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Summary

A conversion problem deals with the scenario of converting an asset into another
asset and possibly back. This work considers financial assets and investigates
online algorithms to perform the conversion. When analyzing the performance
of online conversion algorithms, as yet the common approach is to analyze
heuristic conversion algorithms from an experimental perspective, and to analyze
guaranteeing conversion algorithms from an analytical perspective. This work
conjoins these two approaches in order to verify an algorithms’ applicability to
practical problems. We focus on the analysis of preemptive and non-preemptive
online conversion problems from the literature. We derive both, empirical-case as
well as worst-case results. Competitive analysis is done by considering worst-case
scenarios. First, the question whether the applicability of heuristic conversion
algorithms can be verified through competitive analysis is to be answered. The
competitive ratio of selected heuristic algorithms is derived using competitive
analysis. Second, the question whether the applicability of guaranteeing conversion
algorithms can be verified through experiments is to be answered. Empirical-case
results of selected guaranteeing algorithms are derived using exploratory data
analysis. Backtesting is done assuming uncertainty about asset prices, and the
results are analyzed statistically. Empirical-case analysis quantifies the return to be
expected based on historical data. In contrast, the worst-case competitive analysis
approach minimizes the maximum regret based on worst-case scenarios. Hence
the results, presented in the form of research papers, show that combining this
optimistic view with this pessimistic view provides an insight into the applicability
of online conversion algorithms to practical problems. The work concludes giving

directions for future work.






Zusammenfassung

Ein Conversion Problem befasst sich mit dem Eintausch eines Vermdogenswertes
in einen anderen Vermogenswert unter Beriicksichtigung eines moglichen
Riicktausches. Diese Arbeit untersucht Online-Algorithmen, die diesen Eintausch
vornehmen. Der klassische Ansatz zur Performanceanalyse von Online Conversion
Algorithmen ist, heuristische Algorithmen aus einer experimentellen Perspektive
zu untersuchen; garantierende Algorithmen jedoch aus einer analytischen. Die
vorliegende Arbeit verbindet diese beiden Ansitze mit dem Ziel, die praktische
Anwendbarkeit der Algorithmen zu iiberpriifen. Wir konzentrieren uns auf die
Analyse des praemtiven und des nicht-praemtiven Online Conversion Problems aus
der Literatur und ermitteln empirische sowie analytische Ergebnisse. Kompetitive
Analyse wird unter Beriicksichtigung von worst-case Szenarien durchgefiihrt.
Erstens soll die Frage beantwortet werden, ob die Anwendbarkeit heuristischer
Algorithmen durch Kompetitive Analyse verifiziert werden kann. Dazu wird
der kompetitive Faktor von ausgewihlten heuristischen Algorithmen mittels
worst-case Analyse abgeleitet. Zweitens soll die Frage beantwortet werden, ob die
Anwendbarkeit garantierender Algorithmen durch Experimente tiberpriift werden
kann. Empirische Ergebnisse ausgewahlter Algorithmen werden mit Hilfe der
Ezxplorativen Datenanalyse ermittelt. Backtesting wird — unter der Annahme
der Unsicherheit iiber zukiinftige Preise der Vermdgenswerte — durchgefiihrt und
die Ergebnisse statistisch ausgewertet. Die empirische Analyse quantifiziert
die zu erwartende Rendite auf Basis historischer Daten. Im Gegensatz dazu,
minimiert die Kompetitive Analyse das maximale Bedauern auf Basis von
worst-case Szenarien. Die Ergebnisse, welche in Form von Publikationen prasentiert
werden, zeigen, dass die Kombination der optimistischen mit der pessimistischen
Sichtweise einen Riickschluss auf die praktische Anwendbarkeit der untersuchten
Online-Algorithmen zulésst. Abschlieend werden offene Forschungsfragen

genannt.
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Chapter 1

Introduction

This chapter introduces online problems and conversion algorithms in the context
of conversion in financial markets and specifies how (not) to evaluate their quality.
We give basic definitions and state the research questions to be answered. Then
we focus on financial markets mentioning the relevant related work. The chapter
concludes with an overview on trading systems as the ‘tool’ for evaluating online

conversion algorithms.

1.1 Preliminaries

A conversion problem deals with the scenario of converting an asset D into another
asset Y with the objective to get the maximum amount of Y after time 7. The
process of conversion can be repeated in both directions, i.e. converting asset D
into asset Y, and asset Y back into asset D. Within this work we consider financial
assets and investigate online algorithms to perform the conversion.

In a typical problem setting, an investment horizon is considered and possibly
divided into ¢ = 1,...,p time intervals. Each ¢-th time interval is comprised of
t =1,...,T data points, e.g. days. On each day ¢, an algorithm X is offered a
price ¢; to convert asset D into asset Y, and X may accept the price ¢; or may
decide to wait for a better price. The ‘game’ ends either when X converts whole
of the asset D into Y, or on the last day T" where ¢r must be accepted.

In an offline scenario full information about the future is assumed, and so an
optimal offline algorithm (OPT) is carried out. In an online scenario at each
point of time an algorithm must take a decision based only on past information,
i.e. with no knowledge about the future. Online conversion algorithms (ON)
solve this problem. Typically, the quality of ON is determined by the relation
between the result generated by ON, and the optimal offline result generated by
OPT (Schmidt, 2006, p. 280). But in the work related two further approaches

1



2 CHAPTER 1 Introduction

exist. Thus, before introducing online conversion algorithms, we must decide how
(not) to evaluate their quality. Basically the performance analysis of a conversion
algorithm X € {OPT,ON} can be carried out by three different approaches.

The first approach is to assume that input data is given according to a certain
probability distribution, and to compute the expected behavior of an algorithm
based on this distribution. This approach is called ‘Bayesian Analysis’, the
traditional approach within the literature when analyzing conversion algorithms
(Chou, 1994; Pastor, 2000; Arakelian and Tsionas, 2008), and has been dominant
over the last several decades (El-Yaniv, 1998, pp. 34-35).! The objective is to
optimize an algorithms empirical (average-case) performance under ‘typical inputs’
assuming a specific stochastic model (Karp, 1992a,b). Either assumptions about
the distribution of the input data are made, or the distribution of the input
data is assumed to be known beforehand (Babaioff et al., 2008). It is beyond
the scope of this work to survey the ‘Bayesian’ work related. The reader is
referred to Kakade and Kearns (2005) and Fujiwara et al. (2011) analyzing various
assumptions on the underlying price processes.

However, this approach can often not be applied as distributions are rarely
known precisely. It is often extremely difficult to assume realistic statistical
models for possible input sequences (which are always highly dependent on the
particular application). Thus, distributional assumptions are often unrealistically
crude (Borodin and El-Yaniv, 1998, p. xxiii). Moreover, even if the input in
question follows a particular input distribution, it is often difficult to identify or
construct a stochastic model that accurately reflects this distribution. For instance,
a great deal of effort has been invested in attempt to identify the probability
distributions of currency exchange rates, but there is still no evidence that such
distributions exist (Chou, 1994). As a result, some research attempts to relax
distributional assumptions. Rosenfield and Shapiro (1981) study the case where
the price distribution itself is a random variable. In this regard Cover and Gluss
(1986) consider online portfolio selection, reallocating their portfolio on the past
behavior of the market. The goal is to perform just as well as if the empirical
distribution of the prices is assumed to be known. Cover and Gluss (1986)
show that an online algorithm not knowing the empirical distribution of the
prices in advance can perform as well as an optimal algorithm. Thus, when
analyzing conversion algorithms we wish to avoid making assumptions about input
distributions or probabilities.

This leads to the second approach.  Uncertainty about asset prices is

assumed and conversion algorithms are analyzed considering worst-case scenarios.

LAlso called probabilistic analysis (Borodin and El-Yaniv, 1998, p. xxiii) or distributional
analysis (Chou, 1994, p. 9).
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This analytic approach is most frequently used in computer science as the
empirical (average-case) performance is often roughly as bad as the worst-case
performance, and worst-case measures additionally provide a definite upper bound
(Cormen et al., 2001, p. 26). The approach does not demand that inputs come
from some known distribution but instead compares the performance of an online
algorithm to that of an adversary; the optimal offline algorithm. This notion of
comparison is called competitive analysis. It is assumed that the online algorithm
has no knowledge about future input data. Inputs are generated by the adversary
who knows the entire future, and thus operates optimally (El-Yaniv et al., 1999).
An online algorithm is called c-competitive, if its competitive ratio — the ratio
between the performance of ON and OPT — is bounded by some constant ¢, which
gives a worst-case performance guarantee. It is desirable to choose an algorithm
with a preferably low competitive ratio. El-Yaniv et al. (1992) suggested to apply
competitive analysis to online conversion algorithms where ¢ measures the quality
of ON .2

A lot of work related exists in the field of online algorithms and online
optimization. Important results are presented in the book of Fiat and Woeginger
(1998), as well as in the book of Borodin and El-Yaniv (1998). A survey on classical
competitive analysis for online algorithms is given in Albers (2003). Further, within
the work related, there are three different approaches to improve the competitive
ratio of an online algorithm.

The first approach is to restricted the power of the adversary by allowing
only certain input distributions. Raghavan (1992) and Chou et al. (1995) assume
that the input sequence is generated by the adversary and has to satisfy specific
statistical properties. The adversary is thus named ‘statistical adversary’. The
approach may be considered as a hybrid of ‘Bayesian Analysis’ and competitive
analysis. In this regard Koutsoupias and Papadimitriou (2000) consider a ‘partial
knowledge’ of the input distribution by the online algorithm. Garg et al. (2008)
study online algorithms under the assumption that the input is not chosen by an
adversary, but consists of draws from a given probability distribution. All these
approaches improve (lower) the competitive ratio by weakening the adversary, but
do not lead to better online (conversion) algorithms, and thus are not considered
here.

The second (most popular) approach is to relatively restrict the power of the
adversary by using randomization. It is assumed that the adversary has relatively
less power since the moves of an online algorithm are no longer certain (Fiat et al.,

1991). We consider an optimal offline adversary knowing the entire future, even

2Chapter 2 shows how exactly to quantify the quality of ON by introducing the notion of

competitive analysis.
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the random number generator. From this follows that randomization does not help
(Borodin et al., 1992), and is also not considered here.

The third approach addresses ‘forecasts’ on the input sequence. The basic idea
is that ON is allowed to make a forecast. In case the forecast comes true the
competitive ratio improves, which is considered as a reward. In case the forecast
comes not true, the best achievable worst-case ratio holds. Al-Binali (1997, 1999)
provides a framework of ‘risk and reward’ in which investors may develop online
algorithms based on their acceptable level of risk (‘risk tolerance’) and a ‘forecast’
on future price movements. Iwama and Yonezawa (1999) generalize this framework
by introducing ‘forecast levels’ which forecast that prices ¢; will never increase
(decrease) to some level, and present different online algorithms using these levels.
In this regard Halldorsson et al. (2002) suggest to allow an online algorithm to
maintain several different solutions, and to select one of them (the best one) at
the end. As yet, these works have not been analyzed experimentally, and thus are
potential new areas of research.

In case the input data processed by an online (conversion) algorithm does
not represent the worst-case, its performance is considerably better than the
competitive ratio tells. For this reason competitive analysis is criticized as being too
pessimistic. Borodin and El-Yaniv (1998, p. xxiv) admit that in some application
areas, especially in finance, worst-case performance guarantees are essential, e.g.
in case of a stock market meltdown. But in terms of practical application the
worst-case competitive ratio does not reveal which returns can be expected in
practice, nor whether these returns are positive or not.

This leads to the third approach. In this experimental approach conversion
algorithms X € {OPT,ON} are implemented, and the analysis is done on historic
or artificial data by simulation runs. This approach is exploratory, since the
empirical-case results suggest which hypotheses to test (statistically). From this
follows that conversion algorithms can be evaluated using exploratory data analysis
(EDA). The objective of EDA is to 1) suggest hypotheses to test (statistically)
based on the results generated, 2) assess assumptions on the statistical inference,
3) support the selection of appropriate statistical tools and techniques for further
analysis, and 4) provide a basis for further data collection through experiments. It
is important to distinguish the EDA approach from classical hypothesis testing,
which requires a-priori formulated hypotheses (Hoaglin et al., 2000). By applying
EDA the observed empirical-case results are evaluated statistically, mainly by
hypothesis tests, bootstrap methods, or Monte Carlo simulation (Brock et al., 1992;
Steiglitz et al., 1996; Biais et al., 2005; Tabak and Lima, 2009; Schmidt et al.,
2010). The classical question regarding the predictive ability of ON is to be

answered: ‘Is it possible to forecast returns in a particular (future) time interval
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by using the returns observed in a previous time interval?’ (Pierdzioch, 2004).

To analyze online conversion algorithms, we apply the EDA (third) approach,
and compare the results to these of the competitive analysis (second) approach. For
the empirical-case the actually observed performance considering the experimental
data is analyzed, and hypotheses to be evaluated statistically are derived. Further,
competitive analysis is done by considering on the one hand worst-case scenarios,
i.e. the worst possible input data which could have been occurred is used when
calculating the worst-case competitive ratio ¢¢. On the other hand, the actually
observed input data is considered, i.e. the empirical-case performance on the
experimental data is used when calculating the empirical-case competitive ratio
c“. Hence, we aim to conjoin empirical-case analysis and worst-case analysis. This

leads to the following research questions.

1.2 Research Question

When analyzing conversion algorithms, as yet the common approach is to
experimentally analyze online conversion algorithms designed to achieve a
possibly high empirical-case performance (heuristic conversion algorithms), and to
mathematically analyze online conversion algorithms designed to give a worst-case
performance guarantee (guaranteeing conversion algorithms). Our aim is to conjoin
these two approaches in order to verify the applicability of both classes of online
conversion algorithms to practical problems.

On the one hand we focus on the new field of worst-case analysis of heuristic

conversion algorithms, and compare the results to the empirical-case results.

Question 1: Can the applicability of heuristic conversion
algorithms be verified through competitive analysis, and which

worst-case competitive ratio ¢ do they achieve?

To answer Question 1 heuristic conversion algorithms from the literature are
considered, and competitive analysis is done: The heuristic conversion algorithms of
Brock et al. (1992) are analyzed, i.e. worst-case competitive ratios ¢*¢ are derived.

On the other hand we focus on the new field of experimental analysis of
guaranteeing conversion algorithms, and compare the results to the analytical

worst-case results.

