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Summary

A conversion problem deals with the scenario of converting an asset into another

asset and possibly back. This work considers �nancial assets and investigates

online algorithms to perform the conversion. When analyzing the performance

of online conversion algorithms, as yet the common approach is to analyze

heuristic conversion algorithms from an experimental perspective, and to analyze

guaranteeing conversion algorithms from an analytical perspective. This work

conjoins these two approaches in order to verify an algorithms' applicability to

practical problems. We focus on the analysis of preemptive and non-preemptive

online conversion problems from the literature. We derive both, empirical-case as

well as worst-case results. Competitive analysis is done by considering worst-case

scenarios. First, the question whether the applicability of heuristic conversion

algorithms can be veri�ed through competitive analysis is to be answered. The

competitive ratio of selected heuristic algorithms is derived using competitive

analysis. Second, the question whether the applicability of guaranteeing conversion

algorithms can be veri�ed through experiments is to be answered. Empirical-case

results of selected guaranteeing algorithms are derived using exploratory data

analysis. Backtesting is done assuming uncertainty about asset prices, and the

results are analyzed statistically. Empirical-case analysis quanti�es the return to be

expected based on historical data. In contrast, the worst-case competitive analysis

approach minimizes the maximum regret based on worst-case scenarios. Hence

the results, presented in the form of research papers, show that combining this

optimistic view with this pessimistic view provides an insight into the applicability

of online conversion algorithms to practical problems. The work concludes giving

directions for future work.
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Zusammenfassung

Ein Conversion Problem befasst sich mit dem Eintausch eines Vermögenswertes

in einen anderen Vermögenswert unter Berücksichtigung eines möglichen

Rücktausches. Diese Arbeit untersucht Online-Algorithmen, die diesen Eintausch

vornehmen. Der klassische Ansatz zur Performanceanalyse von Online Conversion

Algorithmen ist, heuristische Algorithmen aus einer experimentellen Perspektive

zu untersuchen; garantierende Algorithmen jedoch aus einer analytischen. Die

vorliegende Arbeit verbindet diese beiden Ansätze mit dem Ziel, die praktische

Anwendbarkeit der Algorithmen zu überprüfen. Wir konzentrieren uns auf die

Analyse des präemtiven und des nicht-präemtiven Online Conversion Problems aus

der Literatur und ermitteln empirische sowie analytische Ergebnisse. Kompetitive

Analyse wird unter Berücksichtigung von worst-case Szenarien durchgeführt.

Erstens soll die Frage beantwortet werden, ob die Anwendbarkeit heuristischer

Algorithmen durch Kompetitive Analyse veri�ziert werden kann. Dazu wird

der kompetitive Faktor von ausgewählten heuristischen Algorithmen mittels

worst-case Analyse abgeleitet. Zweitens soll die Frage beantwortet werden, ob die

Anwendbarkeit garantierender Algorithmen durch Experimente überprüft werden

kann. Empirische Ergebnisse ausgewählter Algorithmen werden mit Hilfe der

Explorativen Datenanalyse ermittelt. Backtesting wird � unter der Annahme

der Unsicherheit über zukünftige Preise der Vermögenswerte � durchgeführt und

die Ergebnisse statistisch ausgewertet. Die empirische Analyse quanti�ziert

die zu erwartende Rendite auf Basis historischer Daten. Im Gegensatz dazu,

minimiert die Kompetitive Analyse das maximale Bedauern auf Basis von

worst-case Szenarien. Die Ergebnisse, welche in Form von Publikationen präsentiert

werden, zeigen, dass die Kombination der optimistischen mit der pessimistischen

Sichtweise einen Rückschluss auf die praktische Anwendbarkeit der untersuchten

Online-Algorithmen zulässt. Abschlieÿend werden o�ene Forschungsfragen

genannt.
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Chapter 1

Introduction

This chapter introduces online problems and conversion algorithms in the context

of conversion in �nancial markets and speci�es how (not) to evaluate their quality.

We give basic de�nitions and state the research questions to be answered. Then

we focus on �nancial markets mentioning the relevant related work. The chapter

concludes with an overview on trading systems as the `tool' for evaluating online

conversion algorithms.

1.1 Preliminaries

A conversion problem deals with the scenario of converting an asset D into another

asset Y with the objective to get the maximum amount of Y after time T . The

process of conversion can be repeated in both directions, i.e. converting asset D

into asset Y , and asset Y back into asset D. Within this work we consider �nancial

assets and investigate online algorithms to perform the conversion.

In a typical problem setting, an investment horizon is considered and possibly

divided into i = 1, . . . , p time intervals. Each i-th time interval is comprised of

t = 1, . . . , T data points, e.g. days. On each day t, an algorithm X is o�ered a

price qt to convert asset D into asset Y , and X may accept the price qt or may

decide to wait for a better price. The `game' ends either when X converts whole

of the asset D into Y , or on the last day T where qT must be accepted.

In an o�ine scenario full information about the future is assumed, and so an

optimal o�ine algorithm (OPT ) is carried out. In an online scenario at each

point of time an algorithm must take a decision based only on past information,

i.e. with no knowledge about the future. Online conversion algorithms (ON)

solve this problem. Typically, the quality of ON is determined by the relation

between the result generated by ON , and the optimal o�ine result generated by

OPT (Schmidt, 2006, p. 280). But in the work related two further approaches

1



2 CHAPTER 1 Introduction

exist. Thus, before introducing online conversion algorithms, we must decide how

(not) to evaluate their quality. Basically the performance analysis of a conversion

algorithm X ∈ {OPT,ON} can be carried out by three di�erent approaches.

The �rst approach is to assume that input data is given according to a certain

probability distribution, and to compute the expected behavior of an algorithm

based on this distribution. This approach is called `Bayesian Analysis', the

traditional approach within the literature when analyzing conversion algorithms

(Chou, 1994; Pástor, 2000; Arakelian and Tsionas, 2008), and has been dominant

over the last several decades (El-Yaniv, 1998, pp. 34-35).1 The objective is to

optimize an algorithms empirical (average-case) performance under `typical inputs'

assuming a speci�c stochastic model (Karp, 1992a,b). Either assumptions about

the distribution of the input data are made, or the distribution of the input

data is assumed to be known beforehand (Babaio� et al., 2008). It is beyond

the scope of this work to survey the `Bayesian' work related. The reader is

referred to Kakade and Kearns (2005) and Fujiwara et al. (2011) analyzing various

assumptions on the underlying price processes.

However, this approach can often not be applied as distributions are rarely

known precisely. It is often extremely di�cult to assume realistic statistical

models for possible input sequences (which are always highly dependent on the

particular application). Thus, distributional assumptions are often unrealistically

crude (Borodin and El-Yaniv, 1998, p. xxiii). Moreover, even if the input in

question follows a particular input distribution, it is often di�cult to identify or

construct a stochastic model that accurately re�ects this distribution. For instance,

a great deal of e�ort has been invested in attempt to identify the probability

distributions of currency exchange rates, but there is still no evidence that such

distributions exist (Chou, 1994). As a result, some research attempts to relax

distributional assumptions. Rosen�eld and Shapiro (1981) study the case where

the price distribution itself is a random variable. In this regard Cover and Gluss

(1986) consider online portfolio selection, reallocating their portfolio on the past

behavior of the market. The goal is to perform just as well as if the empirical

distribution of the prices is assumed to be known. Cover and Gluss (1986)

show that an online algorithm not knowing the empirical distribution of the

prices in advance can perform as well as an optimal algorithm. Thus, when

analyzing conversion algorithms we wish to avoid making assumptions about input

distributions or probabilities.

This leads to the second approach. Uncertainty about asset prices is

assumed and conversion algorithms are analyzed considering worst-case scenarios.

1Also called probabilistic analysis (Borodin and El-Yaniv, 1998, p. xxiii) or distributional

analysis (Chou, 1994, p. 9).



Preliminaries 3

This analytic approach is most frequently used in computer science as the

empirical (average-case) performance is often roughly as bad as the worst-case

performance, and worst-case measures additionally provide a de�nite upper bound

(Cormen et al., 2001, p. 26). The approach does not demand that inputs come

from some known distribution but instead compares the performance of an online

algorithm to that of an adversary; the optimal o�ine algorithm. This notion of

comparison is called competitive analysis. It is assumed that the online algorithm

has no knowledge about future input data. Inputs are generated by the adversary

who knows the entire future, and thus operates optimally (El-Yaniv et al., 1999).

An online algorithm is called c-competitive, if its competitive ratio � the ratio

between the performance of ON and OPT � is bounded by some constant c, which

gives a worst-case performance guarantee. It is desirable to choose an algorithm

with a preferably low competitive ratio. El-Yaniv et al. (1992) suggested to apply

competitive analysis to online conversion algorithms where c measures the quality

of ON .2

A lot of work related exists in the �eld of online algorithms and online

optimization. Important results are presented in the book of Fiat and Woeginger

(1998), as well as in the book of Borodin and El-Yaniv (1998). A survey on classical

competitive analysis for online algorithms is given in Albers (2003). Further, within

the work related, there are three di�erent approaches to improve the competitive

ratio of an online algorithm.

The �rst approach is to restricted the power of the adversary by allowing

only certain input distributions. Raghavan (1992) and Chou et al. (1995) assume

that the input sequence is generated by the adversary and has to satisfy speci�c

statistical properties. The adversary is thus named `statistical adversary'. The

approach may be considered as a hybrid of `Bayesian Analysis' and competitive

analysis. In this regard Koutsoupias and Papadimitriou (2000) consider a `partial

knowledge' of the input distribution by the online algorithm. Garg et al. (2008)

study online algorithms under the assumption that the input is not chosen by an

adversary, but consists of draws from a given probability distribution. All these

approaches improve (lower) the competitive ratio by weakening the adversary, but

do not lead to better online (conversion) algorithms, and thus are not considered

here.

The second (most popular) approach is to relatively restrict the power of the

adversary by using randomization. It is assumed that the adversary has relatively

less power since the moves of an online algorithm are no longer certain (Fiat et al.,

1991). We consider an optimal o�ine adversary knowing the entire future, even

2Chapter 2 shows how exactly to quantify the quality of ON by introducing the notion of

competitive analysis.



4 CHAPTER 1 Introduction

the random number generator. From this follows that randomization does not help

(Borodin et al., 1992), and is also not considered here.

The third approach addresses `forecasts' on the input sequence. The basic idea

is that ON is allowed to make a forecast. In case the forecast comes true the

competitive ratio improves, which is considered as a reward. In case the forecast

comes not true, the best achievable worst-case ratio holds. Al-Binali (1997, 1999)

provides a framework of `risk and reward' in which investors may develop online

algorithms based on their acceptable level of risk (`risk tolerance') and a `forecast'

on future price movements. Iwama and Yonezawa (1999) generalize this framework

by introducing `forecast levels' which forecast that prices qt will never increase

(decrease) to some level, and present di�erent online algorithms using these levels.

In this regard Halldorsson et al. (2002) suggest to allow an online algorithm to

maintain several di�erent solutions, and to select one of them (the best one) at

the end. As yet, these works have not been analyzed experimentally, and thus are

potential new areas of research.

In case the input data processed by an online (conversion) algorithm does

not represent the worst-case, its performance is considerably better than the

competitive ratio tells. For this reason competitive analysis is criticized as being too

pessimistic. Borodin and El-Yaniv (1998, p. xxiv) admit that in some application

areas, especially in �nance, worst-case performance guarantees are essential, e.g.

in case of a stock market meltdown. But in terms of practical application the

worst-case competitive ratio does not reveal which returns can be expected in

practice, nor whether these returns are positive or not.

This leads to the third approach. In this experimental approach conversion

algorithms X ∈ {OPT,ON} are implemented, and the analysis is done on historic

or arti�cial data by simulation runs. This approach is exploratory, since the

empirical-case results suggest which hypotheses to test (statistically). From this

follows that conversion algorithms can be evaluated using exploratory data analysis

(EDA). The objective of EDA is to 1) suggest hypotheses to test (statistically)

based on the results generated, 2) assess assumptions on the statistical inference,

3) support the selection of appropriate statistical tools and techniques for further

analysis, and 4) provide a basis for further data collection through experiments. It

is important to distinguish the EDA approach from classical hypothesis testing,

which requires a-priori formulated hypotheses (Hoaglin et al., 2000). By applying

EDA the observed empirical-case results are evaluated statistically, mainly by

hypothesis tests, bootstrap methods, or Monte Carlo simulation (Brock et al., 1992;

Steiglitz et al., 1996; Biais et al., 2005; Tabak and Lima, 2009; Schmidt et al.,

2010). The classical question regarding the predictive ability of ON is to be

answered: `Is it possible to forecast returns in a particular (future) time interval
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by using the returns observed in a previous time interval?' (Pierdzioch, 2004).

To analyze online conversion algorithms, we apply the EDA (third) approach,

and compare the results to these of the competitive analysis (second) approach. For

the empirical-case the actually observed performance considering the experimental

data is analyzed, and hypotheses to be evaluated statistically are derived. Further,

competitive analysis is done by considering on the one hand worst-case scenarios,

i.e. the worst possible input data which could have been occurred is used when

calculating the worst-case competitive ratio cwc. On the other hand, the actually

observed input data is considered, i.e. the empirical-case performance on the

experimental data is used when calculating the empirical-case competitive ratio

cec. Hence, we aim to conjoin empirical-case analysis and worst-case analysis. This

leads to the following research questions.

1.2 Research Question

When analyzing conversion algorithms, as yet the common approach is to

experimentally analyze online conversion algorithms designed to achieve a

possibly high empirical-case performance (heuristic conversion algorithms), and to

mathematically analyze online conversion algorithms designed to give a worst-case

performance guarantee (guaranteeing conversion algorithms). Our aim is to conjoin

these two approaches in order to verify the applicability of both classes of online

conversion algorithms to practical problems.

On the one hand we focus on the new �eld of worst-case analysis of heuristic

conversion algorithms, and compare the results to the empirical-case results.

Question 1 : Can the applicability of heuristic conversion

algorithms be veri�ed through competitive analysis, and which

worst-case competitive ratio cwc do they achieve?

To answer Question 1 heuristic conversion algorithms from the literature are

considered, and competitive analysis is done: The heuristic conversion algorithms of

Brock et al. (1992) are analyzed, i.e. worst-case competitive ratios cwc are derived.

On the other hand we focus on the new �eld of experimental analysis of

guaranteeing conversion algorithms, and compare the results to the analytical

worst-case results.

Question 2 : Can the applicability of guaranteeing conversion

algorithms be veri�ed through experiments, and which

empirical-case performance do they achieve?
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To answer Question 2 di�erent guaranteeing conversion algorithms from the

literature are considered, and experimental analysis is done:3 The guaranteeing

conversion algorithms of El-Yaniv (1998); Dannoura and Sakurai (1998) and

El-Yaniv et al. (1992, 2001) are analyzed, i.e. the empirical-case performance

is derived through experiments. To measure the applicability of the algorithms

considered the empirical-case competitive ratio cec as well as the return to be

expected µ is derived.

Summing up, we are interested in analyzing online conversion algorithms from

an analytical and an experimental perspective in order to verify their applicability

to practical problems.

The reminder of this work is organized as follows: The next section gives

a brief introduction to �nancial markets, online conversion algorithms and trading

systems. Chapter 2 introduces online �nancial search and conversion problems as

well as the notion of competitive analysis. Further, a detailed overview on work

related to online conversion problems is given. Chapter 3 presents the approach to

experimental analysis of online conversion algorithms. Exploratory data analysis

(EDA) is introduced, and the steps how to empirically analyze online conversion

algorithm using this data analysis approach are provided. A detailed overview

on the work related is given. Chapter 4 presents the new �eld of worst-case

analysis of heuristic conversion algorithms. We focus on the Moving Average and

Trading Range Breakout algorithms introduced by Brock et al. (1992). Chapter

5 presents the guaranteeing conversion algorithms introduced by El-Yaniv (1998);

Dannoura and Sakurai (1998) and El-Yaniv et al. (1992, 2001) in detail. Chapter 6

presents empirical-case results of the guaranteeing conversion algorithms reviewed

in Chapter 5 as well as analytical worst-case results of the heuristic conversion

algorithms reviewed in Chapter 4. The results are given in the form of research

papers published in/submitted to di�erent journals. Prior to each publication a

preface is given linking the topic of the paper to this thesis. Chapter 7 concludes

and gives some directions for future work.

1.3 Financial Markets and Online Conversion

Algorithms

In general, algorithms used in �nancial markets aim di�erent objectives. They are

designed to (cf. Bertsimas and Lo (1998)):

1. Optimize the trade execution,

3Experimental analysis in other �elds can be found in Karlin (1998); Albers and Jacobs (2010).
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2. maximize the return to be expected µ,

3. exploit di�erent price patterns or price dynamics,

4. minimize the expected transaction costs,

5. give a performance guarantee under worst-case conditions,

6. minimize the risk,

7. balance the trade-o� between the return to be expected and the incurred risk,

8. convert �xed blocks of assets,

9. convert over a �xed �nite number of time intervals p.

Assets are `things' owned by an individual. They can be physical, �nancial or

intellectual. Stocks are a shares of a company. As a �nancial asset, stocks can

be bought and sold by the help of conversion algorithms. These algorithms aim

either to buy at possibly low prices or to sell at possibly high prices, or both.

The goal is to automatically determine entry point(s) before a market increase,

and exit point(s) before a market downturn, often based on historic or predicted

price movements. Hence, every conversion algorithm consists of at least one buying

rule and one selling rule represented by (source program) statements specifying the

exact entry and exit points. A typical example for a buying rule is the if-then

statement, for example BUY IF qt ≤ xt. Here a buying signal is generated if the

price qt is smaller than or equal to some observation xt. As an order, these signals

can be executed on the stock market. Further, buying and selling rules of di�erent

algorithms can be combined to more complex algorithms, e.g. by using genetic

programming (Potvin et al., 2004).

We focus on algorithms aiming the objectives 2 and 5. Based on the design

pattern of these algorithms, we can broadly classify them into two classes, a)

online conversion algorithms � developed to give a performance guarantee under

worst-case conditions, and referred to as guaranteeing conversion algorithms,

and b) heuristic conversion algorithms � developed to achieve a preferably high

empirical-case performance.

a) Guaranteeing conversion algorithms are developed to give a performance

guarantee under worst-case conditions. The worst-case performance

guarantee is usually evaluated using competitive analysis (second approach),

assuming uncertainty about the future input sequence I (El-Yaniv, 1998).

The performance guarantee is measured in terms of the competitive ratio

(Fiat and Woeginger, 1998, p. 4).
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b) Heuristic conversion algorithms are developed to achieve a preferably

high empirical-case performance. Very often these algorithms are based on

data from technical analysis (Brock et al., 1992; Vanstone and Finnie, 2009),

arti�cial intelligence (Palmer et al., 1994; Kumar et al., 1997; Feng et al.,

2004), neural networks (Schulenberg and Ross, 2002; Chavarnakul and Enke,

2008), genetic algorithms/programming (Dempster and Jones, 2001;

Korczak and Roger, 2002; Potvin et al., 2004), or software agents

(Silaghi and Robu, 2005). The empirical-case performance is usually

evaluated either using `Bayesian Analysis' (�rst approach) or EDA (third

approach), and measured in terms of the return to be expected µ.

Using the competitive ratio, the behavior of heuristic conversion algorithms is

found similar to guaranteeing conversion algorithms, as both classes work without

any knowledge of future input. We conclude heuristic conversion algorithms are

also online conversion algorithms, and can be analyzed using competitive analysis.

Thus, both classes of algorithms are referred to as online conversion algorithms

(ON).

Irrespective of the application area, online algorithms are related to

approximation algorithms. Both seek to obtain a good approximation to some

optimal solution, i.e. guarantee a speci�c fraction of the optimal o�ine result.

The di�erence lies in that approximation algorithms (also known as computational

complexity algorithms) deal with the question what resources would be needed to

compute a solution, namely the computational complexity. The goal is to determine

the trade-o� between the computational complexity and the quality of the solution

the algorithm computes. As the computational resources available are limited,

approximation algorithms deal with complexity measurement. In contrast, online

algorithms focus on the limitations caused by a lack of information, and not on the

limitations caused by a lack of running time (approximation algorithms). Thus,

competitive analysis is an information theoretic measure, not a computational

complexity measure (Fiat and Woeginger, 1998, p. 5).

For evaluating online conversion algorithms the order type is irrelevant. But in

case ON is considered for practical use the order type is essential as it is superior

to the signals generated by ON . Hence, the most frequently used order types are

brie�y presented in the following.

A market order is an order to buy or sell an asset at the current market price.

Unless speci�ed otherwise, orders are entered as a market order, e.g. by a broker.

The advantage of a market order is that it is almost always guaranteed that the

order will be executed. The disadvantage is that when a market order is placed, the

price at which the order will be executed can not be controlled. To avoid buying
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or selling an asset at a price higher or lower than a certain level, a limit order must

be placed. A limit order is an order to buy or sell at a prede�ned reservation price

or `better': A buy limit order can only be executed at the limit price or lower, a

sell limit order can only be executed at the limit price or higher.

Example 1. Assume an investor wants to buy an asset that was initially o�ered

at $9, but does not want to end up paying more than $10. Then a limit order to

buy the asset at any price up to $10 should be placed.

The advantage of using a limit order is that the investor protects himself from

buying (selling) the asset at a too high (low) price. The disadvantage is that a limit

order may never be executed because the market price may surpass the investors

limit before the order can be �lled.

A stop order is an order to buy or sell an asset once it reaches a speci�ed

price, namely the stop price. A buy stop order is used to invest in case of a trend

reversal. In case of short selling4 it is used to limit a loss or to protect a pro�t. A

buy stop order is entered at a stop price that is always above the current market

price. A sell stop order avoids further losses or protects a pro�t that exists if a

price drops. A sell stop order is always placed below the current market price.

The advantage of a stop order is that the price movement must not be monitored.

The disadvantage is that the stop price could be activated by a short-term price

�uctuation. Once a stop price is reached the stop order becomes a market order.

The received price may di�er from the stop price, especially in markets with high

volatility. An investor can avoid the risk of a stop order not guaranteeing a speci�c

price by placing a stop-limit order. A stop-limit order combines the features of

stop and limit order. Once the stop price is reached, the stop-limit order becomes

a limit order.

The computerized execution of �nancial instruments following prespeci�ed

rules and guidelines is called algorithmic trading (Kissel and Malamut, 2006).

Like Grossman (2005) and Domowitz and Yegerman (2006), we de�ne the term

algorithmic trading as the automated, computer-based execution (submission and

canceling) of orders via direct market-access channels. Usually, the goal is to

meet a particular benchmark, e.g. the volume-weighted average price (VWAP )

over the execution interval (Coggins et al., 2006). In contrast to online conversion

algorithms, algorithmic trading de�nes certain aspects of an order, but never the

points of time to take a buying or selling decision. Algorithmic trading strategies

execute orders and typically determine order type, timing, routing and quantity,

while dynamically monitoring market conditions across di�erent market places.

To reduce the market impact by optimally (or randomly) breaking large orders

4The selling of an asset the seller does not own.
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into smaller pieces, and to track benchmarks are the main tasks. The aim is

to optimize the trade execution (Nevmyvaka et al., 2006). Often a mix of active

and passive strategies is used, employing di�erent order types. The scope of this

work are online conversion algorithms solving the �nancial search problem. Thus,

algorithmic trading is not considered and the reader is referred to the surveys by

Gomber et al. (2005); Fraenkle and Rachev (2009), and Hendershott et al. (2010).

Every stock market investor has an own idea of how the most pro�table stocks

can be found, and at what time they should be bought and sold. First, a

decision must be taken which class of online conversion algorithms (heuristic or

guaranteeing) should be applied. In the following heuristic conversion algorithms

as well as guaranteeing conversion algorithms are presented in detail.

1.3.1 Heuristic Algorithms

Many practical problems are unlikely to admit exact (optimal) solutions in a

reasonable amount of time. Hence heuristics are sought for these problems �

these algorithms try to �nd a possibly `good' solution, not necessarily the best

one, in a small amount of time. Heuristic conversion algorithms attempt to

identify and exploit winners or trends and are designed to achieve a preferably

high empirical-case performance. The starting point for the creation of a heuristic

conversion algorithm is the selection of input variables likely to in�uence the

desired outcome, i.e. to maximize the return to be expected µ. There is a great

number of methods used and they broadly fall in the area of either Fundamental

Analysis, or Technical Analysis. It is essential to have an understanding of these two

complementary forms of analysis and their possible e�ect, so that an `intelligent'

choice of input variables can be made (Vanstone and Finnie, 2009).

Fundamental Analysis uses economic data to forecast prices or to determine

whether the markets are over- or undervalued. The goal is to use so-called �nancial

ratios produced from business ratios as predictors of a company's future stock price,

return or price direction. Financial ratios can for instance be 1) the stock price

compared to its actual earning, 2) the actual value of an asset compared to the

book value, 3) balance sheets, or 4) the last development of consumption spending

in a speci�ed country. For a detailed overview on Fundamental Analysis and work

related the reader is referred to Vanstone and Finnie (2009, pp. 6670-6672) and

the books of Murphy (1999) and Malkiel (2003).

Technical Analysis seeks to identify price patterns and trends in �nancial

markets. The goal is to exploit those patterns, and to forecast future price

directions through the study of past market data, primarily price and volume

(Murphy, 1999). Technical Analysis is composed of four techniques (cf. Schmidt
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(2006); Vanstone and Finnie (2009)):

1. Charting, the study of price charts, typically done by pattern matching.

2. Elliott waves, the study of mathematical properties of waves and patterns,

based on Fibonacci numbers.

3. Heuristic conversion algorithms, the calculation of indicators and oscillators,

typically mathematical transformations of price or volume.

4. Esoteric approaches, e.g. weather-based strategies.

Charting is usually highly subjective and without `rigorous' mathematical

de�nition. Malkiel (2003) concludes that `under scienti�c scrutiny, chart-reading

must share a pedestal with alchemy', and thus is not considered here. Nevertheless,

several academic studies suggest charting for extracting useful information about

market prices (Lo et al., 2000, p. 1706). The Elliott wave principle by R.N. Elliott

(1871-1948) analyzes the mathematical properties of waves and patterns based

on Fibonacci numbers. These numbers are closely connected to the Golden ratio

(0.618), as the quotient of neighboring Fibonacci numbers is 0.618. Practitioners

commonly use the Golden ratio to forecast levels of future market waves based

on their relation to past market waves (Schmidt, 2006, pp. 218-219). Elliott

waves are not considered here. Esoteric approaches are also excluded, as they have

no scienti�c justi�cation (cf. Hirshleifer and Shumway, 2003). The remainder of

this work will only consider research support for the use of heuristic conversion

algorithms. However, these algorithms are not considered by many researchers.

The main reason is the E�cient Market Hypothesis (EMH), which supports the

random-walk theory (RWT ). The intuition behind the EMH is simple: Market

prices follow a random walk and cannot be predicted based on their past behavior.

Hence, markets e�ciently process all relevant information into a single price. In

essence, the RWT states that price changes in stock markets are independent,

identical distributed (iid) random variables. This implies that a time series of prices

has no `memory', which further implies that the study of past prices cannot provide

a useful contribution to predicting future prices or price movements. As main

method to determine the return to be expected is backtesting, the conclusion is that

heuristic conversion algorithms cannot work (see e.g. Fama, 1965; Leigh et al., 2002;

Tabak and Lima, 2009). Of course, there are also numerous works questioning

various aspects of the EMH, or fail to con�rm it (see e.g. Leigh et al., 2002;

Findlay et al., 2003). Thus, regardless of the EMH, a large number of practitioners

use heuristic conversion algorithms as their main method to determine transaction

points (Taylor and Allen, 1992).
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In general, heuristic conversion algorithms are reservation price (RP )

algorithms. Reservation price(s) q∗ are calculated for each day t based on

the o�ered price qt. Using the q∗ , the RP algorithm determines transaction

points specifying when to buy or sell. The majority of work related concerns

the empirical analysis of simple RP algorithms. `Truly' e�ective algorithms are

usually kept secret (Vanstone and Finnie, 2009, p. 6673). We limit to the

heuristic RP algorithms introduced by Brock et al. (1992), namelyMoving Average

Crossover (MA) and Trading Range Breakout (TRB), which are based on technical

indicators. These algorithms are of major interest in the literature and have been

analyzed by several researchers, cf. Bessembinder and Chan (1995); Hudson et al.

(1996); Mills (1997); Ratner and Leal (1999); Parisi and Vasquez (2000);

Gunasekarage and Power (2001); Kwon and Kish (2002); Chang et al. (2004);

Bokhari et al. (2005); Marshall and Cahan (2005); Ming-Ming and Siok-Hwa

(2006); Hatgioannides and Mesomeris (2007); Lento and Gradojevic (2007);

Lagoarde-Segot and Lucey (2008) and Tabak and Lima (2009).5 These works on

MA and TRB are restricted to empirical-case results, and do not take into account

worst-case results (which we derive in Chapter 4).

1.3.2 Guaranteeing Algorithms

Decision making can be considered in two di�erent contexts: Making decisions

with complete information, and making decisions based on incomplete (partial)

information. Known the entire future, an optimal o�ine decision can be computed.

As we do not want to make any assumptions on future prices, worst-case scenarios

are of main interest. Competitive analysis deals with the question whether the

decisions taken were reasonable given partial information, and calculates the ratio

between the worst-case behavior of an online algorithm and the corresponding

optimal algorithm on the same problem instance. This ratio, the competitive ratio,

is the worst-case performance guarantee. In the context of �nancial markets these

online algorithms are referred to as guaranteeing conversion algorithms, and the

guarantee is to be determined analytically. The main application of guaranteeing

conversion algorithms is the search for best prices. Here, an online investor is

searching for the maximum (resp. minimum) price(s) in a sequence of prices that

unfolds sequentially. Each point of time t the investor obtains a price quotation qt,

after which (s)he must immediately decide whether to accept qt or to continue

observing prices. The goal is to buy at low prices and to sell at high prices

with no knowledge about the future (El-Yaniv, 1998; Mohr and Schmidt, 2008;

Kakade et al., 2004; Lorenz et al., 2009; Schmidt et al., 2010).

5A detailed literature overview on these heuristic RP algorithms is given in Chapter 3.
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Most authors apply guaranteeing conversion algorithms to solve the currency

conversion problem (El-Yaniv et al., 1992, 2001; Iwama and Yonezawa, 1999;

El-Yaniv et al., 2001; Chen et al., 2001; Kakade et al., 2004; Hu et al., 2005;

Chang and Johnson, 2008; Fujiwara et al., 2011). In this problem, a �xed amount

of dollars must be converted into yen, and possibly back. The goal is to compare

well with any conversion algorithm; even with OPT . Selected online conversion

algorithms to solve this problem are presented in detail in Chapter 4 and 5.

Other applications of guaranteeing algorithms in literature are the search for

jobs, and the search for employees where the goal is to choose the best position,

applicant or expert (Freeman, 1983; Ferguson, 1989; Kalai and Vempala, 2005;

Babaio� et al., 2008). Further, Ajtai et al. (1995) develop an algorithm to choose

an appropriate sample from a population for the purpose of a study.

By the help of trading systems online conversion algorithms can be

implemented, evaluated and, if promising, used for real-time trading on a stock

market. An overview on trading systems is given in the following. We consider a

trading system as the `tool' for evaluating online conversion algorithms.

1.4 Trading Systems

In practice, a great variety of trading systems exists. Practitioners use these

systems driven by a pro�t motive. These systems are not considered here. Details

on the functionality of most important commercial trading systems available on

the market can be found in Kersch and Schmidt (2011). Within the scienti�c

community the term trading system is used in di�erent ways:

First, the term trading system is used to describe electronically organized

markets. Examples are the German XETRA market, the German XONTRO

trading system, or the United States NASDAQ system. These markets mostly

replaced the phone-based order �ow, and are organized in the form of auctions

(Kim, 2007, p. 2).

Second, the term trading system is used to describe algorithmic trading, namely

computer-based algorithms, and autonomous programs to determine the market

timing of orders. For example Gomber (2000, p. 28) de�nes an (electronic)

trading system as a computer system for the electronic order speci�cation and

order routing, which enables the electronic concentration of compatible orders.

These systems are mainly used by institutional investors. For example in 2009

42% of the trades on the XETRA market were submitted via algorithmic trading

(Teske, 2010, p. 23). Further, Gomber et al. (2005) claim that algorithmic trading

will replace as much as 90% of todays human traders within the next years.
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Third, the term trading system is used to describe so-called trading machines,

namely the computer-based implementation and execution of online conversion

algorithms, and their corresponding orders by a software system. These machines

decide whether or not to convert �nancial instruments in the matter of a split

second. Mostly without human interference. A (electronic) trading machine is an

environment where users de�ne and adjust trading models for real-time execution,

i.e. algorithms can not be evaluated using historical data (Ignatovich, 2006, p. 1).

Fourth, the term trading system is used to describe a collection of rules which

are used to generate buy and sell signals including risk and money management

(Vanstone and Finnie, 2009).

In contrast, within this work, collections of rules are de�ned as online conversion

algorithm, and the term trading system indicates a software system. By the help of

a trading system these algorithms can be 1) designed, e.g. using an (XML) editor,

2) simulated, e.g. on historical or arti�cial data, 3) evaluated, e.g. using statistical

tests, and 4) executed on a stock exchange if the results are promising, e.g. via

direct market-access channels. In addition, supporting functions such as charts

or an information system o�er the possibility to interpret historical and real-time

data, known as `charting'.

In order to design, evaluate and execute conversion algorithms an appropriate

software system � providing the desired functionality � is required. In the

following, we give a brief overview on di�erent classes of trading systems based

on their functionality. In contrast, practitioners classify trading systems based

on the user type (Kim, 2007, p. 119). Three classes of trading systems exist

(Kersch and Schmidt, 2011):

1. An Execution System (ES) is the superordinate concept for trading systems

or online brokerage systems. Execution systems are used by banks, direct

banks, online banks, �nancial service providers, or by service providers

specializing in online brokerage. With an ES the user has the possibility

to generate and submit orders to be executed on the stock market. The

implementation and evaluation of conversion algorithms is not supported.

2. A Planning System (PS) allows to implement and test conversion algorithms.

The algorithms can be evaluated and optimized in terms of return

maximization. The execution of orders and the order routing is not

supported.

3. A Planning and Execution System (PES) combines the characteristic

features of both ES and PS. With a PES the investor has the possibility to

1) implement, 2) evaluate, and 3) execute conversion algorithms supported
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by one single system.

Independent from its classi�cation, a trading system should contain the following

components: Graphical tools, development tools, test environment (backtesting),

real-time environment (portfolio management and order management). For

evaluating online conversion algorithms the development tools are essential, as

they must be easy to use and, at the same time, powerful to describe complex

algorithms. For that purpose, within this work, we use the LifeTrader System, a

PES providing the required functionality.6

An approach to evaluate the performance of online conversion algorithms is

presented in the following: Chapter 2 introduces the notion of competitive analysis,

and Chapter 3 gives the steps to empirically analyze online conversion algorithms.
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Chapter 2

Competitive Analysis of Online

Conversion Algorithms

This chapter reviews fundamental concepts and results in the area of online

algorithms and competitive analysis. We present the classical online problem

and introduce the notion of competitive analysis mentioning the related work

relevant to the speci�c problem. Then we focus on online algorithms for conversion

problems and provide a comprehensive review of the literature addressing the

existing problems. The chapter concludes with an overview on competitive search

algorithms in the context of conversion in �nancial markets. We limit to the search

for best prices in order to buy or/and sell assets.

2.1 Online and O�ine Algorithms

A standard assumption in traditional optimization techniques is the complete

knowledge of all data of a problem instance in advance (Borodin and El-Yaniv,

1998). However in reality, decisions often have to be made online, i.e. without

knowing future data relevant for the current choice, or before complete information

is available. Such scenarios are called online problem. Each decision must be made

based on the already appeared data of the problem instance, and without any

information about future data (Fiat and Woeginger, 1998).

Online algorithms represent the theoretical framework for solving online

problems. An online algorithm computes a partial solution whenever input data

requests an action. No assumptions about the input data are made. Even worse,

input data may be produced by an adversary in such way that the online algorithm

is always confronted with the worst possible input sequence (cf. Section 1.1). The

worst possible adversary is an algorithm that always achieves an optimum solution,

the optimal o�ine algorithm (OPT ) (Albers, 2003).

23
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More formally, each input can be represented as a �nite sequence I with t =

1, . . . , T elements, and a feasible output can also be represented as a �nite sequence

with T elements. An algorithm computes online if for each t = 1, . . . , T − 1, it

computes an output for t before the input for t+1 is given. An algorithm computes

o�ine if it computes a feasible output given the entire input sequence I in advance.

An online algorithm may not produce an optimum result. It is nevertheless

desired to evaluate its quality. The technique to evaluate the performance of an

online algorithm is called competitive analysis and compares the performance of an

online algorithm to that of an adversary, e.g. OPT . Within this work we consider

online conversion algorithms (ON) � to compute a solution ON must solve the

online conversion problem. Thus, before introducing the notion of competitive

analysis, the online conversion problem and its solutions from the literature are

presented.

2.2 Online Conversion Problems

An online conversion problem deals with the scenario of converting an asset D

into another asset Y , and possibly back. As mentioned in Section 1.3 these

assets can be physical, �nancial, or intellectual. Hence, every online conversion

problem is a variant or an application of the elementary problem of optimal stopping

(Chow et al., 1971). The key example of an optimal stopping problem is the well

known secretary problem. In its simplest form the problem can be stated as follows

(Ferguson, 1989, p. 282):

1. There is a single secretarial position to �ll.

2. There are T applicants for the position, and the value of T is known.

3. The applicants can be ranked from best to worst with no ties.

4. The applicants are interviewed sequentially in a random order, with all T !

possible orders being equally likely.

5. After each interview, the applicant must be accepted or rejected.

6. The decision to accept or reject an applicant can be based only on the relative

ranks of the applicants interviewed so far.

7. Rejected applicants cannot be recalled.

8. The last applicant must be accepted.

9. The payo� is 1 for selecting the best applicant and 0 otherwise.
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Clearly, the objective is to select the best applicant. Only an applicant who,

when interviewed, is better than all the applicants interviewed previously will

be considered for acceptance. The optimal policy (the stopping rule) for a large

number of applicants T is to (interview and) reject the �rst T
e
applicants, and then

to accept the �rst applicant who is better than all the rejected. The secretary

problem has received much attention because the stopping rule has a surprising

feature: For T →∞, the probability of selecting the best applicant from the pool

goes to 1
e
, which is around 37%. Hence, the stopping rule picks the single best

applicant in about 37% of the cases (Ferguson, 1989; Babaio� et al., 2008). Work

on the problem and its extensions is reviewed in Freeman (1983); Ferguson (1989),

and Ajtai et al. (1995).

In the following we limit to online conversion problems in a �nancial context.

These problems are a special case to the theory of optimal stopping. It is assumed

that ON observes a sequence of t = 1, . . . , T price quotations qt and must decide

which qt to pick, i.e. when to stop observing. Instead of picking the best applicant,

the objective is to pick the best price(s) qt for conversion. Further, in case ON

picks a price qt ON must specify which fraction st of asset D is to be converted

into asset Y at qt. Depending on the possible values of st two classes of online

conversion problems exist:

Preemptive (pmtn). Search for more than one price in the time interval of length

T in order to convert asset D. ON is allowed to convert sequentially in

parts at di�erent prices qt, i.e. the whole amount available is converted

`little by little', and st ∈ [0, 1]. Typically, the number of prices considered

for conversion is determined by ON . Except in one special case where ON

desires to convert at a speci�c number of prices, denoted by u. This is referred

to as u-preemptive (u-pmtn). In the work related algorithms for preemptive

conversion are denoted as constant rebalancing algorithms or threat-based

algorithms (cf. Section 2.4.2).

Non-preemptive (non-pmtn). Search for one single price in the time interval

of length T in order to convert asset D. ON is allowed to convert `all or

nothing', i.e. the whole amount available is converted at one price qt, and

st ∈ {0, 1}. In the work related algorithms for non-preemptive conversion are
denoted as reservation price algorithms (cf. Section 2.4.1). Non-preemptive

conversion is a special case of preemptive conversion.

Preemptive as well as non-preemptive algorithms solving the online conversion

problem either aim cost minimization or pro�t maximization, or both. Stated this

way, the problem is very similar to the famous secretary problem: Designing an
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algorithm for picking an element out of a (ordered) sequence, in order to maximize

the probability of picking the `best' element of the entire sequence (Awerbuch et al.,

1996). In the �nance related literature three main �elds of application solving this

problem can be found: 1) Replacement problems, 2) investment planning, and 3)

the search for best prices. In the following we state each problem in short and give

a brief literature overview:7

1) Replacement Problem. In the basic setup of this problem some equipment is

needed during an unknown number of time intervals. How long the equipment

is needed is made known online: At the start of each time interval ON

gets the information whether the equipment will be needed in the current

time interval or not. ON must immediately decide whether to buy the

equipment for a price qb or to rent it for a price qr, with qr < qb. The

`game' ends with the purchase of the equipment, or if the equipment is no

longer needed. The total cost incurred by algorithm ON is the sum of all

renting fees, and perhaps one purchase. The goal is to chose the optimal

point of time for buying (El-Yaniv and Karp, 1997, p. 815). The optimal

decision must be determined such that the ratio of the money which was

spent for the equipment (qr and qb), and the minimum money which had

to be spent is minimized. The solution of the replacement problem is to

rent until the period of amortization ends, and to buy then. Karp (1992a,b)

shows that in practice people buy equipment earlier than this optimal point,

or keep renting forever. Typical practical applications addressed in the

literature are ski-rental (Karlin et al., 1994; al-Binali, 1997; El-Yaniv et al.,

1999; Seiden, 2000; Fujiwara and Iwama, 2002), selling a car (Babaio� et al.,

2008), and buying a BahnCard8 (Fleischer, 2001; Ding et al., 2005). For

a detailed review on the problem and its extensions the reader is referred

to El-Yaniv and Karp (1997) and El-Yaniv et al. (1999). The replacement

problem is not discussed here.

2) Investment Planning. In the basic setup of this problem an algorithm

ON must decide how to reallocate among di�erent available investment

opportunities; e.g. assets, commodities, securities, and their derivatives.

The value of each investment opportunity changes from time interval

7Some authors state a fourth main �eld called leasing problems, e.g. algorithms to decide

whether to buy or lease a car. Those problems are considered as rudimentary forms of replacement

problems (El-Yaniv, 1998, p. 30).
8A BahnCard is a loyalty card o�ered by Deutsche Bahn AG, the German national railway

company. It entitles the passenger to a discount price, and must be purchased prior to travel; see

www.bahn.de

www.bahn.de
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to time interval in an uncertain manner. The goal is to maximize

the terminal wealth (Cover, 1991). Typical applications in literature

are `universal portfolios' proposed by Cover (1991), and later studied

in Cover and Ordentlich (1996); Helmbold et al. (1998); Blum and Kalai

(1999); Cover and Ordentlich (1998); Kalai and Vempala (2003) and

Agarwal and Hazan (2006). In this setting the goal is to design an online

algorithm running an `universal portfolio' that is competitive against any

constant rebalancing portfolio which keeps the same distribution of wealth

among a set of assets from day to day. In this regard other (non-universal)

online portfolio selection algorithms are presented by Cover and Gluss

(1986) and Borodin et al. (2000, 2004). Option pricing (Lorenz et al., 2009;

DeMarzo et al., 2006) and asset allocation (Raghavan, 1992) are further

�elds. The investment planning problem is not discussed here.

3) Search for Best Prices. In the basic setup of this problem ON is given the

task of converting an asset into another asset, and possibly back. The

goal is to convert at best prices, i.e. to search for the maximum (resp.

minimum) price in a sequence of prices that unfolds sequentially (El-Yaniv,

1998; Kakade et al., 2004; Lorenz et al., 2009; Schmidt et al., 2010). Thus,

converting assets is a direct application of the elementary problem of optimal

stopping. Consider ON must convert an asset D into another asset Y , and

starts with the initial amount d0 = 1 (y0 = 0) of asset D (Y ). In its simplest

form, an online conversion algorithm solving search for best prices can be

stated as follows.

Algorithm 1.

Step 1: Obtain price quotations qt ∈ [m,M ] at points of time t = 1, . . . , T .

Step 2: Every point of time t take a decision whether or not to accept the

current price qt.

When

Step 2a: Price qt is accepted convert an amount st of asset D into Y .

Step 2b: Price qt is not accepted, obtain the next price quotation qt+1.

Step 2c: Asset D is converted completely, or T is reached, the `game' ends.

Step 3: If there is some amount of D left on T then accept the last price qT

(which might be the worst-case, i.e. m for selling or M for buying).
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Some authors assume ON must pay a commission to get a price quotation,

called sampling costs (El-Yaniv, 1998, p. 33). Further, the search for best

prices is often considered as currency conversion, or as elementary search

problem (El-Yaniv, 1998, p. 32). Several authors suggest algorithms to solve

the currency conversion problem, cf. El-Yaniv et al. (1992, 2001); al-Binali

(1997, 1999); Iwama and Yonezawa (1999); Chou et al. (1995); Chen et al.

(2001); Kakade et al. (2004); Hu et al. (2005); Chang and Johnson (2008)

and Fujiwara et al. (2011). In this problem, a �xed amount of dollars must

be converted into yen, and possibly back. The goal is to perform well under

worst-case assumptions, i.e. to achieve a possibly low competitive ratio c.

Within this work we limit to online conversion algorithms solving the search for

best prices. The work related addresses on the one hand algorithms that aim pro�t

maximization, denoted as max-search problem, or cost minimization, denoted as

min-search problem. These algorithms are uni-directional. On the other hand,

algorithms are addressed that aim return maximization solving both problems.

These algorithms are bi-directional (El-Yaniv et al., 2001). A short overview on

uni- and bi-directional search problems addressed in the literature is given in the

following.

