Universitat des Saarlandes

Fachbereich 9 — Mathematik

Mathematischer Preprint

Low-rank Approximation of
Boundary Element Matrices

Mario Bebendorf

Preprint No. 1
Saarbrucken 1999

Universitat des Saarlandes

Fachbereich 9 — Mathematik

Low-rank Approximation of
Boundary Element Matrices

Mario Bebendorf

Saarland University
Department of Mathematics
Postfach 15 11 50
D-66041 Saarbriicken
Germany
E-Mail: bebendorf@num.uni-sb.de

submitted: June 16, 1999

Preprint No. 1
Saarbriicken 1999

Edited by

FB 9 — Mathematik
Im Stadtwald
D—-66041 Saarbriicken
Germany

Fax: + 49 681 302 4443
e-mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/

Abstract

In this article the problem of approximating a general asymptot-
ically smooth function in two variables, typically arising in integral
formulations of boundary value problems, by a sum of products of
two functions in one variable is considered. From these results an
iterative algorithm for the low-rank approximation of blocks of large
unstructured matrices generated by asymptotically smooth functions
is developed. This algorithm uses only few entries from the original
block and since it has a natural stopping criterion the approximative
rank is not needed in advance.

AMS Subject Classification: 41A63, 41A80, 65D05, 65D15, 65F05, 65F30
Key words: multivariate interpolation, asymptotical smoothness, low-rank
approximation, matrix partitioning

Contents

1 Introduction 2

2 Analytic problem 6

3 Numerical aspects 12
3.1 Matrix partitioningo 15
3.2 Computational complexity 21

4 Numerical experiments 23

1 Introduction

The approximative application Af of an operator A coming from integral
formulations on a function f has been investigated in many publications.
Typically, the kernel function of the integral operator A is approximated
by a degenerate kernel, i.e. a finite sum of separable functions (functional
skeletons). In the case of multipole methods [17], [9], [10], [13], [14] these
functions have to be known explicitly for each kernel. In contrast, algebraic
methods approximate blocks of the discrete operator by low-rank matrices.
Both approaches are designed to save operations and memory and both have
basically the same idea behind them which can easily be explained in the
case of low-rank approximants. Assume we have a matrix T" € C™*" of a
small rank r. Because of the representation of low-rank matrices

T
T= Zuivf, u; € C", v; € C*
i=1

only r(n+m) units of memory are needed to store them and a matrix-vector
multiplication 7'z (which is the basis for iterative solution techniques) takes
O(r(n + m)) operations:

si=vizr, 1=1,...,r

T
Ty = E Sil;.
i=1

Blocks of matrices arising in integral equations are usually dense and unstruc-
tured. Though possibly having full rank they may be well approximated by
low-rank matrices. Thus for the approximation not the usual but the e-rank
is important.

Definition 1 (e-rank). The e-rank of a matric A € C™ ™ with respect to
the matriz norm || - || is defined as

rank, A = min{rank 7 : ||[A — T|| < €}.

The problem of finding the best approximant of a prescribed rank was solved
by L. Mirsky [15] (see also [3]).

Theorem 1. Let A € C™", m >n and || -|| be a unitarily invariant matriz
norm. The best approximation of at most rank k to A is

|A — Ag|| = min{||A — T|| : rank T < k},

2

where Ay, = Zle oiuvy and (04, u;,v), 1 = 1,...,k are the k largest singular
triplets. Especially

min{||A — T||% : rank T < k} = Z o2,
i=k+1

min{||A —T||g : rank T < k} = 0441
where ||-||r, |||l denote the Frobenius and the spectral norm respectively.

Thus the optimal approximant to a prescribed accuracy is easy to find if the
singular value decomposition (SVD) is accessible. But the SVD is compu-
tationally very expensive. Furthermore every entry of the original matrix A
has to be calculated first. This is also the case if we apply the less expensive
partial SVD, cf. [7]. Consequently, approximations based on the SVD cannot
lead to fast algorithms. Our aim, however, is to find an approximant using
less computational effort and especially only few entries from the original
matrix.

Let X ={z1,...,2,} and Y = {y1, ..., y,} be two sets of pairwise distinct
points in R? and Dy, Dy the convex hulls of X and Y respectively.

If we use a quadrature formula to approximate the integrals, the approxi-
mant’s properties with respect to availability of low-rank approximants come
from the kernel. Thus we concentrate on the investigation of matrices

AERmxn; aij:f(xiayj)7 1S’L§m, 1S]S’I’L

generated by functions f : Dx x Dy — R of the type

F(x,y) =Y ge(@) hi(y) + Ry(z,y) (1)

where |R,(z,y)| < e, and €, — 0 for p — oo.
It is evident that these matrices can be approximated by a matrix of rank
N, to an accuracy of order ,. In terms of e-ranks this reads

rank, A = O(N,).

Multipole methods use these decompositions directly. For this, however, the
functions g, and h; have to be known for each function f. The method
described in this article will only use the information about the existence of
these decompositions. However, we confine ourselves to matrices generated
by asymptotically smooth functions, cf. [1].

3

Definition 2. A function f: Dx X Dy — R is called asymptotically smooth
if there are constants c1, ¢; > 0 and g < 0 so that for any multi-inder o € NI

05 f(z,y)| < erpldy e -y, p=lal.

