxwell distributions

fow) =afu,(v)+ (1 —a)fan(v), 0 <a<1.

The parameters of the Maxwell distributions are V7,77 and V5, 7,. In this
case we obtain

<1 >h = 1;
<v>p = V=ali+ (1 — o)l
<’ >5 = (a1 + (1= )T)I + iV + (1 — )WLV

1
T = o1+ (1-a)Ty+ ga(l —a)|Vi — Vo %
<ol > = a1+ [ViP)Vi+ (1 - a)(5Ts + V3 ) V5.
The last formulae ere extremely useful for the numerical tests because they

provide the explicite time evolution of the most important moments of the
distribution function. For the following simple but nontrivial choice

Vi=(-2,2,0" V=200, =T, =1, a=1/2

we obtain

18



<1>p(t) = 1

0
<’U>f(t) = V= 1 ;
0
2

5 -2 0 1 8§ 0 0
<w>p() = | =2 3 0 e+ 0 11 0 ) (1—e )
0 0 1 0 0 8
T = 8/3;
—4 1 0
<op>; () = 13 |e ™+ -| 43 | (1—e'/?) (56)
0 S\ o
1 12
_ = 4 (e—t/2_e—t/3)_
S\ o

4 Conservation properties

In this section we propose a possible modification of our system of ordinary
differential equations (11) for the knots +e;, | = 1,2,3 in order to conserve
the macroscopic quantities p, and V}, as well as to force the second moments
(mp(t)y, I =1,2,3 to follow the exact curves (53). Then the conservation
of the energy density W), will also be guaranteed. Because of the obvious
practical reasons we begin the numerics by the discretisation of the velocity
space R3. Let V}, be an approximation of the bulk velocity V' which can be
obtained numerically or exactly from the initial distribution fy(v). Then we
will need two discretisation parameters L > 0 and n € N. The parameter L
should be chosen so that it is possible to neglect the values of the distribution
function f(v,t) in outside of the cube

2L
{U : (Vh)l —L <y < (Vh)l + La l= 1a273}’ 2L = h”una h’U = 7 (57)

It is convenient to choose the parameter n as a power of two because of the

especially efficient FFT procedure in this case. The set of discrete velocities is
now {V, + vx = hok, k € Q,}, where @, denotes the set of three-dimensional

19



integer vectors whose components belong to the set {—n/2+1,...,n/2}. If
we denote fi(t) as the approximation of f(vg,t) then the numerical form of
the macroscopic quantities is

o= by ) i), (58)
(V) = higj%(vj)lfj(t), 1=1,2,3, (59)
(ma(t)a = hi:g((vj)z)%(t), 1=1,2,3, (60)

Wy = %((mh(t))m(mh(t))zz+(mh(t))33)- (61)

Using the definition of the discrete velocities and the following numbering of
its components (0,1,...,n/2,—n/2+1,...,—1) first in x—, y— and finally
in z—direction we represent these quantities as the following scalar products

Pn = h’i(g(o)a f(t))’ (62)

79 = e®e®eecRY, (63)
(V)1 = h3(Vii(g@, £ (1) + B3 (g™, (1)), (64)
gV = a@execRY, (65)
(ma(®)n = h((Va))? (¢, F(1) + 2R3 (Vi) (g™, £ () + (9P, f(2)B6)
¢? = bexecRY. (67)

Here ® denotes the Kronecker product. The n—dimensional vectors e, a and
b are defined as follows

e = (1,1,...,1)T e R, (68)
a = hy(0,1,...,n/2—-1,0,-n/2+1,...,-1)T e R", (69)
b = RE0%1%4...,(n/2 —1)% (n/2)% (—n/2 4+ 1)?,.... (=)D € R{70)

Using (62) in (64) and then (62),(64) in (66) we rewrite these conditions as

Pn = hz(g(o)af(t))a (71)
0 = AW, f(1), (72)
(ma(®))1n = pn(Vihr = B3(9®, F(1)). (73)

20



The meshsizes h, and hg¢ are connected via the relation h,he = 27/n. Then
we are able to rewrite (71),(72) and (73) in terms of the discrete Fourier
transform (t) of the vector f(¢)

o(t) = hBDF3f(t), Fls=F @ F, ® F\. (74)

Here F} denotes the matrix of one-dimensional Fourier transform having the
elements

2
fim=e"n ™ L m=0,...,n—1. (75)
Note the obvious property of these elements

flm = fl,n—m; m = 1,,n/2 (76)

D denotes in (74) the following diagonal matrix

D = diag <e’hf(v’“j), j€E Qn) . (77)
Py = n’l, (78)
we rewrite (74) as
1
1) = Gt D et (79)

and the scalar products (71),(72) and (73) as

1 o 1 _
o= (g FD™ () = — (F3g™, D™'¢(1)),(30)
1 . 1 _
0 = = (g™ 5D o(t) = —(Fsg™, D Mo(t)),(81)
1 Y 1 _
(a1 = Vi)t = —5 (9", FsD ™ (1) = — (Fag™, D™(1)).(82)