2.2.1 Uni-directional Search

Uni-directional search assumes that within one time interval conversion can only

be performed in one direction. When carrying out uni-directional search to solve

the online conversion problem, the objective is always to choose a point of time

to take a decision, in order to maximize an expected pro�t or to minimize an

expected cost, but never both (Kalai and Vempala, 2005). Hence, the resulting

min-search problem or max-search problem is considered as uni-directional (or

one-way) (El-Yaniv et al., 2001, p. 101).

Uni-directional Search. Here, ON is given the task of converting an asset D

into another asset Y within a given time interval in order to achieve �nancial

gain. The conversion back from Y into D is forbidden. To convert D back

into Y a new `search game' must be carried out. The classical example of

uni-directional search is currency conversion, e.g. converting dollars D into

yen Y : ON may convert D into Y as often as possible (at di�erent prices

qt) until the whole of asset D is converted into Y . There is no restriction

on the number of conversions, and conversion can either be preemptive or

non-preemptive. In other words, ON searches for the maximum or the

minimum price(s) in order to carry out either a buying or a selling transaction
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within one time interval of length T . A transaction is completed when the

whole of asset D is converted into Y .

Some authors consider randomized online search as uni-directional search. The goal

is also to convert D into Y . It is assumed that the price (or the exchange rate from

D to Y ) varies unpredictably (El-Yaniv, 1998; El-Yaniv et al., 2001; Chen et al.,

2001). The transformation of randomized online search to uni-directional search is

as follows (Damaschke et al., 2009, p. 620): The initial amount of D, denoted by

d0, corresponds to a probability of 1. Converting d0 means to stop converting with

exactly that probability (randomized online search). Thus, any uni-directional

search algorithm is equivalent to a randomized search algorithm that converts

the entire d0 at once (non-preemptive) at some randomly chosen price, cf.

Borodin and El-Yaniv (1998, p. 265) and El-Yaniv (1998, p. 36).

Algorithms to solve the uni-directional search problem are suggested

by El-Yaniv et al. (1992, 2001); El-Yaniv (1998); al-Binali (1997, 1999);

Iwama and Yonezawa (1999); Chen et al. (2001); Kakade et al. (2004); Hu et al.

(2005); Chang and Johnson (2008); Fujiwara et al. (2011). An experimental

analysis of the uni-directional algorithms of El-Yaniv (1998); El-Yaniv et al. (2001)

assuming di�erent settings, such as dividing the investment horizon into time

intervals, can be found in Schmidt et al. (2010).

In case min-search and max-search are combined bi-directional search is carried

out. A short overview on bi-directional search problems is given in the following.

2.2.2 Bi-directional Search

Bi-directional search assumes that within one time interval conversion can be

performed in both directions. When carrying out bi-directional search to solve

the online conversion problem, the objective is to achieve a possibly high return.

When converting assets, uni-directional search is extended to bi-directional search,

and bi-directional search is a synonym for trading.

Bi-directional Search. Here, ON is given the task of converting an asset

D back and forth. Converting asset D into asset Y , then back into

asset D, and back into asset Y , etc. is allowed within the same time

interval. The relative price between D (resp. Y ) and Y (resp. D) is

used to determine the units converted, and thus becomes the exchange

rate. There is no restriction on the number of conversions, conversion

can either be preemptive or non-preemptive. In contrast to uni-directional

search ON searches for maximum and minimum prices to carry out

both a buying and a selling transaction within one time interval of
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length T . Chou et al. (1995); Dannoura and Sakurai (1998); El-Yaniv et al.

(1992, 2001); Mohr and Schmidt (2008a) suggest algorithms to solve the

bi-directional search problem under various limitations. The classical

example of bi-directional search is currency conversion converting dollars D

into yen Y and back as often as possible.

Run Search. A special case of bi-directional search. Here, ON is also given the

task of converting an asset D back and forth as often as possible. But

when carrying out run search, the algorithm ON divides the considered

sequence of prices into upward runs and downward runs depending on the

price movement. Search is carried out depending on the direction of the

runs: Max-search is carried out if prices are moving up, and min-search

is carried out if prices are moving down. In other words, uni-directional

search is carried out depending on the direction of a run, and each run equals

one time interval of length T . Dannoura and Sakurai (1998); El-Yaniv et al.

(1992, 2001); Damaschke et al. (2009) suggest algorithms to solve the run

search problem.

Irrespective whether an algorithm converts preemptive or non-preemptive,

uni-directional or bi-directional it may not produce an optimum result. Hence,

it is desired to evaluate its e�ectiveness, e.g. against the performance of another

algorithm for the same problem. This technique is called competitive analysis. In

the following we introduce notion of competitive analysis as a performance measure

for online conversion algorithms investigating worst-case scenarios.

2.3 Competitive Analysis

Firstly, competitive analysis was used in the 1970s by computer scientists

in connection with approximation algorithms for NP -hard problems (Graham,

1966; Johnson, 1973; Johnson et al., 1974; Yao, 1980). In 1985, the work of

Sleator and Tarjan (1985), on list access and paging algorithms, put forth the use of

the competitive ratio as a general performance measure for online decision making.

Three years later, the term competitive ratio was formed by Karlin et al. (1988).9

The main idea is to assume the worst possible input sequence I, and to compare

the performance of an online algorithm to the performance of an adversary on this

sequence. The competitive ratio cmeasures the quality of the online algorithm with

respect to the adversary. Within the scope of this work, unless otherwise stated,

9In the literature, the competitive ratio is also called the worst-case ratio or the worst-case

performance guarantee (Fiat and Woeginger, 1998, p. 4).
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the performance of ON is always compared to the worst possible adversary: OPT

computes an output given the entire input sequence I in advance. ON is called

c-competitive if for any I (El-Yaniv et al., 2001, Formula (1))

ON(I) ≥ 1

c
·OPT (I). (2.1)

In other words, ON is called strictly c-competitive, if its competitive ratio � the

ratio between the performance of ON and OPT � is bounded by some constant c,

which gives a worst-case performance guarantee (Albers, 2003). We want to remark

that the de�nition of c-competitiveness varies in the literature. ON is called weakly

c-competitive if there exists a constant z such that (Karlin et al., 1994, p. 302)

ON(I) ≥ 1

c
·OPT (I) + z (2.2)

holds for any input sequence I. Some authors even allow z to depend on problem or

instance speci�c parameters (Albers, 1997; Krumke, 2002). We assume the constant

z to be zero and will stick to the de�nition given in equation (2.1). Hence, any

c-competitive ON is guaranteed a value of at least the fraction 1
c
of the optimal

o�ine result, no matter how uncertain the future will be (El-Yaniv et al., 2001, p.

104). This holds for bounded problems (El-Yaniv, 1998).

We consider online conversion algorithms with bounded pro�t function, e.g. by

assuming qt ∈ [m,M ], where M and m are upper and lower bounds of prices qt.

Further, we di�er between the competitive ratio for uni-directional search, and the

competitive ratio for bi-directional search. Algorithms denoted as uni-directional

only convert in one direction (asset D into asset Y ). Thus, their competitive

ratio is measured by the amount of (accumulated) Y achieved on the last day T .

Algorithms denoted as bi-directional convert in both directions (asset D into asset

Y , and back to D). Thus, their competitive ratio is measured by the amount of

(accumulated) D achieved on the last day T .

2.3.1 Competitive Ratio for Uni-directional Search

We assume ON is either allowed to carry out a selling or a buying transaction

within each i-th time interval of length T (i = 1, . . . , p). Overall, within the whole

investment horizon, ON is allowed to carry out p ≥ 1 buying or selling transactions,

solving either the min-search problem or the max-search problem. The performance

of ON is measured using the competitive ratio as given in equation (2.1).

Min-Search. To minimize costs the min-search problem must be solved in order

to buy at a possibly low price(s). Assume ON buys p ≥ 1 times at price(s)
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qmin(i) ≥ m(i) ≥ m with i = 1, . . . p. Solving equation (2.1) to c the competitive

ratio for each i-th buying transaction equals

cmin(i) =
OPT

ON
(2.3)

=
m(i)

qmin(i)
≤ 1,

and results in an overall competitive ratio after the p-th buying transaction of

cmin(p) =

p∏

i=1

m(i)

qmin(i)
(2.4)

≤ 1.

Assuming qmin(i) = qmin and m(i) = m to be constants for each i-th buying

transaction the overall competitive ratio (after the p-th transaction) then equals

cmin(p) =

(
m

qmin

)p
(2.5)

≤ 1.

As buying is a minimization problem cmin(p) ≤ 1, and measures the competitive

ratio for buying under worst-case assumptions. The greater c the more e�ective is

ON .

Max-Search. To maximize pro�t themax-search problem must be solved in order

to sell at a possibly high price. Assume ON sells p ≥ 1 times at possibly high prices

qmax(i) ≤ M(i) ≤ M with i = 1, . . . p. Solving equation (2.1) to c the competitive

ratio for each i-th selling transaction then equals

cmax(i) =
OPT

ON
(2.6)

=
M(i)

qmax(i)
≥ 1,

and results in an overall competitive ratio after the p-th selling transaction of

cmax(p) =

p∏

i=1

M(i)

qmax(i)
(2.7)

≥ 1.

Assuming qmax(i) = qmax and M(i) = M to be constants for each i-th selling

transaction the overall competitive ratio (after the p-th transaction) then equals

cmax(p) =

(
M

qmax

)p
(2.8)

≥ 1.
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As selling is a maximization problem cmax(p) ≥ 1, and measures the competitive

ratio for selling under worst-case assumptions. The smaller c the more e�ective is

ON .

In the above section it is assumed that ON either buys p times at possibly low

prices or sells p times at a possibly high prices (p ≥ 1), resulting in the worst-case

competitive ratios given in equation (2.4) and (2.7). To trade assets p ≥ 1 times

sequentially in a row this assumption does not hold. In the context of �nancial

markets online conversion algorithms are designed to buy and sell (trade) in order to

achieve a possibly high return. We assume each trade consists of exactly one buying

transaction and one selling transaction. In other words, �rst themin-search problem

has to be solved for buying, and later the max-search problem has to be solved for

selling, resulting in p trades (equaling the number of returns).10 Thus, instead of

using maximum or minimum prices, the competitive ratio for bi-directional search

is calculated using the returns achieved by OPT and ON .

2.3.2 Competitive Ratio for Bi-directional Search

We assume ON is allowed to carry out more than one buying and selling transaction

within each i-th time interval of length T (i = 1, . . . , p). Further, we assume each

i-th time interval is initiated by a buying transaction, and terminated by a selling

transaction. Hence, within the whole investment horizon overall p trades, equaling

the number of time intervals, are carried out. Thus, the competitive ratio for

bi-directional search measures the performance of ON in terms of the achieved

return, when carrying out p ≥ 1 trades. Online conversion algorithms are either

designed to trade once (p = 1), or to trade sequentially in a row (p > 1), de�ned

as follows:

Single Bi-directional Conversion. Within T an asset is traded exactly once.

Thus, the objective is to buy one single asset at best at its minimum price

qmin ≥ m, and to sell it later at best at its maximum price qmax ≤M .

Multiple Bi-directional Conversion. Within T an asset is traded more than

once. The objective is to trade p > 1 times sequentially in a row: Buy

an asset p > 1 times at local minimum prices qmin(i) ≥ m(i) ≥ m, and

sell it p > 1 times at local maximum prices qmax(i) ≤ M(i) ≤ M , where

i = 1, . . . , p buying transactions and i = 1, . . . , p selling transactions are

carried out. Further, the single asset problem trading one single asset p > 1

10Short-selling is not considered here as it is forbidden in some countries, e.g. in Germany since

May 19th, 2010.
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times, and the multiple asset problem trading several di�erent assets p > 1

times can be distinguished.

For both variants the calculation of the competitive ratio is identical. Let X ∈
{OPT,ON} be a bi-directional conversion algorithm. Assume the algorithms X

trade sequentially in a row, and each i-th trade consists of one buying and one

selling transaction with p ≥ 1, and i = 1, . . . , p. Further assume algorithm X buys

p ≥ 1 times at a possibly low price(s) qmin(i) ≥ m(i), and sells at possibly high

price(s) qmax(i) ≥ m(i). Then the return of X for each i-th trade with i = 1, . . . p

equals

RX(i) =
qmax(i)

qmin(i)
, (2.9)

and results in an overall return after the p-th trade of

RX(p) =

p∏

i=1

qmax(i)

qmin(i)
. (2.10)

Note that ON solving the bi-directional conversion problem in order to maximize

the return to be expected µ is called money-making if it is guaranteed to be

pro�table when OPT is pro�table, i.e. the achieved return RX(p) > 1 (Chou et al.,

1995, p. 469).

The overall competitive ratio for bi-directional conversion c(p) with p ≥ 1 can

be derived in two ways. First, the competitive ratio for min-search and max-search,

as given in Section 2.3.1, can be used. For each i-th trade from equation (2.3) and

(2.6) we get

c(i) =
cmax(i)

cmin(i)
(2.11)

=

(
M(i)

qmax(i)
· q

min(i)

m(i)

)

≥ 1,

resulting in an overall competitive ratio

c(p) =

p∏

i=1

cmax(i)

cmin(i)
(2.12)

=

p∏

i=1

(
M(i)

qmax(i)
· q

min(i)

m(i)

)

≥ 1.
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Assuming qmax(i), qmin(i),M(i) and m(i) to be constants from equations (2.3) and

(2.6) we get the overall competitive ratio after the p-th trade

c(p) =
cmax(p)

cmin(p)
(2.13)

=

(
M

qmax
· q

min

m

)p

≥ 1.

Second, the overall returns RX(p) achieved by X ∈ {OPT,ON} as given in

equation (2.10) can be used to calculate c(p). Assuming p ≥ 1 the overall return

RON(p) of an algorithm ON equals

RON(p) =

p∏

i=1

qmax(i)

qmin(i)
, (2.14)

and the overall return ROPT (p) of algorithm OPT equals

ROPT (p) = supRON(p)

=

p∏

i=1

M(i)

m(i)
. (2.15)

In case M(i) = M and m(i) = m are constants the overall return of OPT equals

(Mohr and Schmidt, 2008a)

ROPT (p) =

(
M

m

)p
. (2.16)

Assuming and identical number of p ≥ 1 trades for OPT and ON from equation

(2.14) and (2.15) we get an overall competitive ratio

c(p) =
OPT

ON

=
ROPT (p)

RON(p)

=

p∏

i=1

(
M(i)

m(i)
· q

min(i)

qmax(i)

)
(2.17)

=

p∏

i=1

cmax(i)

cmin(i)
.

2.3.3 Worst-case and Empirical-case Competitive Ratio

When analyzing online conversion algorithms we di�er between the worst-case

competitive ratio cwc considering the performance of ON on a worst possible
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sequence of inputs, and the empirical-case competitive ratio cec considering the

performance of ON on an observed time series of prices. Assuming p ≥ 1 trades

both ratios can be calculated using equation (2.17). To calculate cwc a constructed

worst-case time series of prices is considered and the return of ON is derived

analytically. In contrast, to calculate cec an observed time series of prices is

considered, and the return of ON is derived experimentally through backtesting.

Thus, the worst-case competitive ratio cwc(p) for p ≥ 1 equals

cwc(p) = sup c(p). (2.18)

In the worst-case ON might, for example, buy i times at the highest possible price

M(i), and sell i times at the lowest possible price m(i).

Further, the empirical-case competitive ratio cec(p) for p ≥ 1 equals

cec(p) =
ROPT (p)

RON(p)
(2.19)

where OPT achieves the best possible return OPT = M(i)
m(i)

on the time series

considered, and ON achieves a return according to the buying and selling signals

generated. Note that cec(p) ≤ cwc(p), and the best achievable c ∈ {cwc(p), cec(p)}
equals 1.

In the following we give an overview on online conversion algorithms analyzed

using competitive analysis � in terms of ON `playing' against an adversary while

considering worst-case scenarios. Typically, these reviewed online conversion

algorithms are categorized as reservation price algorithms, constant rebalancing

algorithms, threat-based algorithms, and risk-rewarded algorithms. For the

literature overview, we present a new approach to classify online conversion

algorithms based on the type of search (uni-directional or bi-directional), and the

amount to be converted (pmtn or non-pmtn). Within Chapter 6 this classi�cation

is re�ned by the `amount of information' assumed to be known a-priori (about the

future) to ON in order to compute the amount to be converted st.

2.4 Literature Review

We give a literature overview of work on online conversion problems, focusing on

worst-case performance measures as given in equation (2.18). As we are interested

in online algorithms related to �nancial decision making we restrict the literature

overview to algorithms in the context of �nancial markets, solving the search for

best prices as given in Algorithm 1 in order to convert assets. The majority of the

work related considers online conversion problems in Forex Markets.11

11
Foreign exchange market; a worldwide decentralized over-the-counter �nancial market for

the trading of currencies, also denoted as FX or currency market.
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We do not consider related applications like algorithmic trading and online

auctions. The reader is referred to Kleinberg (2005); Blum et al. (2006) and

Chang and Johnson (2008).

Based on the amount to be converted st, when presenting the work related,

we distinguish the two classes of online conversion algorithms: a) non-preemptive

online conversion algorithms � designed to search for one single price within the

time interval to convert the asset, and b) preemptive online conversion algorithms

� designed to search for more than one price within the time interval to convert

the asset.

2.4.1 Non-Preemptive Conversion

Non-preemptive conversion allows the search for one single price in the time interval

to convert an asset D. Typically, the whole amount available is converted at one

single price qt, i.e. st ∈ {0, 1}. Non-preemptive algorithms de�ne limit price(s) (the
market participant is willing to accept) to avoid buying or selling at a price higher

(lower) than a speci�c level. That is the lowest price (per asset) an algorithm

might accept for buying, and the highest price an algorithm might accept for

selling. Such limit prices are denoted as reservation prices (RP ), denoted by

q∗. As a non-preemptive algorithm converts `all or nothing' one qt ≥ (≤) q∗

must be accepted within one time interval. Thus, the online conversion algorithms

presented in the following are denoted as RP algorithms. We di�er between works

on uni-directional search and bi-directional search.

2.4.1.1 Uni-directional Search

In the following non-preemptive conversion algorithms for uni-directional search are

presented. Here an algorithm on is allowed to convert an asset D into another asset

Y but conversion back to D is forbidden. Unfortunately, the work related is limited

to guaranteeing conversion algorithms � the performance of the RP algorithms is

evaluated using competitive analysis.

The two early works of Pratt et al. (1979) and Rosen�eld and Shapiro (1981)

assume di�erent price distributions, and study the question when an RP algorithm

should stop searching for a lower (higher) price.

Pratt et al. (1979) assume two cases. First, it is assumed that the underlying

price distribution is known. Second, no knowledge is assumed, and the underlying

distribution must be learned by the RP algorithm while observing prices.

Pratt et al. (1979) develop RP algorithms to decide whether to observe further

price quotations or not. The goal is to balance the chance of achieving a
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lower (higher) price against greater incurred constant search costs, and to �nd

a buyer-to-seller price equilibrium.

Rosen�eld and Shapiro (1981) determine search policies in case of incomplete

information. Di�erent assumptions on the a-priori knowledge about the future are

made, e.g. that the price distribution is known or unknown to the RP algorithm,

or itself is a random variable. Further, the RP algorithm is either allowed to

accept prices previously quoted (recall) or not (no recall). Rosen�eld and Shapiro

(1981) derive conditions under which the following reservation price policy (RPP )

is optimal: Accept a price for buying if and only if it is below the RP . The goal

is to �nd an equilibrium distribution of prices (Rosen�eld and Shapiro, 1981, p.

190).

Awerbuch et al. (1996) assume the following setting: An RP algorithm must

choose one out of J assets for conversion. The goal is to pick a `winner' that will

have the best future performance. This task is made di�cult by the constraint

that the RP algorithm has no way to predict the future performance of any of

the J assets. The decision is irreversible, once an asset is chosen search is closed.

For each asset j (j = 1, . . . , J) the value d(j, i) is the number of dividends issued

by asset j within the i-th time interval. The suggested RP algorithm is: At the

(i+1)-th time interval choose the j-th asset with probability ρ(3·d(j,i))/(r−2). Where r

is the a-posteriori performance (in terms of the return achieved) of the best asset,

and assumed to be known. Awerbuch et al. (1996) �nd that their proposed RP

algorithm can pick a winner with high probability.

El-Yaniv (1998) (and El-Yaniv et al. (2001)) assume that the upper and lower

bounds of prices, M and m, are known. An RP algorithm is suggested to solve the

max-search problem (El-Yaniv et al., 2001, p. 107): Accept the �rst price greater

than or equal to q∗ =
√

(M ·m) for selling. El-Yaniv et al. (2001) prove that if

the prices qt ∈ [m,M ] the RP algorithm is optimal, and the competitive ratio is√
M/m. The RP algorithm is presented in detail in Section 4.1.

The original RP algorithm of El-Yaniv (1998) was modi�ed by Kakade et al.

(2004) and Chang and Johnson (2008) to solve the max-search problem in modern

�nancial markets considering the `Volume Weighted Average Price' (VWAP ) and

limit order books (markets). Both authors assume that the price �uctuation ratio

ϕ = M
m

is known. The modi�ed RP algorithm places sell orders in order to

maximize the total return (Chang and Johnson, 2008, p. 45): Pick an integer i

uniformly at random between 0 and blnϕc, and place an order to sell the asset

at reservation price q∗ = ei · qmin. In addition Kakade et al. (2004) suggest a

second RP algorithm that seeks to sell all assets at the average price of the

market, the VWAP . Kakade et al. (2004) and Chang and Johnson (2008) make

no assumptions on the price distribution.
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Xu et al. (2011) present two RP algorithms. The �rst algorithm is based on

the assumption that m and M , as well as the return function f(qt) are known.

The second RP algorithm is based on the knowledge of m, M , f(qt), and T . The

model extends the RP algorithm of El-Yaniv (1998) by introducing sampling costs

for observing prices qt. It is assumed that the achievable return r when accepting

a price qt on day t is not exactly the price itself, but a function of the price (such

as accepted price q′ minus the accumulated sampling costs). In contrast to the RP

algorithm of El-Yaniv (1998) the considered RP is not constant but varies with

time, and thus is denoted by q∗t . After the player accepts one speci�c price q
′ the

`game' ends. It is assumed that a larger price results in a larger return r′ for q′.

Further, the achieved return r′ is higher when accepting q′ earlier, as less sampling

costs occur. Xu et al. (2011) present two provable optimal RP algorithms, and

competitive analysis is done.

Recent work extends the algorithms for uni-directional search of El-Yaniv et al.

(2001); El-Yaniv (1998) assuming that every two consecutive prices are interrelated.

The motivation of Zhang et al. (2010) is the stock market in China, which

empirically shows a bounded movement by 10% of every two interrelated closing

prices.

Damaschke et al. (2009) assume M and T are known and prices qt ∈
[
M
T
,M
]
.

A RP algorithm for max-search is presented: Accept the �rst price greater than or

equal to q∗ = M√
T
, with t = 1, . . . , T . Numerical examples are presented showing

that the RP algorithm achieves a better (smaller) competitive ratio than previous

algorithms. Damaschke et al. (2009) prove the optimality of their RP algorithm,

and show that the competitive ratio equals
√
T .

2.4.1.2 Bi-directional Search

In the following non-preemptive conversion algorithms for bi-directional search are

presented. Here, ON is allowed to convert asset D into asset Y , and back into D

within T . The work related is comprised of guaranteeing as well as heuristic RP

algorithms.

Guaranteeing Algorithms. In the following we give a brief overview on

guaranteeing RP algorithms from the literature using the competitive ratio as

performance measure.

Kao and Tate (1999) consider online di�erence maximization, and do not make

any assumptions regarding knowledge about the future. Low prices and high prices

are selected from a sequence of prices in a random order by the following RP

algorithm: A price is selected as low (high) if it is less (greater) than or equal
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to a prede�ned lower (upper) bound m (M). If no price is chosen before the last

day, the last price qT must be accepted. The goal is to maximize the di�erence in

�nal ranks (the expected gain) of the selected low/high price pairs (Kao and Tate,

1999, p. 88). Single and multiple conversion problems are considered. In case of

single conversion one high/low pair must be chosen. In case of multiple conversion

the selection of arbitrarily many high/low pairs is possible. When proving the

optimality of their RP algorithm Kao and Tate (1999) assume that the inputs

(prices) come from a probabilistic source such that all inputs are equally likely.

Kao and Tate (1999) prove the optimality of their RP algorithm, and show that

for single (multiple) pair selection the competitive ratio equals 1 (4
3
).

Mohr and Schmidt (2008a,b) extended the uni-directional RP algorithm for

selling of El-Yaniv (1998) to buying and selling, i.e. introduce a rule for min-search.

The resulting bi-directional RP algorithm is: Buy the asset at the �rst price smaller

than or equal to, and sell the asset at the �rst price greater than or equal to

reservation price q∗ =
√

(M ·m). It is shown that, in terms of achieved return,

the competitive ratio c(i) = M(i)
m(i)

for each i-th trade with i = 1, . . . , p. In addition

to worst-case analysis, empirical-case analysis of the suggested RP algorithm is

done assuming di�erent settings, such as dividing the investment horizon into time

intervals of di�erent length T . The original reservation price algorithm suggested

by El-Yaniv (1998) and its extension by Mohr and Schmidt (2008a,b) is presented

in detail in Section 4.1.

Heuristic Algorithms. A large number of practitioners uses heuristic

conversion algorithms as their main method to determine buying and selling points

using reservation prices (Taylor and Allen, 1992). The performance of these RP

algorithms is usually evaluated through experiments (cf. Chapter 1). We limit

to two heuristic conversion algorithms suggested by Brock et al. (1992), namely

Moving Average Crossover (MA) and Trading Range Breakout (TRB), which are

based on technical indicators. These bi-directional algorithms are of major interest

in the literature, and the comparison to a passive buy-and-hold (BH) algorithm

is of prime interest. Brock et al. (1992, p. 1736) distinguish two variants of the

MA algorithm, namely Variable-length Moving Average (VMA) and Fixed-length

Moving Average (FMA). Both variants buy if the short MA crosses the long MA

from below, and sell if the short MA crosses the long MA from above. LetMA(S)t

be a short moving average, andMA(L)t a long moving average (S < L). The value

n ∈ {S, L}, with t > n, de�nes the number of previous data points (days) used

to calculate MA(n)t =
∑t
i=t−n+1 qi

n
. The algorithms VMA and FMA di�er in the

way their performance is measured: In case of VMA every signal is considered,

i.e. after a sell signal the RP algorithm goes out of the market or takes a short
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position (Brock et al., 1992, p. 1738, b.8). In case of FMA �xed T -day time

intervals following a buy (sell) signal are de�ned where T = 10 (Brock et al., 1992,

p. 1740, t.3). Other signals during these T -day time intervals are ignored, i.e. in

case of a buying signal a T -day long position is taken, and in case of a selling signal

a T -day short position (Brock et al., 1992, p. 1736, t.11). In other words, FMA

only carries out min-search. Brock et al. (1992) suggested di�erent variants (S, L)

of the MA algorithm: (1,50), (1,150), (5,150), (1,200) and (2,200). Further prices

might be lagged by a band δ ∈ [0.00,∞].

The TRB algorithm buys if the price cuts the local maximum price from

below, and sells if the price cuts the local minimum price from above (Brock et al.,

1992, p. 1736, t.20). The performance of TRB is calculated for �xed T -day

time intervals following a buy (sell) signal, where T = 10 (Brock et al., 1992,

p. 1742, b.7). Similar to FMA other signals during the T -day time intervals

are ignored. Local minimum prices qmint (n) = min {qi|i = t− n, . . . , t− 1} and

maximum prices qmaxt (n) = max {qi|i = t− n, . . . , t− 1} are calculated over the

past n ∈ {50, 150, 200} days. Further prices might be lagged by a band δ ∈
[0.00,∞].

Unfortunately, within the work related only empirical-case analysis is

considered. Thus, in Chapter 4.3 worst-case competitive analysis of the heuristic

conversion algorithms VMA, FMA and TRB is done. Chapter 3 presents

empirical-case analysis and work related to VMA, FMA and TRB.

2.4.2 Preemptive Conversion

Preemptive algorithms allow the search for more than one price in the time interval

to convert the asset. Typically, a speci�c fraction of the whole amount available

is converted at points of time t during T . Let st be the amount to be converted

at time t, then st ∈ [0, 1]. The only restriction is that during T an asset must

be completely converted into another asset, i.e.
∑T

t=1 st = 1, and that at most T

prices can be accepted for conversion.

Not all, but a great amount of algorithms addressed in the work related can be

classi�ed dependent on the calculation of st. If possible, we classify the algorithms

as follows:12 The class of threat-based algorithms converts di�erent amounts st ∈
[0, 1] of an asset at di�erent points of time t during the time interval of length T

(t = 1, . . . , T ) while assuming that the worst possible price occurs on day t+1. The

class of constant rebalancing algorithms converts �xed fractions st = 1
T
of an asset

at every point of time t during T . The class of risk-rewarded algorithms algorithms

12In case the classi�cation is not clear, the algorithms are presented at the beginning of the

section.
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converts di�erent amounts st ∈ [0, 1] of an asset at di�erent points of time t during

T dependent on the acceptable level of risk a ∈ [1, c]. The mount to be converted

st is calculated such that the more risk is taken, the smaller the competitive ratio

gets.

Raghavan (1992) analyze the performance of ON under a statistical restriction

on the input sequence(s) considered. Raghavan (1992) addresses a simple version

of the asset allocation problem. Here ON can invest in two assets: A risky and a

risk-free asset. Based on the observed asset prices, ON must decide at each point

of time how to divide the available wealth among these two assets. The problem

is analyzed using a statistical adversary.13

Inspired by Raghavan (1992), DeMarzo et al. (2006) design an asset allocation

algorithm to distribute the current wealth among a risky and a risk-free asset. At

each point of time t ON converts an amount st into a risky asset, and 1− st into a
risk-free asset. ON converts using di�erent assets j = 1, . . . , J , and the goal is to

achieve the performance of the best asset (OPT ). ON maintains weights ωj,t for

each j at time t and updates the weights each day. Each point of time t ON forms

a portfolio where st converted into asset j equals sj,t =
ωj,t
Wj

with Wj =
∑T

t=1 ωj,t.

The authors show how to use the proposed algorithm to price the current value of

an option.

In the following we di�er between works on uni-directional and bi-directional

search.

2.4.2.1 Uni-directional Search

Preemptive conversion algorithms for uni-directional search are presented in the

following. Here, ON is allowed to convert an asset D into asset Y but conversion

back into D is forbidden. Unfortunately, the work related is limited to guaranteeing

conversion algorithms and the performance of the algorithms is evaluated using

competitive analysis.

Chen et al. (2001) assume that the price function g(qt) and the number of days

T are known. Each `next' price qt+1 depends on the current price qt in a geometric

manner: qt/β ≤ qt+1 ≤ qt · α, where α, β > 1 (cf. the bounded daily return model

in Chen et al. (2001, p. 448)). Some initial wealth to be invested according to a

T -day investment plan is assumed. ON runs the so called balanced strategy (BAL).

Each day t, the amount to be converted st is determined by BAL such that the

performance of ON is balanced on all market downturns (downward runs). The

results of BAL are compared to constant rebalancing (CR) while carrying out

13The input sequence generated by a statistical adversary has to satisfy speci�c statistical

properties, cf. Chapter 1.
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simulation runs using daily closing prices of the Taipei Stock Exchange (TSE) for

the year 1997. BAL and CR are money-making except in September, October,

and December 1997. Overall BAL outperforms CR.

Hu et al. (2005) suggest two algorithms. The static mixed strategy depends on

T and the price �uctuation ratio ϕ = M
m
. The dynamic mixed strategy depends on

the remaining trading days T ′ = T − t + 1, ϕ, and the remaining wealth. In both

cases, at the start of each day t, ON has some initial wealth. For each observed

price qt ON converts some amount st ∈ [0, 1] of the wealth. The amount to be

invested st is (re)calculated on each day, and all remaining wealth on day T − 1

must be converted on day T . The performance of both algorithms is compared to

a special variant of CR (constant rebalancing) based on Nash Balances.14 Results

show that CR is outperformed by both algorithms on data of the China Merchants

Bank Co., Limited (CMB) for the year 2003.

Lorenz et al. (2009) assume that m and M are known. Further, the number

conversions is limited by the value u, i.e. not more than u preemptions are allowed.

Two di�erent RP algorithms are given, one for max-search and one for min-search.

It is assumed that ON may convert u ≥ 1 times (originally denoted as k-search

problem). At each point of time t it must be immediately decided whether or not

to convert one unit of the asset for the observed price qt. At the start of the `game'

u di�erent reservation prices q∗i , where i = 1, . . . , u, and u ≤ T are calculated: For

min-search q∗i = m ·
[
1 + (cmax − 1) · (1 + cmax

u
)i−1
]
, and for max-search q∗i = M ·[

1−
(
1− 1

cmin

)
·
(
1 + 1

u·cmin
)i−1

]
where cmax is a competitive ratio for max-search

and cmin a competitive ratio for min-search (Lorenz et al., 2009, pp. 280-281). The

suggested algorithm is: Accept a price qt for selling (buying) i� qt ≥ (<) q∗i . Hence,

the algorithm accepts the �rst price that is at least (lower) q∗1 for selling (buying)

to convert for the �rst time. Then the algorithm waits for the �rst price that is at

least (lower) q∗2, etc. Lorenz et al. (2009) make no assumptions on the price path

except that prices qt ∈ [m,M ]. The suggested algorithm may be forced to convert

at the last price qT of the sequence in order to meet the constraint of converting

the whole asset within T , with qT > (≤) q∗i .

Constant Rebalancing Algorithms. Constant rebalancing (CR) algorithms

are a popular method to carry out uni-directional search. A CR algorithm does

not convert the entire asset at one single point of time. Rather, a �xed fraction of

asset D is converted at regular increments across time (El-Yaniv et al., 2001, pp.

117; 135). Given J assets, the amount to be converted st = J
T
, with t = 1, . . . , T

days, and j = 1, . . . , J assets (Butenko et al., 2005, p. 9). Suppose uni-directional

14For the de�nition of Nash Balances see Rubinstein and Osborne (1994).
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preemptive conversion: Asset D is to be irreversibly converted into asset Y within

a given number of days T . Then a CR algorithm converts equal amounts of D on

each day t, i.e. st = 1
T
, with t = 1, . . . , T . Thus, the overall accumulated amount

of asset Y achieved by the CR algorithm, denoted by yT , equals

yT =
T∑

t=1

qt
T

(2.20)

=
1

T
·

T∑

t=1

qt.

The CR method ensures that an algorithm does not convert the whole asset at a

market high (low), and thus the investor regrets the decision ex-post. Instead, the

goal is to keep the same distribution of wealth among an asset from day to day,

resulting in an average price.15 In the following we give a brief overview on the

work related. CR algorithms are often used as a benchmark when empirical-case

analysis of preemptive conversion algorithms in done, see e.g. Chen et al. (2001);

Hu et al. (2005).

Constantinides (1979) �rstly demonstrate that CR algorithms are suboptimal

theoretically. Later, many empirical studies have compared CR algorithms other

conversion algorithms, and also found CR to be suboptimal.

Bertsimas and Lo (1998) derive conditions on price dynamics under which a

CR algorithm for converting j = 1, . . . , J assets minimizes the cost of execution.

Works on optimal trade execution are not discussed here, and the reader is referred

to the overview in Bertsimas and Lo (1998) and Leggio and Lien (2003).

Blum and Kalai (1999) present a CR algorithm that rebalances monthly under

transaction costs, and compare its performance to OPT . On all data sets

considered the CR algorithm achieves inferior returns to OPT but still outperforms

the market when the transaction costs are less than 2%.16 Blum and Kalai (1999)

show that rebalancing less frequently, i.e. monthly instead of daily, is bene�cial

when transaction costs are high.

Almgren and Chriss (2000); Almgren (2003) propose di�erent prede�ned

(sequences of) constant fractions st ∈ [0, 1] to be converted on each day t =

1, . . . , T . The value of st depends on assumptions on di�erent parameters, such

as risk tolerance, transaction costs, or price volatility.

Borodin et al. (2004) suggest to exploit the market volatility. The goal is to

bene�t from statistical relations between di�erent assets by `trying to learn the

winners'. The �rst approach is to learn from experts, i.e. to design a (reward-based)

15Constant rebalancing is also known as `dollar-cost averaging' or `average price trading'.
16Blum and Kalai (1999) use the data sets suggested by Cover and Ordentlich (1996);

Ordentlich and Cover (1998); Helmbold et al. (1998).
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CR algorithm which computes the weighted average of expert ratings. An update

rule is used to gradually increase the relative weights of more successful experts.

Three di�erent learning CR algorithms are presented which rebalance a portfolio

each day depending on yesterday's weighted expert advices. The second approach is

a CR algorithm that considers the market history: Two consecutive time intervals

of equal length T are considered to model statistical relations between di�erent

pairs of assets. The suggested CR algorithm takes advantage when an asset

outperforms other assets especially if this outperformance is anti-correlated with

the performance of the other assets. Thus, the CR algorithm is called AntiCor. An

experimental study of the three learning CR algorithms and the AntiCor algorithm

is presented. The results are compared to classical CR, to the bi-directional

algorithm of Cover (1991), to the universal portfolio of Cover and Ordentlich

(1996), and to BH.17 The AntiCor algorithm outperforms all algorithms.

Threat-based Algorithms. Unlike CR algorithms, threat-based algorithms

partition the amount to be converted st where each st has a di�erent value

(0 ≤ st ≤ 1) depending on the price qt o�ered to ON .

El-Yaniv et al. (1992, 2001) consider currency conversion in Forex Markets.

Dollars D must be converted into yen Y to solve the max-search problem. The

optimal performance is obtained by Algorithm 8, p. 92, commonly referred to as

the threat-based policy (El-Yaniv et al., 1992, 2001, p. 3; p. 109).

The authors develop di�erent variants of the threat-based algorithm; for each

of those variants the achievable competitive ratio c depends on the assumptions

on the a-priori knowledge about the future of ON . Four variants are suggested,

assuming:

1. Variant: Bounds M and m, and umber of days k ≤ T

2. Variant: Bounds M and m

3. Variant: Price �uctuation ratio ϕ = M
m
, and number of days k ≤ T

4. Variant: Price �uctuation ratio ϕ = M
m

are/is known. El-Yaniv et al. (1992, 2001) show that these variants of the

threat-based algorithm gain the optimal (minimum) competitive ratio, and further

suggest to repeat the uni-directional algorithm for bi-directional search. In

addition, El-Yaniv et al. (1992, 2001) and Dannoura and Sakurai (1998) addressed

the scenario where m and M , as well as the �rst price q1 are assumed to be

known. The basic rules of the threat-based strategy remain the same. The

17The bi-directional algorithm of Cover (1991) is presented in Section 2.4.2.2.
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di�erent variants of the uni-directional algorithm of El-Yaniv et al. (1992, 2001)

and Dannoura and Sakurai (1998) are presented in detail in Section 5.1.

Damaschke et al. (2009) assume m, Mt and T are known. The threat-based

algorithm of El-Yaniv et al. (1992, 2001) is improved by assuming that the upper

bound is a decreasing function of time, with Mt = M
t
, and the lower bound

m is constant. The authors theoretically derive the best achievable worst-case

competitive ratio c∗ (the lower bound) for the case search is repeated over several

downward runs. The ratio c∗ is found by computing a competitive ratio for

each downward run and then choosing the maximum as c∗ (Damaschke et al.,

2009, equation 23, p. 639). Numerical examples are presented showing that the

algorithm achieves a better (smaller) competitive ratio than the original algorithm

of El-Yaniv et al. (1992, 2001).

Risk-Rewarded Algorithms. This class of algorithms to includes a �exible risk

management mechanism to competitive analysis. This means that a forecast, in

particular a (partial) probabilistic input model, can be included. ON is allowed

to make a `forecast'. If the forecast comes true, then a better (smaller) ratio c1

than the worst-case competitive ratio cwc is achieved. Otherwise the worst-case

competitive ratio cwc holds, where c1 ≤ cwc. The result are algorithms with a

bounded loss within a pre-speci�ed tolerance.

The risk-rewarded competitive analysis contains two approaches. The �rst

approach is to allow ON to bene�t from the investors capability in correctly

forecasting the future sequence(s) of prices. The second approach is to allow the

investor to control the risk by selecting `near optimal' algorithms subject to personal

the risk tolerance.

Al-Binali (1997, 1999) extend threat-based algorithm of El-Yaniv et al. (2001)

by a framework in which investors may develop online conversion algorithms based

on their acceptable level of risk (risk tolerance), and on forecasts on price rate

�uctuations. The algorithm ON is allowed to make a `forecast'. If the forecast

comes true ON gets a competitive ratio c1, otherwise ON su�ers the worst-case

ratio cwc. The important factor is, that the risk can be controlled by a factor of

a ∈ [1, c]. Assume the forecast is that the price will increase to at least M1. ON

takes this forecast (rate M1), and the risk-tolerance factor a. If the forecast comes

true, the algorithm achieves a competitive ratio c1 = c
a
≤ c ·a, and is optimal under

the following condition: If the forecast comes not true, the worst-case competitive

ratio is not worse than cwc = c · a. In other words, in case ON takes some amount

of risk ON gets an optimal reward `for' this risk.

Iwama and Yonezawa (1999) generalize the risk-taking strategy of al-Binali

(1997) in two ways: 1) Al-Binali (1997) limited a forecast to the assumption
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that the price will increase to some level. Iwama and Yonezawa (1999) also allow

the opposite, i.e. the forecast is that the price will never decrease to some level.

2) Iwama and Yonezawa (1999) provide a scheme which enables including several

forecasts. During conversion forecasts can be `updated' (corrected). ON can make

a forecast and then `update' it by a second forecast, etc. Results show that the

suggested algorithms are not optimal for the entire investment horizon considered,

but for di�erent time intervals.

2.4.2.2 Bi-directional Search

In the following preemptive conversion algorithms for bi-directional search are

presented. Here, an algorithm on is allowed to convert an asset D into another

asset Y , and back into D within one time interval. The work related is only

comprised of guaranteeing conversion algorithms.

Cover (1991) investigates the portfolio selection problem. An algorithm that

dynamically determines the amount of asset D to be converted st among J di�erent

assets j = 1, . . . , J is presented. The goal is get the maximum value of asset D

after time T based on the market history.

Threat-based Algorithms. El-Yaniv et al. (1992, 2001) assume M and m to

be known and consider run search. ON divides the time series of prices into upward

runs and downward runs, and then repeats the uni-directional algorithm suggested

by El-Yaniv et al. (1992, 2001). Within one time interval of length T asset D is

converted into asset Y if the price is moving up, and Y into D if the price is

moving down. Though the uni-directional algorithm proposed in El-Yaniv et al.

(1992, 2001) is shown to be optimal, the bi-directional algorithm is not. Therefore,

the problem of designing an optimal threat-based algorithm for bi-directional search

remains unanswered (El-Yaniv et al., 1992, p. 7). The bi-directional algorithm is

presented in detail in Section 5.2.

Chou et al. (1995) provide a framework to analyze the bi-directional algorithm

of El-Yaniv et al. (1992, 2001) considering a statistical adversary, i.e. by allowing

only certain input distributions.

Dannoura and Sakurai (1998) improve the bi-directional algorithm suggested

by El-Yaniv et al. (1992). The authors use the fact that the uni-directional

algorithm of El-Yaniv et al. (1992) induces an optimal algorithm for bi-directional

search under certain restrictions on the sequence of prices, such that the

price increases from m, then drops again to m, and repeats such �uctuations

(Dannoura and Sakurai, 1998, Figure 2, p. 30). As El-Yaniv et al. (1992)

suggested, the improved uni-directional algorithm is repeated for bi-directional
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search. Dannoura and Sakurai (1998) claim that an investor using the algorithm

of El-Yaniv et al. (1992) faces too much of a threat and therefore make the threat

smaller. The threat assumed by El-Yaniv et al. (1992) is that the price might drop

to m and will remain there until the last day T . Dannoura and Sakurai (1998)

observed that the algorithm suggested by El-Yaniv et al. (1992) does not convert

at all unless the price is as large as c·m, i.e. the `real' threat is at most c·m (notm)

and shall not go beyond this point. Dannoura and Sakurai (1998) prove that their

proposed threat-based algorithm achieves a better worst-case competitive ratio

than the algorithm of El-Yaniv et al. (1992). The improved bi-directional algorithm

suggested by Dannoura and Sakurai (1998) is presented in detail in Section 5.3.

In case the input data processed by an online conversion algorithm does not

represent the worst-case input, its performance is often considerably better than the

worst-case competitive ratio tells. For this reason competitive analysis is criticized

as being too pessimistic (see, for example, Koutsoupias and Papadimitriou, 2000).

Hence, the traditional approach to analyze online conversion algorithms is

backtesting. The algorithms are implemented, and the analysis is done on historic

data by simulation runs. Empirical-case analysis of online conversion algorithms is

presented in the next chapter.
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Chapter 3

Empirical Analysis of Online

Conversion Algorithms

This chapter gives an approach to empirically analyze online conversion algorithms.

First, we present the idea of backtesting and introduce stylized facts. Then we

present exploratory data analysis and provide the steps how to empirically analyze

online conversion algorithm using this data analysis approach. We give the work

related relevant for each step. Further, we focus on hypothesis testing and present

the resampling method bootstrapping. The chapter concludes with an overview on

heuristic conversion algorithms analyzed using hypothesis tests and/or a bootstrap

procedure.