This class of functions is a subset of type (1) functions if we impose the
condition

diam Dy < ndist(Dx, Dy), 0<n < (cod)™ (2)

since by using the Taylor expansion at the point yy € Dy we have

Faw) = 3 3 (0= w)8)' Faw) + o (0~), F(,5)

I
<)

for some point y € Dy-.
Setting

R, (z,y) = 5 (4 = 10)8y)" (2,)

we observe that for x € Dy, y € Dy

VAN

1 v — ol \? -
Bl < s (E20) apdi-ge
S C1 diStg(D)(, Dy) (Czd’l])p = &p.

With respect to y the sum 7/ 2 (ly - %0)9,)" f(x,yo) is in I1¢_, the space of
polynomials of the degree at most p— 1. The number of linearly independent
d

monomials y®, |a| =1, is rf = (l+‘f_1). Thus the ¢,-rank of the matrix A is

bounded by the dimension n, of II% .

p—1
rank,, A <n, = Zr;i < cdpd.
1=0

Remark : The geometrical parameter n arising in equation (2) will be used
to control the approximation error. The sets X and Y will be generated from
the original set of points by recursive subdivision so that condition (2) holds.
This will be explained in subsection 3.1.

Instead of approximating a function in two variables by a sum of functional
skeletons using some functions gy and hy explicitly given for each function

as multipole methods do, we suggest using the values of the function itself
to generate an approximation of type (1). For convenience let

f(xayjl) f(xilay)
f(z,[yle) = : eR", f(lzlky) = : € R".
Then we are looking for decompositions
fz,y) = f(z, [yle)" G f [k, y) + Re(z,y) (3)

with G € R*** and some z;, € X and y;, €Y,l=1,...,k.

In terms of matrices this means that we try to find a pseudo-skeleton com-
ponent (cf. [8]), i.e. a matrix CGR where C € R™** are k columns and
R € R¥*™ k rows of the matrix A. The matrix G € RF** delivers some
appropriate coefficients that are calculated from the submatrix of A in the
intersection of the chosen rows R and columns C'.

In [8] we can find a result on the existence of these pseudo-skeleton approxi-
mants.

Theorem 2. Assume that for some ¢ > 0 the matriz A € R™" fulfils
rank, A < r with respect to the spectral norm, then we can find a pseudo-
skeleton component CGR, G € R"™*" such that

|A = CGR||s < e(1+ 2V/r(v/n + v/m)).

The proof uses a condition on the singular vectors of the low-rank approxi-
mant of A which is difficult to fulfil in practice. Furthermore, the approxima-
tion rank has to be known in advance to specify the number of columns and
rows needed. In multipole methods the same problem occurs, whereby it is
the number of functional skeletons which has to be known in advance. One
way to solve this is to determine the number of functional skeletons needed
from an upper bound of the remainder, but this certainly produces a number
that is too high.

In the following we will present an iterative method to generate a decom-
position of type (3). From this we will develop an iterative and incomplete
algorithm for the low-rank approximation of matrices generated by asymptot-
ically smooth functions without knowing the approximative rank in advance.

Let us first concentrate on the analytic problem of approximating a general
asymptotically smooth function in two variables by a sum over functional
skeletons.

2 Analytic problem
We construct the sequences {si}, {rr} by the following rule

ro(z,y) = f(z,y), so(z,y) =0
and for K =0,1,...
Te+1(2,) = (2, Y) — Ve 7o(T, Yjeyr) TR (Ti 15 V)
k1 (2, y) = sk(@,y) + Vo1 7(2, Yy) T (@i Y)

where v;11 = (rk (Tig s yjk+1)) and z;,_, and y;, ., are chosen in every step
so that ry (@i, .., ¥j.,.) 7 0-

We realize that the functions r, accumulate zeros. Thus s, gradually inter-
polates f.

Lemma 1. For1 <1<k and all z € Dx we have ri(x,y;,) = 0.
Proof. The lemma holds for [= k since
Tk(flf,yjk) = qu(%?/jk) - ’YkaA(x,l/jk)qu(iEik,yjk) =0.

We will prove the rest by induction from £ — 1 to k. We saw above that the
lemma, is true for £ = 1. Assume it holds for £ — 1 then we have

7"]9(.7), y]z) = Tk—l(x; y]l) - ,Ykrk:—l(x’ yjk)rk—l(xika yjl)

For all z € Dx and all 1 <[< k it holds that ry_i(z,y;,) = 0 and the claim
follows from this. O

The same statement holds if we interchange the roles of z and y.

We define the matrix M,El) (x) by
[f(xil’yjl) f(xiuyjk)]

M@ = | f@yy) - @) |

| f(xlk’yjl) s f(xzka y]k) _

where in the Ith row we have the vector f(z,[y];). Furthermore we set
Mk = M,El)(x”)

For the determinant of M ,gl) the following lemma can be shown.

6

Lemma 2. For1 <I[l<k
det M () = r1 (w3, y3,) det M, (2) = ri_a (2, y5,) det M, ()
holds and
det MV (z) = ro(z,y;),
det M,Ek)(x) = re1(x,y;,)det My, k> 1.
Especially
det Mk =To (mi1) y]1) """ rk*l(mika y]k)

Proof. It is easy to see that there are coefficients agkfl), 1=1,...,k—1,s0
that for all x € Dy

k—1
_ (k— 1
o1 (@, y5,) = f(z,05) — > o ;).
=1

Thus it is possible to replace each entry f(-,y;,) in the last column of M, ,gl) (x)
by rx-1(-,y;,) and obtain M,gl) (x) without changing the determinant.
Since from the last lemma ry_1(74,,y;,) =0, 1 < j <k —1, only the Ith and

the kth entry of M,El) (z) do not vanish. Using Laplace’s theorem ends the
proof. O

The last lemma guarantees that M is nonsingular and we are now able to
show that the decomposition of f into s, and ry is of type (3).