Question 2: Can the applicability of guaranteeing conversion
algorithms be verified through experiments, and which

empirical-case performance do they achieve?
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To answer Question 2 different guaranteeing conversion algorithms from the
literature are considered, and experimental analysis is done:®> The guaranteeing
conversion algorithms of El-Yaniv (1998); Dannoura and Sakurai (1998) and
El-Yaniv et al. (1992, 2001) are analyzed, i.e. the empirical-case performance
is derived through experiments. To measure the applicability of the algorithms
considered the empirical-case competitive ratio c* as well as the return to bhe
expected p is derived.

Summing up, we are interested in analyzing online conversion algorithms from
an analytical and an experimental perspective in order to verify their applicability
to practical problems.

The reminder of this work is organized as follows: The next section gives
a brief introduction to financial markets, online conversion algorithms and trading
systems. Chapter 2 introduces online financial search and conversion problems as
well as the notion of competitive analysis. Further, a detailed overview on work
related to online conversion problems is given. Chapter 3 presents the approach to
experimental analysis of online conversion algorithms. Exploratory data analysis
(EDA) is introduced, and the steps how to empirically analyze online conversion
algorithm using this data analysis approach are provided. A detailed overview
on the work related is given. Chapter 4 presents the new field of worst-case
analysis of heuristic conversion algorithms. We focus on the Moving Average and
Trading Range Breakout algorithms introduced by Brock et al. (1992). Chapter
5 presents the guaranteeing conversion algorithms introduced by El-Yaniv (1998);
Dannoura and Sakurai (1998) and El-Yaniv et al. (1992, 2001) in detail. Chapter 6
presents empirical-case results of the guaranteeing conversion algorithms reviewed
in Chapter 5 as well as analytical worst-case results of the heuristic conversion
algorithms reviewed in Chapter 4. The results are given in the form of research
papers published in/submitted to different journals. Prior to each publication a
preface is given linking the topic of the paper to this thesis. Chapter 7 concludes

and gives some directions for future work.

1.3 Financial Markets and Online Conversion

Algorithms

In general, algorithms used in financial markets aim different objectives. They are
designed to (cf. Bertsimas and Lo (1998)):

1. Optimize the trade execution,

3Experimental analysis in other fields can be found in Karlin (1998); Albers and Jacobs (2010).
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2. maximize the return to be expected p,

3. exploit different price patterns or price dynamics,

4. minimize the expected transaction costs,

5. give a performance guarantee under worst-case conditions,

6. minimize the risk,

7. balance the trade-off between the return to be expected and the incurred risk,
8. convert fixed blocks of assets,

9. convert over a fixed finite number of time intervals p.

Assets are ‘things’ owned by an individual. They can be physical, financial or
intellectual. Stocks are a shares of a company. As a financial asset, stocks can
be bought and sold by the help of conversion algorithms. These algorithms aim
either to buy at possibly low prices or to sell at possibly high prices, or both.
The goal is to automatically determine entry point(s) before a market increase,
and exit point(s) before a market downturn, often based on historic or predicted
price movements. Hence, every conversion algorithm consists of at least one buying
rule and one selling rule represented by (source program) statements specifying the
exact entry and exit points. A typical example for a buying rule is the IF-THEN
statement, for example BUY IF ¢ < z;. Here a buying signal is generated if the
price ¢ is smaller than or equal to some observation x;. As an order, these signals
can be executed on the stock market. Further, buying and selling rules of different
algorithms can be combined to more complex algorithms, e.g. by using genetic
programming (Potvin et al., 2004).

We focus on algorithms aiming the objectives 2 and 5. Based on the design
pattern of these algorithms, we can broadly classify them into two classes, a)
online conversion algorithms — developed to give a performance guarantee under
worst-case conditions, and referred to as guaranteeing conversion algorithms,
and b) heuristic conversion algorithms — developed to achieve a preferably high

empirical-case performance.

a) Guaranteeing conversion algorithms are developed to give a performance
guarantee under worst-case conditions. The worst-case performance
guarantee is usually evaluated using competitive analysis (second approach),
assuming uncertainty about the future input sequence I (El-Yaniv, 1998).
The performance guarantee is measured in terms of the competitive ratio
(Fiat and Woeginger, 1998, p. 4).
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b) Heuristic conversion algorithms are developed to achieve a preferably
high empirical-case performance. Very often these algorithms are based on
data from technical analysis (Brock et al., 1992; Vanstone and Finnie, 2009),
artificial intelligence (Palmer et al., 1994; Kumar et al., 1997; Feng et al.,
2004), neural networks (Schulenberg and Ross, 2002; Chavarnakul and Enke,
2008), genetic algorithms/programming (Dempster and Jones, 2001;
Korczak and Roger, 2002; Potvin et al., 2004), or software agents
(Silaghi and Robu, 2005).  The empirical-case performance is usually
evaluated either using ‘Bayesian Analysis’ (first approach) or EDA (third

approach), and measured in terms of the return to be expected pu.

Using the competitive ratio, the behavior of heuristic conversion algorithms is
found similar to guaranteeing conversion algorithms, as both classes work without
any knowledge of future input. We conclude heuristic conversion algorithms are
also online conversion algorithms, and can be analyzed using competitive analysis.
Thus, both classes of algorithms are referred to as online conversion algorithms
(ON).

Irrespective of the application area, online algorithms are related to
approximation algorithms. Both seek to obtain a good approximation to some
optimal solution, i.e. guarantee a specific fraction of the optimal offline result.
The difference lies in that approximation algorithms (also known as computational
complexity algorithms) deal with the question what resources would be needed to
compute a solution, namely the computational complexity. The goal is to determine
the trade-off between the computational complexity and the quality of the solution
the algorithm computes. As the computational resources available are limited,
approximation algorithms deal with complexity measurement. In contrast, online
algorithms focus on the limitations caused by a lack of information, and not on the
limitations caused by a lack of running time (approximation algorithms). Thus,
competitive analysis is an information theoretic measure, not a computational

complexity measure (Fiat and Woeginger, 1998, p. 5).

For evaluating online conversion algorithms the order {ype is irrelevant. But in
case ON is considered for practical use the order type is essential as it is superior
to the signals generated by ON. Hence, the most frequently used order types are
briefly presented in the following.

A market order is an order to buy or sell an asset at the current market price.
Unless specified otherwise, orders are entered as a market order, e.g. by a broker.
The advantage of a market order is that it is almost always guaranteed that the
order will be executed. The disadvantage is that when a market order is placed, the

price at which the order will be executed can not be controlled. To avoid buying



Financial Markets and Online Conversion Algorithms 9

or selling an asset at a price higher or lower than a certain level, a limit order must
be placed. A limit order is an order to buy or sell at a predefined reservation price
or ‘better’: A buy limit order can only be executed at the limit price or lower, a

sell limit order can only be executed at the limit price or higher.

Example 1. Assume an investor wants to buy an asset that was initially offered
at $9, but does not want to end up paying more than §10. Then a limit order to
buy the asset at any price up to $10 should be placed.

The advantage of using a limit order is that the investor protects himself from
buying (selling) the asset at a too high (low) price. The disadvantage is that a limit
order may never be executed because the market price may surpass the investors
limit before the order can be filled.

A stop order is an order to buy or sell an asset once it reaches a specified
price, namely the stop price. A buy stop order is used to invest in case of a trend
reversal. In case of short selling* it is used to limit a loss or to protect a profit. A
buy stop order is entered at a stop price that is always above the current market
price. A sell stop order avoids further losses or protects a profit that exists if a
price drops. A sell stop order is always placed below the current market price.
The advantage of a stop order is that the price movement must not be monitored.
The disadvantage is that the stop price could be activated by a short-term price
fluctuation. Once a stop price is reached the stop order becomes a market order.
The received price may differ from the stop price, especially in markets with high
volatility. An investor can avoid the risk of a stop order not guaranteeing a specific
price by placing a stop-limit order. A stop-limit order combines the features of
stop and limit order. Once the stop price is reached, the stop-limit order becomes
a limit order.

The computerized execution of financial instruments following prespecified
rules and guidelines is called algorithmic trading (Kissel and Malamut, 2006).
Like Grossman (2005) and Domowitz and Yegerman (2006), we define the term
algorithmic trading as the automated, computer-based execution (submission and
canceling) of orders via direct market-access channels. Usually, the goal is to
meet a particular benchmark, e.g. the volume-weighted average price (VW AP)
over the execution interval (Coggins et al., 2006). In contrast to online conversion
algorithms, algorithmic trading defines certain aspects of an order, but never the
points of time to take a buying or selling decision. Algorithmic trading strategies
execute orders and typically determine order type, timing, routing and quantity,
while dynamically monitoring market conditions across different market places.

To reduce the market impact by optimally (or randomly) breaking large orders

4The selling of an asset the seller does not own.
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into smaller pieces, and to track benchmarks are the main tasks. The aim is
to optimize the trade execution (Nevmyvaka et al., 2006). Often a mix of active
and passive strategies is used, employing different order types. The scope of this
work are online conversion algorithms solving the financial search problem. Thus,
algorithmic trading is not considered and the reader is referred to the surveys by
Gomber et al. (2005); Fraenkle and Rachev (2009), and Hendershott et al. (2010).

Every stock market investor has an own idea of how the most profitable stocks
can be found, and at what time they should be bought and sold. First, a
decision must be taken which class of online conversion algorithms (heuristic or
guaranteeing) should be applied. In the following heuristic conversion algorithms

as well as guaranteeing conversion algorithms are presented in detail.

1.3.1 Heuristic Algorithms

Many practical problems are unlikely to admit exact (optimal) solutions in a
reasonable amount of time. Hence heuristics are sought for these problems —
these algorithms try to find a possibly ‘good’ solution, not necessarily the best
one, in a small amount of time. Heuristic conversion algorithms attempt to
identify and exploit winners or trends and are designed to achieve a preferably
high empirical-case performance. The starting point for the creation of a heuristic
conversion algorithm is the selection of input variables likely to influence the
desired outcome, i.e. to maximize the return to be expected p. There is a great
number of methods used and they broadly fall in the area of either Fundamental
Analysis, or Technical Analysis. 1t is essential to have an understanding of these two
complementary forms of analysis and their possible effect, so that an ‘intelligent’
choice of input variables can be made (Vanstone and Finnie, 2009).

Fundamental Analysis uses economic data to forecast prices or to determine
whether the markets are over- or undervalued. The goal is to use so-called financial
ratios produced from business ratios as predictors of a company’s future stock price,
return or price direction. Financial ratios can for instance be 1) the stock price
compared to its actual earning, 2) the actual value of an asset compared to the
book value, 3) balance sheets, or 4) the last development of consumption spending
in a specified country. For a detailed overview on Fundamental Analysis and work
related the reader is referred to Vanstone and Finnie (2009, pp. 6670-6672) and
the books of Murphy (1999) and Malkiel (2003).

Technical Analysis seeks to identify price patterns and trends in financial
markets. The goal is to exploit those patterns, and to forecast future price
directions through the study of past market data, primarily price and volume

(Murphy, 1999). Technical Analysis is composed of four techniques (cf. Schmidt
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(2006); Vanstone and Finnie (2009)):
1. Charting, the study of price charts, typically done by pattern matching.

2. Elliott waves, the study of mathematical properties of waves and patterns,

based on Fibonacci numbers.

3. Heuristic conversion algorithms, the calculation of indicators and oscillators,

typically mathematical transformations of price or volume.
4. Esoteric approaches, e.g. weather-based strategies.

Charting is usually highly subjective and without ‘rigorous’ mathematical
definition. Malkiel (2003) concludes that ‘under scientific scrutiny, chart-reading
must share a pedestal with alchemy’, and thus is not considered here. Nevertheless,
several academic studies suggest charting for extracting useful information about
market prices (Lo et al., 2000, p. 1706). The Elliott wave principle by R.N. Elliott
(1871-1948) analyzes the mathematical properties of waves and patterns based
on Fibonacci numbers. These numbers are closely connected to the Golden ratio
(0.618), as the quotient of neighboring Fibonacci numbers is 0.618. Practitioners
commonly use the Golden ratio to forecast levels of future market waves based
on their relation to past market waves (Schmidt, 2006, pp. 218-219). Elliott
waves are not considered here. Esoteric approaches are also excluded, as they have
no scientific justification (cf. Hirshleifer and Shumway, 2003). The remainder of
this work will only consider research support for the use of heuristic conversion
algorithms. However, these algorithms are not considered by many researchers.
The main reason is the Efficient Market Hypothesis (EM H), which supports the
random-walk theory (RWT). The intuition behind the EMH is simple: Market
prices follow a random walk and cannot be predicted based on their past behavior.
Hence, markets efficiently process all relevant information into a single price. In
essence, the RW'T states that price changes in stock markets are independent,
identical distributed (éid) random variables. This implies that a time series of prices
has no ‘memory’, which further implies that the study of past prices cannot provide
a useful contribution to predicting future prices or price movements. As main
method to determine the return to be expected is backtesting, the conclusion is that
heuristic conversion algorithms cannot work (see e.g. Fama, 1965; Leigh et al., 2002;
Tabak and Lima, 2009). Of course, there are also numerous works questioning
various aspects of the EMH, or fail to confirm it (see e.g. Leigh et al., 2002;
Findlay et al., 2003). Thus, regardless of the EM H, a large number of practitioners
use heuristic conversion algorithms as their main method to determine transaction
points (Taylor and Allen, 1992).
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In general, heuristic conversion algorithms are reservation price (RP)
algorithms.  Reservation price(s) ¢* are calculated for each day ¢ based on
the offered price ¢;. Using the ¢* , the RP algorithm determines transaction
points specifying when to buy or sell. The majority of work related concerns
the empirical analysis of simple RP algorithms. ‘Truly’ effective algorithms are
usually kept secret (Vanstone and Finnie, 2009, p. 6673). We limit to the
heuristic RP algorithms introduced by Brock et al. (1992), namely Moving Average
Crossover (M A) and Trading Range Breakout (T’ RB), which are based on technical
indicators. These algorithms are of major interest in the literature and have been
analyzed by several researchers, cf. Bessembinder and Chan (1995); Hudson et al.
(1996); Mills (1997); Ratner and Leal (1999); Parisi and Vasquez (2000);
Gunasekarage and Power (2001); Kwon and Kish (2002); Chang et al. (2004);
Bokhari et al. (2005); Marshall and Cahan (2005); Ming-Ming and Siok-Hwa
(2006); Hatgioannides and Mesomeris (2007); Lento and Gradojevic (2007);
Lagoarde-Segot and Lucey (2008) and Tabak and Lima (2009).> These works on
M A and T RB are restricted to empirical-case results, and do not take into account

worst-case results (which we derive in Chapter 4).