3.1 Introduction

There is a lack of consensus on a generally accepted performance evaluation model

for online conversion algorithms. Several approaches exist, most common is to

analyze the performance of ON using returns, or by di�erent measures estimating

(risk) adjusted returns (Tezel and McManus, 2001, pp. 177-181). We suggest

evaluate the quality of ON by the three following criteria:

1. The worst-case competitive ratio cwc assuming the worst possible sequence of

inputs,

2. the empirical-case performance (in terms of the return to be expected µ) on

an observed time series of prices, and

3. the empirical-case competitive ratio cec on an observed time series of prices.

Classical (worst-case) competitive analysis, as presented in Chapter 2, derives the

cwc of ON assuming a constructed worst-case time series of prices. In contrast,
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classical empirical-case analysis considers an observed time series of prices, and

carries out experiments on this data set, e.g. using historical data. On the one

hand µ is derived, and on the other hand cec. In order to clarify the di�erence

between the above three criteria suppose two di�erent online conversion algorithms,

denoted by A1 and A2. Both algorithms ON ∈ {A1, A2} solve the search for best

prices as presented in Section 2.2, Algorithm 1, p. 27. The question is how to

decide which is the better algorithm.

The worst-case competitive analysis approach is to evaluate A1 and A2 on

a constructed data set representing the worst-case scenario. To decide which is

the better algorithm, each algorithm ON ∈ {A1, A2} is compared to OPT by

calculating its worst-case competitive ratio cwc as given in equation (2.19). The

algorithm which achieves the smaller cwc, is considered as the better one. If the

worst-case occurs ON is then guaranteed 1/cwc of the result achieved by OPT (cf.

equation (2.1)). A great deal of literature focuses on the worst-case performance

analysis of online conversion algorithms; an overview can be found in Section 2.4.

The leading experimental approach to decide which algorithm ON ∈ {A1, A2}
is the better one is backtesting. The aim of backtesting is to make assumptions

about the future performance of an algorithm (in terms of µ) based on its

performance in the past. A1 and A2 are run on data sets comprised of historical

time series of prices.18 The empirical-case performance of ON is measured in

terms of the overall (excess) return generated.19 The algorithm which achieves

a (signi�cantly) higher return is considered as the better one. Typically, ON is

compared to a passive benchmark algorithm (B), and not to OPT (see for example

Zontos et al., 1998; El-Yaniv et al., 1999; Schulenberg and Ross, 2002; Shen, 2003;

Siganos, 2007; Larsen (Jr.) and Resnick, 2008; Chavarnakul and Enke, 2008).

To test for signi�cance, the (distributions of the) returns generated by ON ∈
{A1, A2, B} are analyzed statistically, e.g. using hypotheses tests (Brock et al.,

1992). Based on these statistical results a decision is taken which algorithm ON is

the `best' one, and thus should be applied in practice as it generates the `highest'

(excess) return (resp. µ): It is assumed that the return generated in the past can

be expected in the future. A great deal of experimental studies in the literature use

this standard approach, especially in the �eld of heuristic conversion algorithms;

an overview is given at the end of this chapter.

Following the above experimental approach, di�erent algorithms are either

compared directly to each other, or to a benchmark algorithm. This approach might

18We do not consider arti�cial stock markets, an overview can be found in Palmer et al. (1994);

LeBaron et al. (1999).
19An excess return is the amount by which the return of ON is greater than the risk-free rate

of return over a time interval of length T .
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be misleading. When comparing the algorithms directly to each other a mutual

basis of comparison is missing, and when comparing to a benchmark, B might not

be suitable. This problem is solved by the competitive analysis approach presented

in Chapter 2. Each ON is compared to OPT , and the worst-case competitive

ratio cwc determines the quality of ON . But this approach is often considered

to be too pessimistic as � instead of an observed historic time series of prices �

worst-case scenarios are assumed. We suggest to solve this problem by calculating

the empirical-case competitive ratio cec which takes the data of the problem instance

into account.

The empirical-case competitive ratio cec is calculated in the same manner as the

worst-case competitive ratio cwc. But instead of a constructed worst-case time series

of prices the data set used in the experiments is considered. To decide which is the

better algorithm, the observed performance of ON ∈ {A1, A2, B} is compared to

OPT through backtesting. The quality of ON is determined by cec (cf. equation

(2.19)) and by µ. The algorithm which achieves the smallest (highest) cec (µ) is

considered as the `best' one.

Each of the above three criteria is useful when evaluating online conversion

algorithms but in case they are used independently the results might be misleading.

When considering an online conversion algorithm for practical application,

worst-case performance guarantees are essential, e.g. in case of a stock market

meltdown. But in terms of converting assets the worst-case competitive ratio cwc

does not reveal which returns can be expected, nor whether these returns are

positive or not. Hence, experiments should be carried out. An elegant solution

is to combine the competitive analysis approach with the experimental approach

when analyzing online conversion algorithms. On the one hand, the worst-case

performance of ON is determined and analyzed mathematically. On the other

hand, the empirical-case competitive ratio cec and the return to be expected µ

are essential to determine whether ON is considerably better than the pessimistic

worst-case competitive ratio cwc tells. Thus, we suggest the following approach:

1. Step: Analyze ON assuming a worst-case sequence of prices, and analytically

derive its worst-case competitive ratio cwc.

2. Step: Implement and backtest ON (in a su�cient test environment) using

historical time series of prices.

3. Step: Determine the return to be expected µ from ON . Analyze the

empirical-case performance of ON compared to a benchmark B for the

purpose of formulating hypotheses worth testing, and test these hypotheses

statistically.
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4. Step: Determine and analyze the empirical-case competitive ratio cec of ON .

5. Step: If necessary, carry out further experiments on di�erent data sets in

order to evaluate the empirical-case performance achieved by ON on the

original data set.

How competitive analysis analysis of ON (1. Step) is done is shown in Chapter 2.

Experimental analysis according to steps 2. to 5. is presented in the following.

3.2 Backtesting and Stylized Facts

The implementation and simulation of an online conversion algorithm, also known

as backtesting, is the concept of taking ON and going back in time in order to see

what would have happened if ON had been followed (Ni and Zhang, 2005). The

assumption is that if ON has performed well previously, it has a good (but not

certain) chance of performing well again in the future. Conversely, if ON has not

performed well in the past, it will probably not perform well in the future.

The backtesting of online conversion algorithms is important for practitioners

as well as researchers to judge if ON is pro�table under certain circumstances. It

helps to `learn' how ON is likely to perform in the marketplace, and also provides

the opportunity to improve ON . The purpose of the backtesting is to answer the

following questions:

1. Is ON pro�table when applied to certain stocks and time intervals?

2. If ON generates (excess) returns for a certain stock, for what parameter

values ON achieves the highest ones?

3. Can these parameter values also generate a reasonable (excess) returns during

future time intervals?

The outcome of a backtesting procedure are the returns generated by ON . In

general, when converting assets, discrete (time interval) returns and continuous

returns must be distinguished (Spremann, 2006, pp. 410-411).20 Let qt be the

price of an asset on day t, then for a time interval i of length T days, the discrete

return equals

Rt(i) =
qt
qt−T

(3.1)

assuming T < t. Each time interval i = 1, . . . , p is initiated by a buying transaction

at price qt−T , and terminated by a selling transaction at price qt. Thus, at the end

20Discrete returns are also called holding period or time interval returns.
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of the investment horizon overall p trades (equaling the overall number of time

intervals) are carried out. Most common is T = 1, resulting in the daily return

Rt(i) =
qt
qt−1

, (3.2)

and the percentage return is calculated by Rt(i)− 1.

When calculating the empirical-case competitive ratio cec of an algorithm X ∈
{ON,OPT}, the time interval return of X for each i-th trade is required. Thus,

equation (3.1) equals equation (2.9), p. 34. Further, from equation (3.1) we get

the continuous return

rt(i) = lnRt(i) (3.3)

= ln qt − ln qt−T .

Equations (3.1), (3.2) and (3.3) calculate the returns of single time intervals i. The

return of an algorithm X ∈ {OPT,ON} over multiple time intervals p must be

calculated in a geometric manner using equation (3.2); denoted as geometric return

RX(p) = Rt(i) ·Rt−1(i) · . . . ·Rt−p+1(i) (3.4)

=
qt
qt−1

· qt−1

qt−2

· . . . · qt−p+1

qt−p
,

and for a constant time interval length T

RX(p) =

p∏

i=1

qt(i)

qt−T (i)
. (3.5)

Using discrete returns, we get the overall logarithmic return

rX(p) = ln (Rt(i) ·Rt−1(i) · . . . ·Rt−p+1(i)) (3.6)

= lnRt(i) + lnRt−1(i) + . . .+ lnRt−p+1(i)

= rt(i) + rt−1(i) + . . .+ rt−p+1(i)

= lnRX(p).

In case continuous returns rt(i) are used, they can simply be added to get the

logarithmic return rX(p) over multiple time intervals (instead of multiplying the

discrete returns Rt(i) to get the geometric return RX(p)). But continuous returns

rt(i) su�er from a drawback: They can not be used to calculate portfolio returns.

Let ωj be the weight of an asset j = 1, . . . , J within a portfolio, then

ω1 · lnR(1,t)(i)+ . . .+ωJ · lnR(J,t)(i) 6= ln
(
ω1 ·R(1,t)(i) + . . .+ ωJ ·R(J,t)(i)

)
. (3.7)

The logarithmic return over multiple time intervals p can not be calculated directly

by the continuous return of single time intervals i = 1, . . . , p. Thus, we use the

geometric return, as given in equation (3.4), within this work.
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Trading systems enable a user to develop and backtest online conversion

algorithms. Simple algorithms are relatively easy to implement and test. But the

more complex the investigated algorithms get, the more data must be processed.

Further, some algorithms use multiple stocks, and even multiple markets. All

these factors make backtesting very time-consuming, and many ready-for-use

commercial products become incapable of dealing with them (Ni and Zhang, 2005,

p. 127). Thus, within this work, we use the LifeTrader system as it provides the

required functionality for backtesting the considered online conversion algorithms.

LifeTrader is a PES (planning and execution system) developed at the Saarland

University; an overview on its functionality can be found in Kersch and Schmidt

(2011). Further, the above suggested steps to evaluate an algorithm are covered

by the LifeTrader system.

The aim of backtesting is to make assumptions about the return to be expected

µ based on the performance of ON in the past. In the work related it is assumed

that future asset returns are independently distributed random variables drawn

from the same probability distribution. Further, it is assumed that the returns

generated by ON are normal distributed (Spremann, 2006, p. 123). Within this

work, we assume that these assumptions are close to reality, but must not always

be true for a speci�c data set considered. Thus, when empirically analyzing the

performance of ON the properties of the discrete returns generated by ON � in

case the algorithm is invested � must be analyzed. These properties are called

`empirical stylized facts', and characterize a data set from a statistical point of

view. Stylized facts are usually formulated in terms of qualitative properties of

daily returns Rt(i) calculated using equation (3.2) (Cont, 2001, p. 224). The

stylized facts are summary statistics, and contain (Brock et al., 1992, p. 1737):

1. The number p � also known as the sample size,

2. the arithmetic mean

r̄ =
1

p
·

p∑

i=1

Rt(i), (3.8)

3. the standard deviation

σ =

√√√√ 1

p− 1
·

p∑

i=1

(Rt(i)− r̄) (3.9)

de�ned as the square root of the variance σ2,

4. the skewness

γ =
p

(p− 1) · (p− 1)
·

p∑

i=1

(
Rt(i)− r̄

σ

)3

, (3.10)
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5. the kurtosis

β =

[
p · (p− 1)

(p− 1) · (p− 2) · (p− 3)
·

p∑

i=1

(
Rt(i)− r̄

σ

)4
]
− 3 · (p− 1)2

(p− 2) · (p− 3)

(3.11)

of the observed daily returns (Spremann, 2006, Formula (5-12), (5-13) and (5-14)).

The arithmetic mean r̄ is commonly used as the estimator for the (unknown) return

to be expected µ in the future. The standard deviation σ shows the variation from

the mean r̄. A low standard deviation indicates that the observed returns tend to

be very close to the mean r̄, whereas a high standard deviation indicates that the

returns are spread out over a large range of values.

The skewness γ measures the (a)symmetry in the probability distribution of

the observed returns. In case of normal distributed data γ = 0. In case γ > 0

(positive skewness) the right tail of the distribution is longer, i.e. the mass of the

distribution is concentrated on the left, and relatively few high returns exist. In

case γ < 0 (negative skewness) the left tail of the distribution is longer, i.e. the

mass of the distribution is concentrated on the right, and relatively few low returns

exist. Figure 3.1 gives an example for positive skewness and r̄ = 0 in case of a

normal distribution.

Figure 3.1: Positive Skewness

The kurtosis β measures with which probability extremely low or extremely

high returns might occur. In case of normal distributed data β = 3.21 In case

21The excess kurtosis is de�ned as β − 3, i.e. the excess kurtosis of the normal distribution

equals 0.
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β > 3 (leptokurtosis) both tails of the probability distribution are `fat', i.e. the

mass of the distribution is concentrated on the left and on the right. Relatively

may high and low returns exist. Figure 3.2 gives an example for r̄ = 0.

Figure 3.2: Kurtosis

The stylized facts, especially the skewness and the kurtosis, are used to

check the assumption that the returns generated by ON are normal distributed.

The Jarque-Bera (JB) test is a non-parametric hypothesis test to check the

null hypothesis H0 that `the returns achieved by ON are normal distributed'

(Jarque and Bera, 1987). In particular two hypotheses are tested, the �rst one

is that γ = 0, and the second one is that β = 3. In case the value of β (γ) is `not

close enough' to 3 (0) H0 is rejected. The range of tolerance not to reject H0 is

given by the variances of γ and β. For the skewness the variance equals 6
p
, and for

the kurtosis 24
p
(Spremann, 2006, p. 145).

Within this work as data set we consider the German Dax-30 index for the

investment horizon 01-01-1998 to 12-31-2007, resulting in T = 2543 closing prices.

We refrained from considering the year 2008 as it marks a major structural

break in the markets worldwide. The common benchmark algorithm when

backtesting online conversion algorithms is a passive buy-and-hold algorithm (BH)

(Brock et al., 1992).

Example 2. The stylized facts of the daily returns achieved by BH for the 10-year

sample 1998-2007 are given in Table 3.1. As BH is invested in the Dax-30 index

from the �rst trading day (01-02-1998) until the last day trading (12-28-2007) of

the investment horizon we get a sample size of p = T − 1 daily returns. Using the
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Sample Size Mean Standard Deviation Skewness Kurtosis

p r̄ σ γ β

2542 1.0004 0.0157 -0.0676 5.7064

Table 3.1: Stylized facts of the German Dax-30 index for 1998-2007

values given in Table 3.1 a JB test is performed. Results show that H0 must be

rejected, i.e. the daily returns of BH are not normal distributed.

Summing up, stylized facts give the qualitative properties of the analyzed

returns. As shown in Example 2 the common assumption of normal distributed

data must not always be true. Instead of making assumptions on the underlying

structure of the data set considered our goal is to `let the data speak for themselves'

as much as possible. As a result, the approach to empirically analyze online

conversion algorithms must be exploratory. To solve a problem, the exploratory

data analysis (EDA) technique makes (little or) no assumptions on the data.

Rather, results are immediately analyzed with the goal to infer what model would

be appropriate. The EDA approach allows the data to suggest models that �t

best.

3.3 Exploratory Data Analysis

Two popular data analysis approaches are (Hoaglin et al., 2000):

1. Bayesian Analysis, and

2. Exploratory Data Analysis (EDA).

These approaches are similar in that both start with a problem, and both yield

conclusions. The di�erence lies in the sequence of processing the input data in

order to solve the problem. The following elements are covered by both data

analysis approaches: 1) Problem � the performance of ON , 2) Data � the returns

generated by ON on the considered time series of prices, 3) Stochastic Model � an

abstraction of reality; the stochastic process generating the data 4) Distribution

� the (assumed) underlying structure of the data, 5) Analysis � the discussion of

the data, 6) Conclusions � the inference on the performance of ON . For Bayesian

Analysis the sequence of processing the input data is

Problem→ Data→ Stochastic Model→ Prior Distribution→ Analysis

→ Conclusions
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To solve a problem, data collection is followed by the imposition of a model

(assumed) to �t the input data. The analysis that follows is focused on the

parameters of that model. Further, assumptions about the distribution of the

input data are made, or the distribution of the input data is known beforehand.

The objective is to compute and analyze the empirical-case performance of ON

under `typical inputs' with respect to these stochastic assumptions. Unfortunately,

most currently existing models fail to reproduce the underlying data structure

(Cont, 2001, p. 233). Thus, the `Bayesian' approach is criticized from

both a technical, and a conceptual perspective. Technically, for many real-life

problems, an adequate stochastic model is extremely di�cult or costly to devise.

Conceptually, the validity of the conclusions becomes dependent on the validity

of the underlying (distributional) assumptions (El-Yaniv et al., 1999). Worse yet,

the exact underlying assumptions may be unknown, or if known, untested. For

this reason the `Bayesian Analysis' approach is not considered here (cf. Section

1.1). Instead, we focus on exploratory data analysis (EDA). The main di�erence

is that the distribution and the stochastic model are derived from the data, and not

assumed a-priori. Thus, for Exploratory Data Analysis the sequence of processing

the input data is

Problem → Data → Distribution → Analysis → Stochastic Model →
Conclusions

In case online conversion algorithms are evaluated using EDA the focus is not on

the process or model generating the data, but on the analysis of the data generated

by ON . EDA is used analyze the computed empirical-case returns, and to suggest

how to further analyze them. A variety of graphical and quantitative techniques

might be employed in order to

� maximize the insight into the returns generated, e.g. to detect outliers and

anomalies,

� assess assumptions on the stochastic model,

� uncover underlying data structures, e.g. distributions,

� support the selection of appropriate statistical tools and techniques for further

analysis,

� suggest hypotheses to test (statistically) based on the returns generated,

� provide a basis for further data collection through experiments, e.g. by

resampling methods like bootstrapping.
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The EDA approach an attitude (philosophy) about how data analysis should be

carried out. The stylized facts of an algorithm give an insight into the returns

generated, and uncover the underlying structure of the achieved returns. This

enables to select the appropriate statistical tools for further analysis, i.e. the

adequate statistical test. The returns generated are analyzed for the purpose

of formulating hypotheses worth testing. This distinguishes EDA from classical

hypothesis testing, which requires a-priori formulated hypotheses (Oldenbürger,

1996, pp. 71-72). Hypothesis tests are used to decide which algorithm under

investigation is the better one on a speci�c time series of prices. In case the

chosen hypothesis test does not provide a result, i.e. there is no statement possible

which algorithm is the better one, further data sets must be considered. In the

following we present two standard approaches from the literature used to evaluate

the performance of an online conversion algorithm. First, we present the student

t-test for testing hypotheses, and second the bootstrapping procedure for generating

further data sets if required.

3.3.1 Hypothesis Testing

Before describing the student t-test in detail we �rst give some preliminaries on

statistical tests. A statistical test which uses hypotheses is called hypothesis test.

Two types of hypothesis tests exist (Cont, 2001, p. 223):

1. Parametric tests: Assume that the data to be analyzed belongs to a

prespeci�ed parametric family, for example require a certain distribution.

2. Non-parametric tests: Make only qualitative assumptions about the

properties of the stochastic process generating the data, for example the JB

test.

Cont (2001) states that non-parametric tests have the great theoretical advantage

of being model-free, but in a �nancial context they can only provide qualitative

information about a data set under investigation. Thus, non-parametric tests are

less exact, and should only be used when parametric tests are not applicable.

A statistical hypothesis is a statement about the properties of one or several

random variables, e.g. about the stylized facts or the distribution of the returns

generated by ON . To con�rm a hypothesis statistically a co-called null hypothesis

(H0) is de�ned which must to be rejected in order to con�rm the (alternative)

hypothesis (H1) indirectly. Two types of hypotheses, based on the parameters of a

distribution, can be distinguished:

1. Two-tailed: It is tested whether two parameter values are equal (unequal),

e.g. H0 : µ1 = (6=) µ2 must be rejected.
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2. One-tailed: It is tested whether one parameter value is greater (smaller) than

or equal to another parameter value, e.g. H0 : µ1 ≥ (≤) µ2 must be rejected.

A null hypothesis H0 can not be con�rmed or rejected with certainty. Therefore

a signi�cance level α ∈ [0, 1] has to be speci�ed. The value of α describes the

amount of evidence required to accept that an event is unlikely to have occurred by

chance. The smaller the chosen signi�cance level, the fewer the null hypothesis H0

is rejected. The most established signi�cance levels are 5% (0.05), 1% (0.01), and

0.1% (0.001). Next we present the student t-test as the standard parametric test

applied by almost all the contributions to empirical evaluation methods for online

coversion algorithms in the literature (Brock et al., 1992; Mills, 1997; Hudson et al.,

1996; Gunasekarage and Power, 2001).

Student t-test

The (student) t-test is a parametric one-tailed two-sample hypothesis test to show

that the mean of one sample (of returns) is signi�cantly greater than the mean of

another sample. The t-test implies the following assumptions regarding the sample

under consideration, i.e. the returns generated by ON :

1. The returns generated by ON are (stochastically) independent, to be tested

by the Ljung-Box test (Ljung and Box, 1978).

2. The underlying distribution of the returns under consideration is normal, to

be tested by the JB test (Jarque and Bera, 1987).

3. The variances of the returns are homogeneous, to be tested by the Bartlett

test for normal distributed samples, otherwise by the Levene test (Levene,

1960; Layard, 1973).

These assumptions have to be met if the t-test is to be valid. Within this work we

do not discuss these limitations of the t-test, the reader is referred to Kumar et al.

(1997, p. 341) and Wol�nger (1996, pp. 207-208). Further, we do not present the

tests to verify the 1. and 3. assumption. The reader is referred to Levene (1960);

Layard (1973) and Ljung and Box (1978).

The test statistic Γ used by the t-test follows a t-distribution if H0 is not

rejected. The shape of the t-distribution is speci�ed by the degrees of freedom

v, and passes into the standard normal distribution with increasing v. Thus, a

normal distribution can be assumed in case the sample size p is greater than 30. In

case the variances of the two samples are not equal an alternative to the t-test is the

Welch-test. The only di�erence between the two-sample t-test and the Welch-test

is the di�erent calculation of v and Γ (Welch, 1947; Satterthwaite, 1946).
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The t-test algorithm for evaluating the performance of ON is given in the

following. The t-test is signi�cant when H0 : µ1 ≤ µ2 is rejected at a signi�cance

level of α%. The value µ1 and µ2 specify the returns to be expected from

ON ∈ {A1, B}, which are normally unknown. Therefore, when analyzing the

performance of the two algorithms the means of the observed discrete returns

generated by A1, denoted by r̄1, and generated by B, denoted by r̄2, must be

used. To answer the question whether A1 is signi�cantly better than a benchmark

B through backtesting, the values of r̄1 (with sample size p1) and r̄2 (with sample

size p2) are calculated using equation (3.8), compared, and their di�erence is tested

for signi�cance using t-test. The steps of the t-test algorithm are (Ruppert, 2004,

p. 64):

Algorithm 2.

Step 1: Specify the level of signi�cance α in %.

Step 2: Formulate the one-tailed null hypothesis: It is tested whether µ1 is

signi�cantly greater than µ2 (H0 : µ1 ≤ µ2 must be rejected).

Step 3: Specify two samples (P1, P2) and determine their size (p1, p2): Usually

samples are comprised of (discrete) returns generated by A1 and B.

Step 4: Calculate the arithmetic mean r̄1 of P1 and r̄2 of P2 using equation (3.8).

Step 5: Calculate the variances σ2
1 of P1 and σ2

2 of P2 by squaring the standard

deviation given in equation (3.9), and test for variance homogeneity.

When the variances are equal:

Step 6a: Calculate the degrees of freedom

v = p1 + p2 − 2. (3.12)

Step 7a: Calculate the test statistic

Γ =
r̄1 − r̄2√

(p1−1)·σ2
1+(p2−1)·σ2

2

v
·
(

1
p1

+ 1
p1

) . (3.13)

When the variances are not equal:

Step 6b: Calculate the degrees of freedom

v =



(
σ2
1

p1
+

σ2
2

p1

)2

(
σ2
1
p1

)2

p1−1
+

(
σ2
2
p2

)2

p2−1

 . (3.14)
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Step 7b: Calculate the test statistic

Γ =
r̄1 − r̄2√
σ2
1

p1
+

σ2
2

p1

. (3.15)

Step 8: Calculate critical value tcr = tv1−α from the t-distribution.

Step 9: Take a decision; if

1) Γ ≥ tcr then H0 is rejected,

2) Γ < tcr then H0 can not be rejected.

That H0 can not be rejected does not signify H1 is valid; backtesting on further

time series of prices is essential in case Γ < tcr. The result of Algorithm 2 then

is that there is no statement possible on the performance of A1. This might be

due to sample problems, or the implied t-test assumptions are violated. The t-test

is robust, meaning it is quite insensitive to deviations from normality in the data.

The most serious sample problem is that the variances are not homogeneous, called

heteroskedasticity, meaning that the volatility of the returns evolves over time

(Ruiz and Pascual, 2002, p. 1). To deal with this problem a number of recent

papers has suggested to use resampling methods to generate further data sets

for backtesting. The most common method is the so-called bootstrap procedure

as it is robust to heteroskedasticity (Tabak and Lima, 2009, p. 816). Further,

bootstrapping is a way of �nding the `most likely' sample distribution by generating

many new random samples from the original sample. In the following we present

the bootstrap procedure.

3.3.2 Resampling: The Bootstrap Procedure

Hypothesis testing using a t-test rests on the implied t-test assumptions. In case

these assumptions are violated � when evaluating ON � the bootstrap idea is based

on asking: `What would happen if we applied ON many times?'.

Efron (1979) suggested the name `bootstrap procedure' (Wu, 1986, p. 1265).

The main idea of a bootstrap procedure is to resample new data sets from the

original sample creating S bootstrap samples of the same size as the original

sample: S samples are created by repeatedly sampling with replacement. Sampling

with replacement means that after an observation is randomly drawn from the

original sample it is `put back' before drawing the next observation. This classic

bootstrap procedure suggested by Efron (1979) is the simplest version, and only

valid for identically distributed data. If this assumption is violated, or in case the

classic procedure is applied directly to dependent data, the resampled data will not

preserve the properties of the original data set. As a result inconsistent statistical
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results are provided (Ruiz and Pascual, 2002, p. 3). Consequently, alternative

approaches have been developed.

Künsch (1989) proposes the Moving Block Bootstrap (MBB) that divides

the original data set into overlapping blocks of �xed length, and resamples

with replacement from these blocks. Within this work, we limit to the MBB

procedure, for an overview on other bootstrap approaches the reader is referred

to Ruiz and Pascual (2002). The MBB is a widely used non-parametric approach

preserving the properties of the original data set (Künsch, 1989; Hall et al., 1995;

Levich and Thomas, 1993; Tabak and Lima, 2009). Let S be the number of

bootstrap samples to be generated, with i = 1, . . . , S. Let l be the block size

(1 ≤ l ≤ S), and bl(i) = {xt, . . . , xt+l−1} a block formed with l consecutive

observations beginning with xt. Where b equals the number of blocks, with

i = 1, . . . , b. When evaluating the performance an online conversion algorithm

the length of the original data set T equals the number of prices qt, and results in

T − 1 daily returns within each i-th time interval (i = 1, . . . , p). Then, the MBB

algorithm for resampling T − 1 daily returns Rt(i) generated by ON is comprised

of the following steps (Hall et al., 1995; Tabak and Lima, 2009):

Algorithm 3.

Step 1: Determine the optimal block size l∗ according to the rule given in Hall et al.

(1995).22

Step 2: Calculate the number of blocks b = S
l
to be resampled.

Step 3: Split the sample of observed returns into S − l + 1 overlapping blocks

bl(i) = {Rt(i), Rt + 1(i), . . . , Rt+l−1(i)}.
Step 4: Resample the blocks bl(i) with replacement generating S new bootstrap

samples of length T .

Step 5: Calculate S `pseudo' time series of prices from the resampled (blocks of)

returns using S randomly chosen �rst prices q′1(i) ∈ [qmin(i), qmax(i)] as a starting

value, and qt = Rt(i) · qt−1 for t = 2, . . . , T and i = 1, . . . , p.

It is assumed that the blocks bl(i) are iid random variables with conditional

probability ρ(bl(i)) = 1
S−l+1

(Tabak and Lima, 2009, p. 817). Further, Hall et al.

(1995) show that the optimal block size l∗ depends signi�cantly on the context,

being equal to 3
√
T − 1, 4

√
T − 1 and 5

√
T − 1 in the cases of variance or bias

estimation, estimation of an one-sided distribution function, and estimation of a

two-sided distribution function, respectively. The result of a bootstrap procedure

are S `pseudo' time series. On each i-th bootstrap sample algorithms X ∈
22For l∗ = 1 the MBB is similar to the classic bootstrap procedure suggested by Efron (1979).
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{OPT,ON} are run, and the resulting in S arithmetic means r̄(i)X are commonly

used as the estimator for the (unknown) rate of return to be expected µX in

the future, with i = 1, ..., S. Thus, a typical bootstrap procedure to evaluate

an algorithm X ∈ {OPT,ON} requires to:

1. Randomly resample from the original sample, creating S bootstrap samples

of the same size as the original sample, according to Algorithm 3.

2. Run algorithm X on each of the S bootstrap samples to get S di�erent

arithmetic means r̄(i)X for each algorithm X.

3. Statistically evaluate the performance of algorithm X on each of the S

bootstrap samples according to Algorithm 2.

4. Combine the S statistical t-test results into one summary statistic for each

algorithm X.

5. For each algorithm X estimate the return to be expected µX by calculating

the mean r̄SX of all arithmetic means r̄(i)X , with i = 1, . . . , S.

The distribution of the i = 1, . . . , S di�erent arithmetic means r̄(i)X per algorithm

X shows the `most likely' stylized facts, and the `most likely' performance of OPT

and ON . Summing up, when analyzing the empirical-case performance of an

algorithmX the bootstrap procedure can be used to estimate the true but unknown

(Ruiz and Pascual, 2002, p. 2)

1. distribution, or

2. probability distribution

of the population of the returns r̄(i)X generated by algorithm X ∈ {OPT,ON}
from which the return to be expected µX can be estimated through r̄SX . This

ensures that the online conversion algorithms considered are compared S times on

a mutual basis.

In the following we give an overview on online conversion algorithms evaluated

using stylized facts, hypothesis testing as well as a bootstrap procedure.

Unfortunately, the work related is limited to heuristic conversion algorithms. By

carrying out Algorithm 2 and Algorithm 3 the question whether the (back) tested

algorithms have predictive ability or not is to be answered. Most authors study

the E�cient Market Hypothesis (EMH): The EMH states that in a (weakly)

e�cient �nancial market returns are not predictable (cf. Section 1.3.1). The

predictability of returns is usually measured by the �rst-order autocorrelation

coe�cient, measuring the similarity between observations as a function of the time
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separation between them. If a su�ciently large proportion of all traders acting in a

stock market behave `irrationally', then the stock prices can, at least temporarily,

deviate from economic fundamentals (DeLong et al., 1990). This deviation of stock

prices from economic fundamentals can imply autocorrelation and, hence, the

predictability of returns: Repeating price patterns occur. Returns to be expected

µX are considered to be `predictable' in the sense that it is possible to forecast

returns in a particular time interval by using the returns observed in a previous

time interval (Pierdzioch, 2004). In addition, most authors employ a bootstrap

procedure to test for predictability.

3.4 Literature Review

We limit our overview to the two heuristic conversion algorithms suggested in

the work of Brock et al. (1992), namely Moving Average Crossover (MA) and

Trading Range Breakout (TRB). Brock et al. (1992, p. 1736) distinguish two

variants of the MA algorithm, namely Variable-length Moving Average (VMA)

and Fixed-length Moving Average (FMA). The de�nition of VMA, FMA and

TRB can be found in Section 2.4.1.2. These three bi-directional algorithms are

of major interest in the literature, and have been analyzed experimentally by

several researchers (Vanstone and Finnie, 2009, p. 6673). Here, the comparison

to a passive buy-and-hold (BH) algorithm (as benchmark B) is of prime interest

using either hypothesis tests, a bootstrap procedure or both. The deviation of

stock prices from economic fundamentals is measured in terms of the return to be

expected: µON of ON ∈ {VMA,FMA, TRB} is estimated and compared to µB

of benchmark B through backtesting. The predictive ability of ON is based on

the assumption that if H0 : µON ≤ µB is rejected, there is good (but not certain)

chance that ON performs better than algorithm B again in the future. In case

results show that the (excess) returns generated by ON are not signi�cant, this

suggests that predictability is not economically signi�cant.

Brock et al. (1992) suggest the algorithms VMA, FMA and TRB and conduct

experiments with a price-weighted index on an investment horizon of approximately

90 years from the �rst day 1897 to the last day 1986 (exactly 25036 trading days)

using the Dow Jones Industrial Average (DJIA) index (Brock et al., 1992, p. 1734).

Experiments are carried out for �ve di�erent time intervals of length T :

1. January 1897- December 1986 (`90 Years') , T=25036,

2. January 1897 - July 1914 (`World War I'), T=5255,

3. January 1915 - December 1938 (`Depression'), T=7136,
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4. January 1939 - June 1962 (`World War II'), T=6442,

5. July 1962 - December 1986 (`Data Availability'), T=6155.

DJIA buy-and-hold (BH) is the benchmark considered, called `unconditional

returns'. The performance is measured using logarithmic returns (cf. equation

(3.6)) as they are time additive and approximate discrete returns if calculated on

a daily basis (Brock et al., 1992, p. 1737). The returns on buy (sell) signals on the

DJIA are compared to returns from simulated comparison series generated by the

following models: Autoregressive (AR(1)), generalized autoregressive conditional

heteroskedasticity in mean (GARCH-M), and exponential GARCH. The results

provide empirical support for utilizing the heuristic conversion algorithms as they

outperform not only BH but also the AR(1), the GARCH-M, and the exponential

GARCH model. The returns obtained from the algorithms are not likely to be

generated by these three models. Brock et al. (1992) conclude that VMA, FMA

and TRB have predictive ability. The suggested algorithms are presented and

analyzed in detail in Section 4.3.

Bessembinder and Chan (1995) test whether VMA, FMA and TRB can

predict stock price movements in Asian markets. The �rst result is that the

algorithms are `quite successful' in the emerging markets of Malaysia, Thailand and

Taiwan, but have less predictive power in more developed markets such as Hong

Kong and Japan. Transactions costs which could eliminate gains are estimated to

be 1.57%. The second result is that buying and selling signals emitted by U.S.

markets have substantial forecast power for Asian stock returns beyond that of

own-market signals.

Hudson et al. (1996) test whether the �nding by Brock et al. (1992) � that

VMA, FMA and TRB have predictive ability � is replicable on the FT30

(Financial Times Ordinary) Index from July 1935 to January 1994. Further, the

authors test whether the algorithms generate excess returns in a costly trading

environment. Hudson et al. (1996) conclude that although VMA, FMA and TRB

do have predictive ability in terms of UK data, their use would not generate excess

returns in the presence of costs. In general, the results presented are remarkably

similar to those of Brock et al. (1992). Thus, one conclusion to be drawn from

both studies is that VMA, FMA and TRB have predictive ability if su�ciently

long investment horizon is considered.

Mills (1997) also compares VMA, FMA and TRB to BH by conducting

experiments on the FT30 index for the time intervals 1935-1954 and 1975-1994.

In addition, trading signals generated by a geometric MA are considered. The

geometric MA gave an almost identical set of buying and selling signals as the

conventional (arithmetic) MA. Until 1980 all algorithms outperform BH. The
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results of Mills (1997) are consistent, in almost every respect, with those of

Brock et al. (1992) and Hudson et al. (1996). But from 1980 on BH clearly

dominates all other algorithms. The sample used in Brock et al. (1992) ends in

1986; so Mills (1997) concludes that there was not enough data to analyze structural

shifts that might have taken place starting in 1982.

Ratner and Leal (1999) compare VMA and FMA to BH by investigating ten

emerging equity markets in Latin America and Asia from 1982 to 1995 under

transaction costs using the S&P500 and Nikkei225 indices. Results show that VMA

and FMA applied to emerging markets do not have the ability to outperform BH.

Parisi and Vasquez (2000) test VMA, FMA and TRB in the Chilean stock

market using the Indice de Precio Selectivo de Acciones (ISPA) from January 1987

to September 1998. The results are similar to the ones of Brock et al. (1992),

providing strong support for VMA, FMA and TRB .

Gunasekarage and Power (2001) test VMA and FMA in four emerging South

Asian capital markets from January 1990 to March 2000, i.e. the Bombay Stock

Exchange, the Colombo Stock Exchange, the Dhaka Stock Exchange and the

Karachi Stock Exchange. The �ndings indicate that the algorithms have predictive

ability in these markets, and reject H0 : µX = µBH with X ∈ {VMA,FMA}.
Gunasekarage and Power (2001) conclude that VMA and FMA are able to

generate excess returns in South Asian markets.

Kwon and Kish (2002) extend the work of Brock et al. (1992) in two ways.

First, by investigating the predictive ability of VMA, FMA and TRB on the

New York Stock Exchange (NYSE) index from July 1962 to December 1996, as

well as on the National Association of Security Dealers Automatic Quotations

(NASDAQ) index from January 1972 to December 1996. Second, by including

a further MA algorithm, called Moving Average with Trading Volume (MAV ).

The results support the results of Brock et al. (1992) showing that the suggested

algorithms outperform BH.

Chang et al. (2004) test whether returns generated by VMA, FMA and TRB

are predictable in eleven emerging stock markets in the US and Japan considering

data from January 1991 to January 2004. Predictability is analyzed by means of

multivariate variance ratios using bootstrap procedures. VMA, FMA and TRB

are employed and compared to BH. Results show that there is some evidence

of forecasting power but no signi�cance. When trading costs are taken into

account only a few variants of the algorithms generate excess returns. Chang et al.

(2004) conclude that although the algorithms show some predictive ability this is

not statistically signi�cant. Hence, Chang et al. (2004) check for robustness by

analyzing returns from 1559 di�erent variants of the algorithms, testing di�erent

sub-samples, and analyzing bear and bull markets. Overall the algorithms do not
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seem to have predictive power for the recent sample used.

Bokhari et al. (2005) investigate the predictive ability and pro�tability of

VMA, FMA and TRB for di�erent company sizes considering di�erent indices

form January 1987 to July 2002. Results on di�erent Financial Times Stock

Exchange (FTSE) indices, namely FTSE 100, FTSE 250 and FTSE Small Cap,

show that the algorithms have a progressively higher predictive ability the smaller

the size of the company, but are not pro�table assuming transaction costs.

Marshall and Cahan (2005) test the pro�tability of twelve variants of VMA,

FMA and TRB on the New Zealand equity market. The nature and regulations

suggest that the New Zealand equity market may be less e�cient than large markets

in Europe or the US. This raises the possibility that the algorithms are pro�table

in New Zealand. Using a bootstrap procedure, the results show that the returns

achieved in New Zealand follow a similar pattern than those in large markets.

Ming-Ming and Siok-Hwa (2006) test the pro�tability of VMA, FMA and

TRB on nine Asian stock market indices from January 1988 to December 2003. The

results provide strong support for VMA and FMA in China, Thailand, Taiwan,

Malaysia, Singapore, Hong Kong, Korea, and Indonesia.

Hatgioannides and Mesomeris (2007) aim to characterize the stock return

dynamics of four Latin American and four Asian emerging capital market economies

and test the pro�tability of VMA and TRB. Using the Morgan Stanley Capital

International (MSCI) index BH is outperformed in all markets before transaction

costs, and in Asian markets after transaction costs.

Lento and Gradojevic (2007) test the pro�tability of di�erent algorithms by

evaluating their ability to outperform BH. Di�erent VMA, FMA, Filter rule,

Bollinger Band, and TRB algorithms are tested on the S&P/TSX 300 Index, the

DJIA, the NASDAQ Composite Index, and the Canada/U.S. spot exchange rate. A

bootstrap procedure is used to determine the statistical signi�cance of the results.

Considering transaction costs, excess returns are generated by VMA, FMA and

TRB for all markets except DJIA.

Lagoarde-Segot and Lucey (2008) test the E�cient Market Hypothesis (EMH)

in seven emerging Middle-Eastern North African (MENA) stock markets from

January 1998 to December 2004. The results of a random-walk test, and the

returns of VMA, FMA and TRB are aggregated into a single e�ciency index. The

impact of market development, corporate governance and economic liberalization

on the latter using a multinomial ordered logistic regression is to be analyzed. The

results highlight heterogeneous levels of e�ciency in the MENA stock markets.

The e�ciency index seems to be a�ected by market depth, although corporate

governance factors also have predictive power. By contrast, the impact of overall

economic liberalization does not appear signi�cant.
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Tabak and Lima (2009) investigate the predictive power of VMA, FMA and

TRB for the Brazilian exchange rate from 2003 to 2006. A bootstrap procedure

is employed to test for predictability. Furthermore, the ability of the algorithms

to generate signi�cant higher returns compared to BH is tested. Results show

that the excess return generated by the algorithms is not signi�cant, suggesting

that predictability is not economically signi�cant. Their results are consistent with

those of Chang et al. (2004).

In the next two chapters a selection of preemptive and non-preemptive online

conversion algorithms is presented in detail. The results of the empirical evaluation

of those algorithms are given in Chapter 6.
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Chapter 4

Selected Non-preemptive Algorithms

Non-preemptive conversion algorithms are represented by one single number which

speci�es when to buy or sell an asset. For each observed price the algorithm must

decide to convert `all or nothing'. In the following one guaranteeing algorithm and

two heuristic algorithms from the literature are presented in detail. This chapter is

used as the theoretical basis for the implementation and the experimental analysis

of the algorithms presented.

4.1 The Uni-directional Algorithm of El-Yaniv

(1998)

El-Yaniv (1998) suggests an uni-directional algorithm to solve the max-search

problem presented in Section 2.2.1. Mohr and Schmidt (2008a,b) extend this

algorithm to bi-directional search in order to buy at low prices and to sell at high

prices. The original algorithm and its extension are presented in the following.

4.1.1 The Guaranteeing Algorithm

El-Yaniv (1998) provides an elegant algorithm for uni-directional non-preemptive

conversion with m and M known. The algorithm is called reservation price policy

(RPP ) (El-Yaniv, 1998, p. 34).23

Algorithm 4. Accept the �rst price greater than or equal to q∗ =
√
M ·m.

El-Yaniv (1998) assumes that prices qt (t = 1, . . . T ) are chosen by OPT from

the real interval [m,M ] with m ≤ qt ≤ M , ϕ = M
m
, and 0 ≤ m < M . To solve the

max-search problem, ON is searching for the maximum price in a sequence of prices

of unknown length T that unfolds sequentially. Each point of time t ON obtains a

23The RPP can also be found in El-Yaniv et al. (2001, p. 107).
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price quotation qt after which he must immediately decide whether to accept the

price qt, or to continue observing prices. Search is closed when ON accepts some

price.

We call q∗ the reservation price (RP ), and its deviation is done by the `error

balancing argument' (Borodin and El-Yaniv, 1998, p. 267). The optimal q∗ under

worst-case assumptions should balance the ratio `best-case to worst-case'. Two

cases must be considered: 1) the computed q∗ is too low, or 2) the computed q∗ is

too high. A clever adversary with complete knowledge of the future, and q∗, can

use this information to exploit the algorithm making the RPP perform worse, as

shown in the following. Two errors, concerning the maximum price encountered,

might occur in case of max-search:

1) Too-early error : If q∗ is too low, then OPT provides an input sequence

in such format that prices qt ∈ [q∗,M ], and thus ON may su�er from the

so called `too early error': ON could have achieved M but gets q∗ in the

worst-case. The competitive ratio achieved thus will be c1 = M
q∗ .

2) Too-late error : If q∗ is too high, then OPT provides an input sequence in

such format that prices qt ∈ [m, q∗], and thus ON may su�er from the `too

late error': ON could have achieved q∗, and gets m in the worst-case. The

competitive ratio achieved thus will be c2 = q∗

m
.

ON must choose a q∗ while balancing the two errors, i.e. to ensure that

c1 = c2 (4.1)

M

q∗
=

q∗

m

q∗ =
√
M ·m.

The above reservation price policy is optimal for both �nite and in�nite time

horizons, and when duration T is known or unknown (El-Yaniv, 1998, p. 35),

resulting in a competitive ratio as given in Theorem 1.

Theorem 1. Algorithm 4 is
√
ϕ competitive.

Worst-case analysis is done in the following. To proof Theorem 1 we assume

max-search is carried out once (p = 1).

4.1.2 Worst-Case Analysis

Proof of Theorem 1 for Algorithm 4: Assume qt ∈ [q∗,M ]. Then ON sells

once at a price qt ≥ q∗. Then the maximum possible price OPT achieves is M .
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With this, from equation (2.7) the competitive ratio for max-search equals

cmax(1) =
OPT

ON
=
M

qt
≥ M√

(M ·m)
=

√
M

m
=
√
ϕ. (4.2)

Further assume qt ∈ [m, q∗[, i.e. no price qt ≥ q∗ appears. Then ON must sell at

the last possible price qT which is m in the worst-case. Then the maximum possible

price OPT achieves is q∗ − ε and, thus

cmax(1) =
OPT

ON
=
q∗ − ε
m

>

√
(M ·m)

m
=

√
M

m
=
√
ϕ. (4.3)

The value
√
ϕ measures the competitive ratio for max-search under worst-case

assumptions in terms of maximum and minimum prices. From this follows that

the reservation price policy suggested by El-Yaniv (1998) is
√
ϕ-competitive.

4.2 Extension to Bi-directional Search of Mohr

and Schmidt (2008a)

Mohr and Schmidt (2008a,b) extend the uni-directional reservation price algorithm

for selling of El-Yaniv (1998) (cf. Section 4.1) to buying and selling, i.e. introduce

a rule for min-search.