Lemma 3. For the generated sequences s and ri, k > 0
se(,y) + 1e(2,y) = f(2,9)
holds, where for k > 1
sw(®,y) = f (@, [yle)" My, " f([2]e, y).

Proof. In the case k = 1 the lemma is obviously true. We proceed by induc-
tion from k — 1 to k. From the definition of r, and s, we see that

Sk(l’,y) + Tk(xa y) = Skfl(xay) + kal(xa y)

which by the assumption is equal to f(z,y).
It is easy to see that with sy_; also s; has the form

si(z.y) = f(@, [yl)" Gef ([2]k, y)
with some G}, € R¥*F. Applying lemma, 1 gives

F(@in,y.) = (@i, [Wle)" Grf([2]k, yj.) <= My = My Gy M.
From this it finally follows that G} = M, L O

7

In the following we will relate the remainder r,,, of the approximation to the
remainder of polynomial interpolation. It can already be seen from the exis-
tence result using the Taylor expansion that in multidimensional space more
than one additional functional skeleton in the approximation is necessary to
increase the order of approximation by one. This is why in our theoretical
result, which is based on polynomial interpolation, we only expect an in-
crease of the order of accuracy from the n,th to the n,;ith step. There may,
however, be functions f for which the step size from one order of accuracy
to the next is smaller.

In multidimensional space polynomial interpolation is generally not unique.
The existence of interpolation polynomials is always guaranteed but the
uniqueness depends on the configuration of the points. They must not lie
on a hypersurface of degree p, or equivalently there is no polynomial in Hg
that vanishes on all of the points. However, the set of points for which La-
grange interpolation is not unique has measure zero. From the condition
Te(Ti,_,» Yjr_,) 7 0 on the choice of the points we guarantee the uniqueness,
which is important for the remainder of polynomial interpolation.

Lemma 4. Assume that det M,,, # 0 then the Lagrange interpolation in the
POINLS Y1, - - -, Yn, IS UNIGUE.

Proof. Assume we have a polynomial P € ng fulfilling
P(y;) =0, l=1,...,n,.

We have to show that P vanishes identically.
Define polynomials py € Hg_l by

pk(yjl):f(xikayjl)a kalzl,-..,np.

Take an identically vanishing linear combination

Tip
Zakpk(y) =0 forally € Dy.
k=1

Especially

np np
0= Zakpk(yjl) = Zakf(:vik,yjl) for 1 <1< n,.
k=1 k=1

But since M, is nonsingular we have oy, = 0 for 1 < k < n,. {pi} is a
linearly independent system and thus a basis of Hg_l.

8

Consequently we can find A\ € R so that P = ZZPZI Axpr. But from

0="Py;) =>_ Mpr(y;)
k=1

we obtain again Ay =0, 1 <k <n,. Thus P vanishes identically. O

For a fixed z € Dx denote by f, the function f;(y) = f(x,y) and by L,_1(fz)
the interpolation polynomial to f, of degree p — 1. We are now in a position
to relate the remainder term r,, of the approximation to the remainder of

the Lagrange interpolation E,(f;)(y) = fo(y) — Ly—1(fz)(y)-

Lemma 5. For the functions r,, it holds that

Np e 7(1l) x
1o :9) = Byl) — 3 e) 0)

Proof. Let Ly be the kth Lagrange polynomial in Hg_l, ie. Lig(y;) = 0w,
and
Li(y)
L(y) = :
Ln, (y)

the vector of the Lagrange polynomials to the points y, ..., yy,.
Using lemma 3 gives

oy (@,y) = f(@,9) = f(@, [Yln,)" M, f([2]n,:)
= f(z,y) = f(x,[yla,) Lly) —
- f(ac, [y]np)TMn;I (f([x]np’ y) - anL(y))

Tp

= By(f)0) = Y (£ [yln,)"M,)!) Eylfa))-

I=1
Since M,, T f(xi;,[yln,) = €; the jth canonical vector, it is easy to check that

det M ()

= MD (ML = Ta-1)
qotnr, = det M@, = (Fm o, 0,),

O

We are able to control the approximation error by making assumptions on
the choice of the points z;,,...,; Assume that our choice of points

np *

Liyy oo Tig, leads to a submatrix M,,, whose determinant cannot be increased
by interchanging one row by any vector f(z, [y],,), z € Dx, i.e.

|detan|Z|detM£Q(x)|, 1<1<n,, z€ Dx. (4)

In interpolation theory these maximum volume matrices play an important
role (cf. [4], [8]). From the previous lemma we obtain

7, (2,9)] < (14 1p) sup |Ep(f2)(y)]- (5)

Instead of choosing the points z;,,...,z;, from the complicated condition
(4) we may choose z;, in each step so that ry_1(z;,,¥;,) is the maximum
element in modulus. From lemma 2 we see that this is the best possible
choice with respect to maximum determinants if we keep all other previously
chosen elements fixed.