1.3.2 Guaranteeing Algorithms

Decision making can be considered in two different contexts: Making decisions
with complete information, and making decisions based on incomplete (partial)
information. Known the entire future, an optimal offline decision can be computed.
As we do not want to make any assumptions on future prices, worst-case scenarios
are of main interest. Competitive analysis deals with the question whether the
decisions taken were reasonable given partial information, and calculates the ratio
between the worst-case behavior of an online algorithm and the corresponding
optimal algorithm on the same problem instance. This ratio, the competitive ratio,
is the worst-case performance guarantee. In the context of financial markets these
online algorithms are referred to as guaranteeing conversion algorithms, and the
guarantee is to be determined analytically. The main application of guaranteeing
conversion algorithms is the search for best prices. Here, an online investor is
searching for the maximum (resp. minimum) price(s) in a sequence of prices that
unfolds sequentially. Each point of time ¢ the investor obtains a price quotation ¢,
after which (s)he must immediately decide whether to accept ¢, or to continue
observing prices. The goal is to buy at low prices and to sell at high prices
with no knowledge about the future (El-Yaniv, 1998; Mohr and Schmidt, 2008;
Kakade et al., 2004; Lorenz et al., 2009; Schmidt et al., 2010).

A detailed literature overview on these heuristic RP algorithms is given in Chapter 3.
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Most authors apply guaranteeing conversion algorithms to solve the currency
conversion problem (El-Yaniv et al., 1992, 2001; Iwama and Yonezawa, 1999;
El-Yaniv et al., 2001; Chen et al., 2001; Kakade et al., 2004; Hu et al., 2005;
Chang and Johnson, 2008; Fujiwara et al., 2011). In this problem, a fixed amount
of dollars must be converted into yen, and possibly back. The goal is to compare
well with any conversion algorithm; even with OPT. Selected online conversion
algorithms to solve this problem are presented in detail in Chapter 4 and 5.

Other applications of guaranteeing algorithms in literature are the search for
jobs, and the search for employees where the goal is to choose the best position,
applicant or expert (Freeman, 1983; Ferguson, 1989; Kalai and Vempala, 2005;
Babaioff et al., 2008). Further, Ajtai et al. (1995) develop an algorithm to choose
an appropriate sample from a population for the purpose of a study.

By the help of trading systems online conversion algorithms can be
implemented, evaluated and, if promising, used for real-time trading on a stock
market. An overview on trading systems is given in the following. We consider a

trading system as the ‘tool’ for evaluating online conversion algorithms.

1.4 Trading Systems

In practice, a great variety of trading systems exists. Practitioners use these
systems driven by a profit motive. These systems are not considered here. Details
on the functionality of most important commercial trading systems available on
the market can be found in Kersch and Schmidt (2011). Within the scientific
community the term trading system is used in different ways:

First, the term trading system is used to describe electronically organized
markets. Examples are the German XETRA market, the German XONTRO
trading system, or the United States NASDAQ system. These markets mostly
replaced the phone-based order flow, and are organized in the form of auctions
(Kim, 2007, p. 2).

Second, the term trading system is used to describe algorithmic trading, namely
computer-based algorithms, and autonomous programs to determine the market
timing of orders. For example Gomber (2000, p. 28) defines an (electronic)
trading system as a computer system for the electronic order specification and
order routing, which enables the electronic concentration of compatible orders.
These systems are mainly used by institutional investors. For example in 2009
42% of the trades on the XETRA market were submitted via algorithmic trading
(Teske, 2010, p. 23). Further, Gomber et al. (2005) claim that algorithmic trading

will replace as much as 90% of todays human traders within the next years.
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Third, the term trading system is used to describe so-called trading machines,
namely the computer-based implementation and execution of online conversion
algorithms, and their corresponding orders by a software system. These machines
decide whether or not to convert financial instruments in the matter of a split
second. Mostly without human interference. A (electronic) trading machine is an
environment where users define and adjust trading models for real-time execution,
i.e. algorithms can not be evaluated using historical data (Ignatovich, 2006, p. 1).

Fourth, the term trading system is used to describe a collection of rules which
are used to generate buy and sell signals including risk and money management
(Vanstone and Finnie, 2009).

In contrast, within this work, collections of rules are defined as online conversion
algorithm, and the term trading system indicates a software system. By the help of
a trading system these algorithms can be 1) designed, e.g. using an (XML) editor,
2) simulated, e.g. on historical or artificial data, 3) evaluated, e.g. using statistical
tests, and 4) executed on a stock exchange if the results are promising, e.g. via
direct market-access channels. In addition, supporting functions such as charts
or an information system offer the possibility to interpret historical and real-time
data, known as ‘charting’.

In order to design, evaluate and execute conversion algorithms an appropriate
software system — providing the desired functionality — is required. In the
following, we give a brief overview on different classes of trading systems based
on their functionality. In contrast, practitioners classify trading systems based
on the user type (Kim, 2007, p. 119). Three classes of trading systems exist
(Kersch and Schmidt, 2011):

1. An FEzecution System (ES) is the superordinate concept for trading systems
or online brokerage systems. Execution systems are used by banks, direct
banks, online banks, financial service providers, or by service providers
specializing in online brokerage. With an FES the user has the possibility
to generate and submit orders to be executed on the stock market. The

implementation and evaluation of conversion algorithms is not supported.

2. A Planning System (PS) allows to implement and test conversion algorithms.
The algorithms can be evaluated and optimized in terms of return
maximization. The execution of orders and the order routing is not

supported.

3. A Planning and Ezxecution System (PES) combines the characteristic
features of both £S and PS. With a PES the investor has the possibility to

1) implement, 2) evaluate, and 3) execute conversion algorithms supported
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by one single system.

Independent from its classification, a trading system should contain the following
components: Graphical tools, development tools, test environment (backtesting),
real-time environment (portfolio management and order management). For
evaluating online conversion algorithms the development tools are essential, as
they must be easy to use and, at the same time, powerful to describe complex
algorithms. For that purpose, within this work, we use the LifeTrader System, a
PES providing the required functionality.®

An approach to evaluate the performance of online conversion algorithms is
presented in the following: Chapter 2 introduces the notion of competitive analysis,

and Chapter 3 gives the steps to empirically analyze online conversion algorithms.
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Chapter 2

Competitive Analysis of Online

Conversion Algorithms

This chapter reviews fundamental concepts and results in the area of online
algorithms and competitive analysis. We present the classical online problem
and introduce the notion of competitive analysis mentioning the related work
relevant to the specific problem. Then we focus on online algorithms for conversion
problems and provide a comprehensive review of the literature addressing the
existing problems. The chapter concludes with an overview on competitive search
algorithms in the context of conversion in financial markets. We limit to the search

for best prices in order to buy or/and sell assets.

2.1 Online and Offline Algorithms

A standard assumption in traditional optimization techniques is the complete
knowledge of all data of a problem instance in advance (Borodin and El-Yaniv,
1998). However in reality, decisions often have to be made online, i.e. without
knowing future data relevant for the current choice, or before complete information
is available. Such scenarios are called online problem. Each decision must be made
based on the already appeared data of the problem instance, and without any
information about future data (Fiat and Woeginger, 1998).

Online algorithms represent the theoretical framework for solving online
problems. An online algorithm computes a partial solution whenever input data
requests an action. No assumptions about the input data are made. Even worse,
input data may be produced by an adversary in such way that the online algorithm
is always confronted with the worst possible input sequence (cf. Section 1.1). The
worst, possible adversary is an algorithm that always achieves an optimum solution,
the optimal offline algorithm (OPT') (Albers, 2003).

23
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More formally, each input can be represented as a finite sequence [ with t =
1,...,T elements, and a feasible output can also be represented as a finite sequence
with T elements. An algorithm computes online if for each t = 1,...,7T — 1, it
computes an output for ¢ before the input for ¢+ 1 is given. An algorithm computes
offtine if it computes a feasible output given the entire input sequence I in advance.

An online algorithm may not produce an optimum result. It is nevertheless
desired to evaluate its quality. The technique to evaluate the performance of an
online algorithm is called competitive analysis and compares the performance of an
online algorithm to that of an adversary, e.g. OPT. Within this work we consider
online conversion algorithms (ON) — to compute a solution ON must solve the
online conversion problem. Thus, before introducing the notion of competitive
analysis, the online conversion problem and its solutions from the literature are

presented.

2.2  Online Conversion Problems

An online conversion problem deals with the scenario of converting an asset D
into another asset Y, and possibly back. As mentioned in Section 1.3 these
assets can be physical, financial, or intellectual. Hence, every online conversion
problem is a variant or an application of the elementary problem of optimal stopping
(Chow et al., 1971). The key example of an optimal stopping problem is the well
known secretary problem. In its simplest form the problem can be stated as follows
(Ferguson, 1989, p. 282):

1. There is a single secretarial position to fill.
2. There are T" applicants for the position, and the value of T is known.
3. The applicants can be ranked from best to worst with no ties.

4. The applicants are interviewed sequentially in a random order, with all 7T'!

possible orders being equally likely.
5. After each interview, the applicant must be accepted or rejected.

6. The decision to accept or reject an applicant can be based only on the relative

ranks of the applicants interviewed so far.
7. Rejected applicants cannot be recalled.
8. The last applicant must be accepted.

9. The payoff is 1 for selecting the best applicant and 0 otherwise.



Ounline Conversion Problems 25

Clearly, the objective is to select the best applicant. Only an applicant who,
when interviewed, is better than all the applicants interviewed previously will
be considered for acceptance. The optimal policy (the stopping rule) for a large
number of applicants T is to (interview and) reject the first % applicants, and then
to accept the first applicant who is better than all the rejected. The secretary
problem has received much attention because the stopping rule has a surprising
feature: For T' — o0, the probability of selecting the best applicant from the pool
goes to %, which is around 37%. Hence, the stopping rule picks the single best
applicant in about 37% of the cases (Ferguson, 1989; Babaioff et al., 2008). Work
on the problem and its extensions is reviewed in Freeman (1983); Ferguson (1989),
and Ajtai et al. (1995).

In the following we limit to online conversion problems in a financial context.
These problems are a special case to the theory of optimal stopping. It is assumed
that ON observes a sequence of ¢t = 1,...,T price quotations ¢; and must decide
which ¢; to pick, i.e. when to stop observing. Instead of picking the best applicant,
the objective is to pick the best price(s) ¢; for conversion. Further, in case ON
picks a price ¢; ON must specify which fraction s; of asset D is to be converted
into asset Y at ¢;. Depending on the possible values of s; two classes of online

conversion problems exist:

Preemptive (pmtn). Search for more than one price in the time interval of length
T in order to convert asset D. ON is allowed to convert sequentially in
parts at different prices ¢;, i.e. the whole amount available is converted
‘little by little’, and s, € [0,1]. Typically, the number of prices considered
for conversion is determined by ON. Except in one special case where ON
desires to convert at a specific number of prices, denoted by w. This is referred
to as u-preemptive (u-pmin). In the work related algorithms for preemptive
conversion are denoted as constant rebalancing algorithms or threat-based
algorithms (cf. Section 2.4.2).

Non-preemptive (non-pmitn). Search for one single price in the time interval
of length 7" in order to convert asset D. ON is allowed to convert ‘all or
nothing’, i.e. the whole amount available is converted at one price ¢;, and
s; € {0,1}. In the work related algorithms for non-preemptive conversion are
denoted as reservation price algorithms (cf. Section 2.4.1). Non-preemptive

conversion is a special case of preemptive conversion.

Preemptive as well as non-preemptive algorithms solving the online conversion
problem either aim cost minimization or profit maximization, or both. Stated this

way, the problem is very similar to the famous secretary problem: Designing an
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algorithm for picking an element out of a (ordered) sequence, in order to maximize

the probability of picking the ‘best’ element of the entire sequence (Awerbuch et al.,

1996). In the finance related literature three main fields of application solving this

problem can be found: 1) Replacement problems, 2) investment planning, and 3)

the search for best prices. In the following we state each problem in short and give

a brief literature overview:’

1) Replacement Problem. In the basic setup of this problem some equipment is
needed during an unknown number of time intervals. How long the equipment
is needed is made known online: At the start of each time interval ON
gets the information whether the equipment will be needed in the current
time interval or not. ON must immediately decide whether to buy the
equipment for a price g, or to rent it for a price ¢,, with ¢. < ¢,. The
‘game’ ends with the purchase of the equipment, or if the equipment is no
longer needed. The total cost incurred by algorithm ON is the sum of all
renting fees, and perhaps one purchase. The goal is to chose the optimal
point of time for buying (El-Yaniv and Karp, 1997, p. 815). The optimal
decision must be determined such that the ratio of the money which was
spent for the equipment (¢, and ¢), and the minimum money which had
to be spent is minimized. The solution of the replacement problem is to
rent until the period of amortization ends, and to buy then. Karp (1992a,b)
shows that in practice people buy equipment earlier than this optimal point,
or keep renting forever. Typical practical applications addressed in the
literature are ski-rental (Karlin et al., 1994; al-Binali, 1997; El-Yaniv et al.,
1999; Seiden, 2000; Fujiwara and Iwama, 2002), selling a car (Babaioff et al.,
2008), and buying a BahnCard® (Fleischer, 2001; Ding et al., 2005). For
a detailed review on the problem and its extensions the reader is referred
to El-Yaniv and Karp (1997) and El-Yaniv et al. (1999). The replacement

problem is not discussed here.

2) Investment Planning. In the basic setup of this problem an algorithm
ON must decide how to reallocate among different available investment
opportunities; e.g. assets, commodities, securities, and their derivatives.

The value of each investment opportunity changes from time interval

"Some authors state a fourth main field called leasing problems, e.g. algorithms to decide
whether to buy or lease a car. Those problems are considered as rudimentary forms of replacement

problems (El-Yaniv, 1998, p. 30).
8A BahnCard is a loyalty card offered by Deutsche Bahn AG, the German national railway

company. It entitles the passenger to a discount price, and must be purchased prior to travel; see

www.bahn.de
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to time interval in an uncertain manner. The goal is to maximize
the terminal wealth (Cover, 1991). Typical applications in literature
are ‘universal portfolios’ proposed by Cover (1991), and later studied
in Cover and Ordentlich (1996); Helmbold et al. (1998); Blum and Kalai
(1999); Cover and Ordentlich  (1998); Kalai and Vempala (2003) and
Agarwal and Hazan (2006). In this setting the goal is to design an online
algorithm running an ‘universal portfolio’ that is competitive against any
constant rebalancing portfolio which keeps the same distribution of wealth
among a set of assets from day to day. In this regard other (non-universal)
online portfolio selection algorithms are presented by Cover and Gluss
(1986) and Borodin et al. (2000, 2004). Option pricing (Lorenz et al., 2009;
DeMarzo et al., 2006) and asset allocation (Raghavan, 1992) are further

fields. The investment planning problem is not discussed here.