4.2.1 The Guaranteeing Algorithm

The above results can be transferred to bi-directional search if we modify the

reservation price policy. The optimal deterministic bi-directional algorithm is the

following RPP (Mohr and Schmidt, 2008a,b):

Algorithm 5. Buy at the �rst price smaller than or equal to, and sell at the �rst

price greater than or equal to reservation price q∗ =
√
M ·m.

Algorithm 5 is denoted by Sqrt, and results in a competitive ratio as given in

Theorem 2.

Theorem 2. Algorithm 5 is
(
M
m

)p
competitive.

The deviation of the competitive ratio for bi-directional search, as given in

Theorem 2, assuming p ≥ 1 trades is presented in the following.
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4.2.2 Worst-Case Analysis

When bi-directional search is carried out, the competitive ratio is measured in

terms of the (overall) return achieved.

Assume that for each of the p ≥ 1 trades algorithm Sqrt has to consider

a worst-case time series Q =
(√

(M(i) ·m(i)),m(i),m(i),
√

(M(i) ·m(i)),M(i)
)

for buying and selling. M(i) and m(i) are upper and lower bounds of prices, with

i = 1, . . . , p.

In the worst-case the algorithm Sqrt buys and sells i times at reservation

price(s) q∗(i) =
√

(M(i) ·m(i)). Resulting in a worst-case geometric return of (cf.

equation (3.4) and (3.5))

RSqrt(p) =

p∏

i=1

√
(M(i) ·m(i))√
(M(i) ·m(i))

(4.4)

=

p∏

i=1

q∗(i)

q∗(i)

= 1

i� q∗(i) is constant for each i-th trade.

OPT buys i times at minimum prices m(i), and sells i times at the maximum

prices M(i). Resulting in a geometric return of (cf. equation (3.4) and (3.5))

ROPT (p) =

p∏

i=1

M(i)

m(i)
(4.5)

as for each i-th trade di�erent upper bounds M(i) and lower bounds m(i) are

assumed. If m(i) = m and M(i) = M are constants, the worst-case geometeric

return of OPT equals

ROPT (p) =

(
M

m

)p
(4.6)

assuming p ≥ 1 trades.

Proof of Theorem 2 for Algorithm 5: In oder to buy and sell p ≥ 1 times in

a row, for each i-th trade �rst the min-search problem has to be solved for buying,

and second the max-search problem has to be solved for selling. Using equations

(4.4) and (4.5) from equations (2.17) and (2.18) for Sqrt we get a worst-case

competitive ratio

cwcSqrt(p) =
OPT

Sqrt
(4.7)

=
ROPT (p)

RSqrt(p)

=

p∏

i=1

M(i)

m(i)
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assuming di�erent upper bounds M(i) and lower bounds m(i) for each i-th trade.

From this follows i� the lower bounds are constants (m(i) = m), and the upper

bounds are constants (M(i) = M)

cwcSqrt(p) =

(
M

m

)p
(4.8)

assuming p ≥ 1 trades.

Alternatively, to calculate the worst-case competitive ratio for p ≥ 1 trades

of Sqrt the competitive ratios for min-search, and for max-search achievable by

Sqrt can be used as shown in equation (2.17).

The ratio cwcSqrt(p) can be interpreted as the competitive ratio the algorithm

Sqrt achieves when buying and selling p ≥ 1 times under worst-case assumptions.

The worst-case competitive ratio grows exponential with p. Compared to OPT the

more trades are carried out the worse Sqrt gets.

4.3 The Bi-directional Algorithms of Brock,

Lakonishok and LeBaron (1992)

Brock et al. (1992) introduce the algorithms Moving Average Crossover (MA)

and Trading Range Breakout (TRB), which are based on technical indicators.

These algorithms are of major interest in the literature, and have been empirically

analyzed by several researchers, cf. Bessembinder and Chan (1995); Hudson et al.

(1996); Mills (1997); Ratner and Leal (1999); Parisi and Vasquez (2000);

Gunasekarage and Power (2001); Kwon and Kish (2002); Chang et al. (2004);

Bokhari et al. (2005); Marshall and Cahan (2005); Ming-Ming and Siok-Hwa

(2006); Hatgioannides and Mesomeris (2007); Lento and Gradojevic (2007);

Lagoarde-Segot and Lucey (2008); Tabak and Lima (2009), and the overview in

Section 3.4. Unfortunately, these works do not consider competitive analysis.

In the following we present the competitive analysis of MA and TRB. In

general, both heuristic conversion algorithms are reservation price (RP ) algorithms.

Reservation price(s) q∗ are calculated based on the o�ered price(s) qt. Using q∗

intersection points specifying when to buy or sell are determined.

For each i-th trade we assume a worst-case time series of prices containing only

minimum pricesm(i), and maximum pricesM(i). At best the considered algorithm

buys at price m(i), and sells at price M(i) resulting i times in an optimum return

of OPT = M(i)/m(i). In the worst-case the algorithms ON ∈ {MA,TRB} buy
at prices M(i) and sell at prices m(i) i times resulting in the worst possible return

of ON = m(i)/M(i) = 1/OPT assuming p ≥ 1 with i = 1, . . . , p. For ON ∈
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{MA,TRB}, from equations (2.17) and (2.18), we get a worst-case competitive

ratio

cwcON(p) =

p∏

i=1

(
M(i)

m(i)

)2

, (4.9)

and in case m(i) = m and M(i) = M are constants

cwcON(p) =

(
M

m

)2p

. (4.10)

To prove the competitive ratio given in equation (4.10) we assume that ON ∈
{MA,TRB} is allowed to trade only once (p = 1).

Theorem 3. The worst-case competitive ratio of the heuristic conversion

algorithms MA and TRB equals
(
M
m

)2p
.

The deviation of the competitive ratio for bi-directional search, as given in

Theorem 3, assuming p = 1, is presented in the following.

4.3.1 Moving Average Crossover

Assume the worst-case time series Q = (m, . . . ,m,M,m, . . . ,m). Hence, the prices

q1, . . . , qt∗−1 = m, qt∗ = M , and qt∗+1, . . . , qT = m. The MA algorithm suggested

by Brock et al. (1992) is:

Algorithm 6. Buy on day t if MA(S)t > uB(L)t and MA(S)t−1 ≤ uB(L)t−1,

and sell on day t if MA(S)t < lB(L)t and MA(S)t−1 ≥ lB(L)t−1.

Where MA(S)t is a short moving average, MA(L)t a long moving average

(S < L), and the value n ∈ {L, S} de�nes the number of previous data points (days)
considered to calculate MA(n)t =

∑t
i=t−n+1 qi

n
. Prices qt are lagged by bands, the

upper band uB(L)t = MA(L)t·(1+δ), and the lower band lB(L)t = MA(L)t·(1−δ)
with δ ∈ [0.00,∞].

4.3.2 Worst-Case Analysis

Proof of Theorem 3 for Algorithm 6: Assume S = 1, L ≤ (t∗ − 1), and

δ = 0.00. This corresponds to increasing prices generating a buy signal if the price

crosses the long MA from below. Similarly, this corresponds to decreasing prices

generating a sell signal if the price crosses the long MA from above. Then MA

1. buys on day t∗ at price qt∗ = M . Because

MA(1)t∗ = qt∗ = M > uB(t∗ − 1)t∗ = MA(t∗ − 1)t∗ = (t∗−2)m+M
(t∗−1)

< M , and

MA(1)t∗−1 = qt∗−1 = m ≤ uB(t∗ − 1)t∗−1 = MA(t∗ − 1)t∗−1 = (t∗−1)m
(t∗−1)

= m.
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2. sells on day t∗ + 1 at price qt∗+1 = m. Because

MA(1)t∗+1 = qt∗+1 = m < lB(t∗− 1)t∗+1 = MA(t∗− 1)t∗+1 = (t∗−3)m+M+m
(t∗−1)

>

m, and

MA(1)t∗ = qt∗ = M ≥ lB(t∗ − 1)t∗ = MA(t∗ − 1)t∗ = (t∗−2)m+M
(t∗−1)

< M .

Taking these decisions into accountMA achieves a return ofm/M . Comparing this

to the optimum return achieved by OPT , the worst-case competitive ratio equals

cwcMA(1) = OPT/MA =
(
M
m

)2
.

4.3.3 Trading Range Breakout

Assume the worst-case time series Q = (m+ ε, . . . ,m+ ε,M,m, . . . ,m). Hence,

the prices q1, . . . , qt∗−1 = m + ε, qt∗ = M , and qt∗+1, . . . , qT = m. The TRB

algorithm suggested by Brock et al. (1992) is:

Algorithm 7. Buy on day t if qt > uB(n)t and qt−1 ≤ uB(n)t−1, and sell on day

t if qt < lB(n)t and qt−1 ≥ lB(n)t−1.

Where lower band lB(n)t = qmint (n) · (1 − δ) with qmint (n) =

min {qi|i = t− n, . . . , t− 1}, and upper band uB(n)t = qmaxt (n) · (1 − δ) with

qmaxt (n) = max {qi|i = t− n, . . . , t− 1} where δ ∈ [0.00,∞], and n < t is the

number of previous data points (days) considered.

4.3.4 Worst-Case Analysis

Proof of Theorem 3 for Algorithm 7: Assume n ≤ (t∗ − 2), and δ = 0.00.

This corresponds to increasing prices generating a buy signal if the price crosses the

upper band from below. Similarly, this corresponds to decreasing prices generating

a sell signal if the price crosses lower band from above. Then TRB

1. buys on day t∗ at price qt∗ = M . Because

q∗t = M > uB(t∗ − 2)t∗ = qmaxt∗ (t∗ − 2) = max {qi|i = 2, . . . , t∗ − 1} = m + ε,

and

qt∗−1 = m+ ε ≤ uB(t∗− 2)t∗−1 = qmaxt∗−1(t∗− 2) = max {qi|i = 1, . . . , t∗ − 2} =

m+ ε.

2. sells on day t∗ + 1 at price qt∗+1 = m. Because

qt∗+1 = m < lB(t∗ − 2)t∗+1 = qmint∗+1(t∗ − 2) = min {qi|i = 3, . . . , t∗} = m + ε,

and

qt∗ = M ≥ lB(t∗ − 2)t∗ = qmint∗ (t∗ − 2) = min {qi|i = 2, . . . , t∗ − 1} = m+ ε.

Taking these decisions into account TRB achieves a return of m/M . Comparing

this to the optimum return achieved by OPT , the worst-case competitive ratio

equals cwcTRB(1) = OPT/TRB =
(
M
m

)2
.
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Chapter 5

Selected Preemptive Algorithms

Preemptive algorithms allow to determine a function for conversion. An asset

can be converted `little by little' sequentially in parts, each part at a di�erent

price. In the following one uni-directional and two bi-directional preemptive online

conversion algorithms from the literature are presented in detail. This chapter is

used as the theoretical basis for the implementation and the experimental analysis

of the algorithms presented.

5.1 The Uni-directional Algorithm of El-Yaniv,

Fiat, Karp and Turpin (1992)

El-Yaniv et al. (1992) apply online algorithms to currency conversion, using

competitive analysis as performance measure. The authors focus on uni-directional

preemptive conversion: ON is given the task of converting an asset D into asset

Y while it is forbidden to convert Y already purchased back into D. The amount

st of D to be converted into Y on days t = 1, . . . , T must be determined such that

the amount of Y is maximized on day T , and
∑T

t=1 st = 1. El-Yaniv et al. (1992)

distinguish two cases:

1. Continuous case: The price �uctuates during the investment horizon, and

ON may convert continuously, i.e. at any moment.

2. Discrete case: One price is announced on each trading day t and remains

�xed throughout t, i.e. ON converts at discrete time steps.

For both cases the suggested algorithm is identical. Thus, as in El-Yaniv et al.

(2001), we do not di�er between the continuous case and the discrete case in the

following. We assume that at any point of time t there is a price qt o�ered to
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ON . To solve the max-search problem the following algorithm is suggested by

El-Yaniv et al. (1992, 2001).

5.1.1 The Guaranteeing Algorithm

The suggested online conversion algorithm is based on the assumption that there

exists a threat that at some stage during the time interval, namely on day k ≤ T ,

the o�ered price will drop to a minimum levelm, and will remain there until the last

day T . A worst-case time series of prices Q = (q1, q2, . . . , qk,m,m, . . . ,m), where

t = 1, . . . , k ≤ T , is assumed. For a start, assume that the worst-case competitive

ratio c is known to ON .24 The proposed algorithm is commonly referred to as the

threat-based strategy, and the basic rules are (El-Yaniv et al., 1992, 2001, p. 3; p.

109):

Algorithm 8.

Rule (1). Consider a conversion from asset D into asset Y only if the current price

o�ered is the highest seen so far.

Rule (2). Whenever you convert asset D into asset Y , convert just enough D to

ensure that a competitive ratio c would be obtained if an adversary dropped the price

to the minimum possible price, and kept it there throughout the game.25

Rule (3). On the last trading day T , all remaining D must be converted into Y ,

possibly at the minimum price.

As long as the �rst price q1 ≤ c ·m Algorithm 8 does not convert any D into

Y (except of course on the last day T ). Thus, El-Yaniv et al. (2001, p. 111)

assume m · c ≤ q1 < q2, . . . , < qk ≤ M where c is the target competitive ratio.

This follows from Rule (3): A competitive ratio of c is always attainable when the

maximum price is c ·m, even if the whole asset D is converted at the minimum m

(El-Yaniv et al., 2001, Remark 5, p. 110)

OPT

ON
=

c ·m
m

(5.1)

= c.

El-Yaniv et al. (1992, 2001) suggest four variants of the threat-based algorithm;

each converts according to Rules (1) to (3) given in Algorithm 8, but the worst-case

competitive ratios di�er depending on the assumed a-priori knowledge of ON :

24For clarity, we denote the worst-case competitive ratio by c within this chapter.
25The `minimum possible price' is de�ned with respect to the information known to ON . Which

is m if m is known and is qt/ϕ if only ϕ = M/m is known, and qt is highest price seen so far.
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Variant 1a: 26 Upper and lower bounds of prices, M and m, known:

Threat(m,M)

Variant 1b: 27 Upper and lower bounds of prices, M and m, as well as �rst price

q1 known: Threat(m,M, q1)

Variant 2 : 28 Upper and lower bounds of prices,M and m, as well the as number

of trading days k ≤ T known: Threat(m,M, k)

Variant 3 : 29 Maximum price �uctuation ratio ϕ = M
m

as well the as number of

trading days k ≤ T known: Threat(ϕ, k)

Variant 4 : 30 Maximum price �uctuation ratio ϕ = M
m

known: Threat(ϕ)

El-Yaniv et al. (1992) analyze Variants 1 to 4 under worst-case assumptions.

Without loss of generality, an optimal o�ine adversary (OPT ) is considered that

increases the o�ered prices qt from q1 ≥ m continuously up to the maximum possible

price qk ≤M with 1 ≤ k ≤ T (El-Yaniv et al., 1992). Threat is that the price drops

to m for the `rest' of the time interval, i.e. qk+1, . . . , qT = m. Thus, the worst-case

time series Q with m ≤ q1 <, . . . , < qk ≤ M and k ≤ T must be considered. It is

assumed that Q is monotone increasing, since both OPT and ON convert D into

Y only when qt reaches a new maximum. Prices that are the same or lower than

previous prices will be ignored (El-Yaniv et al., 2001, p. 111).

At the start of each trading day t a price qt is o�ered to ON . Following Rules (1)

to (3) given in Algorithm 8 ON uses the (pre-)calculated worst-case competitive

ratio c to determine the amount of asset D (st ∈ [0, 1]) to be converted into Y on

day t. ON converts just enough to ensure c, as Rule (3) requires. On the `�rst'

day the current price is the highest seen so far, and ON converts some amount of

D i� q1 ≥ c · m. Thus, there exists some s1 ≥ 0 such that c is still attainable

if an amount of s1 of D is converted into Y . The chosen amount s1 is such that

c is so far guaranteed even if there will be a permanent drop to m on the next

day, and no further conversions will be conducted (except for one last on day T

converting all remaining D). Similar arguments can be used to justify the choice

of the subsequent amounts st, and thus Rules (1) to (3) induce a c-competitive

algorithm (El-Yaniv et al., 2001, p. 110).

The values dt and yt denote the remaining amount of asset D, and the

accumulated amount of asset Y after the t-th day. The threat-based algorithm

26Variant 2 in El-Yaniv et al. (2001).
27Not discussed in El-Yaniv et al. (2001).
28Variant 1 in El-Yaniv et al. (2001).
29Variant 3 in El-Yaniv et al. (2001).
30Not discussed in El-Yaniv et al. (1992).
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starts with d0 = 1 of D and y0 = 0 of Y , and then converts the initial amount of

D `little by little' into Y . The worst-case competitive ratio c di�ers for Variants

1 to 4. In the following worst-case analysis is done and the competitive ratios c,

denoted by c∞(m,M) and c∞(m,M, q1) for Variant 1, c(m,M, k) for Variant 2,

c(ϕ, k) for Variant 3, and c∞(ϕ) for Variant 4, are derived.

5.1.2 Worst-Case Analysis of Variant 1 : Threat(m,M) and

Threat(m,M, q1)

Since this is the variant where the number of trading days k ≤ T is not given

the threat-based algorithm, denoted by Threat(m,M) and Threat(m,M, q1), must

consider an adversary that may choose an arbitrary number of days T → ∞ in

the worst-case (El-Yaniv et al., 2001, p. 121). The worst-case competitive ratio

c ∈ {c∞(m,M), c∞(m,M, q1)}, is �xed a-priori and does not change thereafter

(El-Yaniv et al., 1992, p. 6).

For each trading day t = 1, . . . , k ≤ T , the values of D remaining dt and Y

accumulated yt must always satisfy that (cf. equation (2.7))

OPT

ON
=

qt
m · dt + yt

(5.2)

= c

where ON = m · dt + yt represents the performance of the threat-based algorithm

Variant 1 if OPT drops the price to m and qt is the performance of OPT for this

case.

In order to meet the ratio c on each day t the value dt must be determined such

that (Dannoura and Sakurai, 1998, p. 29) (see also Iwama and Yonezawa (1999,

p. 412))

dt = 1− 1

c
· ln qt −m

c ·m−m. (5.3)

The optimal c must satisfy dt = 0 for qt = M . For qt = M from equation (5.3) we

get (El-Yaniv et al., 1992, Case 1, p. 3)

dt = 1− 1

c
· ln M −m

c ·m−m︸ ︷︷ ︸
c

(5.4)

= 1− 1

c
· c

= 0.

This guarantees that the whole amount of asset D (remaining) is converted in case

the highest possible price M occurs on t, and thus dt = 0 after the t-th conversion.
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From equation (5.4) follows that the competitive ratio c∞(m,M) is the unique

solution of c (El-Yaniv et al., 2001, Formula (29), p. 122)

c = ln
M −m

m · (c− 1)
(5.5)

= ln
M
m
− 1

c− 1

= ln
ϕ− 1

c− 1
.

El-Yaniv et al. (1992) only consider the case m = 1, then (El-Yaniv et al., 1992,

Formula (3))

c = ln
M − 1

c− 1
. (5.6)

Note that when estimating c equation (5.5) must be transformed to

ec · (c− 1) =
M

m
− 1, (5.7)

and then solved to c.

El-Yaniv et al. (1992) di�er between two cases, Case 1 assumes that the �rst

price q1 is unknown, and Case 2 assumes that q1 is known to ON . In the later

work El-Yaniv et al. (2001, p. 110) only consider Case 1 as given in El-Yaniv et al.

(1992). In the worst-case the pessimistic assumption q1 = m must be made. In

case q1 is assumed to be known a-priori, the same worst-case ratio c is reached as

in the case where q1 is assumed to be unknown a-priori, i.e. the knowledge of q1

does not improve the worst-case competitive ratio c. But in case q1 is assumed to

be known a-priori the competitive ratio, denoted by c∞(m,M, q1), is the unique

solution of c ((El-Yaniv et al., 1992, p. 3, Case 2) and (Dannoura and Sakurai,

1998, p. 29))

c =





ln
M
m
−1

c−1
q1 ∈ [m, cm]

1 + q1−m
q1
· ln M−m

q1−m q1 ∈ [cm,M ].
(5.8)

Thus, equation (5.5) holds for the case where the initial price q1 is assumed to be

unknown to ON or m ≤ q1 ≤ c∞(m,M) ·m (El-Yaniv et al., 1992, p. 3). Further,

depending on the value of q1 the amount of D remaining dt equals (El-Yaniv et al.,

1992, p. 4)

dt =





1− 1
c
· ln qt−m

c·m−m q1 ∈ [m, cm]
q1− q1c
q1−m −

1
c
· ln qt−m

q1−m q1 ∈ [cm,M ].
(5.9)

In both cases (for q1 known and unknown) the amount of accumulated Y on day t

equals

yt = yt−1 + st · qt with yt ≥ 0. (5.10)
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The amount st ∈ [0, 1] to be converted on day t equals

st = dt−1 − dt with d0 = 1 (5.11)

and dt is calculated as given in equation (5.3) for q1 unknown, and as given in

equation (5.9) for q1 known.

When considering worst-cases we assume q1 = m. Thus, unless otherwise

stated, the achievable worst-case ratio of Variant 1 always means the value of

equation (5.5) within this work. In case of an empirical evaluation of Variant 1 the

knowledge of q1 is of interest, then the cases considered in equation (5.8) hold. An

open question is whether or not the knowledge of q1 improves the empirical-case

competitive ratio of the threat-based algorithm Variant 1. This is discussed in

Section 6.4.

5.1.3 Worst-Case Analysis of Variant 2 : Threat(m,M, k)

This is the variant where the number of trading days k ≤ T is assumed to be known.

From this follows, the worst-case competitive ratio c, denoted by c(m,M, k), is

strictly increasing with k ≤ T , and the pessimistic assumption k = T must be

made when considering worst-cases (El-Yaniv et al., 2001, p. 118). The worst-case

competitive ratio c must be determined such that there will be no D left after the

last conversion, i.e. dT = 0. Analogously to Variant 1 the amount to be converted

on the t-th day, with t = 1, . . . , k ≤ T equals

st = dt−1 − dt with d0 = 1. (5.12)

From dT = 0 follows sT = dT−1 with (El-Yaniv et al., 2001, p. 113)

T∑

t=1

st = 1. (5.13)

The overall amount of Y after day T equals

yT =
T∑

t=1

st · qt. (5.14)

The amount of already accumulated Y on day t, yt ≥ 0, equals

yt = yt−1 + st · qt (5.15)

with y1 = y0 + s1 · q1 = s1 · q1 for t = 1. Further, the amount of D remaining on

day t, dt ≤ 1, equals

dt = dt−1 − st (5.16)
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with d1 = d0 − s1 = 1− s1 for t = 1.

El-Yaniv et al. (1992, 2001) consider max-search as discussed in Section 2.2.1.

Rules (1) to (3) of Algorithm 8 ensure that at time t, `just enough' of asset D is

converted that ON achieves a competitive ratio c. Thus (cf. equation (2.7))

OPT

ON
=

qt
yt +m · dt

(5.17)

=
qt

(yt−1 + st · qt) +m · (dt−1 − st)
≤ c.

The denominator yt + m · dt represents the overall amount of Y ON achieves if

OPT would drop qt+1 tom, and the nominator qt is the amount of Y OPT achieves

in this case. For the case m = 1, as suggested in El-Yaniv et al. (1992), equation

(5.17) reduces to

OPT

ON
=

qt
yt + dt

(5.18)

=
qt

(yt−1 + st · qt) + (dt−1 − st)
≤ c.

Following Rule (3) ON must convert the minimum st that satis�es equation (5.17).

Solving (5.17) as an equality constraint with respect to st we get

qt
c

= yt−1 + st · qt +m · (dt−1 − st) (5.19)

= yt−1 +m · dt−1 + st · (qt −m)

st · (qt −m) =
qt − c · (yt−1 +m · dt−1)

c
.

From equation (5.19) we get the amount to be converted on each trading day st

(El-Yaniv et al., 2001, Formula 27)

st =
qt − c · (yt−1 + dt−1 ·m)

c · (qt −m)
(5.20)

and for the case m = 1, as suggested in El-Yaniv et al. (1992), from equation (5.20)

we get (El-Yaniv et al., 1992, Formula 4)

st =
qt − c · (yt−1 + dt−1)

c · (qt − 1)
(5.21)

=
qt − qt−1

c · (qt − 1)
.

It remains to determine the global competitive ratio c used in equation (5.20)

that is attainable by ON . For every day t let k′ = k − t + 1 be the number
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remaining days before the price drops to m. Let q1 be the �rst price of this series.

Let ck
′
(q1) be a local (lower bound) competitive ratio which is achievable on a

sequence of k′ ≤ T remaining prices assuming dt = 1 and yt = 0. The overall

achievable worst-case competitive ratio c, with respect to M and m, in a k-day

time interval can be determined by maximizing ck
′
(q1, . . . , qk) over all choices of

k ≤ T (El-Yaniv et al., 2001, Formula (13))

c = sup ck
′
(q1, . . . , qk) (5.22)

= sup ck
′
(q1, qk)

with

ck
′
(q1, qk) = 1 +

q1 −m
q1

· (k′ − 1) ·
[

1−
(
q1 −m
M −m

) 1
k′−1

]
. (5.23)

Because ck
′
(q1, qk) is maximized for qk = M sup ck

′
(q1, qk) reduces to ck

′
(q1). As

a result, the local competitive ratio for each remaining day k′, denoted by ck
′
(q1),

can be given as (El-Yaniv et al., 2001, Formula 15)

ck
′
(q1) = 1 +

q1 −m
q1

· (k′ − 1) ·
[

1−
(
q1 −m
M −m

) 1
k′−1

]
(5.24)

When calculating ck
′
(q1) it is assumed that each day is the `only' day. When

ck
′
(q1) is calculated for each remaining day k′ the value ck

′
(q1) is decreasing with

increasing prices qt and is minimized when q1 = M , i.e. ck
′
(M) = 1. In other

words, on each remaining day k′ the value of ck
′
(q1) would be reached i� the whole

asset D would be converted into Y on day k′ and the price drops to m on the next

day (El-Yaniv et al., 2001, p. 120).

From equation (5.24) we get the worst-case competitive ratio for Variant 2

under the assumption that each price o�ered q1, . . . , qk (k ≤ T ) is the only (�rst)

price o�ered, and the qt drops to m on the next day. With m = 1 and k′ = T for a

�xed value of q1 the ratio c(m,M, k) is the unique solution, c, of (El-Yaniv et al.,

1992, Formula 2)

c = ck
′
(q1) (5.25)

= 1 +
q1 − 1

q1

· (T − 1) ·
[

1−
(
q1 − 1

M − 1

) 1
T−1

]

As a function of q1, c(m,M, k) is the unique solution, c, of (El-Yaniv et al., 2001,

Lemma 8, Formula 26)

c = T ·
[

1−
(
m · (c− 1)

M −m

) 1
T

]
. (5.26)
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It remains to derive the overall worst-case ratio including all past trading days.

Assume a sequence of w price maxima. For T ≥ k ≥ 2 the best worst-case ratio c

can be achieved when converting at i = 1, . . . , w price maxima, i.e.
∑w

i=1 si = 1.

The competitive ratio c when investing in all w maxima equals (El-Yaniv et al.,

1992, Formula (1))

c = 1 +
q1 −m
q1

·
w∑

i=2

qi − qi−1

qi −m
. (5.27)

To determine the competitive ratio achievable over w days equation (5.27) must

be maximized over all choices of w ≤ T and qi such that m ≤ q1 and qk ≤M . For

a �xed value q1, the maximum is achieved when w = T and qT = M , and all w

ratios qi−qi−1

qi−m in equation (5.27) are equal (i = 2, . . . , w) (El-Yaniv et al., 1992, p.

4). This leads to

c = 1 +
q1 − 1

q1

· (w − 1) ·
[

1−
(
q1 − 1

M − 1

) 1
w−1

]
(5.28)

which equals equation (5.24) for the casem = 1 and w = k′. The detailed derivation

of equation (5.28) can also be found in Damaschke et al. (2009, Lemma 3, p. 636).

By maximizing equation (5.28) as a function of q1 for T ≥ k ≥ 2, the overall

worst-case ratio c (El-Yaniv et al., 2001)31

c = w ·
[

1−
(
m · (c− 1)

M −m

) 1
w

]
(5.29)

which equals equation (5.26) for w = T .

Let c be a global (upper bound) competitive ratio assuming that q1 is the highest

price of the whole time series, i.e. OPT converts the whole amount of asset D into

asset Y at price q1, and ON converts the remaining amount of asset D to asst Y .

Then from equations (5.28) and (5.29) we get (El-Yaniv et al., 2001, 1992, Formula

(1); Formula (28a))

c =
qt

dt−1 · qt + yt−1

·
[

1 +
qt −m
qt

·
k∑

t=2

qt − qt−1

qt −m

]
(5.30)

=
qt

dt−1 · qt + yt−1

·
(

1 +
q1 −m
q1

· (k′ − 1) ·
[

1−
(
q1 −m
M −m

) 1
k′−1

])

=
qt

dt−1 · qt + yt−1

· ck′(q1).

The denominator dt−1 · q1 + yt−1 represents the amount of Y accumulated by ON ,

and the nominator qt is the amount of Y achieved by OPT .

31Can also be found in Fiat and Woeginger (1998, p. 336).
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Summing up, which worst-case competitive ratio c ON could reach depends on

the following cases:

1. q1 is a global maximum and OPT will convert the whole of asset D at price

q1 = M . Then from equation (5.30) the worst-case competitive ratio equals

c(m,M, k) = ck
′
(q1) with q1 = M .

2. q1 is not a global maximum and OPT will convert the whole of asset D at a

future price. Then from equation (5.24) we get

c(m,M, k) = max
{
ck
′
(q1)|k′ = 1, . . . , k ≤ T

}
= cT (q1).

Having calculated the achievable worst-case competitive ratio c the amount to be

converted st is calculated according to equation (5.20). When experiments are

carried out the empirical-case competitive ratio cec of Threat(m,M, k) equals c as

given in equation (5.30) for k′ = 1 day remaining.

5.1.4 Worst-Case Analysis of Variant 3 : Threat(ϕ, k)

This is the variant where the price �uctuation ratio ϕ = M
m

and the number of

trading days k ≤ T is assumed to be known. El-Yaniv et al. (2001, p. 122) observed

that the minimum price o�ered on day t is at least qt
ϕ
. Therefore, the worst-case

competitive ratio c can be derived as in the analysis of Variant 2 (Threat(m,M, k)).

When specializing to the case m = qt
ϕ
, we get (El-Yaniv et al., 2001, Formula 38)

c = ϕ ·
(

1− (ϕ− 1)k

(ϕk/(k−1) − 1)
k−1

)
. (5.31)

In the worst-case the adversary will choose k to be T . As the worst-case ratio c,

denoted by c(ϕ, k), is monotone increasing with k ≤ T , we get (El-Yaniv et al.,

2001, p. 126, Theorem 6)

c(ϕ, k) = ϕ ·
(

1− (ϕ− 1)T

(ϕT/(T−1) − 1)
T−1

)
. (5.32)

5.1.5 Worst-Case Analysis of Variant 4 : Threat(ϕ)

Analogously to Variant 1 (Threat(m,M)) the number of trading days k ≤ T is

not given, and Threat(ϕ) must consider an adversary that may choose an arbitrary

number of days T → ∞ in the worst-case (El-Yaniv et al., 2001, p. 121). The

worst-case competitive ratio c, denoted by c∞(ϕ), is thus �xed a-priori and does

not change thereafter (El-Yaniv et al., 1992, p. 6). Let c∞(ϕ) = limT→∞ c(ϕ, k),
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then from equation (5.32) we get (El-Yaniv et al., 2001, p. 126)

lim
T→∞

(ϕ− 1)T

(ϕT/(T−1) − 1)T−1
= (ϕ− 1) exp

(
−ϕ lnϕ

ϕ− 1

)
. (5.33)

Therefore

c∞(ϕ) = ϕ ·
(

1− (ϕ− 1)exp

(
−ϕ lnϕ

ϕ− 1

))
(5.34)

= ϕ− ϕ− 1

ϕ1/(ϕ−1)
.

It remains to compute the amount to be converted st for the algorithms

Threat(ϕ, k) and Threat(ϕ). For both El-Yaniv et al. (1992, 2001) observed that

the minimum price o�ered on day t is at least qt
ϕ
. From El-Yaniv et al. (2001,

Formula (5)) we know

qt
c

= yt + dt · (minimum possible price) (5.35)

By replacing the `minimum possible price' by qt
ϕ

we get (El-Yaniv et al., 2001,

Formula (30))

qt
c

= yt + dt ·
qt
ϕ

⇒ dt = ϕ · (1

c
− yt
qt

), (5.36)

and from equation (5.20) we get the amount to be converted

st =
qt − c · (yt−1 + dt−1 · qtϕ )

c · (qt − qt
ϕ

)
(5.37)

where yt = yt−1 + st · qt. Note that c equals c(ϕ) for algorithm Threat(ϕ), and

c(ϕ, k) for algorithm Threat(ϕ, k).

In the following we give some numerical examples for the above four variants

of the threat-based algorithm.

5.1.6 Numerical Examples for Variant 1 to 4

To ensure that the competitive ratio is never smaller than one and that not more

than the remaining amount of asset D is converted Cases (1) to (3) regarding the

value of the �rst price q1 are derived in the following. From these cases Conditions

(1) to (3) are derived. Note that as long as there has been no conversion at all,

each price qt is considered as q1.
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Case (1): m ≤ q1 ≤ c ·m

From Rule (3) given in Algorithm 8 follows that a competitive ratio c is only

achievable when the �st price is at least c ·m (as c ≥ 1 c ·m ∈ [m,M ]). Then c

holds even if the remaining amount of D is converted at price m. From this follows:

1. As long as qt = c ·m, no D are converted: d0 = 1 and y0 = 0, and thus s1 = 0

(except on day T , when ON must convert all remaining D into Y , possibly

at m).

2. As long as qt < c ·m, s1 < 0

(more than the initial amount of D d0 = 1 would be converted).

From this Condition (1) can be stated as follows:

s1 = 0 i� q1 ≤ c ·m (El-Yaniv et al., 2001, Remark 5, p. 110).

In the following we give some numerical examples for Condition (1). Consider

T = 5 possible prices I = (3, 2, 1.5, 4, 5). Only the increasing prices q1 = 3, q4 = 4

and q5 = 5 are considered, where M = 5 and m = 1.5.

Variant 1 for m ≤ q1 ≤ c∞(m,M) ·m. For both cases (q1 assumed to be known

and unknown) the worst-case competitive ratio to decide whether q1 > c∞(m,M)·m
or not is calculated using equation (5.5) in advance, i.e. equals c∞(m,M) = 1.5136.

If price q1 is assumed to be known a-priori, and q1 ≤ c∞(m,M) · m Case 1

in El-Yaniv et al. (1992) holds. Thus, we do not need to di�er between the case

where q1 is known or unknown, as given in equations (5.8) and (5.9). The already

accumulated amount of asset Y , yt, is calculated using equation (5.10), and st

using equation (5.11). As the number of days k ≤ T is unknown for Variant 1

there might be some amount of asset D remaining which must be converted at the

last price qT , possibly at m. From equation (5.11) thus follows sT = dT−1, and the

amount of asset D remaining, dt, is calculated using equation (5.3),

Following Condition (1), if the �rst price q1 is smaller than or equal to (≤)
c∞(m,M) · m the amount to be converted s1 = 0. Table 5.1 gives a numerical

example for c∞(m,M) · m = 2.2704. For Variant 1 the achievable worst-case

competitive ratio cwc, denoted by c∞(m,M), must equal

c∞(m,M) =
q1

m · d1 + y1

with d1 = 1 and y1 = 0 (5.38)

=
q1

m
with q1 = c∞(m,M) ·m

=
c∞(m,M) ·m

m
= 1.5136
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t qt st dt yt

1 2.2704 0.0000 1.0000 0.0000

2 2 - - -

3 1.5 - - -

4 4 0.7777 0.2223 3.1108

5 5 0.2223 0.0000 4.2223

Table 5.1: Numerical example for Variant 1 with q1 = c∞(m,M) ·m

where the value qt is the amount of asset Y OPT achieves and m · dt + yt is the

amount of Y achieved by ON assuming that the price drops to m on day t+ 1.

As ON accumulated 4.2223 Y on day T the empirical-case competitive ratio

cec for Variant 1 on the considered input sequence I equals

cec =
OPT

ON
(5.39)

=
qT

m · dT + yT
with dT = 0

=
M

yT

=
5

4.2223
= 1.1842.

Variant 2 for m ≤ q1 ≤ ck
′
(q1) ·m. For Variant 2, using equation (5.24), the

value ck
′
(q1) is calculated for each day t. Following Condition (1), if the a `�rst'

price q1 ≤ ck
′
(q1) · m then the amount to be converted s1 = 0. For the input

sequence I considered the value ck
′
(q1) ·m = 1.3818 · 1.5 = 2.0727. From equation

(5.20) we get s1 = 0 as long as q1 ≤ 2.0727. For q1 = 2.0727 the overall worst-case

competitive ratio cwc, denoted by c(m,M, k), is given by

c(m,M, k) = max
{
ck
′
(q1)|k′ = 1, . . . , 5

}
(5.40)

= c5(2.0727)

= 1.4023.

To calculate c(m,M, k) = 1.4023 it is assumed that the price drops to m on day 2

and remains there. Table 5.2 gives a numerical example.

As ON accumulated 4.2424 Y on day T the empirical-case competitive ratio
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t qt k′ ck
′
(q1) c st dt yt

1 2.0727 5 1.4023 1.4023 0.0000 1.0000 0.0000

2 2 4 - - - - -

3 1.5 3 - - - - -

4 4 2 1.1786 1.1786 0.7576 0.2424 3.0303

5 5 1 1.0000 1.1786 0.2424 0.0000 4.2424

Table 5.2: Numerical example for Variant 2 with q1 = ck
′
(q1) ·m

cec for Variant 2 on the considered input sequence I equals

cec =
OPT

ON
(5.41)

=
qT
yT

with qT = M

=
5

4.2424
= 1.1786.

Variant 3 for m ≤ q1 ≤ c(ϕ, k) ·m. The worst-case competitive ratio to decide

whether q1 ≤ c(ϕ, k) · m or not is calculated using equation (5.32), and equals

c(ϕ, k) = 1.8040 for the input sequence I = (3, 2, 1.5, 4, 5).

Analogously to Variant 2, the already accumulated amount of asset Y , yt, is

calculated using equation (5.10). The amount to be converted st is calculated

using equation (5.37), with sT = dT−1. The amount of asset D remaining, dt, is

calculated using equation (5.36).

Following Condition (1), if the �rst price q1 is smaller than or equal to (≤)
c(ϕ, k) ·m the amount to be converted s1 = 0. Table 5.3 gives a numerical example

for q1 = c(ϕ, k) ·m = 2.7060. For Variant 3 the worst-case competitive ratio cwc,

t qt st dt yt

1 2.7060 0.0000 1.0000 0.0000

2 2 - - -

3 1.5 - - -

4 4 0.3633 0.6367 1.4533

5 5 0.6367 0.0000 4.6367

Table 5.3: Numerical example for Variant 3 with q1 = c(ϕ, k) ·m
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denoted by c(ϕ, k), must equal

c(ϕ, k) =
q1

m · d1 + y1

with d1 = 1 and y1 = 0 (5.42)

=
q1

m
with q1 = c(ϕ, k) ·m

=
c(ϕ, k) ·m

m
= 1.8040

where the value qt is the amount of asset Y OPT achieves and m · dt + yt is the

amount of Y achieved by ON assuming that the price drops to m on day 2.

As ON accumulated 4.6367 Y on day T the empirical-case competitive ratio

cec for Variant 3 on the considered input sequence I equals

cec =
OPT

ON
(5.43)

=
qT

m · dT + yT
with dT = 0

=
M

yT

=
5

4.6367
= 1.0784.

Variant 4 for m ≤ q1 ≤ c(ϕ) ·m. The worst-case competitive ratio to decide

whether q1 ≤ c(ϕ) ·m or not is calculated using equation (5.34), and equals c(ϕ) =

1.9405 for the input sequence I = (3, 2, 1.5, 4, 5).

Analogously to Variant 2, the already accumulated amount of asset Y , yt, is

calculated using equation (5.10). The amount to be converted st is calculated

using equation (5.37), with sT = dT−1. The amount of asset D remaining, dt, is

calculated using equation (5.36).

Following Condition (1), if the �rst price q1 is smaller than or equal to (≤)
c(ϕ) ·m the amount to be converted s1 = 0. Table 5.4 gives a numerical example

for q1 = c(ϕ) · m = 2.9108. For Variant 4 the achievable worst-case competitive

t qt st dt yt

1 2.9108 0.0000 1.0000 0.0000

2 2 - - -

3 1.5 - - -

4 4 0.3076 0.6924 1.2304

5 5 0.6924 0.0000 4.6924

Table 5.4: Numerical example for Variant 4 with q1 = c(ϕ) ·m
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ratio cwc, denoted by c(ϕ), must equal

c(ϕ) =
q1

m · d1 + y1

with d1 = 1 and y1 = 0 (5.44)

=
q1

m
with q1 = c(ϕ) ·m

=
c(ϕ) ·m

m
= 1.9405

where the value qt is the amount of asset Y OPT achieves and m · dt + yt is the

amount of Y achieved by ON assuming that the price drops to m on day t+ 1.

As ON accumulated 4.6924 Y on day T the empirical-case competitive ratio

cec for Variant 4 on the considered input sequence I equals

cec =
OPT

ON
(5.45)

=
qT

m · dT + yT
with dT = 0

=
M

yT

=
5

4.6924
= 1.0656.

The empirical-case competitive ratio cec = 1.0656 of Variant 4 is better (smaller)

than the cec = 1.0784 of Variant 3 as a smaller amount s4 = 0.3076 is converted

at q4 = 4.

Case (2): M > q1 > c ·m

Analogously to Case (1), as the number of days T is unknown for Variant 1 and

Variant 4, there might be dT > 0 of asset D remaining which must be converted

at the last price qT , possibly at m. Thus, the amount of asset D remaining

dT :=




≥ 0, for Variant 1, Variant 4,

= 0, for Variant 2, Variant 3,
(5.46)

and from equation (5.12) follows

sT = dT−1. (5.47)

From this Condition (2) can be stated as follows:

0 < s1 < 1 i� M > q1 > c ·m.

In the following we give some numerical examples for Condition (2). Consider

the same example of T = 5 possible prices I = (3, 2, 1.5, 4, 5) as for Case 1. Only

the increasing prices q1 = 3, q4 = 4 and q5 = 5 are considered,M = 5, andm = 1.5.
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Variant 1 for M > q1 > c∞(M,m) · m and q1 assumed to be unknown

a-priori. As q1 is assumed to be unknown equation (5.5) is used to calculate

c∞(m,M) = 1.5136 in advance. The amount dt on each day t is calculated using

equation (5.3), and st using equation (5.11). From this follows that yt can be

calculated using equation (5.10). Table 5.5 gives an example for Variant 1 where

q1 = 3 > c∞(m,M) ·m = 2.2704. As q1 > c∞ ·m the amount to be converted on

t qt st dt yt

1 3 0.4402 0.5598 1.3206

2 2 - - -

3 1.5 - - -

4 4 0.3375 0.2223 2.6706

5 5 0.2223 0.0000 3.7821

Table 5.5: Numerical example for Variant 1a with M > q1 > c∞(m,M) ·m and q1

assumed to be unknown a-priori

the �rst day s1 = 0.4402 > 0. For Variant 1 with M > q1 > c∞ ·m with q1 and

k ≤ T assumed to be unknown, the amount of sT = dT−1 = 0.2223 of asset D is

converted at qT = 5.

As ON accumulated 3.7821 Y on day T the empirical-case competitive ratio

cec for Variant 1a on the considered input sequence I equals

cec =
OPT

ON
(5.48)

=
qT

m · dT + yT
with dT = 0

=
M

yT

=
5

3.7821
= 1.3220.

Variant 1 for M > q1 > c∞(m,M) ·m and q1 assumed to be known a-priori.

The worst-case competitive ratio to decide whether q1 > c∞(m,M) · m or not is

calculated using equation (5.5), i.e. equals 1.5136. If the �rst price q1 is assumed to

be known a-priori, and q1 > c∞(m,M) ·m Case 2 in El-Yaniv et al. (1992) holds.

Then from equation (5.8) we get a worst-case competitive ratio c∞(m,M, q1) =

1.4236 based on the value of q1. Equation (5.9) is used to calculate dt. Further,

from equation (5.11) we get st (with sT = dT−1) and yt is calculated using equation

(5.10). Table 5.6 gives a numerical example. For Variant 1 with M > q1 >

c∞(m,M) ·m and q1 assumed to be known, the a-priori knowledge of q1 leads to a

higher amount yT as less Y are converted at the �rst price q1: Without knowing q1
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t qt st dt yt

1 3 0.4048 0.5952 1.2145

2 2 - - -

3 1.5 - - -

4 4 0.3588 0.2363 2.6498

5 5 0.2363 0.0000 3.8315

Table 5.6: Numerical example for Variant 1b with M > q1 > c∞(m,M) ·m and q1

assumed to be known a-priori

and amount of s1 = 0.4402 of asset D is converted (cf. Table 5.5), while knowing

q1 results in a smaller amount of s1 = 0.4048 to be converted for q1 = 3 (cf. Table

5.6). Thus, by the knowledge q1 a higher amount of D remains to be converted at

a better (higher) price. From this follows cec(m,M) ≥ cec(m,M, q1).

As ON accumulated 3.8315 Y on day T the empirical-case competitive ratio

cec for Variant 1b on the considered input sequence I equals

cec =
OPT

ON
(5.49)

=
qT

m · dT + yT
with dT = 0

=
M

yT

=
5

3.8315
= 1.3050

with cec(m,M) = 1.3220 ≥ cec(m,M, q1) = 1.3050.