Lemma 6. Assume in each step we choose x;, so that
rk-1 (@i, Yje) | 2 k-1 (@, 5,)| for all z € Dx.
Then for 1 <1 < k it holds that

det MY
sup | det M" ()|

< ok,
ceDyx |det M| —

Proof. Using lemma 2 gives for 1 <[< k
det M,El)(x) _ det M,glzl(x) g, yy,) det M,glll(xzk)

det Mk N det Mk,1 rk,l(acik,yjk) det Mk,1
and
det M,gk)(x) _ re—1(2, ¥;,)
det Mk Tk,1($ik,yjk)
Thus we obtain for 1 <[l < k
wp M@, et M, (@)
veDy |det Mg| T gepy | det My
from what the claim follows. O

Consequently instead of (5) we find
7, (2,9)] < (14 27) sup |Ep(fa)()]- (6)

$EDX

The following theorem is due to Sauer and Xu. It gives an upper bound
for the error of multivariate polynomial interpolation. We will use the same
notations as in [18].

10

Theorem 3. Assume that the Lagrange interpolation in the points °, . .., "

is unique. For f € C"1(R?) it holds that

B (@) <)

/LEAn

tin

[n] 1z n d
(n + 1)!‘P (x)ﬂu(m)‘ ||Dm—zf];)Dzﬂf”00a zeR

where it suffices to take the supremum over the conver hull of {x°,... =", x}.

Using this expression for the error of Lagrange interpolation we are now able
to state our main result. It relies on the fact that the expression P} (z)m, (")
from the previous theorem does not depend on f and will be formulated for
the choice of the points z;, according to the maximum element strategy,
which is much easier to use than the maximum volume strategy.

Theorem 4. Let x;, be chosen so that

Tr—1(Tiy, Ys)| > |rr—1(2,y5,)| for all x € Dx.

Then for an asymptotically smooth function f the sequences rp and s, gen-
erated at the beginning of section 2 fulfil

f(@,y) = sn, (2,) + 10, (2, 9),

where for x € Dx and y € Dy

Snp(xa y) = f(:E, [y]np)Mr;plf([x]np’y)

and
|7, (2, y)| < cpdist? (Dx, Dy) n”,

where ¢, does not depend on n but only on the points yi, ..., Yn,-

Proof. We apply the Sauer-Xu formula to f;(y). For z € Dx, y € Dy holds
|Dy_ym) Dbl fu(y)| < diam®(Dy)dPe p! chdist ?(Dx, Dy)

< ep! (codn)Pdist?(Dx, Dy).

Thus

|Bp(f2) ()] < e1(eadn)?dist?(Dx, Dy) Y |PEZ I (y)mu(y")].

uEAp_1

According to lemma 5 we have

7, (2,9)] < (1427) sup |Ep(fa) ()],

re€Dx

11

which finally leads to

70, (2, y)| < pdist? (Dx, Dy) 1, (7)
where we set
¢ =ci(cd)P(L+2") sup > [PP=U(y)m, (y")]. (8)
yEDy ILEAp—l
O

3 Numerical aspects

In the previous section we showed how to approximate a general asymptot-
ically smooth function in two variables by a sum over functional skeletons,
i.e. products of functions of one variable.

The aim of this section is to develop an efficient but simple algorithm for
the approximation of matrices generated by asymptotically smooth functions
based on the previous interpolation arguments.

Matrices containing blocks of this type usually appear in the solution phase
of integral formulations of boundary value problems. Since they are large
we have to think about reducing the storage and the number of operations
needed when multiplying them with a vector. Though there are cases where
a block partitioning of these matrices shows some structure (cf. [16]) which
can be exploited with respect to the previous issues, in general they are un-
structured and we have to approximate them by easily handled matrices. In
our case these are the blockwise low-rank matrices.

Let us reformulate the construction of the functions r; and s; in matrix form.

Algorithm 1. Set

(RO)ij = f(xi,yj), i:1,...,m,j:1,...,n

So = 0
and for k=0,1,...
T -1
Ve+1 = (eik+1Rkejk+1)
Riyn = Rp— ke Rkejk+163;+1 Ry
Sk+1 = Sk + Y+t Rkeijez;H Ry,

12

Since we are now looking for the approximation of f in only the points (z;, y;)
it suffices to determine 7; from the maximum element in modulus in the col-
umn ji, which has to be chosen so that it contains non-zero elements.

Without loss of generality we may assume for the moment that 4 = 5, = [,
l=1,...,k+1, otherwise interchange the rows and columns of the original
matrix Rg.

Then

Riv1 = (I — Yis1Rreri1€41) R = Lyi1 Ry,
where L; € R™*" is the matrix

1

0

T
ek+1Rk—1€k
T
e, Rip—1eg

T

emRr—1€k 1
T

e, Re—1¢eg

Ly, differs from a Gaussian matrix only in the position (k, k).

In some sense the algorithm produces a column-pivoted LU decomposition
for the approximation of a matrix. As we know, it is possible that the ele-
ments grow in the LU decomposition algorithm, cf. [6]. Thus the term 2"»
in (6) is not a result of overestimation.

Since for d > 1 at least the term 2" in (8) grows faster than 7P in (7)
decreases, the only way to control the error is by using the geometrical pa-
rameter 7 and keeping the number of approximation steps n, bounded.
However, we must bear in mind that any growth of elements in the LU de-
composition is difficult to observe. In our case this means that the term 2"»
from (8) is not visible in real calculations.