3) Search for Best Prices. In the basic setup of this problem ON is given the
task of converting an asset into another asset, and possibly back. The
goal is to convert at best prices, i.e. to search for the maximum (resp.
minimum) price in a sequence of prices that unfolds sequentially (El-Yaniv,
1998; Kakade et al., 2004; Lorenz et al., 2009; Schmidt et al., 2010). Thus,
converting assets is a direct application of the elementary problem of optimal
stopping. Consider ON must convert an asset D into another asset Y, and
starts with the initial amount dy = 1 (yo = 0) of asset D (Y'). In its simplest
form, an online conversion algorithm solving search for best prices can be

stated as follows.
Algorithm 1.
Step 1: Obtain price quotations q; € [m, M| at points of timet =1,...,T.

Step 2: FEvery point of time t take a decision whether or not to accept the

current price q.

When

Step 2a: Price q; is accepted convert an amount s; of asset D into Y .

Step 2b: Price q; is not accepted, obtain the next price quotation g 1.

Step 2c: Asset D is converted completely, or T is reached, the ‘game’ ends.

Step 3: If there is some amount of D left on T then accept the last price qr
(which might be the worst-case, i.e. m for selling or M for buying).
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Some authors assume ON must pay a commission to get a price quotation,
called sampling costs (El-Yaniv, 1998, p. 33). Further, the search for best
prices is often considered as currency conversion, or as elementary search
problem (El-Yaniv, 1998, p. 32). Several authors suggest algorithms to solve
the currency conversion problem, cf. El-Yaniv et al. (1992, 2001); al-Binali
(1997, 1999); Iwama and Yonezawa (1999); Chou et al. (1995); Chen et al.
(2001); Kakade et al. (2004); Hu et al. (2005); Chang and Johnson (2008)
and Fujiwara et al. (2011). In this problem, a fixed amount of dollars must
be converted into yen, and possibly back. The goal is to perform well under

worst-case assumptions, i.e. to achieve a possibly low competitive ratio c.

Within this work we limit to online conversion algorithms solving the search for
best prices. The work related addresses on the one hand algorithms that aim profit
maximization, denoted as maz-search problem, or cost minimization, denoted as
min-search problem. These algorithms are wuni-directional. On the other hand,
algorithms are addressed that aim return mazimization solving both problems.
These algorithms are bi-directional (El-Yaniv et al., 2001). A short overview on
uni- and bi-directional search problems addressed in the literature is given in the

following.

2.2.1 Uni-directional Search

Uni-directional search assumes that within one time interval conversion can only
be performed in one direction. When carrying out uni-directional search to solve
the online conversion problem, the objective is always to choose a point of time
to take a decision, in order to maximize an expected profit or to minimize an
expected cost, but never both (Kalai and Vempala, 2005). Hence, the resulting
min-search problem or maz-search problem is considered as uni-directional (or
one-way) (El-Yaniv et al., 2001, p. 101).

Uni-directional Search. Here, ON is given the task of converting an asset D
into another asset Y within a given time interval in order to achieve financial
gain. The conversion back from Y into D is forbidden. To convert D back
into Y a new ‘search game’ must be carried out. The classical example of
uni-directional search is currency conversion, e.g. converting dollars D into
ven Y: ON may convert D into Y as often as possible (at different prices
¢;) until the whole of asset D is converted into Y. There is no restriction
on the number of conversions, and conversion can either be preemptive or
non-preemptive. In other words, ON searches for the maximum or the

minimum price(s) in order to carry out either a buying or a selling transaction
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within one time interval of length 7. A transaction is completed when the

whole of asset D is converted into Y.

Some authors consider randomized online search as uni-directional search. The goal
is also to convert D into Y. It is assumed that the price (or the exchange rate from
D to Y) varies unpredictably (El-Yaniv, 1998; El-Yaniv et al., 2001; Chen et al.,
2001). The transformation of randomized online search to uni-directional search is
as follows (Damaschke et al., 2009, p. 620): The initial amount of D, denoted by
dy, corresponds to a probability of 1. Converting dy means to stop converting with
exactly that probability (randomized online search). Thus, any uni-directional
search algorithm is equivalent to a randomized search algorithm that converts
the entire dy at once (non-preemptive) at some randomly chosen price, cf.
Borodin and El-Yaniv (1998, p. 265) and El-Yaniv (1998, p. 36).

Algorithms to solve the uni-directional search problem are suggested
by El-Yaniv et al. (1992, 2001); El-Yaniv (1998); al-Binali (1997, 1999);
Iwama and Yonezawa (1999); Chen et al. (2001); Kakade et al. (2004); Hu et al.
(2005); Chang and Johnson (2008); Fujiwara et al. (2011). An experimental
analysis of the uni-directional algorithms of El-Yaniv (1998); El-Yaniv et al. (2001)
assuming different settings, such as dividing the investment horizon into time
intervals, can be found in Schmidt et al. (2010).

In case min-search and mazx-search are combined bi-directional search is carried

out. A short overview on bi-directional search problems is given in the following.

2.2.2 Bi-directional Search

Bi-directional search assumes that within one time interval conversion can be
performed in both directions. When carrying out bi-directional search to solve
the online conversion problem, the objective is to achieve a possibly high return.
When converting assets, uni-directional search is extended to bi-directional search,

and bi-directional search is a synonym for trading.

Bi-directional Search. Here, ON is given the task of converting an asset
D back and forth. Converting asset D into asset Y, then back into
asset D, and back into asset Y, etc. is allowed within the same time
interval. The relative price between D (resp. Y) and Y (resp. D) is
used to determine the units converted, and thus becomes the exchange
rate. There is no restriction on the number of conversions, conversion
can either be preemptive or non-preemptive. In contrast to uni-directional
search ON searches for maximum and minimum prices to carry out

both a buying and a selling transaction within one time interval of
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length 7. Chou et al. (1995); Dannoura and Sakurai (1998); El-Yaniv et al.
(1992, 2001); Mohr and Schmidt (2008a) suggest algorithms to solve the
bi-directional search problem under various limitations. The classical
example of bi-directional search is currency conversion converting dollars D

into yen Y and back as often as possible.

Run Search. A special case of bi-directional search. Here, ON is also given the
task of converting an asset D back and forth as often as possible. But
when carrying out run search, the algorithm ON divides the considered
sequence of prices into upward runs and downward runs depending on the
price movement. Search is carried out depending on the direction of the
runs: Mazx-search is carried out if prices are moving up, and min-search
is carried out if prices are moving down. In other words, uni-directional
search is carried out depending on the direction of a run, and each run equals
one time interval of length 7. Dannoura and Sakurai (1998); El-Yaniv et al.
(1992, 2001); Damaschke et al. (2009) suggest algorithms to solve the run

search problem.

Irrespective whether an algorithm converts preemptive or non-preemptive,
uni-directional or bi-directional it may not produce an optimum result. Hence,
it is desired to evaluate its effectiveness, e.g. against the performance of another
algorithm for the same problem. This technique is called competitive analysis. In
the following we introduce notion of competitive analysis as a performance measure

for online conversion algorithms investigating worst-case scenarios.

2.3 Competitive Analysis

Firstly, competitive analysis was used in the 1970s by computer scientists
in connection with approximation algorithms for N P-hard problems (Graham,
1966; Johnson, 1973; Johnson et al., 1974; Yao, 1980). In 1985, the work of
Sleator and Tarjan (1985), on list access and paging algorithms, put forth the use of
the competitive ratio as a general performance measure for online decision making.
Three years later, the term competitive ratio was formed by Karlin et al. (1988).°
The main idea is to assume the worst possible input sequence I, and to compare
the performance of an online algorithm to the performance of an adversary on this
sequence. The competitive ratio ¢ measures the quality of the online algorithm with

respect to the adversary. Within the scope of this work, unless otherwise stated,

9In the literature, the competitive ratio is also called the worst-case ratio or the worst-case

performance guarantee (Fiat and Woeginger, 1998, p. 4).
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the performance of ON is always compared to the worst possible adversary: OPT
computes an output given the entire input sequence I in advance. ON is called
c-competitive if for any I (El-Yaniv et al., 2001, Formula (1))

ON(I) >~ - OPT(I). (2.1)

[

In other words, ON is called strictly c-competitive, if its competitive ratio — the
ratio between the performance of ON and OPT - is bounded by some constant c,
which gives a worst-case performance guarantee (Albers, 2003). We want to remark
that the definition of c-competitiveness varies in the literature. ON is called weakly
c-competitive if there exists a constant z such that (Karlin et al., 1994, p. 302)

ON(I) > =-OPT(I)+z (2.2)

Q-

holds for any input sequence I. Some authors even allow z to depend on problem or
instance specific parameters (Albers, 1997; Krumke, 2002). We assume the constant
z to be zero and will stick to the definition given in equation (2.1). Hence, any
c-competitive ON is guaranteed a value of at least the fraction % of the optimal
offline result, no matter how uncertain the future will be (El-Yaniv et al., 2001, p.
104). This holds for bounded problems (El-Yaniv, 1998).

We consider online conversion algorithms with bounded profit function, e.g. by
assuming ¢; € [m, M|, where M and m are upper and lower bounds of prices ¢,.
Further, we differ between the competitive ratio for uni-directional search, and the
competitive ratio for bi-directional search. Algorithms denoted as uni-directional
only convert in one direction (asset D into asset Y'). Thus, their competitive
ratio is measured by the amount of (accumulated) Y achieved on the last day T.
Algorithms denoted as bi-directional convert in both directions (asset D into asset
Y, and back to D). Thus, their competitive ratio is measured by the amount of
(accumulated) D achieved on the last day T

2.3.1 Competitive Ratio for Uni-directional Search

We assume ON is either allowed to carry out a selling or a buying transaction
within each i-th time interval of length 7" (i = 1,...,p). Overall, within the whole
investment horizon, ON is allowed to carry out p > 1 buying or selling transactions,
solving either the min-search problem or the maz-search problem. The performance

of ON is measured using the competitive ratio as given in equation (2.1).

Min-Search. To minimize costs the min-search problem must be solved in order

to buy at a possibly low price(s). Assume ON buys p > 1 times at price(s)
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q™" (1) > m(i) > m with i = 1,...p. Solving equation (2.1) to ¢ the competitive
ratio for each ¢-th buying transaction equals
OPT

() =

(2.3)

<

and results in an overall competitive ratio after the p-th buying transaction of

P .
: m(i)
"M (p) = — (2.4)
:lel qmzn(z)
< 1
Assuming ¢™"(i) = ¢™" and m(i) = m to be constants for each i-th buying

transaction the overall competitive ratio (after the p-th transaction) then equals

o) = () (2.5)

< 1

As buying is a minimization problem ¢™"(p) < 1, and measures the competitive
ratio for buying under worst-case assumptions. The greater ¢ the more effective is
ON.

Max-Search. To maximize profit the maz-search problem must be solved in order
to sell at a possibly high price. Assume ON sells p > 1 times at possibly high prices
g™ (i) < M(i) < M with ¢ = 1,...p. Solving equation (2.1) to ¢ the competitive
ratio for each i-th selling transaction then equals

mazx(; OPT
0 = on
M (i)

qmax(z’)

> 1

(2.6)

and results in an overall competitive ratio after the p-th selling transaction of

) = [ (2.7

pale qmax (Z)

1.

v

Assuming ¢™** (i) = ¢™* and M(i) = M to be constants for each i-th selling

transaction the overall competitive ratio (after the p-th transaction) then equals

(qgm)p (28)
1.

max (

" (p)

v
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As selling is a maximization problem ¢,,,,(p) > 1, and measures the competitive
ratio for selling under worst-case assumptions. The smaller ¢ the more effective is
ON.

In the above section it is assumed that ON either buys p times at possibly low
prices or sells p times at a possibly high prices (p > 1), resulting in the worst-case
competitive ratios given in equation (2.4) and (2.7). To trade assets p > 1 times
sequentially in a row this assumption does not hold. In the context of financial
markets online conversion algorithms are designed to buy and sell (trade) in order to
achieve a possibly high return. We assume each trade consists of exactly one buying
transaction and one selling transaction. In other words, first the min-search problem
has to be solved for buying, and later the maz-search problem has to be solved for
selling, resulting in p trades (equaling the number of returns).!® Thus, instead of
using maximum or minimum prices, the competitive ratio for bi-directional search
is calculated using the returns achieved by OPT and ON.

2.3.2 Competitive Ratio for Bi-directional Search

We assume ON is allowed to carry out more than one buying and selling transaction
within each i-th time interval of length 7' (¢ = 1,...,p). Further, we assume each
i-th time interval is initiated by a buying transaction, and terminated by a selling
transaction. Hence, within the whole investment horizon overall p trades, equaling
the number of time intervals, are carried out. Thus, the competitive ratio for
bi-directional search measures the performance of ON in terms of the achieved
return, when carrying out p > 1 trades. Online conversion algorithms are either
designed to trade once (p = 1), or to trade sequentially in a row (p > 1), defined

as follows:

Single Bi-directional Conversion. Within 7" an asset is traded exactly once.
Thus, the objective is to buy one single asset at best at its minimum price

¢™™ > m, and to sell it later at best at its maximum price ¢"™** < M.

Multiple Bi-directional Conversion. Within 7" an asset is traded more than
once. The objective is to trade p > 1 times sequentially in a row: Buy
an asset p > 1 times at local minimum prices ¢""(i) > m(:) > m, and
sell it p > 1 times at local maximum prices ¢™* (i) < M(i) < M, where
¢t = 1,...,p buying transactions and ¢« = 1,...,p selling transactions are

carried out. Further, the single asset problem trading one single asset p > 1

10Short-selling is not considered here as it is forbidden in some countries, e.g. in Germany since
May 19", 2010.
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times, and the multiple asset problem trading several different assets p > 1

times can be distinguished.

For both variants the calculation of the competitive ratio is identical. Let X €
{OPT,ON} be a bi-directional conversion algorithm. Assume the algorithms X
trade sequentially in a row, and each ¢-th trade consists of one buying and one
selling transaction with p > 1, and ¢« = 1, ..., p. Further assume algorithm X buys
p > 1 times at a possibly low price(s) ¢™" (i) > m(i), and sells at possibly high
price(s) ¢"™**(¢) > m(i). Then the return of X for each i-th trade with i =1,...p

equals

Ra(i) = L0 (2.9)

(2.10)

Note that ON solving the bi-directional conversion problem in order to maximize
the return to be expected p is called money-making if it is guaranteed to be
profitable when O PT is profitable, i.e. the achieved return Rx(p) > 1 (Chou et al.,
1995, p. 469).