Variant 2 for M > q1 > ck
′
(q1) ·m. For Variant 2, using equation (5.24), the

value ck
′
(q1) is calculated for each trading day. Following Condition (2), if a `�rst'

price q1 > ck
′
(q1) ·m then the amount to be converted on this day s1 > 0. Further,

as T is known for Variant 2, the amount of asset D remaining on day T = 5, d5, is

null. The worst-case competitive ratio cwc, denoted by c(m,M, k), equals

c(m,M, k) = max
{
ck
′
(q1)|k′ = 1, . . . , 5

}
(5.50)

= c5(3)

= 1.3818.

It is assumed that in the worst-case the price drops to m on day 2 and remains

there (cf. equation (5.30)). Table 5.7 gives a numerical example for q1 = 3 >

ck
′
(q′1) ·m = 2.0727.
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t qt k′ ck
′
(q′1) c st dt yt

1 3 5 1.3818 1.3818 0.4474 0.5526 1.3422

2 2 4 - - - - -

3 1.5 3 - - - - -

4 4 2 1.1786 1.3270 0.3373 0.2153 2.6914

5 5 1 1.0000 1.3270 0.2153 0.0000 3.7679

Table 5.7: Numerical example for Variant 2 with M > q1 > ck
′
(q1) ·m

As ON accumulated 3.7679 Y on day T the empirical-case competitive ratio

cec for Variant 2 on the considered input sequence I equals

cec =
OPT

ON
(5.51)

=
qT
yT

with qT = M

=
5

3.7679
= 1.3270.

Variant 3 for M > q1 > c(ϕ, k) ·m. The worst-case competitive ratio to decide

whether q1 > c(ϕ, k) · m or not is calculated using equation (5.32), and equals

c(ϕ, k) = 1.8040 for the input sequence I = (3, 2, 1.5, 4, 5).

Analogously to Variant 2, the already accumulated amount of asset Y , yt, is

calculated using equation (5.10). The amount to be converted st is calculated

using equation (5.37), with sT = dT−1. The amount of asset D remaining, dt, is

calculated using equation (5.36).

Following Condition (2), if the �rst price q1 > c(ϕ, k) ·m then the amount to

be converted s1 > 0. Table 5.8 gives a numerical example.

t qt st dt yt

1 3 0.3633 0.6367 1.0900

2 2 - - -

3 1.5 - - -

4 4 0.1298 0.5069 1.6090

5 5 0.5069 0.0000 4.1436

Table 5.8: Numerical example for Variant 3 with M > q1 > c(ϕ, k) ·m

As ON accumulated 4.1436 Y on day T the empirical-case competitive ratio
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cec for Variant 3 on the considered input sequence I equals

cec =
OPT

ON
(5.52)

=
qT

m · dT + yT
with dT = 0

=
M

yT

=
5

4.1436
= 1.2067.

Variant 4 for M > q1 > c(ϕ) ·m. The worst-case competitive ratio to decide

whether q1 > c(ϕ) ·m or not is calculated using equation (5.34), and equals c(ϕ) =

1.9405 for the input sequence I = (3, 2, 1.5, 4, 5).

Analogously to Variant 2, the already accumulated amount of asset Y , yt, is

calculated using equation (5.10). The amount to be converted st is calculated

using equation (5.37), with sT = dT−1. The amount of asset D remaining, dt, is

calculated using equation (5.36).

Following Condition (2), if the �rst price q1 > c(ϕ) ·m then the amount to

be converted s1 > 0. Table 5.9 gives a numerical example.

t qt st dt yt

1 3 0.3076 0.6924 0.9228

2 2 - - -

3 1.5 - - -

4 4 0.1099 0.5825 1.3622

5 5 0.5825 0.0000 4.2749

Table 5.9: Numerical example for Variant 4 with M > q1 > c(ϕ) ·m

As ON accumulated 4.2749 Y on day T the empirical-case competitive ratio

cec for Variant 4 on the considered input sequence I equals

cec =
OPT

ON
(5.53)

=
qT

m · dT + yT
with dT = 0

=
M

yT

=
5

4.2749
= 1.1696.

The empirical-case competitive ratio cec = 1.1696 of Variant 4 is better (smaller)

than the cec = 1.2067 of Variant 3 as a smaller amount s1 = 0.3076 is converted

at q1 = 3.
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Case (3): q1 = M

From Rule (2) follows that if the �rst price to be considered, q1, equals M the

whole amount of asset D is converted into Y by OPT . Whether the whole amount

of asset D is converted or not depends on the a-priori knowledge of ON : In case

the upper bound M is assumed to be known the whole asset D is converted at

q1 = M , i.e. s1 = 1. In case only the price �uctuation ratio ϕ = M
m

is known the

amount to be converted s1 < 1.

Condition (3) di�ers for Variant 1,2 and Variant 3,4.

For Variant 1 and Variant 2 Condition (3) can be stated as follows:

s1 = 1 i� q1 = M .

For Variant 3 and Variant 4 Condition (3) can be stated as follows:

s1 < 1 i� q1 = M .

In the following we give some numerical examples for Condition (3). Assume

the input sequence I = (5, 2, 2.5, 4, 1.5), i.e. q1 = M = 5 and m = 1.5.

Variant 1 for M = q1. Table 5.10 gives an example for Variant 1 where q1 = 5.

We do not di�er between the case where q1 is known or unknown, as in both cases

the whole amount of asset D is converted on the �rst day at M . Equation (5.5) is

t qt st dt yt

1 5 1.0000 0.0000 5.0000

2 2 - - -

3 2.5 - - -

4 4 - - -

5 1.5 - - -

Table 5.10: Numerical example for Variant 1 with M = q1

used to calculate c∞(m,M) = 1.5136 in advance.

In case q1 is assumed to be unknown a-priori the amount dt on each day t is

calculated using equation (5.3). As q1 = M the amount to be converted on the

�rst day s1 = 1.

In case q1 is assumed to be known a-priori Case 2 in El-Yaniv et al. (1992)

holds. Then from equation (5.8) we get a worst-case competitive ratio c, denoted

by c∞(m,M, q1), based on the value of q1, i.e. c equals 1.0000. Further, from

equation (5.11) we get st (with sT = dT−1), and yt is calculated using equation

(5.10).

As ON accumulated 5.0000 Y on day T the empirical-case competitive ratio
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cec for Variant 1 on the considered input sequence I equals

cec =
OPT

ON
(5.54)

=
qT

m · dT + yT
with dT = 0 and yT = y1

=
M

y1

=
5

5
= 1.0000.

Variant 2 for q1 = M . As the number of trading days k ≤ T is known, the

whole amount of asset D is converted at q1, i.e. s1 = 1 and d1 = 0. Thus, the

accumulated amount of Y on the last day k ≤ T equals

yT = yT +m · dT (5.55)

= yT

= y1.

For Variant 2, using equation (5.24), the value ck
′
(q1) is calculated for each day t.

Following Condition (3) from equation (5.20) we get s1 = 1. For q1 = M = 5 the

worst-case competitive ratio c, denoted by c(m,M, k), equals

c(m,M, k) = max
{
ck
′
(q1)|k′ = 1, . . . , 5

}
(5.56)

= c5(5)

= 1.0000.

It is assumed that the price drops to m on day 2 and remains there. Table 5.11

gives a numerical example.

t qt k′ ck
′
(q1) c st dt yt

1 5 5 1.0000 1.0000 1.0000 0.0000 5.0000

2 3 4 - - - - -

3 4 3 - - - - -

4 2 2 - - - - -

5 5 1 - - - - -

Table 5.11: Numerical example for Variant 2 with M = q1

As ON accumulated 5.000 Y on day T the empirical-case competitive ratio cec
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for Variant 2 on the considered input sequence I equals

cec =
OPT

ON
(5.57)

=
qT
yT

with qT = M

=
5

5
= 1.0000.

The whole amount of asset D is converted into Y on the �rst day, i.e. the

threat-based algorithm achieves the optimum amount of Y .

Variant 3 for q1 = M . The worst-case competitive ratio to decide whether q1 >

c(ϕ, k) ·m or not is calculated using equation (5.32), and equals c(ϕ, k) = 1.8040

for the input sequence I = (5, 2, 2.5, 4, 1.5).

Analogously to Variant 2, the already accumulated amount of asset Y , yt, is

calculated using equation (5.10). The amount to be converted st is calculated

using equation (5.37), with sT = dT−1. The amount of asset D remaining, dt, is

calculated using equation (5.36). Table 5.12 gives a numerical example.

t qt st dt yt

1 5 0.3633 0.6367 1.0900

2 2 - - -

3 2.5 - - -

4 4 - - -

5 1.5 0.6367 0.0000 2.7716

Table 5.12: Numerical example for Variant 3 with M = q1

As ON accumulated 2.7716 Y on day T the empirical-case competitive ratio

cec for Variant 3 on the considered input sequence I equals

cec =
OPT

ON
(5.58)

=
qT

m · dT + yT
with dT = 0

=
M

yT

=
5

2.7716
= 1.8040.

For the input sequence considered the empirical-case ratio cec equals the worst-case

ratio cwc = c(ϕ, k) = 1.8040 as the amount of sT = 0.6367 of asset D must be

converted at the minimum price m = 1.5, i.e. the worst-case occurs.
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Variant 4 for q1 = M . The worst-case competitive ratio to decide whether q1 >

c(ϕ, k) ·m or not is calculated using equation (5.32), and equals c(ϕ, k) = 1.9405

for the input sequence I = (5, 2, 2.5, 4, 1.5).

Analogously to Variant 2, the already accumulated amount of asset Y , yt, is

calculated using equation (5.10). The amount to be converted st is calculated

using equation (5.37), with sT = dT−1. The amount of asset D remaining, dt, is

calculated using equation (5.36). Table 5.13 gives a numerical example.

t qt st dt yt

1 5 0.3076 0.6924 1.5308

2 2 - - -

3 2.5 - - -

4 4 - - -

5 1.5 0.6924 0.0000 2.5766

Table 5.13: Numerical example for Variant 4 with M = q1

As ON accumulated 2.5766 Y on day T the empirical-case competitive ratio

cec for Variant 4 on the considered input sequence I equals

cec =
OPT

ON
(5.59)

=
qT

m · dT + yT
with dT = 0

=
M

yT

=
5

2.5766
= 1.9405.

For the input sequence I considered the empirical-case ratio cec equals the

worst-case ratio cwc = c(ϕ, k) = 1.9405 as the amount of sT = 0.6924 of asset

D must be converted at the minimum price m = 1.5, i.e. the worst-case occurs.

For all variants of Algorithm 8, in the worst-case, the pessimistic assumption

q1 = m must be made. In case q1 = M a competitive ratio of 1 is always achieved

by the threat-based algorithm Variant 2. Thus, when considering worst-cases,

the threat-based algorithm is optimal for Variant 2 (El-Yaniv et al.,

1992, p. 4).

OPT can get an optimum amount of Y by converting the whole amount of D

at price M on day k ≤ T . Then from equation (2.7) the competitive ratio c for
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max-search of any threat-based algorithm equals

c =
OPT

ON
(5.60)

=
M

yk +m · dk
.

Summing up, based on the assumption of a worst-case sequence of prices,

Algorithm 8 does not convert at all i� q1 ≤ c ·m (cf. Condition (1)). Further,

Conditions (2) and (3) ensure that for M ≥ q1 > c ·m

1. not more than the whole amount of D is converted by the threat-based

algorithm, and

2. a worst-case competitive ratio

c ∈ {c∞(m,M), c∞(m,M, q1), c(m,M, k), c(ϕ, k), c∞(ϕ)} is achievable.

El-Yaniv et al. (1992) also suggested a threat-based algorithm for bi-directional

search, which is presented in the following.

5.2 The Bi-directional Algorithm of El-Yaniv,

Fiat, Karp and Turpin (1992)

El-Yaniv et al. (1992) consider bi-directional search under the assumption that

the upper and lower bounds, M and m, on possible prices are known. The

uni-directional threat-based algorithm Variant 1 presented in Section 5.1 is

extended to bi-directional search. El-Yaniv et al. (2001, p. 136) show that, to

solve the bi-directional search problem, ON does not need to know the number of

trading days k ≤ T .

5.2.1 The Guaranteeing Algorithm

ON starts with d0 = 1 of asset D (and y0 = 0 of asset Y ) and converts back and

forth between asset D and Y according to the sequence of prices which is revealed

online. It is assumed that prices qt ∈ [m,M ] but may rise or fall arbitrarily. The

overall worst-case competitive ratio cwc can be calculated either by the overall

amount of asset D or asset Y . Thus, at the latest on the last day T of the time

horizon all remaining st must be converted either into D or Y (possibly at price

qT = m). The bi-directional threat-based algorithm converts according to the rules

given in Algorithm 8. But in case bi-directional search is carried out, the algorithm

divides the sequence of prices into upward and downward runs, representing price
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trends, and repeats Algorithm 8 on each run. Asset D is converted into asset Y

(max-search) if the price is on an upward run, i.e. the value of D is increasing.

Asset Y is converted into asset D (min-search) if the price is on a downward run,

i.e. the value of D is decreasing. Worst-case analysis is done in the following.

5.2.2 Worst-Case Analysis

El-Yaniv et al. (1992) assume overall w runs, i.e. w
2
upward runs and w

2
downward

runs, with overall w price minima and price maxima (i = 1, . . . , w). OPT converts

the whole of asset D into Y (selling) at the end of each i-th upward run (at best

at M), and converts the whole of asset Y into D (buying) at the end of each i-th

downward run (at best at m).

Since this is the variant where the number of trading days k ≤ T is not

given (only m,M are known) ON must consider an adversary that may choose

an arbitrary large number of days T →∞ in the worst-case (El-Yaniv et al., 2001,

p. 121).

Assume an upward run consists of q1 ≤ q2 ≤, . . . ,≤ qt prices, i.e. on day

t + 1 with qt+1 < qt the �rst downward run begins (El-Yaniv et al., 1992, p. 7).

During these t days ON converts D into Y according to Algorithm 8, achieving a

competitive ratio equal to c∞(m,M) in the worst-case (cf. equation (5.5)). Thus,

for each trading day t = 1, . . . , t within the upward run, the amount of D remaining

dt and the accumulated amount of Y , yt, must always satisfy

OPT

ON
=

qt
m · dt + yt

(5.61)

= c∞(m,M)

where ON = m ·dt+yt represents the performance of the threat-based algorithm if

an adversary drops the price to m and qt is the performance of OPT for this case.

Thus, after day t ≤ T ON has dt of D remaining, and accumulated yt of Y . From

equation (5.61) follows (El-Yaniv et al., 1992, p. 7)

m · dt + yt =
qt

c∞(m,M)
(5.62)

⇒ dt =

(
qt

c∞(m,M)
− yt

)

m
.

Assume a downward run begins on day t+ 1 and consists of qt+1 ≤, . . . ,≤ qk prices

with k ≤ T . Then the remaining amount dt of D at the end of a previous upward

run must be converted into Y on day t+1, i.e. on the �rst day of the downward run.

Since qt+1 ≥ m, in the worst-case ON has at least qt+1

c∞(m,M)
≥ m

c∞(m,M)
of asset Y at

the beginning the �rst downward run. Beginning on day t+ 1 ON converts Y into
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D, and all remaining Y on the last day k of the downward run must be converted

into D on the �rst day k + 1 of the next upward run. Thus, two transactions are

carried out on the �rst day of each downward run:

1. The conversion of all remaining D, given by dt, into Y , and

2. the �rst fraction of asset Y is converted back into D with a competitive ratio

c∞(m,M) as the current price is the highest seen so far.

Similarly, on the �rst day of each upward run, two transactions are carried out:

1. The conversion of all remaining Y , given by yt, into D, and

2. the �rst fraction of asset D is converted back into Y with a competitive ratio

c∞(m,M) as the current price is the highest seen so far.

From this follows, in each of the w runs the ratio between OPT and ON increases at

most by the factor c∞(m,M). Thus ON achieves an overall worst-case competitive

ratio of (El-Yaniv et al., 1992, p. 7)

OPT

ON
= c∞(m,M)w (5.63)

assuming m and M are constants.

The above bi-directional algorithm is not optimal: On any upward (downward)

run ON can take advantage of the knowledge that, to attain a competitive ratio

of c in the following run, OPT must begin the run with a certain price. This

knowledge might lead to smaller ratio than c∞(m,M)w (El-Yaniv et al., 1992, p.

7). Unfortunately, El-Yaniv et al. (1992) give no description or technique how this

knowledge can be used.

The competitive ratio given in equation (5.63) is an upper bound, i.e. the ratio

can be improved. Let w be as described above, and assume M and m are known.

El-Yaniv et al. (1992) show that for any (unknown) number of trading days k ≤ T

it is possible to force a competitive ratio of cw/2 and c is de�ned as given in equation

(5.26), i.e. equals

c = T ·
[

1−
(
m · (c− 1

M − 1

) 1
T

]
. (5.64)

Assume OPT constructs a sequence of k ≤ T prices consisting of only w
2
upward

runs, each followed by an immediate drop to m: The price increases from m, drops

to m, and then repeats such �uctuations (Dannoura and Sakurai, 1998, Figure 2,

p. 30). ON converts asset D into asset Y during each of the w
2
upward runs,

and converts Y back into D at price m, i.e. achieves the optimum. The terminal

amount of asset D (Y ) achieved by OPT will exceed the terminal amount achieved
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by ON by at least the ratio c as given in equation (5.64). Thus, in each upward

run followed by a drop to m, the competitive ratio can be made to increase by a

factor of c (El-Yaniv et al., 1992, Section 4.3). This yields to a factor of cw/2 for the

entire time interval of length T . As ON must consider an arbitrary number of days

in the worst-case. For T → ∞ the (lower bound) competitive ratio c approaches

(El-Yaniv et al., 1992, p. 7)

OPT

ON
= c∞(m,M)w/2. (5.65)

Dannoura and Sakurai (1998) claim that the above algorithm is not optimal but

induces an optimal algorithm for bi-directional search under certain restrictions

on the sequence of prices. The improvement of the lower bound competitive ratio,

given in equation (5.65), of above bi-directional threat-based algorithm is presented

in the following.

5.3 Improvement Idea of Dannoura and Sakurai

(1998)

Dannoura and Sakurai (1998) improve the bi-directional threat-based algorithm

suggested by El-Yaniv et al. (1992), and presented in Section 5.2. The basic idea

is that a better lower bound can be achieved by assuming other restrictions on the

sequence of prices than El-Yaniv et al. (1992).

The lower bound competitive ratio given in El-Yaniv et al. (1992) equals

c∞(m,M)w/2 as given in equation (5.65). Dannoura and Sakurai (1998) improve

this lower bound ratio by assuming that initially the price increases from m1

(possibly to M), but then suddenly drops to m2, where m1 and m2 satisfy

c̄ ·m2 = m1 (5.66)

= 1 + (c̄− 1) · ec̄ ·m

and

c̄ · {1 + (c̄− 1) · ec̄}2
=
M

m
(5.67)

with m ≤ m2 < m1 ≤ M and c̄ denotes the improved lower bound competitive

ratio. Then, the price decreases from m2 to m and rises suddenly to m1, and

increases again from m1, etc. This pattern of increasing, dropping, decreasing,

rising is then repeated (Dannoura and Sakurai, 1998, Figure 3, p. 30). The optimal

bi-directional algorithm against this sequence of prices di�ers between two cases

depending on the price trend (Dannoura and Sakurai, 1998, p. 30):
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Case 1. The price is on an upward run, i.e. the value of asset D is increasing.

Asset D is converted into Y (max-search) with qt ∈ [m1,M ] according to

Algorithm 8 presented in Section 5.1. All (remaining) D are converted into

Y when qt drops to m2.

Case 2. The price is on an downward run, i.e. the value of asset Y is increasing.

Asset Y is converted into D (min-search) with qt ∈ [m,m2] according to

Algorithm 8 presented in Section 5.1. All (remaining) Y are converted into

D when qt rises to m1.

Assuming w price minima and price maxima, the best possible competitive ratio

(the improved lower bound) then equals c̄w. Dannoura and Sakurai (1998) show

that in case exactly one upward run with w = 1 is assumed, the relation c̄ >

c∞(m,M)(1/2) holds, where c∞(m,M)(1/2) is the lower bound by El-Yaniv et al.

(1992) given in equation (5.65).

Further, Dannoura and Sakurai (1998) observe a gap between the achievable

competitive ratio and improved the lower bound c̄w. Thus, they suggest to improve

Algorithm 8 of El-Yaniv et al. (1992) by assuming the above sequence of prices.

The improved algorithm is presented in the following.

5.3.1 The Guaranteeing Algorithm

Remember that by using the original uni-directional threat-based algorithm of

El-Yaniv et al. (1992) ON faces the threat that during an upward run the price qt

might suddenly drop to m. Thus, the amount of asset D converted into Y is such

that a worst-case competitive ratio cwc, denoted by c∞(m,M), (cf. equation 5.61)

is achievable if qt indeed drops to m. Dannoura and Sakurai (1998) assume w = 2

subsequent upward runs, i.e. the price increases, followed by a sudden drop to m,

then increases again, followed by a second drop to m. Each upward run leading

to a competitive ratio of c∞(m,M). From equation (5.63) the overall competitive

ratio then equals c∞(m,M)w = c∞(m,M)2.

Dannoura and Sakurai (1998) claim that the overall competitive ratio ratio is

not c∞(m,M)2 but c∞(m,M) in case of bi-directional search and w = 2.

Assuming the above w = 2 subsequent upward runs, and using Rule (1) to (3)

as given in Algorithm 8 to solve the bi-directional search problem, ON converts

Y into D (min-search) at the best possible rate m every time the rate drops, i.e.

achieves the optimum. Thus, the worst-case assumption of El-Yaniv et al. (1992),

i.e. the `threat' of a sudden drop to m, holds only for the uni-directional case when

converting D into Y .
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In the bi-directional case a sudden drop to m leads to the best possible

competitive ratio c∗ = OPT/ON = m/m = 1 for min-search. From this follows

by using Algorithm 8 for bi-directional search ON faces too much of a `threat'.

Thus, Dannoura and Sakurai (1998) improve the original uni-directional algorithm

by making the `threat' smaller. Like Algorithm 8 of El-Yaniv et al. (1992) the

improved uni-directional algorithm consists of three rules (Dannoura and Sakurai,

1998, p. 31) and is repeated for bi-directional search. For a start, assume that the

worst-case competitive ratio c, denoted by c̃, is known to ON .

Algorithm 9.

Rule (1). Consider a conversion from asset D into asset Y only if the current price

o�ered is the highest seen so far.

Rule (2). Whenever you convert asset D into asset Y , convert `just enough' D

to ensure that a competitive ratio c̃ would be obtained if an adversary dropped the

price to the minimum possible price c̃ ·m, and kept it there throughout the game.32

Rule (3). On the last trading day T , all remaining D must be converted into Y ,

possibly at the minimum price.

Only the second rule is modi�ed by Dannoura and Sakurai (1998): The lower

bound on the exchange rates is assumed to be c̃ ·m instead of m, i.e. the threat is

`smaller' as c̃ ≥ 1. In the following worst-case analysis of Algorithm 9 is done.

5.3.2 Worst-Case Analysis

Dannoura and Sakurai (1998) improve the threat-based algorithm Variant 1 of

El-Yaniv et al. (1992, 2001) assuming m and M are known. Since this is the

variant where the number of trading days k ≤ T is not given ON must consider

an adversary that may choose an arbitrary large number of days T → ∞ in the

worst-case.

In order to meet the worst-case ratio c̃ on each day the values dt and yt must be

determined such that the amount of asset D equals (Dannoura and Sakurai, 1998,

p. 31)

dt = 1− 1

c̃
· ln qt − c̃ ·m

c̃2 ·m− c̃ ·m. (5.68)

Since

c̃ ·m · d(qt) + y(qt) ≥
qt
c̃

(5.69)

is satis�ed ON will get at least qt
c̃
of asset Y (under qt ∈ [c̃ ·m,M ]).

32The `minimum possible price' equals c̃ ·m instead of m as assumed by El-Yaniv et al. (1992).
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Dannoura and Sakurai (1998) assume that the behavior of Algorithm 9 is

identical to Algorithm 8 of El-Yaniv et al. (1992). Thus, the worst-case competitive

ratio c̃ achieved by Algorithm 9 equals

c̃ = ln
M − c̃ ·m

c̃2 ·m− c̃ ·m (5.70)

= ln
M
c̃·m − 1

c̃− 1
.

When estimating c̃ equation (5.70) must be transformed to

ec̃ · (c̃− 1) =
M

c̃ ·m − 1. (5.71)

Equation (5.69) holds for the improved uni-directional algorithm and qt ≥ c̃ · m
(Dannoura and Sakurai, 1998, p. 32). But, in practice, the whole amount of D

remaining might be converted at pricem, e.g. on the last day T of the time interval.

In this case, since dt, yt ≥ 0

m · dt + yt ≥
c̃ ·m · dt + yt

c̃
(5.72)

≥ qt
c̃2
,

Thus ON will achieve at least qt
c̃2

of asset Y . Dannoura and Sakurai (1998) claim

that thus the overall achievable competitive ratio (the lower bound) of Algorithm

9 equals c̃2.

From this follows, equation (5.70) holds for the case where the initial price q1 is

assumed to be unknown to ON or q1 ≤ c̃2 ·m (Dannoura and Sakurai, 1998, p. 32).

This is of main interest when determining the competitive ratio under worst-case

assumptions as the pessimistic assumption q1 = c̃ ·m must be made.

Analogously to the threat-based algorithm Variant 1, in case the �rst price

q1 > m is assumed to be known a-priori, the competitive ratio, denoted by c̃, is the

unique solution of (Dannoura and Sakurai, 1998, p. 31)

c̃ =





ln
M
c̃·m−1

c̃−1
q1 ∈ [m, c̃ ·m]

1 + q1−c̃·m
q1
· ln M−c̃·m

q1−c̃·m q1 ∈ [c̃ ·m,M ].
(5.73)

Further, depending on the value of q1 the amount of D remaining dt equals

(Dannoura and Sakurai, 1998, p. 31)

dt =





1− 1
c̃
· ln qt−c̃·m

c̃2·m−c̃·m q1 ∈ [m, c̃ ·m]
q1− q1c̃
q1−c̃·m −

1
c̃
· ln qt−c̃·m

q1−c̃·m q1 ∈ [c̃ ·m,M ].
(5.74)

Then the competitive ratio c̃ is a function of q1. When considering worst-cases we

make no assumptions about q1. Only for the empirical evaluation of Algorithm
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9 the value of q1 is of interest. Thus, unless otherwise stated, the ratio c̃ always

means the value of equation (5.70).

In both cases (for q1 known and unknown) the amount of accumulated Y on

day t, yt, equals

yt = yt−1 + st · qt with yt ≥ 0, (5.75)

and the amount st ∈ [0, 1] to be converted on day t equals

st = dt−1 − dt with d0 = 1. (5.76)

The amount of D remaining, dt, is calculated as given in equation (5.68) for

q1 unknown, and as given in equation (5.74) for q1 known. The suggested

uni-directional algorithm is not optimal, nevertheless it achieves a better

performance than the original uni-directional algorithm of El-Yaniv et al. (1992)

(cf. Dannoura and Sakurai, 1998, p. 32).

The improved bi-directional algorithm of Dannoura and Sakurai (1998) repeats

the proposed uni-directional Algorithm 9 in a similar manner to the original

method of El-Yaniv et al. (1992). Thus, the overall achievable competitive ratio

(the improved upper bound) is calculated as for their bi-directional algorithm,

and equation (5.63) holds. Assuming w
2
upward runs and w

2
downward runs, ON

achieves an overall competitive ratio of (Dannoura and Sakurai, 1998, p. 33)

OPT

ON
= c̃w (5.77)

as the overall w minima and maxima of prices are assumed.

Summing up, Dannoura and Sakurai (1998) improve the upper and lower bound

for bi-directional run search given in the previous work by El-Yaniv et al. (1992).

The improved algorithm is not yet optimal, thus the challenge of designing an

optimal algorithm for bi-directional search remains (Dannoura and Sakurai, 1998,

p. 33).

In Chapter 6 the above described threat-based algorithms are evaluated

empirically assuming p ≥ 1 trades. We compare worst-case results to empirical-case

results.

References for Chapter 5

Damaschke, P., Ha, P. and Tsigas, P.: 2009, Online search with time-varying price

bounds, Algorithmica 55(4), 619�642.

Dannoura, E. and Sakurai, K.: 1998, An improvement on

El-Yaniv-Fiat-Karp-Turpin's money-making bi-directional trading strategy,

Information Processing Letters 66, 27�33.



REFERENCES FOR CHAPTER 5 123

El-Yaniv, R., Fiat, A., Karp, R. and Turpin, G.: 1992, Competitive analysis

of �nancial games, IEEE Symposium on Foundations of Computer Science,

pp. 327�333.

El-Yaniv, R., Fiat, A., Karp, R. and Turpin, G.: 2001, Optimal search and one-way

trading algorithm, Algorithmica 30(1), 101�139.

Fiat, A. and Woeginger, G. (eds): 1998, Online Algorithms - The State of the Art,

Vol. 1442 of Lecture Notes in Computer Science, Springer.

Iwama, K. and Yonezawa, K.: 1999, Using generalized forecasts for online currency

conversion, in T. Asano, H. Imai, D. Lee, S.-I. Nakano and T. Tokuyama (eds),

Computing and Combinatorics, Vol. 1627 of Lecture Notes in Computer Science,

Springer, pp. 409�421.





Chapter 6

Results

In this chapter selected results are given. All results are presented in the form of

research papers. Each paper is provided in its originally published or submitted

version. Thus, a preface links the paper to the previous chapters of this work. We

consider a set-up where the price �uctuates on a day to day basis, and decisions

when and how much to convert have to be made online � without any knowledge

of the future prices.

6.1 Results of Mohr and Schmidt (2008)

Preface

The following two research papers investigate the performance of the uni-directional

non-preemptive reservation price (RP ) algorithm introduced by El-Yaniv (1998).

The RP algorithm is presented in detail in Section 4.1: Algorithm 4, p. 81.

To enable bi-directional search, this uni-directional RP algorithm for selling is

extended to buying and selling: Mohr and Schmidt (2008a,b) introduce a rule for

min-search. The resulting Algorithm 5, p. 83, and denoted by Sqrt, achieves a

worst-case competitive ratio as given in Theorem 2.

For the empirical-case analysis transaction costs are assumed and backtesting

of algorithm Sqrt is done on the German Dax-30 index for the investment horizon

01-01-2007 to 12-31-2007. Each of the 30 assets of the index can be chosen

by the investigated algorithms ON ∈ {Sqrt, BH,Rand} and OPT . In order

to trade multiple times the investment horizon is divided into time intervals of

di�erent length T ∈ {7, 14, 28, 91, 182, 364} days. The following questions are to

be answered:

1. Does algorithm Sqrt show a superior behavior to a classic buy-and-hold

algorithm (BH)?
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2. Does algorithm Sqrt show a superior behavior to a randomized algorithm

(Rand)?

3. How do estimates on m and M in�uence the performance of Sqrt?

4. Which empirical-case competitive ratio cec and which worst-case competitive

ratio cwc achieves Sqrt?

To answer these questions two di�erent variants of algorithm Sqrt are assumed.

The �rst variant, denoted by `Historic', uses estimates from the past to calculate

a reservation price q∗ =
√
M ·m: In case of a time interval of length T days the

upper and lower bounds of prices qt, M and m, are calculated by the T prices

preceding the actual day t. The second variant, denoted by `Clairvoyant', uses

precise estimates to calculate q∗ =
√
M ·m: In case of a time interval length of T

days the actually observed values of m andM within each T are used. It is obvious

that the better the estimates of m and M the better the performance of algorithm

Sqrt.

Results show that the shorter the time intervals, the better are estimates by

historical m and M . Summing up, Mohr and Schmidt (2008a,b) analyze multiple

bi-directional conversion while trading multiple assets from an empirical-case and

a worst-case point of view.

6.1.1 Mohr and Schmidt (2008a)

Digital Object Identi�er (DOI): 10.1007/978-3-540-87477-5_32.

Communications in Computer and Information Science (CCIS), Vol. 14, pp.

293-302, 2008

© Springer-Verlag Berlin Heidelberg 2008, published online: October 25,

2008.33

33The copyright permission can be found in the Appendix, cf. Section A.1 and the original

publication is available at www.springerlink.com.

www.springerlink.com


Empirical Analysis of an Online Algorithm for

Multiple Trading Problems

Esther Mohr1 and Günter Schmidt1,2,�

1 Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany
2 University of Liechtenstein, Fürst-Franz-Josef-Strasse, 9490 Vaduz, Liechtenstein

em@itm.uni-sb.de, gs@itm.uni-sb.de

Abstract. If we trade in financial markets we are interested in buying
at low and selling at high prices. We suggest an active trading algorithm
which tries to solve this type of problem. The algorithm is based on reser-
vation prices. The effectiveness of the algorithm is analyzed from a worst
case and an average case point of view. We want to give an answer to
the questions if the suggested active trading algorithm shows a superior
behaviour to buy-and-hold policies. We also calculate the average com-
petitive performance of our algorithm using simulation on historical data.

Keywords: online algorithms, average case analysis, stock trading, trad-
ing rules, performance analysis, competitive analysis, trading problem,
empirical analysis.

1 Introduction

Many major stock markets are electronic market places where trading is carried
out automatically. Trading policies which have the potential to operate without
human interaction are of great importance in electronic stock markets. Very
often such policies are based on data from technical analysis [8, 6, 7]. Many
researchers have also studied trading policies from the perspective of artificial
intelligence, software agents and neural networks [1, 5, 9].

In order to carry out trading policies automatically they have to be converted
into trading algorithms. Before a trading algorithm is applied one might be in-
terested in its performance. The performance analysis of trading algorithms can
basically be carried by three different approaches. One is Bayesian analysis where
a given probability distribution for asset prices is a basic assumption. Another
one is assuming uncertainty about asset prices and analyzing the trading algo-
rithm under worst case outcomes; this approach is called competitive analysis.
The third one is a heuristic approach where trading algorithms are designed
and the analysis is done on historic data by simulation runs. In this paper we
apply the second and the third approach in combination. We consider a multiple
trade problem and analyze an appropriate trading algorithm from a worst case

� Corresponding author.

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 293–302, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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point of view. Moreover we evaluate its average case performance empirically
and compare it to other trading algorithms.

The reminder of this paper is organized as follows. In the next section the
problem is formulated and a worst case competitive analysis of the proposed
trading algorithm is performed. In Section 3 different trading policies for the
multiple trade problem are introduced. Section 4 presents detailed experimental
findings from our simulation runs. We finish with some conclusions in the last
section.

2 Problem Formulation

If we trade in financial markets we are interested in buying at low prices and
selling at high prices. Let us consider the single trade and the multiple trade
problem. In a single trade problem we search for the minimum price m and the
maximum price M in a time series of prices for a single asset. At best we buy
at price m and sell later at price M . In a multiple trade problem we trade assets
sequentially in a row, e.g. we buy some asset u today and sell it later in the
future. After selling asset u we buy some other asset v and sell it later again;
after selling v we can buy w which we sell again, etc. If we buy and sell (trade)
assets k times we call the problem k-trade problem with k ≥ 1.

As we do not know future prices the decisions to be taken are subject to
uncertainty. How to handle uncertainty for trading problems is discussed in [3].
In [2] and [4] online algorithms are applied to a search problem. Here a trader
owns some asset at time t = 0 and obtains a price quotation m ≤ p(t) ≤ M at
points of time t = 1, 2, . . . , T . The trader must decide at every time t whether
or not to accept this price for selling. Once some price p(t) is accepted trading
is closed and the trader’s payoff is calculated. The horizon T and the possible
minimum and maximum prices m and M are known to the trader. If the trader
did not accept a price at the first T − 1 points of time he must be prepared to
accept some minimum price m at time T . The problem is solved by an online
algorithm.

An algorithm ON computes online if for each j = 1, . . . , n−1, it computes an
output for j before the input for j + 1 is given. An algorithm computes offline if
it computes a feasible output given the entire input sequence j = 1, . . . , n − 1.
We denote an optimal offline algorithm by OPT . An online algorithm ON is
c-competitive if for any input I

ON(I) > 1/c ∗ OPT (I). (1)

The competitive ratio is a worst-case performance measure. In other words, any
c-competitive online algorithm is guaranteed a value of at least the fraction 1/c
of the optimal offline value OPT (I), no matter how unfortunate or uncertain
the future will be. When we have a maximization problem c ≥ 1, i.e. the smaller
c the more effective is ON . For the search problem the policy (trading rule) [2]
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accept the first price greater or equal to reservation price p∗ =
√

(M ∗ m)

has a competitive ratio cs =
√

M
m where M and m are upper and lower bounds

of prices p(t) with p(t) from [m, M ]. cs measures the worst case in terms of
maximum and minimum price.

This result can be transferred to k-trade problems if we modify the policy to

buy the asset at the first price smaller or equal and sell the asset at the
first price greater or equal to reservation price p∗ =

√
(M ∗ m).

In the single trade problem we have to carry out the search twice. In the worst
case we get a competitive ratio of cs for buying and the same competitive ratio of
cs for selling resulting in an overall competitive ratio for the single trade problem
of ct = cscs = M/m. In general we get for the k-trade problem a competitive
ratio of ct(k) =

∏
i=1,...,k (M(i)/m(i)). If m and M are constant for all trades

ct(k) = (M/m)k. The ratio ct can be interpreted as the rate of return we can
achieve by buying and selling assets.

The bound is tight for arbitrary k. Let us assume for each of k trades we have
to consider the time series (M, (M ∗ m)1/2, m, m, (M ∗ m)1/2, M). OPT always
buys at price m and sells at price M resulting in a return rate of M/m; ON
buys at price (M ∗ m)1/2 and sells at price (M ∗ m)1/2 resulting in a return rate
of 1, i.e. OPT/ON = M/m = c. If we have k trades OPT will have a return of
(M/m)k and ON of 1k , i.e. OPT (k)/ON(k) = (M/m)k = c(k).

In the following we apply the above modified reservation price policy to mul-
tiple trade problems.

3 Multiple Trade Problem

In a multiple trade problem we have to choose points of time for selling current
assets and buying new assets over a known time horizon. The horizon consists
of several trading periods i of different types p; each trading period consists of
a constant number of h days. We differ between p = 1, 2, . . . , 6 types of periods
with length h from {7, 14, 28, 91, 182, 364} days e.g. period type p = 6 has length
h = 364 days; periods of type p are numbered with i = 1, . . . , n(p). There is a
fixed length h for each period type p, e.g. period length h = 7 corresponds to
period type p = 1, period length h = 14 corresponds to period type p = 2, etc.
For a time horizon of one year, for period type p = 1 we get n(1) = 52 periods
of length h = 7, for type p = 2 we get n(2) = 26 periods of length h = 14, etc.

We may choose between three trading policies. Two elementary ones are Buy-
and-Hold (B +H), a passive policy, and Market Timing (MT ), an active policy.
The third one is a random (Rand) policy. As a benchmark we use an optimal
offline algorithm called Market (MA). We assume that for each period i there is
an estimate of the maximum price M(i) and the minimum price m(i). Within
each period i = 1, . . . , n(p) we have to buy and sell an asset at least once.
The annualized return rate R(x), with x from {MT, Rand, B + H, MA} is the
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performance measure used. At any point of time of the horizon the policy either
holds an asset or an overnight deposit.

In order to describe the different policies we define a holding period with
respect to MT . A holding period is the number of days h between the purchase
of asset j and the purchase of another asset j′ (j′ �= j) by MT . Holding periods
are determined by either reservation prices RPj(t) which give a trading signal
or when the last day T of the period is reached.

MARKET TIMING (MT )

MT calculates reservation prices RPj(t) for each day t for each asset j. At
each day t, MT must decide whether to sell asset j or to hold it another day
considering the reservation prices. Each period i, the first offered price pj(t) of
asset j with pj(t) ≥ RPj(t) is accepted by MT and asset j is sold. The asset
j∗, which is bought by MT is called MT asset. MT chooses the MT asset j∗ if
RPj∗(t) − pj∗(t) = max {RPj(t) − pj(t)|j = 1, . . . , m} and pj∗(t) < RPj∗(t). If
there was no trading signal in a period related to reservation prices then trading
is done on the last day T of a period. In this case MT must sell asset j and
invest in asset j′ at day T . The holding period of MT showing buying (Buy)
and selling (Sell) points and intervals with overnight deposit (OD) is shown in
Fig. 1.

Fig. 1. Holding period for MT and for Rand

RANDOM (Rand)

Rand will buy and sell at randomly chosen prices pj(t) within the holding period
of MT (cf. Fig. 1).

BUY AND HOLD (B + H)

B + H will buy at the first day t of the period and sell at the last day T of the
period.

MARKET (MA)

To evaluate the performance of these three policies empirically we use as a bench-
mark the optimal offline policy. It is assumed that MA knows all prices pj(t)
of a period including also these which were not presented to MT if there were
any. In each period i MA will buy at the minimum price pmin > m(i) and sell
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Fig. 2. Holding period for MA

at the maximum possible price pmax < M(i) within the holding period of MT
(cf. Fig. 2).

The performance of the investment policies is evaluated empirically. Clearly,
all policies cannot beat the benchmark policy MA.

4 Experimental Results

We want to investigate the performance of the trading policies discussed in
Section 3 using experimental analysis. Tests are run for all p = 1, 2, . . . , 6 pe-
riod types with the number of periods n(p) from {52, 26, 13, 4, 2, 1} and period
length h from {7, 14, 28, 91, 182, 364} days. The following assumptions apply for
all tested policies:

1. There is an initial portfolio value greater zero.
2. Buying and selling prices pj(t) of an asset j are the closing prices of day t.
3. At each point of time all money is invested either in assets or in 3% overnight

deposit.
4. Transaction costs are 0.0048% of the market value but between 0.60 and

18.00 Euro.
5. When selling and buying is on different days the money is invested in

overnight deposit.
6. At each point of time t there is at most one asset in the portfolio.
7. Each period i at least one buying and one selling transaction must be exe-

cuted. At the latest on the last day of each period asset j has to be bought
and on the last day it has to be sold.

8. In period i = 1 all policies buy the same asset j on the same day t at the
same price pj(t); the asset chosen is the one MT will chose (MT asset).

9. In periods i = 2, . . . , n(p)−1 trades are carried out according to the different
policies.

10. In the last period i = n(p) the asset has to be sold at the last day of that
period. No further transactions are carried out from there on.

11. If the reservation price is calculated over h days, the period length is (also)
h days.

We simulate all policies using historical XETRA DAX data from the interval
2007.01.01 until 2007.12.31. This interval we divide into n(p) periods where
n(p) is from {52, 26, 13, 4, 2, 1} and p is from {7, 14, 28, 91, 182, 364}. With this
arrangement we get 52 periods of length 7 days, 26 periods of length 14 days,
etc. We carried out simulation runs in order to find out
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(1) if MT shows a superior behaviour to buy-and-hold policies
(2) the influence of m and M on the performance of MT
(3) the average competitive ratio for policies for MA and MT .

Two types of buy-and-hold policies are used for simulation; one holds the
MT asset within each period (MTB+H) and the other holds the index over all
periods (IndexB+H) of a simulation run. Thus, MTB+H is synchronized with
the MT policy, i.e, MTB+H buys on the first day of each period the same asset
which MT buys first in this period (possibly not on the first day) and sells this
asset on the last day (note that this asset may differ from the one MT is selling
on the last day) of the period. Using this setting we compare both policies related
to the same period. IndexB+H is a common policy applied by ETF investment
funds and it is also often used as a benchmark although it is not synchronized
with the MT policy. In addition to these policies also the random policy Rand
is simulated. Rand buys the same asset which MT buys on a randomly chosen
day within a holding period.

We first concentrate on question (1) if MT shows a superior behaviour to the
policies MTB+H and IndexB+H . For calculating the reservation prices we use
estimates from the past, i.e. in case of a period length of h days m and M are
taken from the prices of these h days which are preceding the actual day t∗ of
the reservation price calculation, i.e. m = min {p(t)|t = t∗ − 1, t∗ − 2, . . . , t∗ − h}
and M = max {p(t)|t = t∗ − 1, t∗ − 2, . . . , t∗ − h}. In Table 1 the trading results
are displayed considering also transaction costs. The return rates are calculated
covering a time horizon of one year. For the three active policies (MA, MT ,
Rand) the transaction costs are the same because all follow the holding period
of MT ; in all these cases there is a flat minimum transaction fee.

Table 1. Annualized return rates for different period lengths

Historic Annualized Returns Including Transaction Costs

Policy 1 Week 2 Weeks 4 Weeks 3 Months 6 Months 12 Months
n(7) = 52 n(14) = 26 n(28) = 13 n(91) = 4 n(182) = 2 n(364) = 1

MA 418.18% 138.40% 201.61% 47.93% 72.95% 61.95%
MT 41.08% 1.37% 54.86% 6.08% 32.39% 31.35%

MTB+H 9.70% 0.50% 17.18% 15.80% 45.30% 35.29%
IndexB+H 20.78% 20.78% 20.78% 20.78% 20.78% 20.78%

Rand -23.59% -21.23% 17.18% -18.23% 6.20% 15.42%

MT dominates MTB+H and IndexB+H in two cases (1 and 4 weeks). MTB+H

dominates MT and IndexB+H in two cases (6 and 12 months). IndexB+H dom-
inates MT and MTB+H in two cases (2 weeks and 3 months). MT generates
the best overall annual return rate when applied to 4 weeks. MTB+H generates
the worst overall annual return rate when applied to 2 weeks. MTB+H policy
improves its performance in comparison to IndexB+H and MT policy propor-
tional to the length of the periods. We might conclude the longer the period the
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better the relative performance of MTB+H . MT outperforms IndexB+H in four
of six cases and it outperforms MTB+H in three of six cases; MT and MTB+H

have the same relative performance. If the period length is not greater than 4
weeks MT outperforms MTB+H in all cases. If the period length is greater than
4 weeks MTB+H outperforms MT in all cases. IndexB+H outperforms MTB+H

in three of six cases. If we consider the average performance we have 27.86% for
MT , 20.78% for IndexB+H , and 20.63% for MTB+H . MT is not always the best
but it is on average the best. From this we conclude that MT shows on average
a superior behaviour to buy-and-hold policies under the assumption that m and
M are calculated by historical data.