Let us reformulate the algorithm so that it becomes efficient, i.e. uses only
a small part of the original matrix. For this purpose define

~ _ pT
U = Rk_lejk, V = Rk_leik.

Now the algorithm reads

13

Algorithm 2. Fork=1,2,...

k—1
(@) = fl@iyi) — > (W) (w)i, i=1,....m
=1
Up = (uk)iklﬂk
k—1
() = fl@igy) = D (w)ig(w)y, G=1,....n.
=1

For the approximant Sy it holds that

k
S]c: E ’U,l’l)lT.
=1

Thus for the whole approximation we need only the evaluation of f(z;,y;,),
i=1,...,m, and f(;,y;), 7 =1,...,n. The rest is algebraic transforma-
tions, which are easy to implement, whereby it should be remembered that
the entries of u; at the positions 7; and the entries of v, at the positions j,
[< k, are zero.

To obtain Sy, we need (m + n)k units of storage and

(m+n)k evaluations of f,
(m+n)(k— 1)k additions and multiplications,
mk divisions.

Thus we need O((m + n)k?) operations to generate the approximant Sj.

Although we will use a bounded number of iteration steps it is useful to
stop the algorithm if a prescribed accuracy is reached. Since we do not
want to calculate the whole original matrix we cannot compute the error
exactly. Thus a good approximation for the error is the only way to control
the algorithm.

Since
Mp+1
R,,,, = Ry, Z U,
l=np+1
and || Ry, || is of one order smaller than ||R, ||z the value
Np+1
1Y wollle
l=np+1

14

may be used as a good approximation to || R, ||#-
When computing ||372F | wvl ||F it should be noted that

l=np+1
Np+1 Np+1 m n
13 witi= 3 (St (Sontm)
I=np+1 Lk=np+1 \i=1 j=1

The evaluation of the last expression can be made in (m+n)(r%)? operations.

P
The last lemma in this section shows whether the algorithm is capable of
finding the rank of a matrix. Assume that rank A = r. Then r steps of our
algorithm are sufficient to take over the whole matrix. Thus this algorithm
is always finite.

Lemma 7. Let A € C™*" be of rank r. Then S, = A.

Proof. If r = 1 then it is obvious that R; = 0 and thus S; = A. Let us look
at the general case r € N and apply one step of our algorithm to A. Without
loss of generality let a;; # 0. We realize that

all “ e « s aln
al T ! Y)
: g s A
_tm 1 0

aii

Thus rank A = rank A — 1. On the other hand we see that

. 0 --- 0
A=A—- —AeifA=|: 4
ai
0
This means that rank A = rank A = rank A — 1. O

From the previous proof we see that our algorithm successively reduces the
rank.

3.1 Matrix partitioning

Our aim in this subsection is to show how the previous arguments can be
applied if the domains where the points come from are not well separated,
i.e. do not fulfil condition (2).

Assume we approximate the surface I' on which the boundary data is given

15

by I';, using the set of triangles (panels) P. Our aim is to partition the matrix
A € RN*N N = 4P into submatrices so that for two sets of panels (so called
clusters) 71, 7o corresponding to a submatrix

diam 7, < ndist(m,79) for some 0 <n <1

holds (cf. (2)) or one of them has just one element. In analogy to [13] we
call a cluster pair admissible if it fulfils the previous geometrical condition.
In this case and if 71, 7o € P the corresponding block will be approximated
as described previously. All other blocks, i.e. blocks with 74 or m, € P will
be computed exactly.

In [13] a set of clusters 7" that possesses a tree structure is used to suitably
subdivide the set P with respect to a fixed point. We will use a set of cluster
pairs having a tree structure for the partitioning of P x P the Cartesian
product of the set of panels with itself. This set 7" is constructed from the
set T by applying the following recursion to (I'y, T'p).

Algorithm 3. Take a cluster pair (11,72), 71,72 € T. If 71 and 1o both have
children 111, T1o and Ta1, Tey in T respectively, then assign the pairs (111, To1),
(T11,7T22), (T12,721) and (T12,722) as children to the cluster pair (11,72) and
add them to T'. Now repeat the previous steps with each child.

It is easy to see that in each level in the tree structure of 7" all pairs of
clusters (71, 72) appear, based on 7y, 75 from the corresponding level in the
tree structure of 7'.

In the following we will show how many blocks are needed in order to decom-
pose the matrix while each cluster pair corresponding to a block is admissible
or one of the clusters is a panel. First we have to impose some conditions on
the set of panels P. We assume that there are constants ¢, and ¢, so that

cydiam 7 > h for all 7 € P, 9)
where h = maxdiam 7 and
TEP
area (B,(2) NT}) < ¢co(2r)% ! forallr > 0 and 2z € R, (10)

where B,(z) = {z € R¢, ||z — 2|| < r}.
From this follows

Rt > Nt (11)
with ¢, = area (I'y)/c,, because

area (I'y) =) area 7 < Nma}gc area (m) < ¢, Nh4™L.
s
neP

16

Without loss of generality we look at R? as being normed by || - ||co-
In [13] it was proven that for all 0 < r < R and a € R? there exists a set
C C T of clusters with

TwN Brla) € |J

TeC
diamr <r forallte C\P

d—1
#C S Cp (%) .