The overall competitive ratio for bi-directional conversion ¢(p) with p > 1 can
be derived in two ways. First, the competitive ratio for min-search and maz-search,
as given in Section 2.3.1, can be used. For each i-th trade from equation (2.3) and
(2.6) we get

) Cmaac(l'>

= . 2.11

0 = G (211)
_ (M(i) .qmi"(i)>

gmer(i)  miz)
> 1,
resulting in an overall competitive ratio
co(p) = ﬁcmw(i> (2.12)
p o J cmin(l') :

IV
=
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Assuming ¢ (i), ¢™" (i), M (i) and m(i) to be constants from equations (2.3) and

(2.6) we get the overall competitive ratio after the p-th trade

max
Cc

_ (p)
cv) = ) (2.13)

B M qmin p
o qmax ) m

> 1.

Second, the overall returns Ry (p) achieved by X € {OPT,ON} as given in
equation (2.10) can be used to calculate ¢(p). Assuming p > 1 the overall return
Ron(p) of an algorithm ON equals

P _mazx(;
i
Rozv(p) = H q - <>, (2.14)
and the overall return Ropr(p) of algorithm OPT equals

Ropr (P) = sup Ron (p)

:ﬁM@ (2.15)

i )

In case M (i) = M and m(i) = m are constants the overall return of OPT equals
(Mohr and Schmidt, 2008a)

Ropr(p) = (4 (2.16)

m

Assuming and identical number of p > 1 trades for OPT and ON from equation

(2.14) and (2.15) we get an overall competitive ratio

OPT
‘ON
Ropr(p)
Ron(p)

- I =0) o0

cp) =

2.3.3 Worst-case and Empirical-case Competitive Ratio

When analyzing online conversion algorithms we differ between the worst-case

wce

competitive ratio ¢"¢ considering the performance of ON on a worst possible
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sequence of inputs, and the empirical-case competitive ratio ¢°“ considering the
performance of ON on an observed time series of prices. Assuming p > 1 trades
both ratios can be calculated using equation (2.17). To calculate ¢*¢ a constructed
worst-case time series of prices is considered and the return of ON is derived
analytically. In contrast, to calculate ¢* an observed time series of prices is
considered, and the return of ON is derived experimentally through backtesting.

Thus, the worst-case competitive ratio ¢*“(p) for p > 1 equals

¢"*(p) = sup c(p). (2.18)

In the worst-case ON might, for example, buy 7 times at the highest possible price
M (7), and sell i times at the lowest possible price m(i).

Further, the empirical-case competitive ratio ¢*“(p) for p > 1 equals

ec(p) _ ROPT(p) (2'19)

Ron(p)
where OPT achieves the best possible return OPT =

considered, and ON achieves a return according to the buying and selling signals
generated. Note that ¢®“(p) < ¢*“(p), and the best achievable ¢ € {c“(p), c*“(p)}

equals 1.

MG on the time series
m(%)

In the following we give an overview on online conversion algorithms analyzed
using competitive analysis — in terms of ON ‘playing’ against an adversary while
considering worst-case scenarios. Typically, these reviewed online conversion
algorithms are categorized as reservation price algorithms, constant rebalancing
algorithms, threat-based algorithms, and risk-rewarded algorithms. For the
literature overview, we present a new approach to classify online conversion
algorithms based on the type of search (uni-directional or bi-directional), and the
amount to be converted (pmtn or non-pmin). Within Chapter 6 this classification
is refined by the ‘amount of information’ assumed to be known a-priori (about the

future) to ON in order to compute the amount to be converted s;.

2.4 Literature Review

We give a literature overview of work on online conversion problems, focusing on
worst-case performance measures as given in equation (2.18). As we are interested
in online algorithms related to financial decision making we restrict the literature
overview to algorithms in the context of financial markets, solving the search for
best prices as given in Algorithm 1 in order to convert assets. The majority of the

work related considers online conversion problems in Forez Markets.'!

1 Foreign exchange market; a worldwide decentralized over-the-counter financial market for

the trading of currencies, also denoted as FX or currency market.
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We do not consider related applications like algorithmic trading and online
auctions. The reader is referred to Kleinberg (2005); Blum et al. (2006) and
Chang and Johnson (2008).

Based on the amount to be converted s;, when presenting the work related,
we distinguish the two classes of online conversion algorithms: a) non-preemptive
online conversion algorithms — designed to search for one single price within the
time interval to convert the asset, and b) preemptive online conversion algorithms
— designed to search for more than one price within the time interval to convert

the asset.

2.4.1 Non-Preemptive Conversion

Non-preemptive conversion allows the search for one single price in the time interval
to convert an asset D). Typically, the whole amount available is converted at one
single price ¢, i.e. s; € {0, 1}. Non-preemptive algorithms define limit price(s) (the
market participant is willing to accept) to avoid buying or selling at a price higher
(lower) than a specific level. That is the lowest price (per asset) an algorithm
might accept for buying, and the highest price an algorithm might accept for
selling. Such limit prices are denoted as reservation prices (RP), denoted by
¢*. As a non-preemptive algorithm converts ‘all or nothing’ one ¢, > (<) ¢*
must be accepted within one time interval. Thus, the online conversion algorithms
presented in the following are denoted as RP algorithms. We differ between works

on uni-directional search and bi-directional search.

2.4.1.1 Uni-directional Search

In the following non-preemptive conversion algorithms for uni-directional search are
presented. Here an algorithm on is allowed to convert an asset D into another asset
Y but conversion back to D is forbidden. Unfortunately, the work related is limited
to guaranteeing conversion algorithms — the performance of the RP algorithms is
evaluated using competitive analysis.

The two early works of Pratt et al. (1979) and Rosenfield and Shapiro (1981)
assume different price distributions, and study the question when an RP algorithm
should stop searching for a lower (higher) price.

Pratt et al. (1979) assume two cases. First, it is assumed that the underlying
price distribution is known. Second, no knowledge is assumed, and the underlying
distribution must be learned by the RP algorithm while observing prices.
Pratt et al. (1979) develop RP algorithms to decide whether to observe further

price quotations or not. The goal is to balance the chance of achieving a
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lower (higher) price against greater incurred constant search costs, and to find
a buyer-to-seller price equilibrium.

Rosenfield and Shapiro (1981) determine search policies in case of incomplete
information. Different assumptions on the a-priori knowledge about the future are
made, e.g. that the price distribution is known or unknown to the RP algorithm,
or itself is a random variable. Further, the RP algorithm is either allowed to
accept prices previously quoted (recall) or not (no recall). Rosenfield and Shapiro
(1981) derive conditions under which the following reservation price policy (RPP)
is optimal: Accept a price for buying if and only if it is below the RP. The goal
is to find an equilibrium distribution of prices (Rosenfield and Shapiro, 1981, p.
190).

Awerbuch et al. (1996) assume the following setting: An RP algorithm must
choose one out of J assets for conversion. The goal is to pick a ‘winner’ that will
have the best future performance. This task is made difficult by the constraint
that the RP algorithm has no way to predict the future performance of any of
the J assets. The decision is irreversible, once an asset is chosen search is closed.
For each asset j (j = 1,...,J) the value d(j,7) is the number of dividends issued
by asset j within the ¢-th time interval. The suggested RP algorithm is: At the
(i+1)-th time interval choose the j-th asset with probability p340#)/("=2) Where r
is the a-posteriori performance (in terms of the return achieved) of the best asset,
and assumed to be known. Awerbuch et al. (1996) find that their proposed RP
algorithm can pick a winner with high probability.

El-Yaniv (1998) (and El-Yaniv et al. (2001)) assume that the upper and lower
bounds of prices, M and m, are known. An RP algorithm is suggested to solve the
maz-search problem (El-Yaniv et al., 2001, p. 107): Accept the first price greater
than or equal to ¢* = /(M -m) for selling. El-Yaniv et al. (2001) prove that if
the prices ¢; € [m, M] the RP algorithm is optimal, and the competitive ratio is
\/M—/m. The RP algorithm is presented in detail in Section 4.1.

The original RP algorithm of El-Yaniv (1998) was modified by Kakade et al.
(2004) and Chang and Johnson (2008) to solve the maz-search problem in modern
financial markets considering the ‘Volume Weighted Average Price’ (VIWAP) and
limit order books (markets). Both authors assume that the price fluctuation ratio
p = % is known. The modified RP algorithm places sell orders in order to
maximize the total return (Chang and Johnson, 2008, p. 45): Pick an integer i
uniformly at random between 0 and |Ing|, and place an order to sell the asset
at reservation price ¢* = ¢' - ¢™". In addition Kakade et al. (2004) suggest a
second RP algorithm that seeks to sell all assets at the average price of the
market, the VIWWAP. Kakade et al. (2004) and Chang and Johnson (2008) make

no assumptions on the price distribution.
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Xu et al. (2011) present two RP algorithms. The first algorithm is based on
the assumption that m and M, as well as the return function f(¢) are known.
The second RP algorithm is based on the knowledge of m, M, f(¢), and T. The
model extends the RP algorithm of El-Yaniv (1998) by introducing sampling costs
for observing prices ¢;. It is assumed that the achievable return » when accepting
a price ¢; on day t is not exactly the price itself, but a function of the price (such
as accepted price ¢’ minus the accumulated sampling costs). In contrast to the RP
algorithm of El-Yaniv (1998) the considered RP is not constant but varies with
time, and thus is denoted by ¢ . After the player accepts one specific price ¢’ the
‘game’ ends. It is assumed that a larger price results in a larger return 7’ for ¢'.
Further, the achieved return 7’ is higher when accepting ¢’ earlier, as less sampling
costs occur. Xu et al. (2011) present two provable optimal RP algorithms, and
competitive analysis is done.

Recent work extends the algorithms for uni-directional search of El-Yaniv et al.
(2001); El-Yaniv (1998) assuming that every two consecutive prices are interrelated.
The motivation of Zhang et al. (2010) is the stock market in China, which
empirically shows a bounded movement by 10% of every two interrelated closing
prices.

Damaschke et al. (2009) assume M and T are known and prices ¢, € [3£, M].
A RP algorithm for maz-search is presented: Accept the first price greater than or
equal to ¢* = \%, with ¢ = 1,...,T. Numerical examples are presented showing
that the RP algorithm achieves a better (smaller) competitive ratio than previous
algorithms. Damaschke et al. (2009) prove the optimality of their RP algorithm,

and show that the competitive ratio equals v/7.

2.4.1.2 Bi-directional Search

In the following non-preemptive conversion algorithms for bi-directional search are
presented. Here, ON is allowed to convert asset D into asset Y, and back into D
within 7. The work related is comprised of guaranteeing as well as heuristic RP

algorithms.

Guaranteeing Algorithms. In the following we give a brief overview on
guaranteeing RP algorithms from the literature using the competitive ratio as
performance measure.

Kao and Tate (1999) consider online difference maximization, and do not make
any assumptions regarding knowledge about the future. Low prices and high prices
are selected from a sequence of prices in a random order by the following RP

algorithm: A price is selected as low (high) if it is less (greater) than or equal
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to a predefined lower (upper) bound m (M ). If no price is chosen before the last
day, the last price g7 must be accepted. The goal is to maximize the difference in
final ranks (the expected gain) of the selected low/high price pairs (Kao and Tate,
1999, p. 88). Single and multiple conversion problems are considered. In case of
single conversion one high/low pair must be chosen. In case of multiple conversion
the selection of arbitrarily many high/low pairs is possible. When proving the
optimality of their RP algorithm Kao and Tate (1999) assume that the inputs
(prices) come from a probabilistic source such that all inputs are equally likely.
Kao and Tate (1999) prove the optimality of their RP algorithm, and show that
for single (multiple) pair selection the competitive ratio equals 1 (3).

Mohr and Schmidt (2008a,b) extended the uni-directional RP algorithm for
selling of El-Yaniv (1998) to buying and selling, i.e. introduce a rule for min-search.
The resulting bi-directional RP algorithm is: Buy the asset at the first price smaller
than or equal to, and sell the asset at the first price greater than or equal to
reservalion price q¢* = \/m It is shown that, in terms of achieved return,
the competitive ratio c(i) = Aﬂf—((z)) for each i-th trade with i = 1, ..., p. In addition
to worst-case analysis, empirical-case analysis of the suggested RP algorithm is
done assuming different settings, such as dividing the investment horizon into time
intervals of different length 7. The original reservation price algorithm suggested
by El-Yaniv (1998) and its extension by Mohr and Schmidt (2008a.,b) is presented

in detail in Section 4.1.

Heuristic Algorithms. A large number of practitioners uses heuristic
conversion algorithms as their main method to determine buying and selling points
using reservation prices (Taylor and Allen, 1992). The performance of these RP
algorithms is usually evaluated through experiments (cf. Chapter 1). We limit
to two heuristic conversion algorithms suggested by Brock et al. (1992), namely
Moving Average Crossover (MA) and Trading Range Breakout (T RB), which are
based on technical indicators. These bi-directional algorithms are of major interest
in the literature, and the comparison to a passive buy-and-hold (BH) algorithm
is of prime interest. Brock et al. (1992, p. 1736) distinguish two variants of the
M A algorithm, namely Variable-length Moving Average (VM A) and Fixed-length
Moving Average (F'M A). Both variants buy if the short M A crosses the long M A
from below, and sell if the short M A crosses the long M A from above. Let M A(S),
be a short moving average, and M A(L); a long moving average (S < L). The value
n € {S, L}, with ¢t > n, defines the number of previous data points (days) used
to calculate MA(n), = Z]‘*T”“q The algorithms VM A and FMA differ in the
way their performance is measured: In case of VM A every signal is considered,

i.e. after a sell signal the RP algorithm goes out of the market or takes a short
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position (Brock et al., 1992, p. 1738, b.8). In case of FMA fixed T-day time
intervals following a buy (sell) signal are defined where 7" = 10 (Brock et al., 1992,
p. 1740, t.3). Other signals during these T-day time intervals are ignored, i.e. in
case of a buying signal a T-day long position is taken, and in case of a selling signal
a T-day short position (Brock et al., 1992, p. 1736, t.11). In other words, F'MA
only carries out min-search. Brock et al. (1992) suggested different variants (S, L)
of the M A algorithm: (1,50), (1,150), (5,150), (1,200) and (2,200). Further prices
might be lagged by a band ¢ € [0.00, oo].