The analytic form of the Fourier transforms of the vectors (63), (65) and (67)
was obtained in our recent paper [3]. Here we give only the final result. Using
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(81) and (82) we obtain the final formulae for the functions ¢, (t), { =1,2,3

n/2—1

Im(D '), (t) = tan% Z(—l)mcot (%m) Im(D ), (1), (83)

R(D ) () = siwt T (O 2 ORN  E2, S
n/2—1

+ Y (D™sin ? (Sm) Re(D ), (1) | | (84)

(D ¢)—e, = (D7'9p)e, 1=1,2,3. (85)

Thus, the formulae (83),(84) and (85) allow to define the functions ¢, (t), I =
1,2, 3 so, that all numerical moments of the distribution function are con-
served during the computation. Remarkable is also very low computational
work required by the formulae (83),(84) and (85), which is of the capital
order O(n) because only the knots placed on the axeses are involved.

5 Numerical examples

In this section we solve the initial value problem (11),(12) in @, using the
following slightly implicit scheme

+1 LI T i
e = Yr T Z ChimPr—m (86)
1T n ks Phom
i (1 +70) meClx) 2 2
@2 = 900(616)7 ke Qn (87)

Here 7 > 0 denotes the time discretisation parameter and goi the approxi-

mation of go,(ctj = 7 7). This scheme is obviously unconditionally stable and

of the first order of approximation with respect to time step 7.
For the numerical tests we consider the initial distribution fy(v) as in (55),(55)

fo(v) = W (exp (‘@) e (—@» |

where

Vi=(2,2,0)7 ¥ =(-2,2,0)7".
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The time evolution of the second and third moments of the distribution
function f(v,t) is given in (55),(56). We remark that the moments of the
numerical solution follow the time evolution of the main diagonal elements
of the < vv > () tensor exactly. Therefore we concentrate our attention
on the only non-trivial component (< vv™ >¢) , (¢) of the tensor (55) and
on the first component of the vector (56).

There are three discretisation parameters in our method: the size L of the
cube (57), the number n of knots in one direction and the time step 7. The
parameter L can be chosen using the initial distribution. First we compute
the (conserved !) temperature which is 7 = 8/3 in our case. Then we use
L = /—2TIn(e) in order to guarantee the accuracy € by approximation of
the final Maxwellian. This leads in our case for ¢ = 1075 to the rough value
L = 9. This very high accuracy should allow to see the role of two other
parameters of discretisation more precisely.

In the next tables we present the maximal error by computing of (< vl > f) o (1)
and of (< v|v|? >), () on the time interval (0,12) which is sufficient for the
almost complete relaxation. The number of time steps is denoted by N, there

IN. | n=16 | n=32 | n=64 |
50 [9.75-1072[9.39-102 [ 9.30- 1072
100 [ 4.54-1072 [ 4.30-10% | 4.24- 1072
200 [ 2.26-10 2 | 2.13-10 2 | 2.09 - 10 2
400 [ 1.31-10 %[ 1.23-10 2 [ 1.21-10 2

Table 1: The error for (< vv™ >y) , (2).

IN. | n=16 | n=32 | n=64 |
50 |1.95-107" [ 1.87-10"" [ 1.86- 10"
100 [ 9.07-10 2 [8.60-10 2| 8.48-10*
200 [ 4.51-10 2| 4.26-10 2 4.20-10 *
400 | 2.62-10 % | 2.47-10 2 [2.44-10*

Table 2: The error for (< v|v|*> >), (t).

The above tables illustrate quite clear the first order of the scheme with
respect to 7. On the other hand the increase of accuracy with respect to n
is rather low. It is due to the very rough approximation of the integral over
the unit sphere in (7) for small |£|. Thus, the equivalence class for (1,1,0)"
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contains only four elements (41,41,0)7 independent of n. Corresponding
to the asymptotic #Cl(k) = O(|k|'"¢, the best accuracy we can expect here,
is O(n~'/2) even for || — oco. Fortunately, the accuracy is very sufficient
already for n = 16. The main reason for this is probably the fact that the
points with small |{| are directly connected via (86) to the points +e;, j =
1,2, 3 which are corrected corresponding to (83), (84).

It is possible to improve the accuracy with respect to 7 using high order
solvers (i.e. Runge-Kutta methods) for the system of ordinary differential
equations (11) in @,. But this does not seem to be very reasonable because
the numerical solution of the spatially homogeneous Boltzmann equation
only makes sense in connection with the usual splitting procedure for the
spatially inhomogeneous Boltzmann equation. This splitting is of the first
order of accuracy with respect to the time step 7.

Finally we show the convergence history for above moments in the following
figures. The thin solid lines indicate the numerical solutions obtained for
N, = 50,100, 200,400 (from below) while the dashed line shows the analytical
solution (55) in first and (56) in the second figure.

ol

0 2 4 6 8 10 12

Figure 1 The analytical and numerical solutions for (< vv” >) , (¢) and
N, = 50,100, 200, 400.
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0 2 4 6 8 10 12

Figure 2 The analytical and numerical solutions for (< v|v|*> >¢), (¢) and
N, = 50,100, 200, 400
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