Furthermore we realize that there are constants ¢ and ¢ such that for a cluster
7 in T of level [it holds that

and

diam?!'7 < ¢27'area ', and area 7 > c2 'area ['). (12)

From these properties of the set of clusters 7" we obtain the following analogue
for the set T".

Lemma 8. For all0 < r < R and a,b € R? there exists a set C' C T' of
cluster pairs fulfilling

(Ch xTw) N (Brla) x BR) € | m xm,

(’7'1 ,TQ)GCI

max{diam 7, diam .} <7r for all (7,,72) €C', 1, 2 & P

R 21
#C' < cp (7) .

Proof. We already know that for all 0 < 7 < R and all a,b € R? there are
two sets of clusters C, Cs fulfilling

and

TwnBr(a)C (7 TwnBr®) < |, (13a)
T7€C1 T€C?
diam7 <r forall7Te (CrUCy) \ P (13b)
and
N R 2@-1) N
#C < c3 (7) , C=C)xCy (13¢)

where the clusters in C; and Cy are chosen to have lowest possible level.

To obtain a set of cluster pairs C' C T" we have to guarantee that the levels
of the clusters in each pair are the same.

Now let (71,72) € C and l; < Iy be the levels of 71 and 75 in T respectively.
If I; < l; then we first consider the case 7 € P. B

Let 7'2f be an ancestor of 75 of level [y in 7. Remove from C' all pairs (71, 7),
where 7 is any descendant of 7/ and add (m,7/) to it. Then (13) remains
valid if we replace (13b) by

max{diam 7, diam 7} <r for all (1, 7) € 5, T, T2 & P.

Now let 7 ¢ P. Divide 7 according to 7" into clusters of level at most l5. If
this division cannot be continued for a 7 then 7 € P and we go back to the
previous case.

Since ¢2 Marea 'y, < area 71 < ¢ diam?® ' 7 < ¢, 79" we obtain

[y > log, (Earea Fhr_(d_1)>)
Ca

And because the level of 75 is minimal, i.e. for the father 7J of 75 in T it
holds that diam 7/ > r, we have %! < diam® ' 7/ < ¢2->"Darea T,.
Thus
ly <log, (29 area Fhr_(d_l))
and hence
lo — 1 <log, (2¢,c/7) .

We see that 7 is subdivided into at most 2¢,¢/c clusters.
Generate the set C' by assembling these new cluster pairs. This guarantees
that C' C T" and (13c) changes to

2(d—1)
#C' < cp (?) :

where ¢» = 2¢,¢/cc%. O
It is obvious that the covering of Iy, x I';, with the smallest number of cluster

pairs can be computed by the following algorithm.

Algorithm 4. Set D = () and call Divide((T'y,T';), D) where Divide is the
following recursive procedure.

procedure Divide((1,73), D)

if (71,72) is admissible or 71 € P or 7o € P then D := DU{(1,7)}
else apply the procedure to each of the children of (11,73) in T".

18

Let N (a) denote the number of cluster pairs needed to produce a covering of

U{WEP:WﬂBl#@}XU{WEPZWQB27A@},

where Bj, By are any cubes of side length a, while this covering should only
contain admissible cluster pairs or pairs with one of the two clusters being
a panel. Furthermore, let N (a) be the amount of storage when blockwise
approximating the part of the original matrix that corresponds to the two
cubes B; and B,. Blocks that correspond to cluster pairs with one of the
two clusters being a panel will be stored without approximation. On all
other blocks, i.e. admissible blocks that correspond to clusters 71,7 € P, we
perform a rank-k approximation.

If we enclose I';, in a cube of side length ay then N (ag) and Ny(ag) will be
the values for the whole matrix.

Let B > 0 be arbitrarily small. We will show that

N (ag) = O(N**Fry26-1)

and
Nst(ao) = O(k‘Nl_FﬂT]iQ(dil)).

Recently Hackbusch and Khoromskij [11], [12] have proven that the storage
requirement for such matrices is O(N log N). However, they did not investi-
gate the dependency on the parameter 1 which is essential for our algorithm
since the approximation error will be controlled by this parameter.

We first investigate the case when B; and B, are two neighbouring or iden-
tical cubes.

Lemma 9. Assume that B, and By are two neighbouring or identical cubes
of side length a. Let q¢ € N, then for the numbers N (a) and Ng(a) it holds
that

2(d-1)
N(a) < ¢ (%) + ¢ "N (a/q)

q 2(d—1) N
Nyi(a) < csk (5) (1 + (q_h>) + 3¢ Ny (a/q).

Proof. We subdivide each of the cubes B; and B, into ¢ subcubes of side
length R = %. There are at most cyq?~! subcubes that contain parts of the

and

boundary I';,. From these at most (cog?~!')? pairs take out a pair of non-
adjacent subcubes Bg(z1), Br(22). According to the previous property of

19

the set 7" for R and r = inR we can find a set of cluster pairs C' C T" so
that

(Ch x Tw) N (Ba(z1) X Br(z)) € |J m xm,

(T1,’T2)€C"

max{diam 7y, diam »} <r for all (11,7) € C', 7, o & P,

R 21
40" < CIP (7) < 011342((171)7772@71) — gpn—2(d71)_
If T1,T2 ¢ P

1
dist(r,72) > R—2r = R(— Q) > —g, since n < 1
2 2q
and diam 7 < g% < ndist(71,72). Thus this cluster pair is admissible.