The TRB algorithm buys if the price cuts the local mazimum price from
below, and sells if the price cuts the local minimum price from above (Brock et al.,
1992, p. 1736, t.20). The performance of TRB is calculated for fixed T-day
time intervals following a buy (sell) signal, where T = 10 (Brock et al., 1992,
p. 1742, b.7). Similar to FM A other signals during the T-day time intervals
are ignored. Local minimum prices ¢/"(n) = min{qgli=t—mn,...,t —1} and
maximum prices ¢"**(n) = max{¢li=t—n,...,t —1} are calculated over the
past n € {50,150,200} days. Further prices might be lagged by a band 0 €
[0.00, co.

Unfortunately, within the work related only empirical-case analysis is
considered. Thus, in Chapter 4.3 worst-case competitive analysis of the heuristic
conversion algorithms VMA, FMA and TRB is done. Chapter 3 presents
empirical-case analysis and work related to VMA, FMA and TRB.

2.4.2 Preemptive Conversion

Preemptive algorithms allow the search for more than one price in the time interval
to convert the asset. Typically, a specific fraction of the whole amount available
is converted at points of time ¢ during 7. Let s; be the amount to be converted
at time ¢, then s; € [0,1]. The only restriction is that during 7" an asset must
be completely converted into another asset, i.e. Zthl s; = 1, and that at most T'
prices can be accepted for conversion.

Not all, but a great amount of algorithms addressed in the work related can be
classified dependent on the calculation of s;. If possible, we classify the algorithms
as follows:!? The class of threat-based algorithms converts different amounts s; €
[0,1] of an asset at different points of time ¢ during the time interval of length 7'
(t =1,...,T) while assuming that the worst possible price occurs on day t+1. The
class of constant rebalancing algorithms converts fixed fractions s; = % of an asset

at every point of time ¢ during T". The class of risk-rewarded algorithms algorithms

12In case the classification is not clear, the algorithms are presented at the beginning of the

section.
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converts different amounts s; € [0, 1] of an asset at different points of time ¢ during
T dependent on the acceptable level of risk a € [1,¢]. The mount to be converted
sy is calculated such that the more risk is taken, the smaller the competitive ratio
gets.

Raghavan (1992) analyze the performance of ON under a statistical restriction
on the input sequence(s) considered. Raghavan (1992) addresses a simple version
of the asset allocation problem. Here ON can invest in two assets: A risky and a
risk-free asset. Based on the observed asset prices, ON must decide at each point
of time how to divide the available wealth among these two assets. The problem
is analyzed using a statistical adversary.'®

Inspired by Raghavan (1992), DeMarzo et al. (2006) design an asset allocation
algorithm to distribute the current wealth among a risky and a risk-free asset. At
each point of time ¢t ON converts an amount s; into a risky asset, and 1 — s; into a
risk-free asset. ON converts using different assets 7 = 1,...,J, and the goal is to
achieve the performance of the best asset (OPT). ON maintains weights w,, for
each j at time ¢ and updates the weights each day. Each point of time ¢t ON forms
a portfolio where s, converted into asset j equals s;; = WWLJ with W; = Zle Wit
The authors show how to use the proposed algorithm to price the current value of
an option.

In the following we differ between works on uni-directional and bi-directional

search.

2.4.2.1 Uni-directional Search

Preemptive conversion algorithms for uni-directional search are presented in the
following. Here, ON is allowed to convert an asset D into asset Y but conversion
back into D is forbidden. Unfortunately, the work related is limited to guaranteeing
conversion algorithms and the performance of the algorithms is evaluated using
competitive analysis.

Chen et al. (2001) assume that the price function g(¢;) and the number of days
T are known. Each ‘next’ price ¢;,1 depends on the current price ¢; in a geometric
manner: ¢;/5 < q1 < g - @, where o, 3 > 1 (cf. the bounded daily return model
in Chen et al. (2001, p. 448)). Some initial wealth to be invested according to a
T-day investment plan is assumed. ON runs the so called balanced strategy (BAL).
Each day t, the amount to be converted s; is determined by BAL such that the
performance of ON is balanced on all market downturns (downward runs). The

results of BAL are compared to constant rebalancing (C'R) while carrying out

13The input sequence generated by a statistical adversary has to satisfy specific statistical

properties, cf. Chapter 1.
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simulation runs using daily closing prices of the Taipei Stock Exchange (T'SE) for
the year 1997. BAL and C'R are money-making except in September, October,
and December 1997. Overall BAL outperforms C'R.

Hu et al. (2005) suggest two algorithms. The static mized strategy depends on
T and the price fluctuation ratio ¢ = % The dynamic mized strategy depends on
the remaining trading days 7" =T — t + 1, ¢, and the remaining wealth. In both
cases, at the start of each day ¢, ON has some initial wealth. For each observed
price ¢ ON converts some amount s; € [0,1] of the wealth. The amount to be
invested s; is (re)calculated on each day, and all remaining wealth on day 7" — 1
must be converted on day T. The performance of both algorithms is compared to
a special variant of CR (constant rebalancing) based on Nash Balances."* Results
show that C'R is outperformed by both algorithms on data of the China Merchants
Bank Co., Limited (CMB) for the year 2003.

Lorenz et al. (2009) assume that m and M are known. Further, the number
conversions is limited by the value u, i.e. not more than u preemptions are allowed.
Two different RP algorithms are given, one for maz-search and one for min-search.
It is assumed that ON may convert u > 1 times (originally denoted as k-search
problem). At each point of time ¢ it must be immediately decided whether or not
to convert one unit of the asset for the observed price ¢;. At the start of the ‘game’
u different reservation prices ¢, where ¢ = 1,...,u, and u < T are calculated: For

max \ 5

min-search g =m - [1+ (¢"* —1) - (14+ <=)""'], and for maz-search q; = M -

[1 — (1 S ) . (1 + - L )i_l] where ¢™*" is a competitive ratio for maz-search

and ¢™" a competitive ratio for min-search (Lorenz et al., 2009, pp. 280-281). The
suggested algorithm is: Accept a price g, for selling (buying) iff ¢ > (<) ¢;. Hence,
the algorithm accepts the first price that is at least (lower) ¢ for selling (buying)
to convert for the first time. Then the algorithm waits for the first price that is at
least (lower) ¢3, etc. Lorenz et al. (2009) make no assumptions on the price path
except that prices ¢, € [m, M]. The suggested algorithm may be forced to convert
at the last price qr of the sequence in order to meet the constraint of converting

the whole asset within 7', with ¢ > (<) ¢f.

Constant Rebalancing Algorithms. Constant rebalancing (C'R) algorithms
are a popular method to carry out uni-directional search. A C'R algorithm does
not convert the entire asset at one single point of time. Rather, a fized fraction of
asset D is converted at regular increments across time (El-Yaniv et al., 2001, pp.
117; 135). Given J assets, the amount to be converted s; = %, witht =1,...,T
days, and j = 1,...,J assets (Butenko et al., 2005, p. 9). Suppose uni-directional

For the definition of Nash Balances see Rubinstein and Osborne (1994).
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preemptive conversion: Asset D is to be irreversibly converted into asset Y within

a given number of days T. Then a C'R algorithm converts equal amounts of D on
1

T
of asset Y achieved by the C'R algorithm, denoted by yr, equals

each day t, i.e. s, = &, with ¢t = 1,...,T. Thus, the overall accumulated amount
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=
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The C'R method ensures that an algorithm does not convert the whole asset at a
market high (low), and thus the investor regrets the decision ex-post. Instead, the
goal is to keep the same distribution of wealth among an asset from day to day,
resulting in an average price.!® In the following we give a brief overview on the
work related. C'R algorithms are often used as a benchmark when empirical-case
analysis of preemptive conversion algorithms in done, see e.g. Chen et al. (2001);
Hu et al. (2005).

Constantinides (1979) firstly demonstrate that C'R algorithms are suboptimal
theoretically. Later, many empirical studies have compared C'R algorithms other
conversion algorithms, and also found C'R to be suboptimal.

Bertsimas and Lo (1998) derive conditions on price dynamics under which a
CR algorithm for converting j = 1,...,.J assets minimizes the cost of execution.
Works on optimal trade execution are not discussed here, and the reader is referred
to the overview in Bertsimas and Lo (1998) and Leggio and Lien (2003).

Blum and Kalai (1999) present a C'R algorithm that rebalances monthly under
transaction costs, and compare its performance to OPT. On all data sets
considered the C'R algorithm achieves inferior returns to O PT but still outperforms
the market when the transaction costs are less than 2%.1° Blum and Kalai (1999)
show that rebalancing less frequently, i.e. monthly instead of daily, is beneficial
when transaction costs are high.

Almgren and Chriss (2000); Almgren (2003) propose different predefined
(sequences of) constant fractions s; € [0,1] to be converted on each day ¢ =
1,...,T. The value of s; depends on assumptions on different parameters, such
as risk tolerance, transaction costs, or price volatility.

Borodin et al. (2004) suggest to exploit the market volatility. The goal is to
benefit from statistical relations between different assets by ‘trying to learn the

winners’. The first approach is to learn from experts, i.e. to design a (reward-based)

15Constant rebalancing is also known as ‘dollar-cost averaging’ or ‘average price trading’.
16Blum and Kalai (1999) use the data sets suggested by Cover and Ordentlich (1996);
Ordentlich and Cover (1998); Helmbold et al. (1998).
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C'R algorithm which computes the weighted average of expert ratings. An update
rule is used to gradually increase the relative weights of more successful experts.
Three different learning C'R algorithms are presented which rebalance a portfolio
each day depending on yesterday’s weighted expert advices. The second approach is
a C'R algorithm that considers the market history: Two consecutive time intervals
of equal length T are considered to model statistical relations between different
pairs of assets. The suggested C'R algorithm takes advantage when an asset
outperforms other assets especially if this outperformance is anti-correlated with
the performance of the other assets. Thus, the CR algorithm is called AntiCor. An
experimental study of the three learning C'R algorithms and the AntiCor algorithm
is presented. The results are compared to classical C'R, to the bi-directional
algorithm of Cover (1991), to the universal portfolio of Cover and Ordentlich
(1996), and to BH.'" The AntiCor algorithm outperforms all algorithms.

Threat-based Algorithms. Unlike C'R algorithms, threat-based algorithms
partition the amount to be converted s; where each s; has a different value
(0 < s; < 1) depending on the price ¢ offered to ON.

El-Yaniv et al. (1992, 2001) consider currency conversion in Forex Markets.
Dollars D must be converted into yen Y to solve the max-search problem. The
optimal performance is obtained by Algorithm 8, p. 92, commonly referred to as
the threat-based policy (El-Yaniv et al., 1992, 2001, p. 3; p. 109).

The authors develop different variants of the threat-based algorithm; for each
of those variants the achievable competitive ratio ¢ depends on the assumptions
on the a-priori knowledge about the future of ON. Four variants are suggested,

assuming:
1. Variant: Bounds M and m, and umber of days £k < T
2. Variant: Bounds M and m

3. Variant: Price fluctuation ratio ¢ = %, and number of days k£ < T

4. Variant: Price fluctuation ratio ¢ = %

are/is known. El-Yaniv et al. (1992, 2001) show that these variants of the
threat-based algorithm gain the optimal (minimum) competitive ratio, and further
suggest to repeat the uni-directional algorithm for bi-directional search. In
addition, El-Yaniv et al. (1992, 2001) and Dannoura and Sakurai (1998) addressed
the scenario where m and M, as well as the first price ¢; are assumed to be

known. The basic rules of the threat-based strategy remain the same. The

1"The bi-directional algorithm of Cover (1991) is presented in Section 2.4.2.2.
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different variants of the uni-directional algorithm of El-Yaniv et al. (1992, 2001)
and Dannoura and Sakurai (1998) are presented in detail in Section 5.1.

Damaschke et al. (2009) assume m, M, and T are known. The threat-based
algorithm of El-Yaniv et al. (1992, 2001) is improved by assuming that the upper
bound is a decreasing function of time, with M, = %, and the lower bound
m is constant. The authors theoretically derive the best achievable worst-case
competitive ratio ¢* (the lower bound) for the case search is repeated over several
downward runs. The ratio ¢* is found by computing a competitive ratio for
each downward run and then choosing the maximum as ¢* (Damaschke et al.,
2009, equation 23, p. 639). Numerical examples are presented showing that the
algorithm achieves a better (smaller) competitive ratio than the original algorithm
of El-Yaniv et al. (1992, 2001).

Risk-Rewarded Algorithms. This class of algorithms to includes a flexible risk
management mechanism to competitive analysis. This means that a forecast, in
particular a (partial) probabilistic input model, can be included. ON is allowed
to make a ‘forecast’. If the forecast comes true, then a better (smaller) ratio ¢;

we ig achieved. Otherwise the worst-case

than the worst-case competitive ratio ¢
competitive ratio ¢“¢ holds, where ¢; < ¢%¢. The result are algorithms with a
bounded loss within a pre-specified tolerance.

The risk-rewarded competitive analysis contains two approaches. The first
approach is to allow ON to benefit from the investors capability in correctly
forecasting the future sequence(s) of prices. The second approach is to allow the
investor to control the risk by selecting ‘near optimal’ algorithms subject to personal
the risk tolerance.

Al-Binali (1997, 1999) extend threat-based algorithm of El-Yaniv et al. (2001)
by a framework in which investors may develop online conversion algorithms based
on their acceptable level of risk (risk tolerance), and on forecasts on price rate
fluctuations. The algorithm ON is allowed to make a ‘forecast’. If the forecast
comes true ON gets a competitive ratio c¢;, otherwise ON suffers the worst-case
ratio ¢¢. The important factor is, that the risk can be controlled by a factor of

€ [1,¢]. Assume the forecast is that the price will increase to at least M;. ON
takes this forecast (rate M), and the risk-tolerance factor a. If the forecast comes
true, the algorithm achieves a competitive ratio ¢; = ¢ < c-a, and is optimal under
the following condition: If the forecast comes not true, the worst-case competitive
ratio is not worse than ¢¢ = ¢- a. In other words, in case ON takes some amount
of risk ON gets an optimal reward ‘for’ this risk.

Iwama and Yonezawa (1999) generalize the risk-taking strategy of al-Binali
(1997) in two ways: 1) Al-Binali (1997) limited a forecast to the assumption
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that the price will increase to some level. Iwama and Yonezawa (1999) also allow
the opposite, i.e. the forecast is that the price will never decrease to some level.
2) Iwama and Yonezawa (1999) provide a scheme which enables including several
forecasts. During conversion forecasts can be ‘updated’ (corrected). ON can make
a forecast and then ‘update’ it by a second forecast, etc. Results show that the
suggested algorithms are not optimal for the entire investment horizon considered,

but for different time intervals.