In general we would assume that the better the estimates of m and M the
better the performance of MT . Results in Table 1 show, that the longer the
periods the worse the relative performance of MT . This might be due to the fact
that for longer periods historical m and M are worse estimates in comparison
to those for shorter periods. In order to analyze the influence of estimates of m
and M we run all simulations also with the observed m and M of the actual
periods, i.e. we have optimal estimates. Results for optimal estimates are shown
in Table 2 and have to be considered in comparison to the results for historic
estimates shown in Table 1.

Now we can answer question (2) discussing the influence of m and M on the
performance of MT . The results are displayed in Table 2. It turns out that in
all cases the return rate of policy MT improves significantly when estimates of
m and M are improved. For all period lengths now MT is always better than
MTB+H and IndexB+H . From this we conclude that the estimates of m and
M are obviously of major importance for the performance of the MT policy.
Now we concentrate on question (3) discussing the average competitive ratio for
policies MA and MT . We now compare the experimental competitive ratio cec

to the analytical competitive ratio cwc. To do this we have to calculate OPT
and ON for the experimental case and the worst case. We base our discussion
on the return rate as the performance measure. We assume that we have precise
forecasts for m and M .

A detailed example for the evaluation of the competitive ratio is presented
in Table 3 considering a period length of 12 months. In this period six trades
were executed using reservation prices based on the clairvoyant test set. The
analytical results are based on the values of m and M for each holding period.

Table 2. Annualized returns for optimal historic estimates

Clairvoryant Annualized Returns Including Transaction Costs

Policy 1 Week 2 Weeks 4 Weeks 3 Months 6 Months 12 Months
n(7) = 52 n(14) = 26 n(28) = 13 n(91) = 4 n(182) = 2 n(364) = 1

MA 418.18% 315.81% 280.94% 183.43% 86.07% 70.94%
MT 102.60% 87.90% 76.10% 81.38% 55.11% 54.75%

MTB+H 9.70% -4.40% 22.31% 19.79% 45.30% 35.29%
IndexB+H 20.78% 20.78% 20.78% 20.78% 20.78% 20.78%

Rand -23.59% -101.3% -10.67% 47.37% 46.08% 15.42%

Results of Mohr and Schmidt (2008) 133



300 E. Mohr and G. Schmidt

Table 3. Periodic results for period length one year

Clairvoyant Data Analytical Results Experimental Results

# Trades Holding m M cwc = Buy at Sell at Periodic cex =
n(364) = 1 Period M/m MA/MT Return MA/MT

1st trade Week 1-14 37.91 43.23 1.1403 1.0072
MA 37.91 43.23 1.1403
MT 37.91 42.92 1.1322

2nd trade Week 14-24 34.25 38.15 1.1139 1.0069
MA 34.25 38.15 1.1139
MT 34.25 37.89 1.1063

3rd trade Week 24-25 13.54 13.69 1.0111 1.0000
MA 13.54 13.69 1.0111
MT 13.54 13.69 1.0111

4th trade Week 25-30 33.57 35.73 1.0643 1.0167
MA 33.57 35.73 1.0643
MT 34.13 35.73 1.0469

5th trade Week 30-46 51.23 58.86 1.1489 1.0646
MA 51.23 58.86 1.1489
MT 52.37 56.52 1.0792

5th trade Week 46-52 82.16 89.4 1.0881 1.0061
MA 82.16 89.4 1.0881
MT 82.66 89.4 1.0815

Table 4. Competitive ratio and annualized return rates

Clairvoyant Data Analytical Results Experimental Results

Period Length # Trades OPT/ON MA MT MA/MT cex/cwc

12 Months 6 1.7108 71.08% 54.89% 1.2950 75.69%

6 Months 7 1.8624 86.24% 55.28% 1.5601 83.77%

3 Months 18 2.8387 183.87% 81.82% 2.2473 79.16%

4 Weeks 38 3.8185 281.85% 77.02% 3.6594 95.83%

2 Weeks 48 4.1695 316.95% 89.05% 3.5592 85.36%

1 Week 52 4.1711 317.11% 103.84% 3.0538 73.21%

The analytical results are based on the consideration that MA achieves the best
possible return and MT achieves a return of zero. E.g. for the first trade MA
achieves a return rate of 14.03% and MT achieves a return rate of 0% i.e. MT
achieves absolutely 14.03% less than MA and relatively a multiple of 1.1403.
The experimental results are also based on the consideration that MA achieves
the best possible return and MT now achieves the return rate generated during
the experiment. E.g. for the first trade MA achieves a return rate of 1.1403
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or 14.03% and MT achieves a return rate of 1.1322 or 13.22%. We compared
the analytical results with the experimental results based on annualized return
rates for the period lengths 1, 2, 4 weeks, 3, 6, and 12 months. The overall
competitive ratio is based on period adjusted annual return rates. The results
for all period lengths are presented in Table 4. Transaction costs are not taken
into account in order not to bias results. As the policies are always invested there
is no overnight deposit. E.g. For the period of 12 months the analytical worst
case ratio OPT/ON is 1.7108 and the average experimental ratio MA/MT is
1.2950. The values of the competitive ratios for the other period lengths are also
given in Table 4. The return of MT reached in the experiments reaches at least
27.33%, at most 77.22% and on average 45.67% of the return of MA.

5 Conclusions

In order to answer the three questions from section 4 twelve simulation runs were
performed. MT outperforms buy-and-hold in all cases even when transaction
costs are incorporated in the clairvoyant test set. Tests on historical estimates
of m and M show that MT outperforms buy-and-hold in one third of the cases
and also on average. We conclude that when the period length is small enough
MT outperforms B + H .

It is obvious that the better the estimates of m and M the better the perfor-
mance of MT . Results show that the shorter the periods, the better are estimates
by historical m and M . As a result, the performance of MT gets worse the longer
the periods become.

In real life it is very difficult to get close to the (analytical) worst cases. It
turned out that the shorter the periods are the less MT achieves in comparison
to MA. A MT trading policy which is applied to short periods leads to small
intervals for estimating historical m and M . In these cases there is a tendency to
buy too late (early) in increasing (decreasing) markets and to sell too late (early)
in decreasing (increasing) markets due to unknown overall trend directions, e.g.
weekly volatility leads to wrong selling decisions during an upward trend.

The paper leaves also some open questions for future research. One is that of
better forecasts of future upper and lower bounds of asset prices to improve the
performance of MT . The suitable period length for estimating m and M is an
important factor to provide a good trading signal, e.g. if the period length is h
days estimates for historical m and M were also be calculated over h days. Sim-
ulations with other period lengths for estimating m and M could be of interest.
Moreover, the data set of one year is very small. Future research should consider
intervals of 5, 10, and 15 years.
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Summary. If we trade in financial markets we are interested in buying at
low and selling at high prices. We suggest an active reservation price based
trading algorithm which tries to solve this type of problem. The effectiveness
of the algorithm is analyzed from a worst case point of view. We want to
give an answer to the question if the suggested algorithm shows a superior
behaviour to buy-and-hold policies using simulation on historical data.

1 Introduction

Many major stock markets are electronic market places where trading
is carried out automatically. Trading policies which have the potential
to operate without human interaction are often based on data from
technical analysis [5, 3, 4]. Many researchers studied trading policies
from the perspective of artificial intelligence, software agents or neural
networks [1, 6]. In order to carry out trading policies automatically
they have to be converted into trading algorithms. Before a trading
algorithm is applied one might be interested in its performance. The
performance of trading algorithms can basically be analyzed by three
different approaches. One is Bayesian analysis, another is assuming un-
certainty about asset prices and analyzing the trading algorithm under
worst case outcomes. This approach is called competitive analysis [2].
The third is a heuristic approach where trading algorithms are ana-
lyzed by simulation runs based on historical data. We apply the second
and the third approach in combination.
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The reminder paper is organized as follows. In the next section different
trading policies for a multiple trade problem are introduced. Section
3 presents detailed experimental findings from our simulation runs. In
the last section we finish with some conclusions.

2 Multiple Trade Problem

In a multiple trade problem we have to choose points of time for sell-
ing current assets and buying new assets over a known time horizon.
The horizon consists of several trading periods i of different types p
with a constant number of h days. We differ between p = 1, 2, . . . , 6
types of periods numbered with i = 1, . . . , n(p) and length h from
{7, 14, 28, 91, 182, 364} days, e.g. period type p = 6 has length h = 364
days. There is a fixed length h for each period type p, e.g. period length
h = 7 corresponds to period type p = 1, period length h = 14 corre-
sponds to period type p = 2, etc.
We differ between three trading policies. Two elementary ones are Buy-
and-Hold (B + H), a passive policy, and Market Timing (MT ), an
active policy. The third one is a Random (Rand) policy. To evalu-
ate the policies’ performance empirically we use an optimal algorithm
called Market (MA) as a benchmark. We assume that for each period
i there is an estimate of the maximum price M(i) and the minimum
price m(i). Within each period i = 1, . . . , n(p) we have to buy and
sell an asset at least once. The annualized return rate R(x), with x
from {MT,Rand , B +H,MA} is the performance measure used. At
any point of time a policy either holds an asset or overnight deposit.
In order to describe the different policies we define a holding period
with respect to MT . A holding period is the number of days h between
the purchase of asset j and the purchase of another asset j ′ (j′ 6= j)
by MT . Holding periods are determined either by reservation prices
RPj(t) which give a trading signal or by the last day T of a period.

MARKET TIMING (MT ). Calculates RPj(t) for each day t for
each asset j based on M(i) and m(i). The asset j∗ MT buys within
a period is called MTasset. An asset j∗ is chosen byMT if RPj∗(t)−
pj∗(t) = max {RPj(t)− pj(t)|j = 1, . . . ,m} and pj∗(t) < RPj∗(t).
Considering RPj∗(t) MT must decide each day t whether to sell
MTasset j∗ or to hold it another day: the first offered asset price
pj∗(t) with pj∗(t) ≥ RPj∗(t) is accepted by MT and asset j∗ is sold.
If there was no signal by RPj∗(t) within a period trading must be
executed at the last day T of the period, e.g. MT must sell asset
j∗ and invest asset j′ (j′ 6= j∗).
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RANDOM (Rand). Buys and sells at randomly chosen prices pj∗(t)
within the holding period.

BUY AND HOLD (B +H). Buys j∗ at the first day t and sells at
the last day T of each period.

MARKET (MA). Knows all prices pj∗(t) of a period in advance.
Each holding period MA will buy the MTasset at the minimum
possible price pmin ≥ m(i) and sell at the maximum possible price
pmax ≤M(i).

The performance of the investment policies is evaluated empirically.

3 Experimental Results

Simulations of the trading policies discussed in Section 2 are run for all
six period types with number n(p) from {52, 26, 13, 4, 2, 1} and length
h. Clearly the benchmark policy MA cannot be beaten. Simulations
are run on Xetra DAX data for the interval 2007/01/01 to 2007/12/31
in oder to find out

(1) if MT shows a superior behaviour to buy-and-hold policies
(2) the influence of m and M on the performance of MT

Two types of B+H are simulated. (MTB+H) holds the MTasset within
each period and (IndexB+H) the index over the whole time horizon.
MTB+H is synchronized with MT , i.e. buys the MTasset on the first
day and sells it on the last day of each period. IndexB+H is a common
policy and often used as a benchmark. In addition the random policy
Rand buys and sells the MTasset on randomly chosen days within a
holding period.
We first concentrate on question (1) if MT shows a superior be-
haviour to MTB+H and IndexB+H . Simulation runs with two dif-
ferent reservation prices are carried out, called A and R. For cal-
culating both reservation prices estimates from the past are used,
i.e. in case of a period length of h days m and M are taken from
these h days which are preceding the actual day t∗ of the reservation
price calculation, i.e. m = min {p(t)|t = t∗ − 1, t∗ − 2, . . . , t∗ − h} and
M = max {p(t)|t = t∗ − 1, t∗ − 2, . . . , t∗ − h}. Table 1 displays trading
results under transaction costs. For MA, MT and Rand) transaction
costs are the same; all follow the holding period of MT . The MT policy
for both reservation prices, R and A, dominates MTB+H and IndexB+H

in two cases (1 and 4 weeks). MTB+H dominates MT and IndexB+H in
two cases (6 and 12 months). IndexB+H dominates MT and MTB+H
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Table 1. Annualized return rates for different period lengths

Historic R Annualized Returns Including Transaction Costs

Policy 1 Week 2 Weeks 4 Weeks 3 Months 6 Months 12 Months
n(7) = 52 n(14) = 26 n(28) = 13 n(91) = 4 n(182) = 2 n(364) = 1

MA 418.18% 138.40% 201.61% 47.93% 72.95% 61.95%
MT 41.08% 1.37% 54.86% 6.08% 32.39% 31.35%

MTB+H 9.70% 0.50% 17.18% 15.80% 45.30% 35.29%
IndexB+H 20.78% 20.78% 20.78% 20.78% 20.78% 20.78%

Rand -23.59% -21.23% 17.18% -18.23% 6.20% 15.42%

Historic A Annualized Returns Including Transaction Costs

Policy 1 Week 2 Weeks 4 Weeks 3 Months 6 Months 12 Months
n(7) = 52 n(14) = 26 n(28) = 13 n(91) = 4 n(182) = 2 n(364) = 1

MA 437.14% 164.44% 201.61% 50.27% 75.27% 61.94%
MT 31.52% 13.37% 57.02% 2.09% 45.28% 34.50%

MTB+H 7.45% 11.53% 17.18% 15.80% 45.29% 35.28%
IndexB+H 20.78% 20.78% 20.78% 20.78% 20.78% 20.78%

Rand -1.49% -12.97% 5.36% -20.80% 24.37% 12.64%

in two cases (2 weeks and 3 months). MT generates the best overall
annual return rate when applied to 4 weeks. In case R MTB+H gener-
ates the worst overall annual return rate when applied to 2 weeks, in
case A when applied to 1 week. MTB+H improves its performance in
comparison to IndexB+H and MT proportional to period length h. The
longer the period the better the relative performance of MTB+H . MT
outperforms IndexB+H in two-thirds and MTB+H in one-thirds of the
cases. If period length h ≤ 4 MT outperforms MTB+H in all cases and
if h > 4 MTB+H outperforms MT in all cases. IndexB+H outperforms
MTB+H in half the cases. If we consider the average performance we
have 27.86% for MT , 20.78% for IndexB+H , and 20.63% for MTB+H

in case R and 30.63% for MT , 20.78% for IndexB+H , and 22.09% for
MTB+H in case A. MT is best on average. On average MT shows a
superior behaviour to B+H policies under the assumption that m and
M are based on historical data.
In general we assume that the better the estimates of m and M the
better the performance of MT . Results in Table 1 show that the longer
the periods the worse the relative performance of MT . This might
be due to the fact that for longer periods historical m and M are
worse estimates in comparison to those for shorter periods. To analyze
the influence of estimates of m and M simulations are run with the
observed m and M of the actual periods, i.e. we have optimal estimates.
Results shown in Table 2 have to be considered in comparison to the
results for historic estimates in Table 1. Now we can answer question
(2) discussing the influence of m and M on the performance of MT . In
all cases the returns of policy MT improve significantly when estimates
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Table 2. Annualized returns for optimal historic estimates

Clairvoryant R Annualized Returns Including Transaction Costs

Policy 1 Week 2 Weeks 4 Weeks 3 Months 6 Months 12 Months
n(7) = 52 n(14) = 26 n(28) = 13 n(91) = 4 n(182) = 2 n(364) = 1

MA 418.18% 315.81% 280.94% 183.43% 86.07% 70.94%
MT 102.60% 87.90% 76.10% 81.38% 55.11% 54.75%

MTB+H 9.70% -4.40% 22.31% 19.79% 45.30% 35.29%
IndexB+H 20.78% 20.78% 20.78% 20.78% 20.78% 20.78%

Rand -23.59% -101.3% -10.67% 47.37% 46.08% 15.42%

Clairvoryant A Annualized Returns Including Transaction Costs

Policy 1 Week 2 Weeks 4 Weeks 3 Months 6 Months 12 Months
n(7) = 52 n(14) = 26 n(28) = 13 n(91) = 4 n(182) = 2 n(364) = 1

MA 437.14% 317.87% 271.57% 153.68% 66.33% 76.14%
MT 119.77% 98.11% 85.65% 63.61% 46.55% 62.65%

MTB+H 6.21% -4.40% 27.16% 19.79% 45.30% 35.29%
IndexB+H 20.78% 20.78% 20.78% 20.78% 20.78% 20.78%

Rand -34.04% -24.39% -19.67% 52.93% 26.01% 37.18%

of m and M are improved. For all period lengths MT is always better
than MTB+H and IndexB+H . The estimates of m and M are obviously
of major importance for the performance of MT .

4 Conclusions

To answer the questions from section 3 24 simulation runs were per-
formed. In the clairvoyant test set MT outperforms B+H in all cases
even under transaction costs. Tests on historical estimates of m and M
show that MT outperforms B +H in one-thirds of the cases and also
on average. We conclude that if the period length is small enough MT
outperforms B+H. It is obvious that the better the estimates of m and
M the better the performance of MT . Results show that the shorter
the periods, the better the estimates by historical data. As a result, the
performance of MT gets worse the longer the periods become. It turned
out that the shorter the periods the less achieves MT in comparison to
MA. A MT trading policy which is applied to short periods leads to
small intervals for estimating historical m and M . In these cases there
is a tendency to buy too late (early) in increasing (decreasing) markets
and to sell too late (early) in decreasing (increasing) markets due to
unknown overall trend directions, e.g. weekly volatility leads to wrong
selling decisions during an upward trend.
The paper leaves some open questions for future research. One is that
of better forecasts of future upper and lower bounds of asset prices
to improve the performance of MT . The suitable period length for
estimating m and M is an important factor to provide a good trading
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signal. Simulations with other period lengths for estimating m and M
could be of interest. Moreover, the data set of one year is very small.
Future research should consider intervals of 5, 10, and 15 years.
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Preface

The following research paper investigates the performance of di�erent online

conversion algorithms. The bi-directional non-preemptive reservation price (RP )

algorithm of Mohr and Schmidt (2008a,b) (Algorithm 5, p. 83) is compared to the

preemptive threat-based algorithm of El-Yaniv et al. (1992, 2001) (Algorithm 8, p.

92). Algorithm 5 is presented in detail in Section 4.1, and Algorithm 8 in Section

5.1.

Algorithm 5, denoted by Sqrt, achieves a worst-case competitive ratio as given

in Theorem 2. Schmidt et al. (2010) consider Variant 2 of Algorithm 8, denoted

by Threat(m,M, k), i.e. the a-priori knowledge of m,M and the number of trading

days k ≤ T is assumed. The worst-case competitive ratio of Algorithm 8 is strictly

increasing with k, and calculated as given in equation (5.24).

For the empirical-case analysis transaction costs are not considered, and the

backtesting of the algorithms is done on the German Dax-30 index for the

investment horizon 01-01-1998 to 12-31-2007; stylized facts are given in Example

2, p. 62. Only the index itself can be traded by the investigated algorithms

ON ∈ {Sqrt,Threat(m,M, k), CR,BH} and OPT . The investment horizon

is divided into several time intervals of di�erent length T . Within each T

uni-directional search, solving either the min-search problem for buying or the

max-search problem for selling, might be carried out. As suggested in the work of

Borodin et al. (2004), two consecutive time intervals of equal length T built trading

intervals of length 2 · T , with T ∈ {260, 130, 65, 20, 10}. In order to trade multiple

times for example 2 · T = 260 days equal T = 130 days for buying, and T = 130

days for selling, etc. The following questions are to be answered:

1. How does the empirical performance of the algorithms compare?

2. How do the empirical-case competitive ratios cec found in the experiments

compare?

3. How do the worst-case competitive ratios cwc which could have been possible

from the experimental data compare?

35The copyright permission can be found in the Appendix, cf. Section A.2 and the original

publication is available at www.elsevier.com/locate/endm.
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4. What are the performance ratios [Threat(m,M, k)/Sqrt] in the

empirical-case and in the worst-case?

5. Can the answers to Questions 1 and 2 be con�rmed by a statistical t-test?

Algorithm Sqrt uses precise estimates to calculate a reservation price q∗ =√
M ·m: In case of a time interval of length T days the actually observed values

of m and M within each T are used. Analogously, Threat(m,M, k) uses precise

estimates ofM , m and k to calculate the amount to be converted st using equation

(5.20). The constant rebalancing algorithm (CR) converts the same amount

st = 1/T of the index on each day t. The empirical-case performance is evaluated

by a t-test, as given in Algorithm 2, p. 67.

Results show that Threat(m,M, k) clearly outperforms BH and CR. To reduce

the number of conversions Sqrt is a good alternative to Threat(m,M, k) as it also

outperforms BH. The results found in the experiments could be con�rmed by the

t-test. Summing up, Schmidt et al. (2010) analyze uni-directional conversion while

converting a single asset from an empirical-case and a worst-case point of view.



Author's personal copy

Experimental Analysis of an Online Trading
Algorithm

Günter Schmidt a,b,1, Esther Mohr a,2, Mike Kersch a,3

a Saarland University
P.O. Box 151150

D-66041 Saarbrücken,Germany
Pho +49-681-302-4559
Fax +49-681-302-4565

b University of Liechtenstein
Fürst-Franz-Josef-Strasse
9490 Vaduz, Liechtenstein

Abstract

Trading decisions in financial markets can be supported by the use of online algo-
rithms. We evaluate the empirical performance of a threat-based online algorithm
and compare it to a reservation price algorithm, an average price algorithm and
to buy-and-hold. The algorithms are analyzed from a worst case and an empirical
case point of view. The effectiveness of the algorithms is analyzed with historical
DAX-30 prices for the years 1998 to 2007. The performance of the threat-based
algorithm found in the simulation runs dominates all other investigated algorithms.
We also compare its performance to results from worst case analysis and conduct a
t-test.

Keywords: Investment analysis, Decision support systems, Decision analysis,
Heuristics, OR in banking, Simulation, Risk management, Uncertainty modeling

Electronic Notes in Discrete Mathematics 36 (2010) 519–526

1571-0653/$ – see front matter © 2010 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

doi:10.1016/j.endm.2010.05.066

Results of Schmidt, Mohr and Kersch (2010) 147



Author's personal copy

1 Introduction

The performance analysis of trading algorithms can basically be carried out by
three different approaches. One is Bayesian analysis where a given probability
distribution of asset prices is a basic assumption. Another one is competitive
analysis where uncertainty about asset prices is assumed. Algorithms are
analyzed under worst case outcomes. The third one is a heuristic approach
where analysis is done on historic data by simulation runs. We apply the
second and the third approach considering single and multiple trade problems.

2 Problem Formulation

In a single trade problem we search for the minimum price m and the maximum
price M once. In a multiple trade problem we trade more than once. If we
buy and sell assets k times we call the problem k-trade problem with k ≥ 1.
As we do not know future asset prices decisions to be taken are subject to
uncertainty. Trading is represented by search. To solve the financial search
problem a trader observes prices q(t) with m ≤ q(t) ≤ M at points of time
t = 1, 2, . . . , T . For each q(t) he must decide which fraction of his current asset
s(t) he wants to sell at time t. At the last price q(T ) the trader must sell all the
remaining fractions of the asset he holds. It is assumed that the time interval
[1, T ] and the possible minimum and maximum prices m and M are known.
The problem to determine s(t) is solved by online algorithms. An algorithm
ON computes online if for each j = 1, . . . , T − 1, it computes an output for j
before the input for j + 1 is given. An algorithm OPT computes offline if it
computes a feasible output given the entire input sequence j = 1, . . . , T − 1.
An online algorithm ON is c-competitive if for any input I

ON(I) ≥ 1

c
·OPT (I).(1)

If the competitive ratio is related to a performance guarantee it must be
a worst case measure. Thus any c-competitive online algorithm guarantees
a value of at least the fraction 1/c of the optimal offline value OPT (I) no
matter how unfortunate or uncertain the future will be. As we have a maxi-
mization problem c ≥ 1 the smaller c the more effective is ON . We analyze
the competitive ratio of two online algorithms based on a reservation price
policy (s(t) ∈ {0, 1}) and a threat-based policy (0 ≤ s(t) ≤ 1).

1 Email: gs@itm.uni-sb.de
2 Email: em@itm.uni-sb.de
3 Email: mk@itm.uni-sb.de
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Reservation Price Policy. For the search problem the selling rule s intro-
duced by [2] “sell at the first price greater or equal to reservation price

q∗ =
√

M ·m” has a worst case competitive ratio cs =
√

M
m

where M and

m are upper and lower bounds of prices q(t) ∈ [m,M ]. This result can
be transferred to a single trade problem if we modify the rule to “buy at
the first price smaller or equal and sell at the first price greater or equal to
q∗ =

√
M ·m”. In the single trade problem we have to carry out search

twice. In the worst case we get cs for buying and the same cs for selling
resulting in an overall competitive ratio for single trading ct = cs · cs = M

m
.

For the k-trade problem we get a worst case competitive ratio of

ct(k) =
k∏

i=1

(
M(i)

m(i)

)
(2)

If m and M are constant for all trades ct(k) =
(

M
m

)k
. The ratio ct(k) can

be interpreted as the geometric return we can achieve by buying and selling
sequentially as stated in [5].

Threat-based Policy. To solve the search problem the following procedure
is suggested by [3]: (i) Choose a competitive ratio c and select a trading
policy which can guarantee c. (ii) Consider trading asset d for asset y only
when the current exchange rate q(t) is the highest seen so far. (iii) Whenever
you trade asset d for asset y convert just enough to ensure that the given
c would be obtained if an adversary dropped the next rate q(t + 1) to the
minimum possible rate m and kept it there until the end of the time horizon
T , i.e. that this threat exists. Let k ≤ T be the remaining exchange rates
in the time series. Let q′(1) be the first exchange rate of this time series.
Let ck(q′(1)) be a competitive ratio which is achievable on a sequence of k
exchange rates q′(1), . . . , q′(k). The achievable competitive ratio ck(q′(1))
for k remaining trading days is

ck(q′(1)) = 1 +
q′(1)−m

q′(1)
· (k − 1) ·

(
1−

[
q′(1)−m

M −m

] 1
k−1

)
(3)

c = sup ck (q(1), q(2), . . . , q(k)|k ≤ T ) is the optimal competitive ratio for
the search problem [3]. For each trade we conduct the threat-based algo-
rithm twice. The competitive ratio for trading of the threat-based algorithm
can be calculated in the same way as it is done for the reservation price al-
gorithm.
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3 Experiments

We use daily closing prices of the DAX-30 index for the time interval 01-01-
1998 to 12-31-2007 and divide the time horizon into several trading periods i
of different length K. Each i consists of two sub-periods T =

⌈
K
2

⌉
for buying

(buying period b) and T =
⌊

K
2

⌋
for selling (selling period s). We differ between

trading periods with length 260, 130, 65, 20, 10 days, i.e. for K = 260 days
T = 130 days for buying (selling) etc. We investigate the following trading
algorithms:

Optimal Trading. Optimal Trading (OPT ) is an offline algorithm which
achieves the best possible return in each i. We assume that OPT knows all
prices of i. OPT buys at the minimum realized price pmin ≥ m(b) and sells
at the maximum realized price pmax ≤ M(s) in each sub-period.

Threat-based Trading. Every time an exchange is carried out the threat-
based algorithm (Threat) calculates the achievable competitive ratio and
buys (sells) the corresponding quantities such that the achievable c is real-
ized in each sub-period.

Reservation Price Trading. For every sub-period the reservation price al-
gorithm (Square) calculates reservation prices RP (t) for each day t. Square
buys (sells) the index at the first price q(t) ≤ (≥)RP (t). If there was no
such price buying (selling) has to be done on the last day T of a period.

Average Price Trading. The average price algorithm (Constant) buys (sells)
with the constant fraction 1

T
in each sub-period.

Buy and Hold. Buy and Hold (BH) buys on the first day of the buying
period and sells on the last day of the selling period.

The following assumptions apply for all algorithms: (1) there is an initial cash
value greater zero; (2) transaction costs are not considered; (3) minimum price
m, maximum price M , and the length T of each sub-period are known; (4)
interest rate on cash is zero; (5) within each b all cash must be exchanged in
the index and within each s all index must be exchanged back into cash; (6)
the performance measure is the average trading period return (AR). AR tells
us which performance we could expect within i. Let di and Di be the amount
of cash at the beginning and at the end of period i. Let ri = Di

di
be the return

in i. Let n be the number of trading periods considered. Then,

AR(n) =

(
n∏

i=1

ri

) 1
n

.(4)
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We also calculate the worst case competitive ratio and the empirical case
competitive ratio. The competitive ratio is calculated by solving equation
(1) to c where ON ∈ {Threat, Square, Constant, BH}. Let cw be the worst
case competitive ratio and let ce be the empirical case competitive ratio. For
the worst case competitive ratio ON(I) is the worst case return which could
have been achieved taking the data of the problem instance into account; for
the empirical case competitive ratio ON(I) is the empirical case return which
actually was achieved by ON and is calculated according to equation (4). We
only consider cw for algorithms Threat and Square. For Threat the empirical
ratio can be achieved also in the worst case. Thus, cw of Threat is the same
as its ce. For Square we must calculate cw. Let m(b) and M(b) be the bounds
for b and let m(s) and M(s) be the bounds for s. Then, for trading the worst
case competitive ratio is cw =

√
(M(b) ·M(s))/(m(b) ·m(s)). To find out

how Threat and Square behave relative to each other in the empirical and in
the worst case we calculate empirical case ratio by ARThreat(n)/ARSquare(n).
For the worst case we want to know the worst case return ratio of Threat and
Square, i.e. c(Square)/c(Threat) = Threat(I)/Square(I) where Threat(I)
and Square(I) relate to worst case performances.

4 Experimental Results

We carried out simulation runs in order to find out how the following mea-
sures compare: (1) the empirical performance of the algorithms; (2) the ce

found in the experiments; (3) the cw which could have been possible from the
experimental data; (4) the performance ratios Threat/Square in the empiri-
cal case and in the worst case. Clearly, all online algorithms cannot beat the
benchmark algorithm OPT .

Question 1: How does the empirical performance of the algorithms com-
pare? Answering this question we calculated the experimental performance of
the online algorithms Threat, Square, BH, and Constant and compared it to
OPT (cf. equation (4)). Results are presented in Table 1. Threat dominates
all other online algorithms. Square dominates BH and Constant. Constant
is dominated by all other algorithms except for 65 days. We can conclude that
in our experiments it is better to have more periods i than longer ones.

Question 2: How do the ce found in the experiments compare? Clearly,
the answers to Question 1 regarding the performance comparison of the algo-
rithms are also true for Question 2 because the numerator in c ≥ OPT (I)/ON(I)
is constant for all algorithms in each i. The shorter the trading period length
the better is the ce of the algorithms, i.e. the algorithms loose performance
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Table 1
Average Period Return in the interval 1998-2007

1998-2007 Empirical case: Average period return

Period Length 10 days 20 days 65 days 130 days 260 days

OPT 1.0308 1.0562 1.1320 1.2110 1.2923

Threat 1.0236 1.0376 1.0807 1.0981 1.1636

Square 1.0218 1.0302 1.0602 1.0528 1.1220

BH 1.0024 1.0050 1.0137 1.0242 1.0568

Constant 1.0005 1.0028 1.0154 1.0099 0.9930

compared to OPT the longer the periods are.

Question 3: How do the cw which could have been possible from the
experimental data compare? Answering this question we calculated the cw

for Threat and Square which are possible from the data set. The results are
shown in Table 2. Using the worst case criteria Threat clearly outperforms
Square, i.e. if we like to minimize worst case returns we choose Threat. More-
over the performance of Square gets worse compared to Threat the longer the
periods are.

Table 2
Worst case competitive ratio for the interval 1998-2007

1998-2007 Worst case: cw average period return

Period Length 10 days 20 days 65 days 130 days 260 days

OPT/Threat 1.0070 1.0179 1.0475 1.1028 1.1106

OPT/Square 1.0302 1.0529 1.1109 1.1962 1.2913

Question 4: What are the performance ratios Threat/Square in the
empirical case and in the worst case? Comparing Threat and Square by
their cw we know that Threat outperforms Square (cf. Table 2). Answering
Question 4 we want to know how the ratios of the worst case and of the
empirical case differ, i.e. where the out-performance is greater. The answer is
given in Table 3. Using the AR as performance measure the ratio is between
2.3% and 16.3% in the worst case and only between 0.18% and 4.31% in the
experiments. So we conclude that trading with Square is a good alternative
to Threat in practical applications especially if we want to reduce the number

G. Schmidt et al. / Electronic Notes in Discrete Mathematics 36 (2010) 519–526524
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of transactions.

Table 3
Empirical case versus worst case ratio for the interval 1998-2007

1998-2007 ce and cw average period return Threat/Square

Period Length 10 days 20 days 65 days 130 days 260 days

Empirical Case 1.0018 1.0072 1.0193 1.0431 1.0370

Worst Case 1.0230 1.0343 1.0605 1.0847 1.1627

Question 5: Can the answers to Questions 1 and 2 be confirmed by
a statistical t-test? The null hypothesis H0 is that the AR of one algorithm
A1 ≤ A2. Before running a t-test we have to check if the ri of the compared
two algorithms (t-test samples) are normally distributed (Jarque-Bera test)
and have equal variances or not. If data is normally distributed, the Bartlett
test is used to test the variances; if not the Levene test [1]. The ri are used
to run the t-test. Depending on the results for the variances different kinds of
t-tests are used. We use a significance level of 5%. We run five t-tests for each
pair of algorithms, one for each period length. For six pairs of algorithms 30
t-tests were conducted. The answers to the above questions are summarized
in Table 4: the ’no’ entries in column ’t-test’ mean that the null hypothesis
cannot be rejected; the ’(yes)’ entry means that the null hypothesis could not
be rejected for two period lengths. The results found in the experiments could
be confirmed clearly in three cases and weakly in one case. This is also true for
the corresponding competitive ratio. Where the results from the experiments
cannot be confirmed by a t-test the returns generated by the two algorithms
are too close to produce significance.

5 Conclusions

Threat clearly outperforms BH and Constant. If transaction costs have to
be considered Threat still outperforms Constant because it never generates
more transactions. If we want to reduce transaction costs Square is a good
alternative to Threat, i.e. it also outperforms BH. The worst AR is achieved
by Constant. BH looses performance relative to Threat and Square the
shorter the periods are. For the worst case ratio AR values are increasing
the longer the periods are. The worst case performance is the greater the
greater the difference in m and M , which gets greater with longer periods.
It would be interesting to analyze the performance of Threat compared to
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Table 4
Summary of simulation and t-test results

10 Year Interval 1998-2007

Average Period Return Simulation t-test

(1) Threat dominates Square yes no

(2) Threat dominates BH yes yes

(3) Threat dominates Constant yes yes

(4) Square dominates BH yes yes

(5) Square dominates Constant yes (yes)

(6) BH dominates Constant yes no

Square and BH in further experiments taking transaction costs into account.
Another open question is to conduct experiments with forecasts for m and M .
The suitable period length for estimating m and M is an important factor to
provide good online algorithms. It would be of further interest to assume that
we do not have information about m and M . One approach is to observe a
certain number k of the T prices within a time horizon with k < v ≤ T and
then trade to the next best price q(v) > max (< min) {q(j)|j = 1, . . . , k}
(cf. the secretary’s problem [4]).
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Preface

Inspired by the survey of Graham et al. (1979) the following paper provides a

classi�cation scheme for online conversion problems.

A considerable amount of literature is devoted to online conversion algorithms,

an overview is given in Section 2.4. In addressing the conversion problem, various

aspects are covered and di�erent settings are assumed. In addition, the terminology

used is not coherent and standardized. The great variety of online conversion

algorithms, and the non-adherence to standards might lead to misconception on

part of the reader. As each online conversion algorithm assumes di�erent problem

settings, assumptions and nomenclature it is di�cult to evaluate the suggested

algorithms on existing methods, or to compare them on a mutual basis. We provide

a novel scheme to classify online conversion algorithms based on the problem setting

they are using. Similarly, we de�ne a standard nomenclature for the terms used in

the literature in relation to online algorithms for conversion problems.

Our aim is to remove the discrepancies currently existing in the literature, and

to introduce a standard classi�cation scheme. Further, we provide a comprehensive

review of the literature addressing online conversion problems. We restrict the

literature review to competitive search algorithms in the context of conversion in

�nancial markets, i.e. the search for best prices in order to buy and sell assets

(min-search and max-search). Di�erent classes of online conversion algorithms are

discussed, and their competitive ratios are derived. We conclude indicating some

problems for future research and give a selective bibliography.
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Abstract

A considerable amount of literature is devoted to online conversion problems
which signifies its growing importance. We provide a standard nomenclature
and a unique classification scheme for online conversion problems (maximum
and minimum search). Based on the suggested scheme, we classify the ex-
isting work and provide a short review of the literature. Different classes of
online conversion algorithms are discussed, and their competitive ratios are
shown as well. We also provide an insight into future work, and potential
new areas of research.

Keywords: Classification Scheme, Online Conversion Problem, Online
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1. Introduction1

An online conversion problem deals with the scenario of converting an2

asset D into another asset Y with the objective to get the maximum amount3

of Y after time T . The process can be repeated in both directions, i.e.4

converting asset D into asset Y , and Y back to asset D. In a typical problem5

setting, on each day t, the player is offered a price qt to convert D to Y , the6

player may accept the price qt or may decide to wait for a better price. The7

game ends when the player converts whole of the asset D to Y .8

Based on the context of decision making, algorithms can broadly be clas-9

sified in two categories, a) those which make a decision based on the complete10
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knowledge about future input data, resulting in an optimum solution, and11

are referred to as optimum offline algorithms and, b) those which make a de-12

cision with no or partial knowledge about future input data, very often not13

resulting in an optimum solution, and are referred to as online algorithms. It14

is nevertheless desired to evaluate its effectiveness against the performance15

of other algorithms for the same problem. The technique used to evaluate16

online algorithms is called competitive analysis. It compares the performance17

of an online algorithm to that of an optimum offline algorithm. Let ‘ON ’18

be an online algorithm for some maximization problem ‘P ’ and ‘I’ be set of19

all inputs. Let ON(I) be the return of algorithm ‘ON ’ on input instance20

I ∈ I. Let ‘OPT ’ be the optimum offline algorithm for the same problem21

‘P ’, and OPT (I) its return for the input on the same instance I ∈ I. An22

online algorithm ‘ON ’ is called c-competitive if ∀ I ∈ I23

ON(I) ≥ 1

c
·OPT (I). (1)

Problem Setting24

Consider a player who wants to convert an asset D into another asset25

Y . Assume that the player starts with d0=1 and y0=0. At each time t =26

1, 2, ..., T the player is offered a price qt, and must immediately decide whether27

to accept the offered price qt or not. If the player decides to accept the price,28

he can convert a portion or the whole amount of asset D at the offered price29

qt. The game ends when the player has converted D completely into Y . If30

there is still some amount of asset D remaining on the last day T , it must31

be converted at the last offered price qT which might be the worst(lowest)32

offered price.33

Based on the design pattern of conversion algorithms, we can broadly34

classify them into two classes, a) online conversion algorithms – developed to35

give a performance guarantee under worst-case conditions, and referred to as36

guaranteeing conversion algorithms. The worst-case performance guarantee37

is usually evaluated using competitive analysis [15], and b) heuristic conver-38

sion algorithms – which are developed to achieve a preferably high average-39

case performance . Very often heuristic conversion algorithms are based on40

data from technical analysis [37]. The assumptions of heuristic conversion41

algorithms are found similar to guaranteeing conversion algorithms. Both42

classes work without any knowledge of future input. Guaranteeing conver-43

sion algorithms as well as heuristic conversion algorithms are referred to as44

2
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online conversion algorithms. Both classes can be evaluated using competi-45

tive analysis.46

Motivation47

A great deal of literature is devoted to the study of online and heuris-48

tic algorithms for conversion problems. In addressing the problem, various49

aspects are covered, and different settings are assumed. For instance, some50

algorithms are designed based on assumptions that expected lower and up-51

per bounds of offered prices, m and M , are known to the online algorithm52

[11, 13, 20, 38]. Whereas others consider assumptions in which the knowl-53

edge of the fluctuation ratio φ = M/m, and the length of the time interval54

T is assumed [13, 18]. Other variants also exist, and each depends on dif-55

ferent assumptions [22]. In addition, the terminology used is not coherent56

and standardized. The great variety of online conversion algorithms, and57

the non-adherence to standards might lead to misconception on part of the58

reader. As each online conversion algorithm assumes different problem set-59

tings, assumptions, and nomenclature it is difficult to evaluate the suggested60

algorithms on existing methods, or to compare them on a mutual basis. We61

provide a novel scheme to classify online conversion algorithms based on the62

problem setting they are using. Similarly, we define a standard nomenclature63

for the terms used in the literature in relation to online algorithms for conver-64

sion problems. Our aim is to remove the discrepancies currently existing in65

the literature, and to introduce a standard classification scheme. Further, we66

provide a comprehensive review of the literature addressing online conversion67

problems. We restrict the literature review to competitive search algorithms68

in the context of conversion in financial markets, i.e. the search for best69

prices in order to buy and sell assets. Further applications like algorithmic70

trading, and online auctions are not considered. (cf. [4, 8, 23]). We conclude71

presenting open questions and potential future research directions.72

2. Classification Scheme73

Our proposed classification scheme is based on three pillars, a) the nomen-74

clature – a standardized set of definitions, b) the classification factors – pa-75

rameters that affect the class of problems, for example the knowledge about76

the future prices, and c) the tree – the resultant structure that will classify77

existing (and future) work.78

3
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2.1. Nomenclature79

We provide a standard nomenclature to define the terms used in relation80

to online conversion problems. The objective of the nomenclature is to adhere81

to a standard set of definitions, and to avoid ambiguity.82

i. Transaction: A transaction is either selling or buying of an asset.83

ii. Trade: A trade consists of two transactions, one is buying and one is84

selling. The number of trades is p, with i = 1, . . . , p85

iii. Investment Horizon: The total time duration in which all transactions86

must be carried out. The investment horizon can be divided into one or87

more time intervals for conversion.88

iv. Uni-directional search (uni): Searching for maximum (max-search) or89

minimum (min-search) price(s) to carry out either a selling or a buying90

transaction within one time interval.91

v. Bi-directional search (bi): Searching for maximum (max-search) and92

minimum (min-search) price(s) to carry out both a buying and a selling93

transaction within one time interval, i.e. bi-directional search is synonym94

for trading.95

vi. Non-Preemptive conversion (non-pmtn): Search for one single price within96

the time interval to convert the asset.97

vii. Preemptive conversion (pmtn): Search for more than one price within98

the time interval to convert the asset. Typically the number of prices99

considered for conversion is determined by the algorithm. Except in one100

special case where the player desires to convert at a specific number u of101

prices. This is referred to as u-preemption (u− pmtn); the player must102

specify u.103

viii. Offered Price (qt): A price from a sequence of prices presented to the104

player to carry out a transaction. Offered prices are denoted by Q =105

q1, q2, . . . , qT , where qt is the price offered at time t within the time106

interval.107

ix. Predicted Upper Bound (M): Represents the upper bound on possible108

prices during the time interval.109
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x. Predicted Lower Bound (m): Represents the lower bound on possible110

prices during the time interval.111

xi. Fluctuation Ratio (φ): The predicted maximum fluctuation of prices112

that can possibly be observed during the time interval, calculated by113

M/m.114

xii. Duration (T ): The length of the time interval, where t = 1, ..., T .115

xiii. Threat Duration (k): The number of trading days after which the offered116

price might drop to some minimum level, for instance m, and stays there117

until the last day T , where k ≤ T .118

xiv. Price Function (g(qt)): Models a price qt based on some predefined119

function; for instance the current price qt is a function of the previous120

price qt−1, i.e. qt = g(qt−1)121

xv. Amount Converted (st): Specifies which fraction of the amount available122

(e.g. wealth) is to be converted at price qt on day t, with 0 ≤ st ≤ 1.123

xvi. Return Function (f(qt)): The return rt for accepting a price qt is not124

exactly the price itself but a function of the price. Such as accepted125

price minus the accumulated sampling costs for observing a time series126

of prices during the time interval T .127

xvii. Risk Tolerance (a): An acceptable level of risk (risk tolerance) the player128

is willing to take for some higher reward.129

2.2. Classification Factors130

The factors used to classify the conversion problems are discussed as131

follows:132

α. Nature of search133

α1. Uni-directional : In uni-directional search, the player converts an134

asset D into another asset Y , but conversion back from Y to D is135

forbidden. There is no restriction on the number of transactions.136

α2. Bi-directional : In bi-directional search, the player converts an as-137

set D back and forth, i.e. converts D into Y , and Y back to D138

etc. There is no restriction on the number of transactions.139
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β. Amount converted per transaction140

β1. Non-preemptive conversion: Search for one single price in the time141

interval to convert the asset. Typically, the whole amount avail-142

able is converted in one single transaction, i.e. st ∈ {0, 1}.143

β2. Preemptive conversion: Search for more than one price in the144

time interval to convert the asset. Typically, only a fraction of145

the whole amount available is converted in one transaction, i.e.146

st ∈ [0, 1].147

γ. Given information148

Parameters assumed to be known a priori, such as149

γ1. predicted upper bound M ,150

γ2. predicted lower bound m,151

γ3. fluctuation ratio φ = M/m,152

γ4. duration T ,153

γ5. threat duration k ≤ T ,154

γ6. price function g(qt),155

γ7. return function f(qt),156

γ8. risk tolerance a ∈ [1, OPT/ON ].157

2.3. The Tree158

Based on the classification factors, we can divide a conversion problem159

into one of four main categories, as shown in Fig: 1. i) Uni-directional Non-160

preemptive, ii) Uni-directional Preemptive, iii) Bi-directional Non-preemptive,161

and iv) Bi-directional Preemptive. One observation from the tree structure162

is that a solution for a problem at the higher level (closer to the root) is also163

a solution for the problem setting at the lower level in the same path. For164

instance a solution for the problem setting of uni-directional preemptive con-165

version with only M and m known is also a solution for the lower level in the166

same path, where further knowledge is assumed; for example the duration T .167

This however does not guarantee the same performance, i.e. the solution for168

a higher level may not necessarily be as good as the one where more a priori169

knowledge is assumed. It must be noted that for the sake of clarity, we do170

not show all the possible nodes in the tree (Fig:1). Likewise, a scenario where171
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the player has no knowledge about the future, is not represented as separate172

node in the tree and can be represented at the same level as non-preemptive173

(β1) or preemptive (β2). We limit our review only to those nodes relevant to174

the problems addressed in the literature.