Since among the at most (cog? !)? pairs of subcubes B with BNT, # () there
are at most 3%c,q? ! pairs of adjacent subcubes we see that

N(a) < (cog® ")*Cpn 2V + 3% "N (a/q).
In a cluster 7 of diameter at most r not more than c,c/¢ (c,7/h)? ! panels
fit, because according to (9) and (12)

car®t > cdiam?t T > area T > 7 mein area m > #7¢/c (h/cu)dfl.
T
If one of the clusters 71, 75 is a panel, let this be 7, the corresponding block
is stored without approximation. Since 7 and 7 are from the same level [
inT
diam? ' < ¢27larea T), < c/earea 1, < c/ecah® !

Thus in this case we can find a constant C' > 1 which serves as an upper
bound for the memory usage for this block.

If none of the clusters is a panel then the storage requirement is less than

2kc,c/c (cyr/h)*!, because it takes k(n + m) units of memory to store a
rank-k matrix in R™*". Thus we need at most

d—1 d—1
max (C’, 2kc,c/c (cufq—Z)) < C + 2kcqcfe (Cuqih) =M

units of memory to store one block. Consequently, for Ny (a) follows

Nii(a) < (cog™™")? DM + 3%coq™ Ny(a/q).

20

Using the previous case we are able to find an estimate for N (ag) and N (ap).
Lemma 10. Let § > 0. For the numbers N (ag) and Ng(ao) it holds that
N (ag) < ¢ N1y~
and
Nialag) < RN 200,
where ¢’ and " depend on 3 but not on n or N.
Proof. From the previous lemma it can be seen that (¢ = ¢%')

L-1

d—1
Nalan) < cabr 249 (e (147 () + (o) Ntao/),

=0

with L the smallest integer so that L > log,(ao/h), where ¢ € N is chosen so

that ¢° > c,. This guarantees that g (ao/h)d_1 >1forl < L—1 and leads
to

Nalao) < 2esbn 202 ()" Zc2 (ea) " Nolao /")

We may assume that c, > 2. Since g~ > (ao/h) ~! and with (11)

we obtain

d—1
Nat(ag) < (4c o200 (h) ¢+ Czaf\/st(ao/qL)> (c2g)™ "
< (deskn 240G + ey gNye(ao/q")) (ad N/ cy) .

A cube B of side length h can be covered by a set 7 ={m € P: BNx # (}.
Then diam 7 < 3h and from the proof of the last lemma we see that 7
contains at most c,c/¢(3c,)?! panels and hence N (ag/qY) < ¢, where
¢ = (cqec/e(3cy)?1)2. The proof for the second bound is similar. O

3.2 Computational complexity

In the following we will show how many operations and units of memory are
necessary to generate an approximant of the discrete operator to a prescribed
accuracy € and how many operations are needed to perform one matrix-vector
multiplication using this approximant.

21

The complexity of the whole algorithm is mainly determined by the number
of cluster pairs M (ap). Let us denote the set of blocks that correspond to an
admissible cluster pair (11, 72), 71,72 & P, by S,.

To approximate a block M € S, of size m x n with a corresponding cluster
pair (1, 7,) we need n, skeletons to obtain an accuracy (cf. theorem 4)

||M — M”F < Vnme,dist? (11, 72) 7P

The constant ¢, only depends on the points yi,...,¥%,, which may change
with N so that ¢, is unbounded even for a bounded p. This situation occurs,
for example, if the points are located in the intersections of two families of
parallel lines and the angle between them vanishes with growing N, cf. [5].
However, these cases are pathological and we assume a sequence of boundary
meshes that guarantees that ¢, is bounded for bounded p.

Since for an admissible cluster pair (71, 73)

diam 7, < ndist(r, 7o)
and according to (9) diam 7 > h/c, holds for any = € P, we see that
dist(ry,7) > n 'h/c, > h/c,
and since we assumed g < 0 then
dist? (11, 72) < (h/cy)? < ¢, 9 (N 1)as.

While the blocks in S, are approximated, all other blocks are computed
exactly. Thus for the approximation error it holds that

1A= AlF = > IM - M3

Mes,
< Z nm ¢, dist™ (11, 72) 0 = O((N'=a=1P)2).
MES,

Let « >0 and 0 < 8 < a, 8 from lemma 10, and set
n= (sN?‘%l)l/p

where p is the smallest integer so that

—1-=
p>ol=1l-9
a—p

22

For reasonable € and N we may assume that 0 <7 < 1.
With this choice of n for the approximation error it holds that

A= Allr =0OC(e).
Since
N(ag) = O(N'"e™®)
the number of steps needed to obtain the set of cluster pairs is bounded by

%(4./\/(%) _1) = O(N'ee),

For the amount of storage needed
Ni(ag) = O(NTFee @)

holds. Thus the number of operations needed for one matrix-vector multipli-
cation and the number of operations for the generation of the approximant
do not exceed O(N'T*~?), because on each block these numbers differ from
the amount of storage only by a constant factor.

Thus the overall complexity of this method is O(N'*®e~%), a > 0 arbitrarily
small.