2.4.2.2 Bi-directional Search

In the following preemptive conversion algorithms for bi-directional search are
presented. Here, an algorithm on is allowed to convert an asset D into another
asset Y, and back into D within one time interval. The work related is only
comprised of guaranteeing conversion algorithms.

Cover (1991) investigates the portfolio selection problem. An algorithm that
dynamically determines the amount of asset D to be converted s, among J different
assets 7 = 1,...,J is presented. The goal is get the maximum value of asset D

after time 7" based on the market history.

Threat-based Algorithms. El-Yaniv et al. (1992, 2001) assume M and m to
be known and consider run search. ON divides the time series of prices into upward
runs and downward runs, and then repeats the uni-directional algorithm suggested
by El-Yaniv et al. (1992, 2001). Within one time interval of length T asset D is
converted into asset Y if the price is moving up, and Y into D if the price is
moving down. Though the uni-directional algorithm proposed in El-Yaniv et al.
(1992, 2001) is shown to be optimal, the bi-directional algorithm is not. Therefore,
the problem of designing an optimal threat-based algorithm for bi-directional search
remains unanswered (El-Yaniv et al., 1992, p. 7). The bi-directional algorithm is
presented in detail in Section 5.2.

Chou et al. (1995) provide a framework to analyze the bi-directional algorithm
of El-Yaniv et al. (1992, 2001) considering a statistical adversary, i.e. by allowing
only certain input distributions.

Dannoura and Sakurai (1998) improve the bi-directional algorithm suggested
by El-Yaniv et al. (1992). The authors use the fact that the uni-directional
algorithm of El-Yaniv et al. (1992) induces an optimal algorithm for bi-directional
search under certain restrictions on the sequence of prices, such that the
price increases from m, then drops again to m, and repeats such fluctuations
(Dannoura and Sakurai, 1998, Figure 2, p. 30). As El-Yaniv et al. (1992)

suggested, the improved uni-directional algorithm is repeated for bi-directional
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search. Dannoura and Sakurai (1998) claim that an investor using the algorithm
of El-Yaniv et al. (1992) faces too much of a threat and therefore make the threat
smaller. The threat assumed by El-Yaniv et al. (1992) is that the price might drop
to m and will remain there until the last day 7. Dannoura and Sakurai (1998)
observed that the algorithm suggested by El-Yaniv et al. (1992) does not convert
at all unless the price is as large as ¢-m, i.e. the ‘real’ threat is at most ¢-m (not m)
and shall not go beyond this point. Dannoura and Sakurai (1998) prove that their
proposed threat-based algorithm achieves a better worst-case competitive ratio
than the algorithm of El-Yaniv et al. (1992). The improved bi-directional algorithm
suggested by Dannoura and Sakurai (1998) is presented in detail in Section 5.3.
In case the input data processed by an online conversion algorithm does not
represent the worst-case input, its performance is often considerably better than the
worst-case competitive ratio tells. For this reason competitive analysis is criticized
as being too pessimistic (see, for example, Koutsoupias and Papadimitriou, 2000).
Hence, the traditional approach to analyze online conversion algorithms is
backtesting. The algorithms are implemented, and the analysis is done on historic
data by simulation runs. Empirical-case analysis of online conversion algorithms is

presented in the next chapter.
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Chapter 3

Empirical Analysis of Online

Conversion Algorithms

This chapter gives an approach to empirically analyze online conversion algorithms.
First, we present the idea of backtesting and introduce stylized facts. Then we
present exploratory data analysis and provide the steps how to empirically analyze
online conversion algorithm using this data analysis approach. We give the work
related relevant for each step. Further, we focus on hypothesis testing and present
the resampling method bootstrapping. The chapter concludes with an overview on
heuristic conversion algorithms analyzed using hypothesis tests and /or a bootstrap

procedure.

3.1 Introduction

There is a lack of consensus on a generally accepted performance evaluation model
for online conversion algorithms. Several approaches exist, most common is to
analyze the performance of ON using returns, or by different measures estimating
(risk) adjusted returns (Tezel and McManus, 2001, pp. 177-181). We suggest
evaluate the quality of ON by the three following criteria:

1. The worst-case competitive ratio ¢ assuming the worst possible sequence of

inputs,

2. the empirical-case performance (in terms of the return to be expected p) on

an observed time series of prices, and
3. the empirical-case competitive ratio ¢ on an observed time series of prices.

Classical (worst-case) competitive analysis, as presented in Chapter 2, derives the

wce

¢ of ON assuming a constructed worst-case time series of prices. In contrast,
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classical empirical-case analysis considers an observed time series of prices, and
carries out experiments on this data set, e.g. using historical data. On the one
hand g is derived, and on the other hand ¢®“. In order to clarify the difference
between the above three criteria suppose two different online conversion algorithms,
denoted by Al and A2. Both algorithms ON € { A1, A2} solve the search for best
prices as presented in Section 2.2, Algorithm 1, p. 27. The question is how to
decide which is the better algorithm.

The worst-case competitive analysis approach is to evaluate A1 and A2 on
a constructed data set representing the worst-case scenario. To decide which is
the better algorithm, each algorithm ON € {Al, A2} is compared to OPT by

wce

calculating its worst-case competitive ratio ¢““ as given in equation (2.19). The
algorithm which achieves the smaller ¢*¢, is considered as the better one. If the
worst-case occurs ON is then guaranteed 1/¢“¢ of the result achieved by OPT (cf.
equation (2.1)). A great deal of literature focuses on the worst-case performance
analysis of online conversion algorithms; an overview can be found in Section 2.4.

The leading experimental approach to decide which algorithm ON € {A1, A2}
is the better one is backtesting. The aim of backtesting is to make assumptions
about the future performance of an algorithm (in terms of u) based on its
performance in the past. Al and A2 are run on data sets comprised of historical

8 The empirical-case performance of ON is measured in

time series of prices.!
terms of the overall (excess) return generated.!® The algorithm which achieves
a (significantly) higher return is considered as the better one. Typically, ON is
compared to a passive benchmark algorithm (B), and not to OPT (see for example
Zontos et al., 1998; El-Yaniv et al., 1999; Schulenberg and Ross, 2002; Shen, 2003;
Siganos, 2007; Larsen (Jr.) and Resnick, 2008; Chavarnakul and Enke, 2008).

To test for significance, the (distributions of the) returns generated by ON €
{Al, A2, B} are analyzed statistically, e.g. using hypotheses tests (Brock et al.,
1992). Based on these statistical results a decision is taken which algorithm ON is
the ‘best’ one, and thus should be applied in practice as it generates the ‘highest’
(excess) return (resp. p): It is assumed that the return generated in the past can
be expected in the future. A great deal of experimental studies in the literature use
this standard approach, especially in the field of heuristic conversion algorithms;
an overview is given at the end of this chapter.

Following the above experimental approach, different algorithms are either

compared directly to each other, or to a benchmark algorithm. This approach might

18We do not consider artificial stock markets, an overview can be found in Palmer et al. (1994);

LeBaron et al. (1999).
19 An excess return is the amount by which the return of ON is greater than the risk-free rate

of return over a time interval of length T
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be misleading. When comparing the algorithms directly to each other a mutual
basis of comparison is missing, and when comparing to a benchmark, B might not
be suitable. This problem is solved by the competitive analysis approach presented
in Chapter 2. Each ON is compared to OPT, and the worst-case competitive
ratio ¢ determines the quality of ON. But this approach is often considered
to be too pessimistic as — instead of an observed historic time series of prices —
worst-case scenarios are assumed. We suggest to solve this problem by calculating
the empirical-case competitive ratio ¢°“ which takes the data of the problem instance
into account.

The empirical-case competitive ratio ¢ is calculated in the same manner as the
worst-case competitive ratio ¢*¢. But instead of a constructed worst-case time series
of prices the data set used in the experiments is considered. To decide which is the
better algorithm, the observed performance of ON € {Al, A2, B} is compared to
OPT through backtesting. The quality of ON is determined by ¢ (cf. equation
(2.19)) and by p. The algorithm which achieves the smallest (highest) ¢ (u) is
considered as the ‘best’ one.

Each of the above three criteria is useful when evaluating online conversion
algorithms but in case they are used independently the results might be misleading.
When considering an online conversion algorithm for practical application,
worst-case performance guarantees are essential, e.g. in case of a stock market
meltdown. But in terms of converting assets the worst-case competitive ratio ¢*¢
does not reveal which returns can be expected, nor whether these returns are
positive or not. Hence, experiments should be carried out. An elegant solution
is to combine the competitive analysis approach with the experimental approach
when analyzing online conversion algorithms. On the one hand, the worst-case
performance of ON is determined and analyzed mathematically. On the other
hand, the empirical-case competitive ratio ¢ and the return to be expected p
are essential to determine whether ON is considerably better than the pessimistic

worst-case competitive ratio ¢¢ tells. Thus, we suggest the following approach:

1. Step: Analyze ON assuming a worst-case sequence of prices, and analytically

derive its worst-case competitive ratio c¢"°.

2. Step: Implement and backtest ON (in a sufficient test environment) using

historical time series of prices.

3. Step: Determine the return to be expected p from ON. Analyze the
empirical-case performance of ON compared to a benchmark B for the
purpose of formulating hypotheses worth testing, and test these hypotheses
statistically.
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4. Step: Determine and analyze the empirical-case competitive ratio ¢ of ON.

5. Step: If necessary, carry out further experiments on different data sets in
order to evaluate the empirical-case performance achieved by ON on the

original data set.

How competitive analysis analysis of ON (1. Step) is done is shown in Chapter 2.

Experimental analysis according to steps 2. to 5. is presented in the following.

3.2 Backtesting and Stylized Facts

The implementation and simulation of an online conversion algorithm, also known
as backtesting, is the concept of taking ON and going back in time in order to see
what would have happened if ON had been followed (Ni and Zhang, 2005). The
assumption is that if ON has performed well previously, it has a good (but not
certain) chance of performing well again in the future. Conversely, if ON has not
performed well in the past, it will probably not perform well in the future.

The backtesting of online conversion algorithms is important for practitioners
as well as researchers to judge if ON is profitable under certain circumstances. It
helps to ‘learn” how ON is likely to perform in the marketplace, and also provides
the opportunity to improve ON. The purpose of the backtesting is to answer the

following questions:
1. Is ON profitable when applied to certain stocks and time intervals?

2. If ON generates (excess) returns for a certain stock, for what parameter

values ON achieves the highest ones?

3. Can these parameter values also generate a reasonable (excess) returns during

future time intervals?

The outcome of a backtesting procedure are the returns generated by ON. In
general, when converting assets, discrete (time interval) returns and continuous
returns must be distinguished (Spremann, 2006, pp. 410-411).2° Tet ¢; be the
price of an asset on day ¢, then for a time interval ¢ of length T" days, the discrete
return equals

R(i) = X (3.1)

qi—1

assuming 7" < t. Each time interval ¢ = 1, ..., pis initiated by a buying transaction

at price ¢;_r, and terminated by a selling transaction at price ¢;. Thus, at the end

20Discrete returns are also called holding period or time interval returns.
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of the investment horizon overall p trades (equaling the overall number of time

intervals) are carried out. Most common is T = 1, resulting in the daily return

Ri(i) = -, (3.2)
qi—1
and the percentage return is calculated by Ry(i) — 1.
When calculating the empirical-case competitive ratio ¢* of an algorithm X €
{ON,OPT}, the time interval return of X for each i-th trade is required. Thus,
equation (3.1) equals equation (2.9), p. 34. Further, from equation (3.1) we get

the continuous return
re(i) = InRy(7) (3.3)
= Ing—Ing_r.

Equations (3.1), (3.2) and (3.3) calculate the returns of single time intervals i. The
return of an algorithm X € {OPT,ON} over multiple time intervals p must be

calculated in a geometric manner using equation (3.2); denoted as geometric return

Rx(p) = Ri(i)- R—1(i) ...  Re_py1(27) (3.4)
o . e and
Gi—1  qi—2 qt—p ’

and for a constant time interval length T'

Qt
1 4t— T

(3.5)

Using discrete returns, we get the overall logarithmic return

rx(p) = In(R(7) - Re—1(i) ... Re_pi1(2)) (3.6)
= ].an( )+1nRt 1( ) .+1nRt_p+1(2')
= (1) +rea(@) + o+ e (d)
= InRx(p).

In case continuous returns 1(i) are used, they can simply be added to get the
logarithmic return rx(p) over multiple time intervals (instead of multiplying the
discrete returns Ry(1) to get the geometric return Rx(p)). But continuous returns
r(2) suffer from a drawback: They can not be used to calculate portfolio returns.

Let w; be the weight of an asset j = 1,...,J within a portfolio, then
wi-In Ry (i) +. ..+ ws - In Ry (i) # In (wi - Rag (i) + ... +wy - Ry (i) . (3.7)

The logarithmic return over multiple time intervals p can not be calculated directly
by the continuous return of single time intervals ¢+ = 1,...,p. Thus, we use the

geometric return, as given in equation (3.4), within this work.
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Trading systems enable a user to develop and backtest online conversion
algorithms. Simple algorithms are relatively easy to implement and test. But the
more complex the investigated algorithms get, the more data must be processed.
Further, some algorithms use multiple stocks, and even multiple markets. All
these factors make backtesting very time-consuming, and many ready-for-use
commercial products become incapable of dealing with them (Ni and Zhang, 2005,
p. 127). Thus, within this work, we use the LifeTrader system as it provides the
required functionality for backtesting the considered online conversion algorithms.
LifeTrader is a PES (planning and execution system) developed at the Saarland
University; an overview on its functionality can be found in Kersch and Schmidt
(2011). Further, the above suggested steps to evaluate an algorithm are covered
by the LifeTrader system.

The aim of backtesting is to make assumptions about the return to be expected
1 based on the performance of ON in the past. In the work related it is assumed
that future asset returns are independently distributed random variables drawn
from the same probability distribution. Further, it is assumed that the returns
generated by ON are normal distributed (Spremann, 2006, p. 123). Within this
work, we assume that these assumptions are close to reality, but must not always
be true for a specific data set considered. Thus, when empirically analyzing the
performance of ON the properties of the discrete returns generated by ON — in
case the algorithm is invested — must be analyzed. These properties are called
‘empirical stylized facts’, and characterize a data set from a statistical point of
view. Stylized facts are usually formulated in terms of qualitative properties of
daily returns R;(i) calculated using equation (3.2) (Cont, 2001, p. 224). The
stylized facts are summary statistics, and contain (Brock et al., 1992, p. 1737):

1. The number p — also known as the sample size,

2. the arithmetic mean

- %-ZR,:(@), (3.9)

3. the standard deviation

1 < N
o= \|—= > (Rii)—7) (3.9)
i=1
defined as the square root of the variance o2,

4. the skewness

B P o (Rui) =T’
(e ey Z( - ) (3.10)

=1
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5. the kurtosis

B p-(p—1) (R =P\ 3-(p—1)?
S e Y e oy Z( E )] »-2) (-3)
(3.11)

of the observed daily returns (Spremann, 2006, Formula (5-12), (5-13) and (5-14)).
The arithmetic mean 7 is commonly used as the estimator for the (unknown) return
to be expected p in the future. The standard deviation o shows the variation from
the mean 7. A low standard deviation indicates that the observed returns tend to
be very close to the mean 7, whereas a high standard deviation indicates that the
returns are spread out over a large range of values.