Conversion Problem

Unidirectional (α1) Bidirectional (α2)

Preemptive
(β2)

Preemptive
(β2)

TM m M m M mM

M, m,
f(qt)

M,T

M, m,
T, f(qt)

φ

M,mT,g(qt) φ, T φ, k

M, m,
T

M, m,
k

M, m,
a

M,m M,m

Non-Preemptive
(β1)

M, m,
q1

Non-Preemptive
(β1)

M,m

Problems addressed in literature.

Figure 1: Classification tree based on the classification factors
175

3. Uni-directional Search176

The main focus of conversion problems remains on uni-directional search.177

We classify the uni-directional search problem in two main categories based178

on the amount converted per transaction. We relate our discussion w.l.o.g.179

to max-search.180
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3.1. Uni-directional Non-preemptive Conversion181

In the uni-directional non-preemptive scenario, the player is allowed to182

convert an asset D into an asset Y in one single transaction, based on a183

pre-calculated reservation price (RP ). The literature concerning the uni-184

directional non-preemptive scenario is either based on one single RP , denoted185

by q∗, or on a time varying RP , denoted by q∗t . In both cases, each price186

qt offered at day t is checked against the pre-calculated RP : If the offered187

price qt is greater than or equal to RP the price qt is accepted, and search188

is closed. Otherwise the search continues until the desired price is offered or189

the last price qT occurs which the player must accept. At this point, asset D190

must be converted at price qT , which might be m.191

Problems from the literature addressing the uni-directional non-preemptive192

scenario are discussed in the following.193

3.1.1. Problem: uni|non-pmtn|M,m194

El-Yaniv [12] provided an elegant algorithm for uni-directional non-preemptive195

conversion with m and M known. The algorithm is called ‘Reservation Price196

Policy’ (RPP ).197

Algorithm 1. Accept the first price greater than or equal to q∗ =
√
M ·m.198

Theorem 1. Algorithm 1 is
√
M/m competitive.199

Proof. Let the reservation price (RP ) be q∗. Two cases exist: i) the com-200

puted RP is too low, or ii) the computed RP is too high. A clever adversary201

with complete knowledge of the future, and the RP , can use this information202

to exploit the algorithm making the player perform worse, as shown in the203

following.204

Case 1 : If q∗ is too low, then the adversary provides an input sequence205

in such format that M ≥ qmax ≥ q∗, and thus the player may suffer from the206

so called ‘too early error’: The player could have achieved M but gets q∗ in207

the worst-case. The competitive ratio achieved thus will be c1 = M/q∗.208

Case 2 : If q∗ is too high, then the adversary provides an input sequence209

in such format that m ≤ qmax ≤ q∗, and thus the player may suffer from210

the ‘too late error’: The player could have achieved q∗, and gets m in the211

worst-case. The competitive ratio achieved thus will be c2 = q∗/m.212
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The player must choose a q∗ while balancing the two errors, i.e. to ensure213

that214

c1 = c2 (2)

M/q∗ = q∗/m

q∗ =
√
M ·m

Thus, we get an overall competitive ratio of
√
M/m.215

3.1.2. Problem: uni|non-pmtn|M,T216

Damaschke et al. [10] considered a problem setting in which the upper217

bound M , and the duration T is known. The model assumes that the prices218

offered qt ∈ [M/T,M ], i.e. the minimum possible price qmin = M/T , and the219

maximum possible price qmax = M , with t = 1 . . . T .220

Algorithm 2. Accept the first price greater than or equal to q∗ = M/
√
T .221

Theorem 2. Algorithm 2 is
√
T competitive.222

Proof. Let the reservation price (RP ) be q∗, and qmax ≤ M the highest223

price selected by the adversary. At any time t ≤ T the player accepts an224

offered price if qt ≥ q∗. If no such price occurs, the player must accept the225

minimum value qmin = M/T . Two cases exist: i) the computed RP is too226

low, or ii) the computed RP is too high. A clever adversary with complete227

knowledge of the future, and the RP , can use this information to exploit the228

algorithm making the player perform worse, as shown in the following.229

Case 1 : If q∗ is too high, the adversary will choose qmax < q∗. As no230

offered price qt will satisfy the condition qt ≥ q∗ during T , the player must231

accept qmin = M/T on day T in the worst-case. Thus, the competitive ratio232

in this case equals233

c1 = OPT/ON (3)

=
qmax

(M/T )

<
q∗

(M/T )
.

Case 2 : If q∗ is too low, the adversary will offer q∗ as the first price q1.234

The player will accept q1, and the game ends. Afterwards, the adversary235

9

Results of Ahmad, Mohr and Schmidt (2010) 165



increases the prices up to qmax = M . Thus, the competitive ratio in this case236

equals237

c2 = OPT/ON (4)

= M/q∗.

The player must choose a q∗ while balancing the competitive ratios c1 and238

c2, resulting in239

c1 = c2 (5)
qmax

(M/T )
= M/q∗

q∗ = M/
√
T .

Thus, we get an overall competitive ratio of
√
T .240

3.1.3. Problem: uni|non-pmtn|M,m,f(qt)241

Xu et al. [38] presented a uni-directional non-preemptive RP algorithm242

based on the assumption that the lower and upper bounds, m and M , as well243

as the return function f(qt) are known to the player. The model extends the244

algorithm by El-Yaniv [12] (cf. Problem: uni|non-pmtn|M,m) by introducing245

sampling costs for observing prices qt. It is assumed that the achievable246

return rt when accepting a price qt on day t is not exactly the price itself,247

but a function of the price (accepted price minus accumulated sampling cost).248

In contrast to El-Yaniv [12] the considered RP is not constant but varies249

with time, and thus is denoted by q∗t . After the player accepts one specific250

price q′ the game ends. It is assumed that a larger price results in a larger251

return r′ for q′. Further, the achieved return r′ is higher when accepting the252

price q′ earlier, as less sampling costs occur. These basic assumptions are253

summarized as follows:254

i. The values m, M and ft(q
′) are known to the player, and the price255

qt ∈ [m,M ] with 0 < m < M .256

ii. The return function ft(q
′) with t = 1, 2, . . . , T is continuous, and in-257

creasing in q′.258

iii. For any accepted price q′ ∈ [m,M ] the return for accepting q′ is the259

higher the earlier q′ is accepted: f1(q
′) ≥ f2(q

′) ≥ · · · ≥ fT (q′) > 0.260
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Algorithm 3. On day t, accept price qt if qt ≥ q∗t resulting in a return ft(qt).261

If no price was accepted until the last day T , the last price qT must be262

accepted (possibly qT = m resulting in fT (m)).263

Xu et al. [38] focus on the case where ft+1(M) > ft(m) for t ∈ [1, T − 1],264

because if ft+1(M) ≤ ft(m) the game ends on or before day t as the player265

achieves a return of fj(qj) ≥ ft(m) when accepting qj at day j ∈ [1, t].266

Calculating Reservation Price q∗t267

From assumption (i.) follows that for T = 1 the unique price q1 = q′ with268

the same return is accepted. Thus, the case where T ≥ 2 is of main interest.269

For each (unknown) duration L ∈ [1, T ] let270

ZL = min

{{
max

{
ft+1(M)

ft(m)
,

√
f2(M)

ft(m)

}
, t = 1, . . . , L− 1

}
,

√
f2(M)

fL(m)

}

(6)
with ZL ≥ 1 since ft+1(M) > ft(m), and f2(M) > fL(m). Let271

L′ = max

{
L|L = arg max

2≤L≤T
ZL

}
. (7)

This means that ZL′ ≥ ZL for every L ∈ [2, T ]. By definition of ZL′ there272

exists a natural number x, such that273

Z ′L′ =
fx+1(M)

fx(m)
for x ≤ L′ − 1, (8)

or

Z ′′L′ =

√
f2(M)

fx(m)
for x ≤ L′,

with

ZL′ = min {Z ′L′ , Z ′′L′} .

Let the reservation price be q∗t . From eq (8) q∗t is derived by the following274

cases:275

Case 1 : ZL′ = Z ′L′ . For t ∈ [1, x] let q∗t either be the solution of276

ZL′ft(q
∗
t ) = ft+1(M), (9)

or

q∗t = m if no solution exists.
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Case 2 : ZL′ = Z ′′L′ . Let t∗ = max{t|ft+1(M) ≥
√
f2(M) · fx(m)}.277

Case 2.1 : For min{t∗, x− 1} < t ≤ x,278

q∗t = m. (10)

.279

Case 2.2 : For 1 ≤ t < min{t∗, x− 1} let q∗t be either the solution of280

ZL′ft(q
∗
t ) = ft+1(M), (11)

or

q∗t = m if no solution exists.

281

Theorem 3. Algorithm 3 is ZL′ competitive.282

The proof for the competitive ratio ZL′ , discussing several cases and worst-283

case time series, is not given here due to its length. The reader is referred to284

Xu et al. [38], Section 4.2.285

For the problem considering different return functions, an extension of286

the current work can possibly be to design randomized algorithms to achieve287

a better competitive ratio.288

3.1.4. Problem: uni|non-pmtn|M,m,T,f(qt)289

In the previous section, we did not consider the knowledge of duration T .290

Based on this additional knowledge, Xu et al. [38] proposed a second RP291

algorithm which is presented in the following. Assumptions as well as the292

proposed algorithm are identical to Algorithm 3. Only the calculation of the293

RP q∗t differs.294

Algorithm 4. On day t, accept price qt if qt ≥ q∗t resulting in a return of295

ft(qt).296

Calculating Reservation Price q∗t297

For each (known) duration T , let298

Z = min

{{
max

{
ft+1(M)

ft(m)
,

√
f2(M)

ft(m)

}
, t = 1, . . . , T − 1

}
,

√
f2(M)

fT (m)

}

(12)
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with T ≥ 1 as ft+1(M) > ft(m) and f2(M) > ft(m). By definition of Z299

there exists a natural number y, such that300

Z ′ =
fy+1(M)

fy(m)
for y ≤ T − 1, (13)

or

Z ′′ =

√
f2(M)

fy(m)
for y ≤ T,

with

Z = min {Z ′, Z ′′} .

From eq(13) the RP q∗t is derived by the following cases:301

Case 1 : Z = Z ′. For t ∈ [1, y] let q∗t either be the solution of302

Zft(q
∗
t ) = ft+1(M) (14)

or

q∗t = m if no solution exists.

Case 2 : Z = Z ′′. Let t∗ = max{t|ft+1(M) ≥
√
f2(M) · fy(m)}.303

Case 2.1 : For min{t∗, y − 1} < t ≤ y,304

q∗t = m. (15)

Case 2.2 : For 1 ≤ t < min{t∗, y − 1} let q∗t be either the solution of305

Zft(q
∗
t ) = ft+1(M), (16)

or

q∗t = m if no solution exists.

306

Theorem 4. Algorithm 4 is Z competitive.307

The proof for the competitive ratio Z, discussing several cases and worst-case308

time series, is not given here due to its length. The reader is referred to Xu309

et al. [38], Section 3.2.310
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3.2. Uni-directional Preemptive Conversion311

In uni-directional preemptive conversion, asset D can be converted in312

parts with the possibility to convert at different points of time during the313

time interval, i.e. st ∈ [0, 1]. The only restriction is that during the time314

interval the player must convert asset D into the asset Y completely, i.e.315 ∑T
t=1 st = 1.316

A great deal of literature addresses the problem of uni-directional pre-317

emptive search. El-Yaniv et al. [13, 14] introduced a genre of algorithms318

based on the assumption that there exists a threat that at some stage during319

the time interval, namely on day k ≤ T , the offered price will drop to a320

minimum level m, and will remain there until the last day T . The algorithm321

proposed is commonly referred to as the threat-based strategy [14, p. 109].322

Algorithm 5. The basic rules of the threat-based algorithm are:323

Rule 1. Consider a conversion from asset D into asset Y only if the price offered324

is the highest seen so far.325

Rule 2. Whenever you convert asset D into asset Y , convert just enough D326

to ensure that a competitive ratio c would be obtained if an adversary327

dropped the price to the minimum possible price m, and kept it there328

afterwards.329

Rule 3. On the last trading day T , all remaining D must be converted into Y ,330

possibly at price m.331

El-Yaniv et al. [13, 14] discussed four variants of the above algorithm,332

each assuming a different knowledge about the future. Dannoura and Sakurai333

[11] improved the algorithm by improving the lower bound given in El-Yaniv334

et al. [13, 14]. It is shown that the threat is c ·m ≥ m (where c ≥ 1 is the335

competitive ratio), and not m as assumed by El-Yaniv et al. [13, 14].336

Further variants of the threat-based algorithm can be found in the litera-337

ture. Chen et al. [9] considered a price function g(qt). Each ‘next’ price qt+1338

depends on the current price qt in a geometric manner: qt/B ≤ qt+1 ≤ A · qt,339

where A and B are constants. It is assumed that T , A and B are known a340

priori to the player.341

Hu et al. [18] suggested two algorithms assuming the fluctuation ratio φ =342

M/m, and T is known. The first algorithm (static mixed strategy) is deemed343

to be overly pessimistic since it fixes the competitive ratio based on the344
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assumption of a worst-case input sequence of prices, and does not change it345

thereafter. Thus, they offered a second algorithm (dynamic mixed strategy)346

which converts based on the number of remaining days T ′ = T−t+1, and the347

fluctuation ratio φ. Thus, the competitive ratio is improved by recalculating348

the achievable competitive ratio.349

Damaschke et al. [10] assumed prior knowledge of m, M(t) and T . The350

original threat-based algorithm by El-Yaniv et al. [13, 14] is improved by351

assuming that the upper bound is a decreasing function of time, i.e. M(t) =352

M/t, and the lower bound m is constant.353

Lorenz et al. [27] studied the max- (min-) search problem, and provided354

solution based on u-preemption and reservation prices. It is assumed that a355

player wants to convert at a specific number of prices u. The problem setting356

assumed that m and M are known.357

The above algorithms are described in detail in the following text.358

3.2.1. Problem: uni|pmtn|M,m,k359

El-Yaniv et al. [13, 14] presented a threat-based strategy that works on360

rules 1 to 3 as described in Algorithm 5. With known m, M and k ≤ T361

the algorithm achieves a pre-calculated competitive ratio c. Let dt be the362

amount of asset D remaining after day t, and yt be the amount of asset Y363

accumulated after day t. In order to achieve the competitive ratio c, the364

amount to be invested at time t, denoted by st, must be determined such365

that c holds in case the price drops to m, i.e. the worst-case occurs.366

Lemma 1. If A is a c-competitive threat-based algorithm then for every t ≥ 1367

368

st =
qt − c · (yt−1 + dt−1 ·m)

c · (qt −m)
(17)

369
qt
c

= yt−1 +m · d(t− 1) + st · (qt −m). (18)

Proof. The threat-based algorithm ensures that at time t, enough D is370

converted to achieve the pre-specified competitive ratio c. Thus371

OPT

ON
=

qt
yt +m · dt

(19)

=
qt

(yt−1 + st · qt) +m · (dt−1 − st)
≤ c.
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The denominator yt +m · dt represents the return of ON if an adversary372

drops the price to m and the nominator qt is the return of OPT for this case,373

as qt is the maximum and OPT will invest all D at price qt. According to374

rule 3 ON must spend the minimum st that satisfies eq (19). Solving eq (19)375

as an equality constraint with respect to st results in eq (17). Thus, for t = 1376

we get377

s1 =
1

c
· q1 − c ·m
q1 −m

(20)

as d0 = 1 and y0 = 0. Using eq (18) we get378

st =
1

c
· qt − qt−1

qt −m
(21)

379

Definition 1. A threat-based algorithm Ac is c-proper iff380

1.
T∑

t=1

st ≤ 1,381

2. OPT (Q)
Ac(Q)

≤ c,382

where Q is the sequence of prices offered to the online player (algorithm).383

Lemma 2. Let Q be the sequence of offered prices. If algorithm Ac is c-384

proper with respect to Q, then for any c′ ≥ c, algorithm Ac′ is c′-proper.385

Proof. We assume that Q = q1, q2, . . . , qk,m,m, . . . ,m with m < q1 < q2 <386

, . . . , < qk and t = 1, . . . , T . At any given time t, the amount converted st387

by Ac is smaller than or equal to the amount converted s′t by Ac′. Using eq388

(20), on day t = 1389

s1 − s′1 =
q1

(q1 −m)
(
1

c
− 1

c′
) ≥ 0, (22)

and for t > 1390

st − s′t =
qt − qt−1

(qt −m)
(
1

c
− 1

c′
) ≥ 0. (23)

As
∑T

t=1 s
′
t ≤

∑T
t=1 st, and as Ac is c-proper

∑T
t=1 st ≤ 1. Hence,

∑T
t=1 s

′
t ≤391

1. As the competitive ratio c′ is achievable Ac′ selects transactions that392

ensure a competitive ratio c′, even if the prices drop to m. Hence, Ac′ is393

c′-proper.394

16

172 CHAPTER 6 Results



3.2.2. Problem: uni|pmtn|M,m395

El-Yaniv et al. [13, 14] addressed the scenario where the player knows396

only the lower and upper bound, m andM , of the offered prices and presented397

a threat-based strategy. The basic rules of the strategy remain the same as398

discussed in Algorithm 5. As the player is oblivious about the time interval T ,399

it is assumed that the adversary selects T →∞. Let Ac∞ be the algorithm,400

then as per Lemma 2, the algorithm Ac∞ is c∞-proper for any input sequence401

Q, and hence c∞ is an attainable competitive ratio. We now calculate c∞,402

using c ·m as lower bound.403

Let X = m·(c−1)
M−m , then404

limT→∞T (1−X1/T ) = limT→∞cT (m,M) (24)

= limT→∞
X1/n · lnX/T 2

−1/T 2
[UsingL′Hopital′sRule]

= limT→∞ −X1/n · lnX
= − lnX.

Thus c∞(m,M) is the unique solution c, and405

c = ln
M
m
− 1

c− 1
. (25)

It can be seen that c∞ = O(lnφ), where φ = M/m.406

Dannoura and Sakurai [11] improved the lower bound presented by El-407

Yaniv et al.[13, 14], and suggested a more competitive algorithm. They408

claimed that a player using the algorithm of [13, 14] assumes a much greater409

threat than actually faced by the player. The threat assumed by [13, 14]410

is that the price might drop to m, and will remain there for the rest of the411

time interval. Dannoura and Sakurai observed that the proposed algorithm412

suggested by El-Yaniv et al. does not convert unless the price is as large as413

c · m, i.e. the threat is at most c · m, and shall not go beyond this point.414

Thus c∞(m,M) is unique solution of c, and415

c = ln
M
c·m − 1

c− 1
. (26)

3.2.3. Problem: uni|pmtn|M,m,q1416

El-Yaniv et al. [13, 14] and Dannoura and Sakurai [11] addressed the417

scenario where the player knows the lower and upper bound, m and M , of418

17
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the offered prices, as well as the first price q1, and presented a threat-based419

strategy. The basic rules of the strategy remain the same as discussed in420

Algorithm 5. Although we know q1, the same c is reached as in the case we421

would not know it (cf. Problem: uni|pmtn|M,m). So the knowledge of q1422

does not improve the competitive ratio, and eq (25) holds.423

For calculating the competitive ratio c, an arbitrary number of trading424

days T → ∞ is considered. Thus c∞(m,M, q1) is the unique solution of c,425

and [11, p. 29]426

c =

{
ln

M
m
−1

c−1
q1 ∈ [m, cm]

1 + q1−m
q1

ln M−m
q1−m q1 ∈ [cm,M ].

(27)

3.2.4. Problem: uni|pmtn|φ427

El-Yaniv et al. [13, 14] addressed the scenario where the player knows only428

the price fluctuation ratio, φ = M/m, of the offered prices, and presented429

a threat-based strategy. The basic rules of the strategy remain the same430

as discussed in Algorithm 5. As the player does not know T , the player431

assumes the adversary to choose T →∞. El-Yaniv et al. [13, 14] computed432

the optimal achievable competitive ratio to be c∞(φ), and is calculated as433

follows. Let c∞(φ) = limT→∞ cT (φ), then434

limT→∞
(φ− 1)T

(φT/(T−1) − 1)T−1
= (φ− 1)exp

(
−φ lnφ

φ− 1

)
. (28)

Therefore435

c∞(φ) = φ

(
1− (φ− 1)exp

(
− φlnφ
φ− 1

))
(29)

= φ− φ− 1

φ1/(φ−1)
.

3.2.5. Problem: uni|pmtn|φ,k436

In this scenario, the online player along with the duration k (k ≤ T )437

knows only the fluctuation ratio φ = M/m, but the real bounds on M and m438

are not known. The basic rules of the strategy remain the same as discussed439

in Algorithm 5. El-Yaniv et al. [13, 14] discussed the scenario, and observed440

that minimum price offered on day t is at least qt/φ. Using eq (17) and (18),441

and replacing the minimum possible price in these equations by qt/φ from eq442

18
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(18), we get443

yt + dt(qt/φ) = qt/c

⇒ dt = φ(
1

c
− yt
qt

). (30)

From eq (17), we get444

st =
qt − c(yt−1 + dt−1 · qt/φ)

c(qt − qt/φ)
(31)

On day t = 1, we know that y0 = 0, and d0 = 1. Thus445

s1 =
φ− c
c(φ− 1)

.

Similarly, for t > 1, we have446

st =
yt−1φ

φ− 1

(
1

qt−1

− 1

qt

)
.

447

Theorem 5. Competitive ratio of threat-based algorithm with φ and k known448

is:449

c(φ, k) = φ
(

1− (φ− 1)k /
(
φk/(k−1) − 1

)k−1
)

(32)

For proof of Theorem 5, the reader is referred to El-Yaniv et al. [14] Section450

4.4.451

3.2.6. Problem: uni|pmtn|M(t),m,T452

Damaschke et al. [10] assumed that the player knows the lower and upper453

bounds of the offered prices, m and M(t), as well as the duration T . Their454

model is based on the assumption that the upper bound is not constant but455

varies with time (M(t) = M/t). Damaschke et al. presented a threat-based456

strategy, the basic principle remains the same as described in Algorithm 5.457

Let st be the amount converted at time t, then458

st =





1
c

(
q1−cm
q1−m

)
t = 1

1
c

(
qt−qt−1

qt−m

)
t ∈ [2, T ].

(33)

459
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Theorem 6. The competitive ratio c achieved is460

c = max
k=2...T



c|c = k


1−

(
c− 1

M(k)
m
− 1

)1/k




 (34)

where qt is price offered to the player at time t, and is modeled as m ≤ qt ≤461

M(t), where M(t) is decreasing function of time and m is constant.462

463

3.2.7. Problem: uni|pmtn|φ,T464

In this scenario, the online player, along with the knowledge of duration465

T knows only the fluctuation ratio φ = M/m but the real bound on M and466

m are not known. Hu et al. [18] presented two algorithms to achieve optimal467

competitive ratio under worst case assumptions, namely the Static Mixed468

Strategy and the Dynamic Mixed Strategy.469

470

Static Mixed Strategy: The static mixed strategy allocates the amount471

to be converted based on the worst-case input sequence of prices.472

Algorithm 6. Determine the amount to be converted at time t by the fol-473

lowing rules474

st =





(
1+φ

(T−1)φ+2

)
t = 1(

φ
(T−1)φ+2

)
t ∈ [2, T − 1](

1
(T−1)φ+2

)
t = T

(35)

Theorem 7. The competitive ratio c achieved by Algorithm 6 is475

c = 1 +
φ

2
(T − 1) (36)

For the proof of Theorem 7, the reader is referred to Hu et al. [18] Theorem 1.476

477

Dynamic Mixed Strategy: The worst-case scenario does not occur478

that frequently as assumed by the static mixed strategy. The dynamic mixed479

strategy addresses this issue, and allocates st based on the remaining number480

of days T ′ in the time interval.481
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Algorithm 7. Determine the amount to be converted at time t by the fol-482

lowing rules483

st =





(
1+φ

(T ′−1)φ+2

)
W ′
t t = 1(

φ
(T ′−1)φ+2

)
W ′
t t ∈ [2, T − 1](

1
(T ′−1)φ+2

)
W ′
t t = T

(37)

where W ′
t denotes the remaining amount of wealth at day t.484

Theorem 8. The competitive ratio c achieved by Algorithm 7 based on the485

remaining number of days T ′ is486

c = 1 +
(T ′ − 1)φ

2
. (38)

For the proof of Theorem 8, the reader is referred to Hu et al. [18].487

488

The dynamic mixed strategy is more competitive than the static mixed489

strategy but the competitiveness does not exist when the the duration T is490

extended to infinity, therefore designing a strategy which works independent491

of the duration T is an open question. In addition, investigating bi-directional492

strategy, and incorporating transaction cost also requires further research.493

3.2.8. Problem: uni|pmtn|T,g(qt)494

Chen et al. [9] presented an algorithm for uni-directional search. The495

model assumes prior knowledge of the duration T , and the price function496

g(qt). The constants A and B (A,B ≥ 1) determine the prices offered on a497

day t, and qt is modeled as qt−1/B ≤ qt ≤ A · qt−1. The algorithm and the498

the amount invested st on day t is described as follows:499

Algorithm 8. Determine the amount to be converted at time t by the fol-500

lowing rules501

st =





A(B−1)
TAB−(T−1)(A+B)+(T−2)

t = 1
(A−1)(B−1)

TAB−(T−1)(A+B)+(T−2)
t ∈ [2, T − 1]

(A−1)B
TAB−(T−1)(A+B)+(T−2)

t = T.

(39)

Theorem 9. The competitive ratio c achieved by Algorithm 8 is502

c =
TAB − (T − 1) (A+B) + (T − 2)

AB − 1
(40)
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For proof of Theorem 9, the reader is referred to Chen et al. [9] Theorem 3.4.503

504

The problem requires further investigation where there is a continuous505

flow of wealth/cash instead of one time fixed cash. Similarly replacing the506

constants A and B with some known probability distribution can also be507

investigated.508

3.2.9. Problem: uni|pmtn|M,m,a509

The threat-based algorithm presented by El-Yaniv et al, [13, 14] (and510

its variants) attempts to safe guard against a clever adversary who might511

drop the offered prices at some point during the time interval to the lowest512

level m, and keep it there for the rest of the time interval. The threat-based513

strategy is thus risk-averse, i.e. it mitigates the amount of risk involved, and514

provides a solution that ensures an optimal competitive ratio under worst515

case assumption. Al-Binali [1] introduced the concept of risk management,516

and presented a risk-reward framework. The main idea is to allow the player517

to manage his risk for some kind of reward, and to allow the player to develop518

a trading algorithm based on risk tolerance and forecast. A forecast is the519

prospected value of the price that might be reached in the time interval. The520

forecast can either be on the maximum value in the future (‘above forecast’521

M1) or on the minum value in the future (‘below forecast’). Iwama and522

Yonezawa [20] presented an extension of the threat-based algorithms using523

generalized forecasts and incorporating a risk tolerance level of the player.524

In general, the risk-reward threat-based algorithms are based on the scenario525

where a single above forecast is assumed They also discussed scenarios where526

‘double above forecast’ and ‘single above and below forecast’ are assumed.527

They are natural extensions of the more generalized single above forecast.528

The algorithm runs in two phases, phase 1 assumes that the forecast will529

not come true and thus enough wealth is converted to ensure a competitive530

ratio a · c0. Phase 2 starts when the forecast becomes true, at this stage a531

new competitive ratio c1 is computed, and the wealth is converted at offered532

prices to achieve c1. The formal algorithm is outlined as follows. Assume the533

starting price q0 is greater than c ·m (q0 ≥ c ·m), and M1 is the forecasted534

upper bound.535

Algorithm 9. qt ∈ [q0,M1] : Convert just enough to ensure a competitive536

ratio of a · c0 is achieved.537
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538

c0 = ln

[
M −m
c0m−m

]
, (41)

d1(qt) = 1−
(

1

ac0

)
ln

[
qt −m

ac0m−m

]
, (42)

y1(qt) =
1

ac0

[
m · ln qt −m

ac0m−m
+ qt − ac0m

]
. (43)

qt ∈ [M1,M] : compute the new competitive ratio c1 (better than c0), and539

convert just enough to achieve this ratio. Let d2(x) and y2(x) be the amounts540

of dollars and yen in this phase. Then541

d2(qt) = d−
(

1

c1

)
ln

[
qt −m
M1 −m

]
, (44)

542

y2(qt) = y +
1

c1

[
m.ln

qt −m
M1 −m

+ qt −M1

]
. (45)

In eq (44), and (45), d is dollars and y is the amount of yens at hand, given543

by544

d = d1(M1)−
(

M1

M1 −m

)(
1

c1
− 1

ac0

)
, (46)

and545

y = y1(M1)−
(

M1

M1 −m

)(
1

c1
− 1

ac0

)
. (47)

The optimal strategy enforces the condition that all dollars must be con-546

verted, such that d2(M) = 0 or547

1− 1

ac0
ln

M1 −m
ac0m−m

− M1

M1 −m

(
1

c1
− 1

ac0

)
− 1

c1
ln
M −m
M1 −m

= 0 (48)

By solving eq (48), we get the competitive ratio c1548

c1 =
M1 −m

(M1 −m)
(

1− 1
ac0
ln M1−m

ac0m−m

)
+ M1

ac0

(
M1

M1 −m
+ ln

M −m
M1 −m

)
. (49)

The work is based on the simple assumption that a forecast can either be549

true or false. However in practice a forecast has an associated probability ρ550

to become true, so the reward can be represented as function of ρ when the551

forecast becomes true.552
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3.2.10. Problem: uni|u-pmtn|M,m553

Lorenz et al. [27] designed a strategy for u−pmtn with m and M known.554

Two different strategies are proposed one each for buying and selling.555

Algorithm 10. 1. Max-search (selling) Problem: At the start of the game556

compute reservation prices q∗i = (q∗1, q
∗
2, ...q

∗
u),where i = 1, .., u. As the557

adversary unfolds the prices, the algorithm accepts the first price which558

is at least q∗1. The player then waits for the next price which is at least559

q∗2, and so on. If there are still some units of asset left on day T , then560

all remaining units must be sold at the last offered price, which may be561

at the lowest price m.562

q∗i = m

[
1 + (c∗ − 1)

(
1 +

c∗

u

)i−1
]

(50)

Where c∗ is the competitive ratio for the max-search (selling) problem.563

2. Min-search (buying) Problem: Follows the same procedure as for max-564

search problem, the reservation prices are computed as follows;565

q∗i = M

[
1−

(
1− 1

c∗

)(
1 +

1

u · c∗
)i−1

]
(51)

Where c∗ is the competitive ratio for the min-search (buying) problem.566

Theorem 10. Let u ∈ N , φ > 1, there exists a c∗-competitive deterministic
algorithm for u max-search problem where c∗ = c∗(u, φ) is the unique solution
of

(φ− 1)

(c∗ − 1)
=

(
1 +

c∗

u

)u
.

Theorem 11. Let u ∈ N , φ > 1, there exists a c∗-competitive deterministic
algorithm for u min-search problem where c∗ = c∗(u, φ) is the unique solution
of (

1− 1
φ

)

(
1− 1

c∗
) =

(
1 +

1

c∗ · u

)u
.
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4. Bi-directional Search567

Bi-directional search allows the player to convert asset D into asset Y ,568

and asset Y back into asset D during a time interval. We assume that the569

objective is to maximize the amount of D at day T , i.e. the player has the570

objective to maximize his final wealth in terms of asset D. We classify the571

bi-directional search problem into two main classes based on the amount of572

wealth converted.573

4.1. Bi-directional Non-Preemptive574

Bi-directional non preemptive algorithms allow the player to conduct bi-575

directional search with the restriction to convert the whole amount of wealth576

at one point during a conversion. This implies that only two transactions are577

permissible during a single trade. This however, does not restrict the player578

to trade only once in the time interval, the player can either trade only once579

(single trading), and can repeat the trading (buying followed by selling) as580

many times (multiple trading) as he wishes. Kao and Tate [22] presented an581

algorithm for profit maximization (named difference maximization), Mohr582

and Schmidt [31] extended the reservation price algorithm for selling by El-583

Yaniv [12] to buying and selling.584

4.1.1. Problem: bi|non-pmtn| –585

i. Algorithm by Kao and Tate [22]586

Kao and Tate [22] presented a solution to the bi-directional search prob-587

lem without any assumptions made regarding the future. The prices are588

arbitrary real numbers, for each price qt, a rank xt is calculated. The value589

of xt represents the rank of qt in the already observed sequence of prices. The590

algorithm attempts to achieve the maximum possible profit by buying at low591

and selling at high prices while maximizing the difference in ranks between592

the buying and selling prices.593

The authors addressed two scenarios, the first scenario is called single pair594

selection, solves the single trade problem and the second scenario is called595

multiple pair selection, solves the multiple trade problem.596

• Single pair selection: The player is allowed to make two selections, one597

for buying (low selection) ql, and one for selling (high selection) qh.598

The difference (qh − ql) is the profit. Alternatively, the profit can also599

be the difference in the rank of two selections, i.e. xh − xl.600
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• Multiple pair selection: The player is allowed to make multiple low and601

high selections during the time interval. The sum of the differences thus602

is the profit.603

No assumptions are made regarding the distribution of the sequence of604

prices. It is obvious to assume that all permutations of the final ranks are605

equally likely. If the rank of a price qt is xt among the first t prices, then the606

expected final rank will be
(
T+1
t+1

)
xt.607

Let HT (t) be a high selection limit, and RT (T ) the expected final rank608

of the high selection if the optimal algorithm OPT is followed starting at609

the time t. Let LT (t) be a low selection limit, and PT (t) be the expected610

high-low difference if the optimal algorithm OPT for making the low and611

high selections is followed starting at time t, with612

PT (t) =

{
0 t = T,

PT (t+ 1) + LT (t)
t
·
(
RT (t+ 1)− PT (t+ 1)− T+1

i+1
· LT (t)+1

2

)
t < T.

(52)
613

Algorithm 11.614

High Selection Criteria: Select qt at time t iff xt ≥ HT (t), where615

HT (t) =

⌈
t+ 1

T + 1
·RT (t+ 1)

⌉
. (53)

Low Selection Criteria: Select qt at time t iff xt ≤ LT (t), where616

LT (t) =

{
0 t = T,⌊
t+1
T+1
· (RT (t+ 1)− PT (t+ 1))

⌋
t < T.

(54)

If no selection is made before the last offered price qT , the last price qT has617

to be accepted with rank RT (T ) = n+1
2

.618

Kao and Tate [22] stated that the competitive ratio for single pair se-619

lection equals one, and for multiple pair selection equals 4
3
. The proof for620

the competitive ratios is not given here due to its length. The reader is re-621

ferred to Kao and Tate [22], Section 3. Further work can be carried out by622

investigating to maximize quantities other than the difference in rank.623
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ii. Heuristic Conversion Algorithms624

In the following we present the competitive analysis of three heuristic625

conversion algorithms, namely Moving Average Crossover (MA), Trading626

Range Breakout (TRB), and Momentum (MM) which are based on technical627

indicators.628

In general, heuristic conversion algorithms are also reservation price (RP )629

algorithms. Reservation price(s) are calculated based on the offered price(s)630

qt. Using the RP , the algorithm determines intersection points specifying631

when to buy or sell.632

For each i-th trade we assume a worst-case time series of prices containing633

only minimum prices m(i), and maximum prices M(i). At best the consid-634

ered algorithm buys at price m(i), and sells at price M(i) resulting in an635

optimum return OPT = M(i)/m(i). In the worst-case the above heuristic636

conversion algorithms ON ∈ {MA,TRB,MM} achieve the worst possible637

return of ON = m(i)/M(i) = 1/OPT , resulting in a competitive ratio of638

c =

p∏

i=1

(
M(i)

m(i)

)2

, (55)

and in case m(i) and M(i) are constants639

c =

(
M

m

)2p

. (56)

To prove the competitive ratio given in eq (56) we assume that an algorithm640

ON ∈ {MA,TRB,MM} is allowed to trade only once, i.e. p = 1.641

Theorem 12. The competitive ratio of the heuristic conversion algorithms642

MA, TRB, and MM equals c =
(
M
m

)2
.643

1. Algorithms by Brock et al. [6]644

Brock et al. [6] introduced the algorithms MA and TRB. These al-645

gorithms are of major interest in the literature, and have been empirically646

analyzed by several researchers, cf. Bessembinder and Chan [3]; Hudson et al.647

[19]; Mills [29]; Ratner and Leal [33]; Parisi and Vasquez [32]; Gunasekarage648

and Power [16]; Kwon and Kish [24]; Chang et al. [7]; Bokhari et al. [5];649

Marshall and Cahan [28]; Ming-Ming and Siok-Hwa [30]; Hatgioannides and650

Mesomeris [17]; Lento and Gradojevic [26]; Lagoarde-Segot and Lucey [25];651
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Tabak and Lima [36]. A detailed literature overview of heuristic conversion652

algorithms MA and TRB is given in Mohr and Schmidt [31].653

1.1. Moving Average Crossover (MA).654

Assume the following worst-case time series m, . . . ,m,M,m, . . . ,m. Hence,655

the prices q1, . . . , qt∗−1 = m, qt∗ = M , and qt∗+1, . . . , qT = m. The MA656

algorithm suggested by Brock et al. [6] is:657

Algorithm 12. Buy on day t if MA(S)t > uB(L)t and MA(S)t−1 ≤ uB(L)t−1,658

and sell on day t if MA(S)t < lB(L)t and MA(S)t−1 ≥ lB(L)t−1.659

Where MA(S)t is a short moving average, MA(L)t a long moving average660

(S < L), and the value n ∈ {L, S} defines the number of previous data points661

(days) considered to calculate MA(n)t =
∑t

i=t−n+1 qi
n

. Prices qt are lagged by662

bands, the upper band is uB(L)t = MA(L)t · (1 + b), and the lower band is663

lB(L)t = MA(L)t · (1− b) with b ∈ [0.00,∞].664

Proof of Theorem 12 for Algorithm 12: Assume S = 1, L ≤ (t∗ − 1),665

and b = 0.00. This corresponds to increasing prices generating a buy signal666

if the price crosses the long MA from below. Similarly, this corresponds to667

decreasing prices generating a sell signal if the price crosses the long MA668

from above. The MA algorithm669

1. buys on day t∗ at price qt∗ = M . Because MA(1)t∗ = qt∗ = M >670

uB(t∗ − 1)t∗ = MA(t∗ − 1)t∗ = (t∗−2)m+M
(t∗−1)

< M , and MA(1)t∗−1 =671

qt∗−1 = m ≤ uB(t∗ − 1)t∗−1 = MA(t∗ − 1)t∗−1 = (t∗−1)m
(t∗−1)

= m.672

2. sells on day t∗ + 1 at price qt∗+1 = m. Because MA(1)t∗+1 = qt∗+1 =673

m < lB(t∗ − 1)t∗+1 = MA(t∗ − 1)t∗+1 = (t∗−3)m+M+m
(t∗−1)

> m, and674

MA(1)t∗ = qt∗ = M ≥ lB(t∗ − 1)t∗ = MA(t∗ − 1)t∗ = (t∗−2)m+M
(t∗−1)

< M .675

Taking these decisions into account algorithm MA achieves a return of m/M .676

Comparing this to the optimum return achieved by algorithm OPT , the677

worst-case competitive ratio equals OPT/MA =
(
M
m

)2
.678

1.2. Trading Range Breakout (TRB).679

Assume the following worst-case time series m + ε, . . . ,m + ε,M,m, . . . ,m.680

Hence, the prices q1, . . . , qt∗−1 = m+ ε, qt∗ = M , and qt∗+1, . . . , qT = m. The681

TRB algorithm suggested by Brock et al. [6] is:682

Algorithm 13. Buy on day t if qt > uB(n)t and qt−1 ≤ uB(n)t−1, and sell683

on day t if qt < lB(n)t and qt−1 ≥ lB(n)t−1.684
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Where lower band lB(n)t = qmint (n)·(1−b) with qmint (n) = min {qi|i = t− n, . . . , t− 1},685

and upper band uB(n)t = qmaxt (n)·(1−b) with qmaxt (n) = max {qi|i = t− n, . . . , t− 1}686

where b ∈ [0.00,∞], and n < t is the number of previous data points (days)687

considered.688

Proof of Theorem 12 for Algorithm 13: Assume n ≤ (t∗ − 2), and689

b = 0.00. This corresponds to increasing prices generating a buy signal if690

the price crosses uB from below. Similarly, this corresponds to decreasing691

prices generating a sell signal if the price crosses lB from above. The TRB692

algorithm693

1. buys on day t∗ at price qt∗ = M . Because q∗t = M > uB(t∗ − 2)t∗ =694

qmaxt∗ (t∗− 2) = max {qi|i = 2, . . . , t ∗ −1} = m+ ε, and qt∗−1 = m+ ε ≤695

uB(t∗ − 2)t∗−1 = qmaxt∗−1(t
∗ − 2) = max {qi|i = 1, . . . , t∗ − 2} = m+ ε.696

2. sells on day t∗ + 1 at price qt∗+1 = m. Because qt∗+1 = m < lB(t∗ −697

2)t∗+1 = qmint∗+1(t
∗ − 2) = min {qi|i = 3, . . . , t∗} = m+ ε, and qt∗ = M ≥698

lB(t∗ − 2)t∗ = qmint∗ (t∗ − 2) = min {qi|i = 2, . . . , t∗ − 1} = m+ ε.699

Taking these decisions into account algorithm TRB achieves a return of700

m/M . Comparing this to the optimum return achieved by algorithm OPT ,701

the worst-case competitive ratio equals OPT/TRB =
(
M
m

)2
.702

2. Mommentum (MM) [21]703

Assume the following worst-case time series m+ε,m, . . . ,m,M,m, . . . ,m.704

Hence, the prices q1 = m+ ε, q2, . . . , qt∗−1 = m, qt∗ = M , and qt∗+1, . . . , qT =705

m. The MM algorithm suggested by Jagadeesh and Titman [21] is:706

Algorithm 14. Buy on day t if MMt(n) ≥ 0 and MMt−1(n) < 0, and sell707

on day t if MMt(n) ≤ 0 and MMt−1(n) > 0.708

Where the momentum MMt(n) = qt − qt−n+1, and n ≤ t is the number of709

previous data points (days) considered.710

Proof of Theorem 12 for Algorithm 14: Assume n ≤ (t∗ − 1) and711

0 < m < M . This corresponds to increasing prices after a series of decreasing712

prices (trend revision) generating a buy signal if the MM crosses the zero713

line from below. Similarly, this corresponds to decreasing prices after a series714

of increasing prices (trend revision) generating a sell signal if the MM crosses715

the zero line from above. The MM algorithm716
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1. buys on day t∗ at price qt∗ = M . Because MMt∗(t
∗ − 1) = q∗t − q2 =717

M −m ≥ 0, and MMt∗−1(t
∗ − 1) = qt∗−1 − q1 = m− (m+ ε) < 0.718

2. sells on day t∗ + 1 at price qt∗+1 = m. Because MMt∗+1(t
∗ − 1) =719

qt∗+1 − q3 = m−m ≤ 0, and MMt∗(t
∗ − 1) = q∗t − q2 = M −m > 0.720

Taking these decisions into account algorithmMM achieves a return ofm/M .721

Comparing this to the optimum return achieved by algorithm OPT , the722

worst-case competitive ratio equals OPT/MM =
(
M
m

)2
.723

Thawornwong et al. [35] gives a further heuristic conversion algorithm,724

called Relative Strength Index (RSI). Worst-case analysis can be done in the725

same manner; the worst-case time series used for MA must be considered.726

4.1.2. bi|non-pmtn|M,m727

Schmidt et al. [34] extended the uni-directional reservation price algo-728

rithm for selling by [12] (cf. Problem: uni|non-pmtn|M,m) to buying and729

selling, i.e. introduce a rule for min-search. In this case the optimal deter-730

ministic bi-directional algorithm is the following RPP .731

Algorithm 15. Buy at the first price smaller or equal, and sell at the first732

price greater or equal to reservation price q∗ =
√
M ·m.733

If m and M are constants, the worst-case competitive ratio assuming p ≥ 1734

trades then equals735

c =

(
M

m

)p
, (57)

otherwise736

c =

p∏

i=1

(
M(i)

m(i)

)
(58)

as for each i-th transaction (i = 1, . . . , p) different upper bounds M(i) and737

lower bounds m(i) are assumed.738

4.2. Bi-directional preemptive739

Bi-directional preemptive allows player to follow either the single trade740

or multiple trade policy. El-Yaniv et al. [13, 14], and Danoura and Sakurai741

[11] extended their work for uni-directional preemptive search to allow bi-742

directional preemptive search.743
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4.2.1. bi|pmtn|M,m744

El-Yaniv et al. [13] considered bi-directional run search under the as-745

sumption that the upper and lower bounds, M and m, on possible prices are746

known. To solve bi-directional problem, the player does not need to know747

the number of days T ≥ k (El-Yaniv et al. [14, p. 136]). The suggested al-748

gorithm divides the sequence of prices into upward and downward runs and749

repeats the uni-directional threat-based algorithm presented in Algorithm 5.750

Asset D is converted into Y (max-search) if the price is on an upward trend751

(run). Y is converted into D (min-search) if the price is on a downward752

trend (run). Assuming p/2 upward runs, and p/2 downward runs, the online753

investor achieves an overall competitive ratio of c = (ln
(M

m
−1)

(c−1)
)p as the overall754

number of p trades is carried out [13, p. 7].755

Dannoura and Sakurai [11] improved the bi-directional algorithm of [13]756

by making the threat smaller, and thus achieve a better competitive ratio757

c = (ln
( M

c·m−1)

(c−1)
)p. Dannoura and Sakurai [11] also improved the upper and758

lower bound for bi-directional run search given in the previous work of El-759

Yaniv et al. [13]. The improved algorithm is not yet optimal, thus the760

challenge of designing an optimal algorithm for bi-directional search remains761

[11, p. 33].762

5. Conclusion763

Though a considerable amount of work addresses the online conversion764

problems, a number of questions are still unanswered, and require further765

consideration. These questions relate to theoretical and practical aspects.766

In order to verify the applicability of the suggested algorithms to practical767

problems more experimental studies are required. From the experimental768

studies competitive ratios can be defined and compared to worst-case theo-769

retical ratios. Especially information about future prices of a time series in770

most practical cases is not available. To apply the online conversion algo-771

rithms, we need estimates of this information which are necessarily bound772

to errors. It would be helpful to investigate competitive ratios which depend773

on given errors due to the input data of the algorithms. If we assume that774

information about the future is available it will be of great interest which775

information is more valuable, for instance the knowledge of the upper bound776

M , or the knowledge of fluctuation ratio φ. Similarly an experimental study777

to investigate the worth of future information available may also be of inter-778
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est. Intuitively, the more information available to an algorithm, the better779

it should perform in the worst-case; e.g. an algorithm which utilizes m and780

M should perform better than then one which utilizes only φ as input. Ex-781

perimental studies can be conducted to verify the claim.782

A significant drawback of threat-based algorithms is the large number of783

transactions carried out. As in the real world, each transaction has an associ-784

ated transaction fee, so the large number of transactions adversely affects the785

practical performance of these algorithms. Hence, designing a strategy that786

reduces the number of transactions while maintaining the competitive ratio787

needs further research. Similarly, the algorithms designed for bi-directional788

search do not perform optimally and pose themselves as an open question.789

Al-Binali [1] introduced the notion of acceptable level of risk in term of790

competitive ratio. When risk in terms of competitive ratio is considered, the791

question remains open if the competitive ratio is a coherent measure of risk792

[2] or not. Further, our proposed classification scheme can be used to address793

the unaddressed areas of online conversion problems.794
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Preface

Comparing an online conversion algorithm to the optimal o�ine algorithm

can be thought of as measuring the value of the information of future prices

(Larsen and Wøhlk, 2010, p. 685). Inspired by Karp (1992a,b) we answer the

question `how much is it worth to know the future in online conversion problems'

using the competitive ratio as an indicator for the quality of information about the

future. We de�ne information to be more valuable if the worst-case competitive

ratio can be improved by this information. We calculate the empirical-case

competitive ratios of the di�erent variants of the threat-based algorithm of

El-Yaniv et al. (1992, 2001) (Algorithm 8, p. 92). Due to Rules (1) to (3) of

Algorithm 8, for all variants of the threat-based algorithm, the prices considered

for conversion are identical. Only the calculation of the amount to be converted st

di�ers based on the information assumed to be known a-priori.