4 Numerical experiments

We will test our algorithm on the following surface

R(z) cos(2mt)
P=(¢xz=| R(z)sin(2rt) (2 — 3sin(2nt)) |,0<2<1,0<t<1
z

where

R(z) = v/2(1 —2)

and on the boundary integral equation which appears for the inner Dirichlet
problem

Au = f
where A is the single layer operator

U

_ 1 (1)
Au(z) = E/r P— dsy.

23

In the following table we show for different problem sizes N and ¢ = 104
the memory and time consumption of the algorithm proposed in this paper.

The integral equation is discretized by the collocation method.

Since we did not employ a preconditioner the number of iteration steps in
BiCGStab increases with NV, so that we merely need to compare the time we
needed per iteration. All calculations were performed on an SGI Indigo?-10k.
The memory usage of our algorithm and of the standard solution strategy is
shown in the second and third column. The time we needed to generate the
approximant, the time for the solution of the linear system and the time per

iteration step of BiCGStab is placed in columns five, six and seven.

Storage (MB) CPU time (sec)

N || used ‘ standard ‘ % || approx. ‘ solution ‘ per step
16128 244 1985 | 12.3 141 428 33
39600 || 728 11964 | 6.1 378 1824 140
65024 || 1316 32258 | 4.1 663 3713 248
89400 || 1905 60976 | 3.1 945 5319 355

114920 || 2595 100758 2.6 1277 8128 478
136160 || 3166 141446 | 2.3 1598 10395 578
159200 || 3852 193364 | 2.0 1921 13355 703
175560 || 4290 235148 | 1.8 2142 14415 801
201600 || 5008 310078 | 1.6 2435 17089 899

The time per multiplication step and for the generation of the approximant

grows almost linearly. The same behaviour is observable with respect to

24

storage. The amount of storage and the CPU time for the approximation
and the CPU time per step of BiICGStab are depicted in the following figures.

5000

[S]
£ 4000 62000
c c
= 3000 Z1500
S g
o
&% 1000 5 500 /
50 75 100 125 150 175 200 05075 100 125 150 175 200
N/ 1000 N/ 1000
Acknowledgement

The author wishes to thank S. Rjasanow and E. Tyrtyshnikov for useful
remarks and the German Ministry for Education and Research for financial
support.

References

[1] A. Brandt. Multilevel computations of integral transforms and particle
interactions with oscillatory kernels. Comput. Phys. Comm., 65:24-38,
1991.

[2] C. de Boor. On the Sauer-Xu formula for the error in multivariate
polynomial interpolation. Math. Comp., 65(215):1231-1234, 1996.

[3] G. Eckart and G. Young. The approximation of one matrix by another
of lower rank. Psychometrica, 1 : 211-218, 1936.

[4] D. Gaier. Vorlesungen tber Approzimation im Complezen. Birkhduser
Verlag, 1980.

[5] M. Gasca and T. Sauer. On bivariate Hermite interpolation with mini-
mal degree polynomials. manuscript, 1997.

[6] G. H. Golub and C. F. Van Loan. Matriz computations. Johns Hopkins
University Press, Baltimore, MD, third edition, 1996.

[7] S. A. Goreinov, E. E. Tyrtyshnikov, and A. Y. Yeremin. Matrix-free it-
erative solution strategies for large dense linear systems. Numer. Linear
Algebra Appl., 4(4):273-294, 1997.

25

8]
9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. A theory of
pseudoskeleton approximations. Linear Algebra Appl., 261:1-21, 1997.

L. Greengard and V. Rokhlin. A fast algorithm for particle simulations.
J. Comput. Phys., 73(2):325-348, 1987.

L. Greengard and V. Rokhlin. The rapid evaluation of potential fields
in three dimensions. In Vortexr methods (Los Angeles, CA, 1987), pages
121-141. Springer, Berlin, 1988.

W. Hackbusch. A sparse matrix arithmetic based on H-matrices. I.
Introduction to H-matrices. Computing, 62(2):89-108, 1999.

W. Hackbusch and B. N. Khoromskij. A Sparse H-Matrix Arithmetic.
Part II: Application to Multi-Dimensional Problems. Technical report,
Max-Planck-Institut, Leipzig, 1999.

W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication
in the boundary element method by panel clustering. Numer. Math.,
54(4):463-491, 1989.

F. T. Korsmeyer, J. Phillips, K. Nabors, and J. White. Some empirical
results on using multipole-accelerated iterative methods to solve 3-D
potential integral equations. In Parallel numerical algorithms (Hampton,

VA, 199/4), pages 267-288. Kluwer Acad. Publ., Dordrecht, 1997.

L. Mirsky. Symmetric gauge functions and unitarily invariant norms.
Quart. J. Math. Ozford Ser. (2), 11:50-59, 1960.

S. Rjasanow. Effective algorithms with circulant-block matrices. Linear
Algebra Appl., 202:55-69, 1994.

V. Rokhlin. Rapid solution of integral equations of classical potential
theory. J. Comput. Phys., 60(2):187-207, 1985.

T. Sauer and Y. Xu. On multivariate Lagrange interpolation. Math.
Comp., 64(211):1147-1170, 1995.

E. Tyrtyshnikov. Mosaic-skeleton approximations. Calcolo, 33(1-2):47—
57 (1998), 1996. Toeplitz matrices: structures, algorithms and applica-
tions (Cortona, 1996).

E. Tyrtyshnikov. Mosaic ranks and skeletons. In Numerical analysis and
its applications (Rousse, 1996), pages 505-516. Springer, Berlin, 1997.

26