For the empirical-case analysis transaction costs are not considered and the

backtesting of the algorithms is done on the German Dax-30 index for the

investment horizon 01-01-1998 to 12-31-2007; stylized facts are given in Example

2, p. 62. Only the index itself can be traded by the investigated algorithms ON ∈
{Threat(X), BH} withX ∈ {(m,M, k), (m,M), (m,M, q1), (ϕ, k), (ϕ)}, and OPT .
The investment horizon is divided into several time intervals of di�erent length T .

Within each T uni-directional search, solving either the min-search problem for

buying or the max-search problem for selling, might be carried out. As suggested

in the work of Borodin et al. (2004), again two consecutive time intervals of equal

length T built trading intervals of length 2 · T , with T ∈ {260, 130, 65, 20, 10}. In
order to trade multiple times for example 2 · T = 260 days equal T = 130 days

for buying and T = 130 days for selling, etc. The following questions are to be

answered:

1. How do the worst-case competitive ratios cwc which could have been possible

from the experimental data compare?

2. How do the empirical-case competitive ratios cec found in the experiments

compare?

3. Are the answers to Question 2 signi�cant?
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We compare our empirical-case results to the analytical worst-case results given in

the literature. The empirical-case performance is evaluated by a t-test, as given in

Algorithm 2, p. 67.

Analytical results show that the better the information the better the worst-case

competitive ratios. However, experimental analysis gives a slightly di�erent view.

We show that better information does not always lead to a better performance in

real-life applications. The empirical-case competitive ratio is not always better with

better information, and some a-priori information is more valuable than other for

practical settings. We conclude that the value of information can only be estimated

by worst-case scenarios.
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Abstract

We answer this question using the competitive ratio as an indicator for the
quality of information about the future. Analytical results show that the
better the information the better the worst-case competitive ratios. How-
ever, experimental analysis gives a slightly different view. We calculate the
empirical-case competitive ratios of different variants of a threat-based on-
line algorithm. The results are based on historical Dax data. We compare
our empirical-case results to the analytical worst-case results given in the
literature. We show that better information does not always lead to a better
performance in real life applications. The empirical-case competitive ratio is
not always better with better information, and some a-priori information is
more valuable than other for practical settings.

Keywords: Online Algorithms, Competitive Analysis, Empirical-case
Analysis, Worst-case Analysis, One-way Trading, Uni-directional Algorithm

1. Introduction

[1] answers the question considering multiprocessor scheduling, interval
coloring, and the k-server problem. We want to answer the question for
online conversion problems. A conversion problem deals with the scenario
of converting an asset D into another asset Y with the objective to get the
maximum amount of Y after time T . The process can be repeated in both
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directions, i.e. converting asset D into asset Y , and asset Y back to asset
D. On each day t, the player is offered a price qt to convert D to Y ; he may
accept the price qt or may decide to wait for a better price. The game ends
when the player converts whole of the asset D to Y .

Based on the amount converted st, two classes of online conversion algo-
rithms exist, (i) preemptive online conversion algorithms - designed to convert
asset D at more than one price within the time interval, i.e. st ∈ [0, 1], and
(ii) non-preemptive online conversion algorithms - designed to convert asset
D at one single price within the time interval, i.e. st ∈ {0, 1}.

Several authors suggest uni-directional preemptive algorithms for (i) us-
ing the competitive ratio as performance measure [2, 3, 4, 5, 6, 7, 8]. An
algorithm must determine which amount st ∈ [0, 1] to be converted on days
t = 1, . . . , T such that the amount of asset Y is maximized on day T . The
only restriction is that during the time interval the player must convert asset
D into the asset Y completely, i.e.

∑T
t=1 st = 1, and conversion back to D is

forbidden.
Related work focuses on worst-case performance guarantees using com-

petitive analysis [9]. The performance of an online algorithm ON is compared
to that of an adversary, the optimal offline algorithm OPT . Each input can
be represented as a finite sequence I with t = 1, . . . , T elements, and a feasi-
ble output can also be represented as a finite sequence with T elements. An
algorithm ON computes online if for each t = 1, . . . , T − 1, it computes an
output for t before the input for t+ 1 is given. An algorithm OPT computes
offline if it computes a feasible output given the entire input sequence I in
advance. An online algorithm ON is c-competitive if for any input I

ON(I) ≥ 1

c
·OPT (I). (1)

If the competitive ratio is related to a performance guarantee it must be
a worst-case measure. Any c-competitive algorithm ON(I) is guaranteed
a value of at least the fraction 1/c of the optimal offline value OPT (I) no
matter how unfortunate or uncertain the future will be. We consider con-
verting assets as a maximization problem, i.e. c ≥ 1. The smaller c the more
effective is algorithm ON .

In case the input data processed by an online (conversion) algorithm does
not represent the worst-case input, its performance is often considerably bet-
ter than the competitive ratio tells. For this reason competitive analysis is
criticized as being too pessimistic. In terms of converting assets the com-

2
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petitive ratio does not reveal which returns can be expected, nor whether
these returns are positive or not. There is related work which conducts per-
formance analysis assuming that input data is given according to a certain
probability distribution. This approach is called ‘Bayesian Analysis’ [9, pp.
34-35]. The objective is to optimize the performance of an algorithm assum-
ing a specific stochastic model [1]. Either assumptions about the distribution
of the input data are made, or the distribution of the input data is assumed
to be known beforehand [10]. However, this approach can often not be ap-
plied as distributions are rarely known precisely. Thus we will not make
assumptions about input distributions or probabilities.

This leads to an exploratory approach. The algorithms are implemented,
and the analysis is done on historic or artificial data by simulation runs. The
objective of exploratory data analysis (EDA) is to 1) suggest hypotheses
to test (statistically) based on the results generated, 2) assess assumptions
on the statistical inference, 3) support the selection of appropriate statisti-
cal tools and techniques for further analysis, 4) provide a basis for further
data collection through experiments. It is important to distinguish the EDA
approach from the classical empirical approach, which starts with a-priori
formulated hypotheses [11]. By applying EDA the observed empirical-case
results are evaluated statistically, mainly by hypothesis tests, bootstrap pro-
cedures, or Monte Carlo simulation, cf. [12, 13, 14].

We apply the experimental approach (EDA) as well as competitive analy-
sis, considering a worst-case and an empirical-case point of view, and limit to
uni-directional preemptive algorithms introduced by [2, 3]. The investigated
online conversion algorithms are based on the assumption that there exists a
threat that at some stage during the time interval, namely on day k ≤ T , the
offered price will drop to a minimum level m, and will remain there until the
last day T . We assume a time series of prices Q = q1, q2, . . . , qk,m,m, . . . ,m
where t = 1, . . . , k ≤ T . The algorithms proposed are commonly referred to
as the threat-based, and the basic rules are [3, p. 109]:

Algorithm 1.

Rule 1. Consider a conversion from asset D into asset Y only if the price
offered is the highest seen so far.

Rule 2. Whenever you convert asset D into asset Y , convert just enough D
to ensure that a competitive ratio c would be obtained if an adversary dropped
the price to the minimum possible price m, and kept it there afterwards.
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Rule 3. On the last trading day T , all remaining D must be converted into
Y , possibly at the minimum price m.

[2, 3] discussed four variants of the above algorithm, each assuming a different
information about the future. [4] improved the algorithm by improving the
lower bound given in [2, 3]. It is shown that the lower bound (the threat)
equals c·m ≥ m (where c ≥ 1 is the competitive ratio), and not m as assumed
in [2, 3]. The basic rules of the five variants of the threat-based algorithm
remain the same. The variants differ in how the amount to be converted st
is computed, and st is dependent on the worst-case competitive ratio c the
algorithms are approaching. This leads to the following research question to
be answered:

Can better competitive ratios be explained by higher quality of
a-priori information about the future used in online conversion
algorithms?

When answering this question we do not refer to the work of [5, 6, 7, 8].
These uni-directional preemptive conversion algorithms are not threat-based,
and thus not comparable on a mutual basis. In addition, the authors make
assumptions which do not hold in most practical settings. [5] assume a price
function g(qt). The constants A and B (A,B ≥ 1) determine the prices
offered on day t, and qt is modelled as qt−1/B ≤ qt ≤ A · qt−1. Further, [7]
assume that the upper bound of the prices M is a decreasing function of time
and modelled by Mt = M/t. The algorithm by [8] requires specifying the
maximum number of preemptions.

Our aim in this paper is twofold. First, we want to experimentally eval-
uate the performance of the uni-directional preemptive threat-based algo-
rithms suggested by [2, 3, 4]. Then we apply EDA as well as competitive
analysis considering a worst-case and an empirical-case point of view. In
related work it is shown that the analytic worst-case competitive ratio cwc

is the better the better the quality of the information about the future is.
We will investigate if this also holds for the empirical-case competitive ratio
cec. The better the competitive ratio, the better should be the quality of
information. This presumption is to be evaluated through experiments.

The reminder of this paper is organized as follows. In the next section
the problem is formulated, and the algorithms considered are presented in
detail. Section 3 presents the experimental design as well as the experimental
findings from our simulation runs. We finish with some conclusions and
suggestions for future research in the last section.
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2. Problem Formulation

Each threat-based algorithm ON considered converts asset D to asset Y
according to the rules given in Algorithm 1. Algorithm ON obtains price
quotations qt (m ≤ qt ≤ M , and 0 < m < M) at points of time t =
1, . . . , T . For each price qt ON calculates the amount to be converted st ∈
[0, 1] according to Rules 1 to 3. Remaining open positions must be converted
at the latest on the last possible price qT , which might be the worst-case.

Let us consider the multiple conversion problem, i.e. we want to convert
asset D more than once. As we consider uni-directional search, to convert
asset D p ≥ 1 (i = 1, . . . , p) times, the investment horizon must be divided
into time intervals of length T days. As in [15] we assume two consecutive
time intervals of equal length T are pooled, resulting in trading periods of
length 2 ·T . Within the first T days min-search is carried out in order to buy
at possibly low prices, and within the second T days max-search is carried
out in order to sell at possibly high prices. With this setting we ensure that
each i-th trade consists of exactly one complete buying and one complete
selling. Buying (selling) is complete as soon as the whole amount of D is
converted, i.e.

∑T
t=1 st = 1. At the beginning of each time interval of length

T days let d0 = 1 be the amount of asset D remaining, and let y0 = 0 the
amount of already accumulated asset Y . Let dt be the amount of asset D
remaining after day t, and yt be the amount of asset Y accumulated after
day t. For t = 1, . . . , T the amount of asset D remaining equals dt = dt−1−st
and the accumulated amount of asset Y equals yt = st · qt + yt−1.

In the following we present the five variants of the threat-based algorithm
suggested by [2, 3, 4]. Based on the assumed a-priori information about the
future, each algorithm determines st such that c holds in case the price drops
to m, i.e. the worst-case occurs.

2.1. Algorithm: Threat(m,M, k)

[2, 3] addressed the scenario where the player knows the upper and lower
bounds of prices, m and M , as well as the number of days k ≤ T . Rules 1 to
3 of Algorithm 1 ensure that at time t, ‘just enough’ of asset D is converted
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that Threat(m,M, k) achieves a competitive ratio c. Thus

OPT

ON
=

qt
yt +m · dt

(2)

=
qt

(yt−1 + st · qt) +m · (dt−1 − st)
≤ c.

The denominator yt + m · dt represents the return of ON if an adversary
drops the price to m and the nominator qt is the return of OPT for this case,
as qt is the maximum and OPT will convert the whole asset D at price qt.
According to Rule 3 ON must spend the minimum st that satisfies eq (2).
Solving eq (2) as an equality constraint with respect to st results in eq (3).
Thus, we get

st =
qt − c · (yt−1 + dt−1 ·m)

c · (qt −m)
(3)

It remains to determine the global competitive ratio c used in eq (3) that is
attainable by algorithm Threat(m,M, k). For every day t let k′ = k−t+1 be
the remaining days of the time series considered. Let q′1 be the first price of
this time series. Let ck(q′1) be a local (lower bound) competitive ratio which
is achievable on a sequence of k′ ≤ T remaining prices assuming dt = 1 and
yt = 0 [3, Formula 15]

ck
′
(q′1) = 1 +

q′1 −m
q′1

· (k′ − 1) ·
(

1−
(
q′1 −m
M −m

)(1/(k′−1)
)
. (4)

Let c be a global (upper bound) competitive ratio assuming that q′1 is the
highest price of the whole time series, i.e. OPT converts the whole amount
of asset D to asset Y at price q′1, and ON converts the remaining amount of
asset D to asst Y . Thus [3, Formula 28a]

c =
q′1

dt−1 · q′1 + yt−1

· ck′
(q′1) (5)

The denominator dt−1 · q′1 + yt−1 represents the return of ON , and the nom-
inator q′1 is the return of OPT . We now have to calculate which worst-case
competitive ratio we could reach taking into account the following cases:

1. q′1 is a global maximum and OPT will convert the whole of asset D
at price q′1 = M . Then from eq (5) the worst-case competitive ratio
equals c(m,M, k) = ck

′
(q′1) with q′1 = q1 = M .
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2. q′1 is not a global maximum and OPT will convert the whole of asset
D at a future rate. Then from eq (4) we get
c(m,M, k) = max

{
ck

′
(q′1)|k′ = 1, . . . , k ≤ T

}
= cT (q′1).

Note that when experiments are carried out the empirical-case competitive
ratio cec of Threat(m,M, k) equals ck

′
(q′1) where k′ = 1.

2.2. Algorithm: Threat(m,M)

[2, 3] addressed the scenario where the player knows only the lower and
upper bound, m and M , of the offered prices. As the player is oblivious about
the length of the time interval T , it is assumed that the adversary selects
T → ∞. In order to meet the ratio c the dt must be determined such that
the whole (remaining) amount of D is converted in case the highest possible
price M occurs on day t. From this follows that dt equals [2, p. 4, Case 1]

dt = 1− 1

c
· ln M −m

m · (c− 1)
(6)

with st = dt−1−dt and d0 = 1. From eq (6) the worst-case competitive ratio,
denoted by c∞(m,M), can be derived using c ·m as lower bound

dt = 1− 1

c
· ln M −m

c ·m−m︸ ︷︷ ︸
c

(7)

= 1− 1

c
· c

= 0.

Thus c∞(m,M), is the unique solution c [3, Formula 29]

c = ln
M
m
− 1

c− 1
. (8)

2.3. Algorithm: Threat(m,M, q1)

[2, 3] and [4] addressed the scenario where the player knows the lower
and upper bound, m and M , of the offered prices, as well as the first price
q1. For calculating the worst-case competitive ratio an arbitrary number of
trading days T → ∞ must be considered. Thus the worst-case competitive
ratio, denoted by c∞(m,M, q1), is the unique solution of c [4, p. 29]

c =

{
ln

M
m
−1

c−1
q1 ∈ [m, c ·m]

1 + q1−m
q1
· ln M−m

q1−m q1 ∈ [c ·m,M ] .
(9)
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Further, depending on the value of q1 the amount of D remaining dt equals
[2, p. 4, Case 2]

dt =

{
1− 1

c
· ln qt−m

c·m−m q1 ∈ [m, c ·m]
q1−(q1/c
q1−m − 1

c
· ln qt−m

q1−m q1 ∈ [c ·m,M ]
(10)

with st = dt−1 − dt and d0 = 1.

2.4. Algorithm: Threat(φ)

[2, 3] addressed the scenario where the player knows only the price fluc-
tuation ratio, φ = M/m, of the offered prices, but the real bounds on M
and m are unknown. As the player does not know T , the player assumes the
adversary to choose T → ∞. The worst-case competitive ratio, denoted by
c∞(φ), is computed as follows. Let c∞(φ) = limT→∞ cT (φ), then

limT→∞
(φ− 1)T

(φT/(T−1) − 1)T−1
= (φ− 1)exp

(
−φ lnφ

φ− 1

)
. (11)

Therefore

c∞(φ) = φ

(
1− (φ− 1)exp

(
−φ lnφ

φ− 1

))
(12)

= φ− φ− 1

φ1/(φ−1)
.

2.5. Algorithm: Threat(φ, k)

[2, 3] addressed the scenario where the player knows the price fluctuation
ratio φ with the duration k ≤ T . [3, p. 122] observed that the minimum
price offered on day t is at least qt/φ. Therefore, the worst-case competitive
ratio, denoted by c(φ, k), can be derived as in the analysis of Algorithm
Threat(m,M, k) specializing to the case in which m = qt/φ, resulting in [3,
p. 126, Theorem 6]

c(φ, k) = φ
(

1− (φ− 1)k /
(
φk/(k−1) − 1

)k−1
)

(13)

It remains to compute the amount to be converted st for the Algorithms
Threat(phi) and Threat(phi, k). For both [2, 3] observed that the minimum
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price offered on day t is at least qt/φ. By replacing the minimum possible
price m by qt/φ we get

yt + dt
qt
φ

=
qt
c

⇒ dt = φ(
1

c
− yt
qt

). (14)

From eq (3), we get

st =
qt − c(yt−1 + dt−1 · qt/φ)

c(qt − qt/φ)
. (15)

Where c equals c(φ) for Algorithm Threat(phi), and c(φ, k) for Algorithm
Threat(phi, k). In the following the results of our simulation runs are pre-
sented.

3. Results

In the following we present the assumed test design, the performance
measure as well as the computational results.

3.1. Test Design

Our experiments are based on the Dax-30 index prices for the invest-
ment horizon 01-01-1998 to 12-31-2007. We excluded weekends and country-
specific holidays resulting in overall 2543 trading days. To ensure an identical
number of trades for all algorithms considered we divide the investment hori-
zon into trading periods of length 2 · T where T ∈ {130, 65, 33(32), 10, 5} re-
sulting in trading periods of length 260, 130, 65, 20 and 10 days. We assume
asset D to be cash and asset Y to be Dax-30 index. Within each ‘first’ time
interval of length T uni-directional search is carried out in order to convert
all cash into index, and within the ‘second’ T days the index is converted
back to cash. As the threat-based algorithms are allowed to convert in maxi-
mum T fractions (st ∈ [0, 1]), this setting ensures that one trade is completed
within each 2 · T days. We assume that in each time interval for buying b
(selling s) of length T there are precise estimates of the possible maximum
prices Mb(i) (Ms(i)), and the possible minimum prices ms(i) (ms(i)). In our
experiments we compare the following algorithms.
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3.1.1. Algorithm OPT

OPT is an offline algorithm which achieves the best possible return within
each trading period of length 2 ·T . It is assumed that OPT knows all prices.
OPT will buy at minimum prices mb(i) ≥ m, and will sell at maximum prices
Ms(i) ≤M within each T .

3.1.2. Algorithm Threat(x)

Each variant x ∈ {(m,M, k), (m,M), (m,M, q1), (φ, k), (φ)} of the threat-
based algorithm converts according to Rules 1 to 3 given in Algorithm 1. We
assume the number of remaining trading days to be T ′ = T − t + 1. Each
algorithm Threat(x) calculates the achievable worst-case competitive ratio
cwc for each time interval and converts the corresponding quantities such
that this cwc would be realized in case the price drops to m. There might
be as many buying (selling) transactions as there are days T in each time
interval.

3.1.3. Algorithm BH

BH buys the index on the first day t = 1 of each trading period and sells
it 2 · T days later. BH is used as a benchmark.

3.2. Performance Measurement

The following assumptions apply for algorithms 3.1.1 to 3.1.3.

1. There is an initial amount of cash greater zero.

2. Possible transaction prices are daily closing prices.

3. Transaction costs are not considered.

4. Interest rate on cash is assumed to be zero.

The empirical-case competitive ratio cec of the above algorithms is derived
by the return achieved. Let ri be the trading period returns, calculated by
(accumulated) selling price divided by (accumulated) buying price for each
i-th trade (i = 1, . . . , p). Then the overall return r(p) after the last trade
equals

r(p) =

p∏

i=1

ri. (16)
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From eq (16) we get the annualized return

R(y) = r(p)(1/y) (17)

where y equals the number of years within the investment horizon consid-
ered. For the considered 10-year investment horizon the annualized return is
calculated for y = 10, and tells us which return we could expect within one
year.

We calculate the competitive ratios c of the considered conversion algo-
rithms according to eq (1)

c ≥ OPT (I)

ON(I)
(18)

where ON ∈ {Threat(x), BH}.
Let cwc be the worst-case competitive ratio, and let cec be the empirical-

case competitive ratio. When calculating cwc we assume algorithm ON is
confronted with the worst possible sequence of prices i = 1, . . . , p times, and
derive the cwc of each threat-based algorithm as given in Section 2 taking
the data of the problem instance into account. To calculate cwc for BH we
assume BH buys i times at the maximum possible price Mi(b), and sells i
times at the minimum possible price ms(i). Thus cwc of the BH algorithm
equals

∏
i = 1p (Ms(i) ·Mb(i)) / (ms(i) ·mb(i)) as shown in [16].

When calculating cec the return which actually was achieved by ON and
OPT is used, thus cec ≤ cwc.

3.3. Computational Results

In this section we present the numerical results achieved by the online
conversion algorithms presented above. For each trading period of length
2·T∈ {260, 130, 65, 20, 10} the algorithms ON ∈ {Threat(x), BH} and OPT
are run. As performance measure we consider the worst-case competitive
ratio cwc, and the empirical-case competitive ratio cec. Clearly, the algorithms
ON cannot outperform the optimal offline algorithm OPT . We carried out
35 simulation runs in order to find out how the following measures compare:

1. the worst-case competitive ratios cwc taking the data of the problem
instance into account, and

2. the empirical-case competitive ratios cec found in the experiments.
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Table 1 to 7 present the computational results. We answer these questions
conducting experiments using the LifeTrader system.1

Question 1: How do the worst-case competitive ratios which could have
been possible from the experimental data compare?

Answering this question we calculated the worst-case competitive ratios
cwc based on the Dax-30 data. For each buying and selling period we deter-
mine mb(i) (ms(i)) and Mb(i) (Ms(i)) and calculate the possible worst-case
ratios according to eq (18). The results are shown in Table 1. In case of
BH the ratio cwc grows exponentially with p, i.e. the greater the number
of trades, the worse BH gets. Column 2 to 6 give the worst-case ratios cwc

1998-2007: Worst-case ratio cwc = OPT/ON
2 · T 10 days 20 days 65 days 130 days 260 days
Trades p 254 127 39 20 10
OPT/BH 4.9067 3.9698 2.3376 1.9717 1.7012
OPT/Threat(φ) 2.7193 2.3735 1.6964 1.5194 1.3828
OPT/Threat(φ, k) 2.5416 2.3086 1.6878 1.5162 1.3816
OPT/Threat(m,M) 1.7908 1.6572 1.3634 1.2798 1.2118
OPT/Threat(m,M, q1) 1.4080 1.3698 1.2696 1.2081 1.1356
OPT/Threat(m,M, k) 1.2746 1.3174 1.2587 1.2052 1.1342

Table 1: Worst-case competitive ratios cwc for 1998 to 2007

for each algorithm and trading period length considered. As expected, the
results are consistent with the analytical results by [2, 3, 4]. When com-
paring Threat(m,M) and Threat(φ, k) knowing the exact upper and lower
bounds, m and M , is more valuable than knowing φ = M/m and k ≤ T
as it leads to a better cwc. Similarly, it is more valuable to know k ≤ T
as cwc of Threat(m,M, k) is better than cwc of Threat(m,M, q1). From this
we conclude that some information is more valuable than other. We also
conclude that the better cwc the more valuable the information is.

1LifeTrader is a software system for the evaluation of conversion algorithms, details
can be found in [17].
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Question 2: How do the empirical-case competitive ratios found in the
experiments compare?

Answering this question we calculated the empirical-case competitive ra-
tios cec taking the Dax-30 data into account, given in Table 2. When calcu-
lating the ratios cec the empirical-case return which actually was achieved by
ON is compared to OPT , where ON ∈ {Threat(x), BH}. The results which

1998-2007: Empirical-case ratio cec = OPT/ON
2 · T 10 days 20 days 65 days 130 days 260 days
Trades p 254 127 39 20 10
OPT/BH 2.2104 1.9194 1.5081 1.4387 1.2586
OPT/Threat(φ) 2.1574 1.9258 1.5208 1.4199 1.2850
OPT/Threat(φ, k) 2.1378 1.9222 1.5214 1.4198 1.2850
OPT/Threat(m,M) 1.1613 1.2309 1.2125 1.18056 1.1244
OPT/Threat(m,M, q1) 1.1606 1.2307 1.2122 1.1802 1.1239
OPT/Threat(m,M, k) 1.2012 1.2459 1.2149 1.1809 1.1241

Table 2: Empirical-case competitive ratios cec for 1998 to 2007

are not consistent with the worst-case results given in Table 1 are marked
bold.

In three cases, for 20, 65 and 260 days, BH achieves a greater value of
OPT than Threat(φ), as BH achieves a better cec. This is due to the time
series considered, for example if price q1 << qT for several periods. Fur-
ther, in two cases, for 65 and 260 days, Threat(φ) achieves a better cec than
Threat(φ, k). Following Rule 1 both variants convert at identical prices qt.
But within some periods i (due to luck) Threat(φ) calculated a greater st and
thus converts more at a higher price than Threat(φ). Resulting in a higher
accumulated amount of index after time T . For example Threat(φ) outper-
forms Threat(φ, k) if the prices in the time series considered are decreasing.
In contrast, the analytical worst-case competitive ratio cwc is improved by
knowing k ≤ T , as given in Table 1. This is also true for the case where
Threat(m,M) achieves a better cec than Threat(m,M, k). From this we
conclude that some information is more valuable than other.

Surprisingly, the best results are achieved by Threat(m,M, q1), i.e. for all
trading period lengths the maximum amount 1/cec of OPT can be achieved
for the time series considered. Due to luck regarding the value of the first
price q1 the empirical-case ratio cec of Threat(m,M, q1) is always better than
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cec of Threat(m,M, k). In contrast, the analytical worst-case competitive
ratio cwc is improved by knowing k ≤ T instead of q1, as given in Table 1.

Question 3: Are the answers to Question 2 significant?

In order to answer this question we use a student t-test to show signifi-
cance of results. The t-test generates useful output if the sample size (number
of period returns) is greater 30 or the period returns are normal distributed.
To test for the normality assumption of the t-test we use the Jarque-Bera
(JB) test. The null hypothesis of JB is that the period returns of each algo-
rithm and each trading period length are normal distributed, i.e. for the six
algorithms and five different period lengths we conducted 30 JB tests. We
found out that all period returns are normal distributed, or that the sample
size is greater than 30.

Based on the empirical findings given in Table 2 the null hypothesis (H0)
to be rejected is:

The empirical-case competitive ratio of an algorithm ON using
more valuable information is greater or equal (≥) to the empirical-
case competitive ratio of an algorithm ON using less valuable
information.

Before running a t-test we check if the returns generated by the compared
two algorithms (t-test samples) have equal variances or not. Depending on
the results on the variances different t-test variants are used [12]. The sample
sizes for each t-test refers to the number of returns generated from 01-01-1998
to 12-31-2007, i.e. for a trading period length of 10 days we have a sample
of 254 returns, for trading period length 20 we have a sample of 127 returns,
etc.

The t-test statistics given in Tables 3 to 7, and are calculated depending
on the results of the normality test and the variance equality test for the algo-
rithms. We use a significance level of 5%. Overall we conducted 15 t-tests for
each trading period length (10, 20, 65, 130, 260 days), resulting in overall 75
statistical tests. The lower the p-value, the more ’significant’ is the result of
the t-test concerning the rejection of H0. In case the p-values are greater than
5% the null hypothesis H0 cannot be rejected. In case H0 can be rejected the
p-values are marked bold with x ∈ {(m,M, k), (m,M), (m,M, q1), (φ, k), (φ)}.

Results show that for all trading period lengths the returns generated by 1)
Threat(m,M), 2) Threat(m,M, k) and 3) Threat(m,M, q1) are significantly
greater (>) than the returns by BH and Threat(φ). Thus we conclude the
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1998-2007: p-values of Test 1 for 2 · T = 10 days
H0: Threat(x) BH Threat Threat Threat Threat
≥ (φ) (φ, k) (m,M) (m,M, k)
Threat(φ) 6.03% - - - -
Threat(φ, k) 4.03% 44.35% - - -
Threat(m,M) 0.00% 0.00% 0.00% - -
Threat(m,M, k) 0.00% 0.00% 0.00% 68.45% -
Threat(m,M, q1) 0.00% 0.00% 0.00% 49.67% 31.25%

Table 3: Student t-test results for 10 days from 1998 to 2007

1998-2007: p-values of Test 2 for 2 · T = 20 days
H0: Threat(x) BH Threat Threat Threat Threat
≥ (φ) (φ, k) (m,M) (m,M, k)
Threat(φ) 10.60% - - - -
Threat(φ, k) 9.63% 48.77% - - -
Threat(m,M) 0.00% 0.00% 0.00% - -
Threat(m,M, k) 0.00% 0.00% 0.00% 58.33% -
Threat(m,M, q1) 0.00% 0.00% 0.00% 49.86% 41.53%

Table 4: Student t-test results for 20 days from 1998 to 2007

1998-2007: p-values of Test 3 for 2 · T = 65 days
H0: Threat(x) BH Threat Threat Threat Threat
≥ (φ) (φ, k) (m,M) (m,M, k)
Threat(φ) 7.14% - - - -
Threat(φ, k) 7.30% 50.26% - - -
Threat(m,M) 0.00% 0.03% 0.03% - -
Threat(m,M, k) 0.00% 0.03% 0.03% 51.23% -
Threat(m,M, q1) 0.00% 0.03% 0.02% 49.89% 48.66%

Table 5: Student t-test results for 65 days from 1998 to 2007

higher the value of the information the significantly better the empirical-case
competitive ratios are. But this is not true for BH as the empirical-case
competitive ratios of Threat(φ, k) are only significantly higher for 10 and
130 days, cf. column BH in Tables 3 and 6.

When comparing the empirical-case competitive ratios of Threat(φ, k)
and Threat(m,M) we conclude knowing the real bounds on the prices is
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1998-2007: p-values of Test 4 for 2 · T = 130 days
H0: Threat(x) BH Threat Threat Threat Threat
≥ (φ) (φ, k) (m,M) (m,M, k)
Threat(φ) 3.71% - - - -
Threat(φ, k) 3.69% 49.99% - - -
Threat(m,M) 0.00% 0.09% 0.09% - -
Threat(m,M, k) 0.00% 0.09% 0.09% 50.28% -
Threat(m,M, q1) 0.00% 0.09% 0.09% 49.83% 49.55%

Table 6: Student t-test results for 130 days from 1998 to 2007

1998-2007: p-values of Test 5 for 2 · T = 260 days
H0: Threat(x) BH Threat Threat Threat Threat
≥ (φ) (φ, k) (m,M) (m,M, k)
Threat(φ) 21.29% - - - -
Threat(φ, k) 21.26% 49.97% - - -
Threat(m,M) 0.53% 3.95% 3.96% - -
Threat(m,M, k) 0.54% 3.94% 3.95% 49.84% -
Threat(m,M, q1) 0.53% 3.92% 3.93% 49.75% 49.91%

Table 7: Student t-test results for 260 days from 1998 to 2007

more valuable as cwc and cec are always significantly better for Threat(m,M).
When comparing Threat(m,M, q1) to Threat(m,M, k) the empirical-case ra-
tios cec of Threat(m,M, q1) are not significantly better than those of Threat(m,M, k).
From this we conclude that due to luck regarding the value of first price q1
the cec of Threat(m,M, q1) is better than the cec of Threat(m,M, k).

4. Conclusions

Due to Rules 1 to 3 of Algorithm 1 for all the five variants of the threat-
based algorithm the prices considered for conversion are identical; but the
calculation of st is different for the algorithms based on the information
assumed to be known.

In order to answer the question how much it is worth to know the future
in online conversion problems we have suggested to identify a strict order of
the value of information using worst-case competitive ratios cwc. We have
defined information to be more valuable if the worst-case competitive ratio
can be improved by this information.

16
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Taking the problem data into account we could identify a strict order on
the value of information based on the worst-case ratios cwc (Table 1). For the
empirical-case scenarios (Table 2) this was not possible. In contrast to the
worst-case scenarios we could see here that the value of a-priori information
is not as powerful as a ‘luckily’ behaving time series. We conclude that the
value of information can only be estimated by worst-case scenarios.

We assumed the precise values for m, M , φ, q1 and k ≤ T to be known
for calculating competitive ratios. This assumption might be to optimistic.
An open question would be to weaken this assumption and considering errors
in forecasts. Further it would be interesting to take transaction costs into
account as in the worst-case a preemptive conversion algorithm converts at
each price presented, i.e. at all T prices.
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Chapter 7

Conclusions and Future Work

This chapter summarizes, in a nutshell, the answers to the research questions on the

applicability of the investigated non-preemptive and preemptive online conversion

algorithms. We conclude indicating some open questions for future research and

give a selective bibliography.

7.1 Conclusions

In �nance, the traditional approach when analyzing online conversion algorithms

is to derive the return to be expected through experiments. The competitive

ratio, giving a performance guarantee assuming worst-case scenarios, is not

considered. Traditional empirical-case analysis assumes the input follows a

particular distribution, and aims to analyze and optimize the empirical-case

performance of an algorithm assuming a speci�c stochastic model. But in case

an investor does not want to rely on a stochastic model, or it is unknown, the

worst-case competitive analysis approach provides an attractive alternative to this

traditional approach. Whatever the reason for the absence of information about

stochastic processes is, worst-case competitive analysis o�ers a reasonable initial

solution upon which a more elaborate online conversion algorithm can be chosen

after additional information is determined. Empirical-case analysis provides this

additional information.

The suggested conjoint approach provides bounds that minimize the maximum

regret based on worst-case scenarios. In addition, the empirical-case results can be

used to draw conclusions on the statistical inference of the return to be expected.

The outcome is an answer to the research questions stated.

First, we stated the question `can the applicability of heuristic conversion

algorithms be veri�ed through competitive analysis, and which worst-case

competitive ratio do they achieve?' addressing the new �eld of worst-case analysis

215
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of heuristic conversion algorithms. From a conceptual point of view, a heuristic

conversion algorithm that performs well in an experiment is not necessarily a

`good' online conversion algorithm. In contrast to the worst-case scenarios there

is always the probability of a `luckily' behaving time series. But in case of a

stock market meltdown worst-case performance guarantees are essential, as they

provide a de�nite upper bound. This is what competitive analysis o�ers. Thus

it is reasonable to apply the analytical competitive analysis approach to heuristic

conversion algorithms when analyzing their applicability.

Second, we stated the question `can the applicability of guaranteeing conversion

algorithms be veri�ed through experiments, and which empirical-case performance

do they achieve?' addressing the new �eld of empirical-case analysis of

guaranteeing conversion algorithms. An algorithm that guarantees a small

worst-case competitive ratio does not necessarily achieve a `good' empirical-case

performance. The assumptions made when the competitive ratio is derived

analytically are often far from reality. Backtesting solves this problem by taking

an algorithm, and going back in time in order to see what would have happened if

the algorithm had been followed in practice. This is what empirical-case analysis

o�ers. Thus it is essential to apply experimental analysis to guaranteeing conversion

algorithms when analyzing their applicability.

Our experimental results provide support for utilizing the considered

guaranteeing conversion algorithms Threat and Sqrt in practice. In case the

data processed by those algorithms does not represent the worst-case input the

return to be expected is signi�cantly better than the worst-case competitive

ratio tells. Results show that the �ve threat-based algorithms Threat(X)

with X ∈ {(m,M, k), (m,M), (m,M, q1), (ϕ, k), (ϕ)} clearly outperform constant

rebalancing as well as classical buy-and-hold. To reduce the number of conversions

the non-preemptive algorithm Sqrt is a good alternative to the preemptive

threat-based algorithms as Sqrt also outperforms buy-and-hold. For example if

we want to reduce transaction costs. The results could be con�rmed statistically.

In contrast, the worst-case competitive ratio of the considered heuristic

conversion algorithms MA and TRB does not provide support for utilizing these

algorithms in practice. The worst-case competitive ratio equals
(
M
m

)2p
, as we found

the worst-case return of ON ∈ {MA,TRB} to be m
M
. Even worse, the worst-case

ratio grows exponential with p, where f(x) = x2p and x = M
m
. The greater p and/or

the M
m
-ratio get, the greater is the worst-case competitive ratio.

We conclude that an online conversion algorithm should only be chosen for

practical application in case both measures, its competitive ratio and the return to

be expected, are promising.

Besides answering the general question on (how to measure) the quality of
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an online conversion algorithm, as addressed in the works given in Chapter 6,

several related questions can be answered by computing both the empirical-case

performance as well as the worst-case performance. We compare an online

conversion algorithm to the optimal o�ine algorithm. In this way, we get a measure

of the return obtained by ON compared to the optimal return that could have been

obtained if we had known all future prices. This can be thought of as measuring

the value of the information of future prices. We answered the question `how much

is it worth to know the future in online conversion problems?' addressing the

value of the assumed a-priori knowledge of di�erent online conversion algorithms.

We conclude that the value of information can only be estimated by worst-case

scenarios, and de�ne information to be more valuable if the worst-case competitive

ratio can be improved by this information.

In the following we give di�erent directions for future work. We suggest to

answer these open questions using the worst-case as well as the empirical-case

competitive ratio, and the return to be expected.

7.2 Future Work

When carrying out experiments, we assumed the precise values for m,M , ϕ, q1 and

k ≤ T to be known for calculating the competitive ratios. This assumption might

be too optimistic. A �rst open question would be to weaken this assumption, and

to consider forecasts to estimate these values.

Al-Binali (1999) suggests the risk-reward competitive analysis approach which

contains two approaches. The �rst approach is to allow an online conversion

algorithm to bene�t from the investors capability in correctly forecasting the

future sequence(s) of prices. The second approach is to allow the investor to

control the risk by selecting `near optimal' algorithms subject to the personal risk

tolerance. The result are online conversion algorithms with a bounded loss within

a pre-speci�ed risk tolerance. An open question is to analyze the applicability of

the risk-reward approach in practice.

It would be favorable to ensure that a forecast is correct with a certain

probability. An open question is whether the solution of the secretary problem

can be exploited to calculate this probability. The solution is to observe the �rst

T/e values, and then to accept the �rst value which is better than all the previous

ones. For T → ∞, the probability of selecting the best value then goes to 1/e,

which is around 37% (Babaio� et al., 2008). An open question is to exploit this

solution, and to analyze wheter estimates for m, M , ϕ, q1 and k ≤ T are correct

in about 37% of the cases in practice.
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Further, when allowing forecasts on m, M , ϕ, q1 and k ≤ T , these values might

be under- or overestimated. A related open question is how these errors in forecasts

in�uence the performance of an online conversion algorithm. In would be of interest

to �nd an algorithm that takes advantage of the forecasts when they are accurate,

while at the same time maintaining a good worst-case competitive ratio in case

they are incorrect (Mahdian et al., 2007, p. 288).

In case worst-case competitive analysis is applied, this leads to the development

of online conversion algorithms with minimum relative performance risk. This

property is favorable for risk-averse investors who prefer an inferior but guaranteed

performance to a better but uncertain expected performance. The second approach

suggested by al-Binali (1999) allows to control risk, not to avoid it. An investor

has the possibility to take (or even increase) risk for some form of (higher)

reward. On open question is to introduce risk levels an investor is willing to

take, and to develop `optimal' online conversion algorithms incorporating these

levels (Iwama and Yonezawa, 1999). Further, the competitive ratio of an online

conversion algorithm measures the return and the incorporated risk within a single

number � the ratio c. When allowing a risk control mechanism based on the

competitive ratio as suggested by al-Binali (1999), an open question is whether the

competitive ratio is an appropriate measure of risk measure or not. Artzner et al.

(1999) introduce coherent measures of risk. A set of four desirable properties

are presented and justi�ed; risk measures satisfying these properties are called

`coherent'. It is to be shown whether the competitive ratio is `coherent' or not.

When considering worst-case scenarios to derive a cwc an arbitrary volatility of

the worst-case time seriesQ is assumed. An open question is whether the worst-case

competitive ratio can be improved by replacing `unrealistic' worst-case scenarios.

Considering the data history more realistic worst-case sequences of prices could be

assumed taking a bounded volatility into account (Hu et al., 2005, p. 229).

In case an online conversion algorithm is considered for practical application

it would be of interest to determine and analyze its empirical-case competitive

ratio cec assuming proper input distributions. Fujiwara et al. (2011) state the

question `when it comes to average-case evaluation with an input distribution,

what is an adequate measure?', and suggest average-case competitive analysis: The

competitive ratio of an online conversion algorithm is determined while making

various assumptions on the underlying price processes. An open question is

to analyze the presented online conversion algorithms assuming di�erent input

distributions. Further, empirical results show that price movements between two

stocks are bounded in some markets (Zhang et al., 2010, p. 2). The considered

online conversion algorithms assume that prices are bounded within an interval,

for example qt ∈ [m,M ] (El-Yaniv et al., 2001, p. 107). It would be of interest
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to evaluate the performance of these algorithms assuming the prices itself are

interrelated, for example by assuming that a price depends on its preceding price.

El-Yaniv et al. (1992, 2001) have shown the uni-directional threat-based

algorithm to be optimal. But the suggested bi-directional algorithm, which

repeats the uni-directional algorithm, is not (Dannoura and Sakurai, 1998, p.

28). Therefore, the problem of designing an optimal threat-based algorithm for

bi-directional search remains unanswered so far. Moreover, it would be interesting

to take transaction costs into account as in the worst-case a threat-based algorithm

converts at each of the T prices presented.

The outcome of any online conversion algorithm are buy and sell signals. As

an order, these signals can be executed on the stock market. Before submitting

an order it might be of interest that the signals produced are correct � in the

sense that they are `bug-free'. Certifying algorithms solve this problem. With

each output they produce a certi�cate or witness (easy-to-verify proof) that the

particular output has not been compromised by a bug (Mehlhorn and Schweitzer,

2010). An open question is to apply this approach to online conversion algorithms.
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