The skewness 7 measures the (a)symmetry in the probability distribution of
the observed returns. In case of normal distributed data v = 0. In case v > 0
(positive skewness) the right tail of the distribution is longer, i.e. the mass of the
distribution is concentrated on the left, and relatively few high returns exist. In
case 7 < 0 (negative skewness) the left tail of the distribution is longer, i.e. the
mass of the distribution is concentrated on the right, and relatively few low returns
exist. Figure 3.1 gives an example for positive skewness and © = 0 in case of a

normal distribution.

Figure 3.1: Positive Skewness

The kurtosis [ measures with which probability extremely low or extremely

high returns might occur. In case of normal distributed data 8 = 3.2! In case

21The excess kurtosis is defined as 3 — 3, i.e. the excess kurtosis of the normal distribution

equals 0.



62 CHAPTER 3  Empirical Analysis of Online Conversion Algorithms

B > 3 (leptokurtosis) both tails of the probability distribution are ‘fat’, i.e. the
mass of the distribution is concentrated on the left and on the right. Relatively

may high and low returns exist. Figure 3.2 gives an example for 7 = 0.

Figure 3.2: Kurtosis

The stylized facts, especially the skewness and the kurtosis, are used to
check the assumption that the returns generated by ON are normal distributed.
The Jarque-Bera (JB) test is a non-parametric hypothesis test to check the
null hypothesis H, that ‘the returns achieved by ON are normal distributed’
(Jarque and Bera, 1987). In particular two hypotheses are tested, the first one
is that v = 0, and the second one is that 3 = 3. In case the value of 3 (v) is ‘not
close enough’ to 3 (0) H, is rejected. The range of tolerance not to reject Hy is
given by the variances of v and (3. For the skewness the variance equals ,%7 and for
the kurtosis 2]74 (Spremann, 2006, p. 145).

Within this work as data set we consider the German Dax-30 index for the
investment horizon 01-01-1998 to 12-31-2007, resulting in 7" = 2543 closing prices.
We refrained from considering the year 2008 as it marks a major structural
break in the markets worldwide. 'The common benchmark algorithm when
backtesting online conversion algorithms is a passive buy-and-hold algorithm (BH)
(Brock et al., 1992).

Example 2. The stylized facts of the daily returns achieved by BH for the 10-year
sample 1998-2007 are given in Table 3.1. As BH is invested in the Daz-30 index
from the first trading day (01-02-1998) until the last day trading (12-28-2007) of

the investment horizon we get a sample size of p =T — 1 daily returns. Using the
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Sample Size Mean Standard Deviation Skewness Kurtosis
p T o gl 8
2542 1.0004 0.0157 -0.0676 5.7064

Table 3.1: Stylized facts of the German Dax-30 index for 1998-2007

values given in Table 3.1 a JB test is performed. Results show that Hy must be

rejected, i.e. the daily returns of BH are not normal distributed.

Summing up, stylized facts give the qualitative properties of the analyzed
returns. As shown in Example 2 the common assumption of normal distributed
data must not always be true. Instead of making assumptions on the underlying
structure of the data set considered our goal is to ‘let the data speak for themselves’
as much as possible. As a result, the approach to empirically analyze online
conversion algorithms must be exploratory. To solve a problem, the exploratory
data analysis (EDA) technique makes (little or) no assumptions on the data.
Rather, results are immediately analyzed with the goal to infer what model would
be appropriate. The EDA approach allows the data to suggest models that fit
best.

3.3 Exploratory Data Analysis

Two popular data analysis approaches are (Hoaglin et al., 2000):
1. Bayesian Analysis, and
2. Exploratory Data Analysis (EDA).

These approaches are similar in that both start with a problem, and both yield
conclusions. The difference lies in the sequence of processing the input data in
order to solve the problem. The following elements are covered by both data
analysis approaches: 1) Problem — the performance of ON, 2) Data — the returns
generated by ON on the considered time series of prices, 3) Stochastic Model — an
abstraction of reality; the stochastic process generating the data 4) Distribution
— the (assumed) underlying structure of the data, 5) Analysis — the discussion of
the data, 6) Conclusions — the inference on the performance of ON. For Bayesian

Analysis the sequence of processing the input data is

Problem — Data — Stochastic Model — Prior Distribution — Analysis

— Conclusions
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To solve a problem, data collection is followed by the imposition of a model
(assumed) to fit the input data. The analysis that follows is focused on the
parameters of that model. Further, assumptions about the distribution of the
input data are made, or the distribution of the input data is known beforehand.
The objective is to compute and analyze the empirical-case performance of ON
under ‘typical inputs’ with respect to these stochastic assumptions. Unfortunately,
most currently existing models fail to reproduce the underlying data structure
(Cont, 2001, p. 233). Thus, the ‘Bayesian’ approach is criticized from
both a technical, and a conceptual perspective. Technically, for many real-life
problems, an adequate stochastic model is extremely difficult or costly to devise.
Conceptually, the validity of the conclusions becomes dependent on the validity
of the underlying (distributional) assumptions (El-Yaniv et al., 1999). Worse yet,
the exact underlying assumptions may be unknown, or if known, untested. For
this reason the ‘Bayesian Analysis’ approach is not considered here (cf. Section
1.1). Instead, we focus on exploratory data analysis (EDA). The main difference
is that the distribution and the stochastic model are derived from the data, and not
assumed a-priori. Thus, for Ezploratory Data Analysis the sequence of processing

the input data is

Problem — Data — Distribution — Analysis — Stochastic Model —

Conclusions

In case online conversion algorithms are evaluated using FDA the focus is not on
the process or model generating the data, but on the analysis of the data generated
by ON. EDA is used analyze the computed empirical-case returns, and to suggest
how to further analyze them. A variety of graphical and quantitative techniques

might be employed in order to

e maximize the insight into the returns generated, e.g. to detect outliers and

anomalies,
e assess assumptions on the stochastic model,
e uncover underlying data structures, e.g. distributions,

e support the selection of appropriate statistical tools and techniques for further

analysis,
e suggest hypotheses to test (statistically) based on the returns generated,

e provide a basis for further data collection through experiments, e.g. by

resampling methods like bootstrapping.
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The EDA approach an attitude (philosophy) about how data analysis should be
carried out. The stylized facts of an algorithm give an insight into the returns
generated, and uncover the underlying structure of the achieved returns. This
enables to select the appropriate statistical tools for further analysis, i.e. the
adequate statistical test. The returns generated are analyzed for the purpose
of formulating hypotheses worth testing. This distinguishes EDA from classical
hypothesis testing, which requires a-priori formulated hypotheses (Oldenbiirger,
1996, pp. 71-72). Hypothesis tests are used to decide which algorithm under
investigation is the better one on a specific time series of prices. In case the
chosen hypothesis test does not provide a result, i.e. there is no statement possible
which algorithm is the better one, further data sets must be considered. In the
following we present two standard approaches from the literature used to evaluate
the performance of an online conversion algorithm. First, we present the student
t-test for testing hypotheses, and second the bootstrapping procedure for generating

further data sets if required.

3.3.1 Hypothesis Testing

Before describing the student ¢-test in detail we first give some preliminaries on
statistical tests. A statistical test which uses hypotheses is called hypothesis test.
Two types of hypothesis tests exist (Cont, 2001, p. 223):

1. Parametric tests: Assume that the data to be analyzed belongs to a

prespecified parametric family, for example require a certain distribution.

2. Non-parametric tests: Make only qualitative assumptions about the
properties of the stochastic process generating the data, for example the JB
test.

Cont (2001) states that non-parametric tests have the great theoretical advantage
of being model-free, but in a financial context they can only provide qualitative
information about a data set under investigation. Thus, non-parametric tests are
less exact, and should only be used when parametric tests are not applicable.

A statistical hypothesis is a statement about the properties of one or several
random variables, e.g. about the stylized facts or the distribution of the returns
generated by ON. To confirm a hypothesis statistically a co-called null hypothesis
(Hp) is defined which must to be rejected in order to confirm the (alternative)
hypothesis (H7) indirectly. Two types of hypotheses, based on the parameters of a

distribution, can be distinguished:

1. Two-tailed: Tt is tested whether two parameter values are equal (unequal),

e.g. Hy: = (#) po must be rejected.
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2. One-tailed: It is tested whether one parameter value is greater (smaller) than

or equal to another parameter value, e.g. Hy : 17 > (<) po must be rejected.

A null hypothesis Hy can not be confirmed or rejected with certainty. Therefore
a significance level o € [0,1] has to be specified. The value of « describes the
amount of evidence required to accept that an event is unlikely to have occurred by
chance. The smaller the chosen significance level, the fewer the null hypothesis H
is rejected. The most established significance levels are 5% (0.05), 1% (0.01), and
0.1% (0.001). Next we present the student t-test as the standard parametric test
applied by almost all the contributions to empirical evaluation methods for online
coversion algorithms in the literature (Brock et al., 1992; Mills, 1997; Hudson et al.,
1996; Gunasekarage and Power, 2001).

Student t-test

The (student) t-test is a parametric one-tailed two-sample hypothesis test to show
that the mean of one sample (of returns) is significantly greater than the mean of
another sample. The t-test implies the following assumptions regarding the sample

under consideration, i.e. the returns generated by ON:

1. The returns generated by ON are (stochastically) independent, to be tested
by the Ljung-Bozx test (Ljung and Box, 1978).

2. The underlying distribution of the returns under consideration is normal, to
be tested by the JB test (Jarque and Bera, 1987).

3. The variances of the returns are homogeneous, to be tested by the Bartlett
test for normal distributed samples, otherwise by the Levene test (Levene,
1960; Layard, 1973).

These assumptions have to be met if the t-test is to be valid. Within this work we
do not discuss these limitations of the t-test, the reader is referred to Kumar et al.
(1997, p. 341) and Wolfinger (1996, pp. 207-208). Further, we do not present the
tests to verify the 1. and 3. assumption. The reader is referred to Levene (1960);
Layard (1973) and Ljung and Box (1978).

The test statistic I' used by the t-test follows a t-distribution if Hy is not
rejected. The shape of the t-distribution is specified by the degrees of freedom
v, and passes into the standard normal distribution with increasing v. Thus, a
normal distribution can be assumed in case the sample size p is greater than 30. In
case the variances of the two samples are not equal an alternative to the t-test is the
Welch-test. The only difference between the two-sample t-test and the Welch-test
is the different calculation of v and I (Welch, 1947; Satterthwaite, 1946).
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The t-test algorithm for evaluating the performance of ON is given in the
following. The t-test is significant when Hy : p; < uo is rejected at a significance
level of a%. The value p; and po specify the returns to be expected from
ON € {Al, B}, which are normally unknown. Therefore, when analyzing the
performance of the two algorithms the means of the observed discrete returns
generated by Al, denoted by 7, and generated by B, denoted by 75, must be
used. To answer the question whether Al is significantly better than a benchmark
B through backtesting, the values of 7#; (with sample size p;) and 7, (with sample
size py) are calculated using equation (3.8), compared, and their difference is tested
for significance using t-test. The steps of the t-test algorithm are (Ruppert, 2004,
p. 64):

Algorithm 2.

Step 1: Specify the level of significance o in %.

Step 2: Formulate the one-tailed null hypothesis: It is tested whether py s
significantly greater than ps (Ho : p1 < o must be rejected).

Step 3: Specify two samples (Py, Py) and determine their size (p1, p2): Usually

samples are comprised of (discrete) returns generated by Al and B.
Step 4: Calculate the arithmetic mean 71 of Py and 7o of Py using equation (3.8).

Step 5: Calculate the variances o? of Py and o3 of Py by squaring the standard

deviation given in equation (3.9), and test for variance homogeneity.
When the variances are equal:

Step 6a: Calculate the degrees of freedom
v=p1+p2— 2. (3.12)
Step 7a: Calculate the test statistic

r4—To

I = . (3.13)
(p1—1)-03+(p2—1)-03 1 1
\/ et (545

When the variances are not equal:

Step 6b: Calculate the degrees of freedom

>2
|- (3.14)
i
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Step 7b: Calculate the test statistic

(3.15)

Step 8: Calculate critical value t., =ty_, from the t-distribution.

Step 9: Take a decision; if
1) T > t.. then Hy is rejected,
2) T < t. then Hy can not be rejected.

That Hy can not be rejected does not signify H; is valid; backtesting on further
time series of prices is essential in case I' < t... The result of Algorithm 2 then
is that there is no statement possible on the performance of Al. This might be
due to sample problems, or the implied t-test assumptions are violated. The t-test
is robust, meaning it is quite insensitive to deviations from normality in the data.
The most serious sample problem is that the variances are not homogeneous, called
heteroskedasticity, meaning that the volatility of the returns evolves over time
(Ruiz and Pascual, 2002, p. 1). To deal with this problem a number of recent
papers has suggested to use resampling methods to generate further data sets
for backtesting. The most common method is the so-called bootstrap procedure
as it is robust to heteroskedasticity (Tabak and Lima, 2009, p. 816). Further,
bootstrapping is a way of finding the ‘most likely’ sample distribution by generating
many new random samples from the original sample. In the following we present

the bootstrap procedure.

3.3.2 Resampling: The Bootstrap Procedure

Hypothesis testing using a t-test rests on the implied ¢-test assumptions. In case
these assumptions are violated — when evaluating ON — the bootstrap idea is based
on asking: ‘What would happen if we applied ON many times?’.

Efron (1979) suggested the name ‘bootstrap procedure’ (Wu, 1986, p. 1265).
The main idea of a bootstrap procedure is to resample new data sets from the
original sample creating S bootstrap samples of the same size as the original
sample: S samples are created by repeatedly sampling with replacement. Sampling
with replacement means that after an observation is randomly drawn from the
original sample it is ‘put back’ before drawing the next observation. This classic
bootstrap procedure suggested by Efron (1979) is the simplest version, and only
valid for identically distributed data. If this assumption is violated, or in case the
classic procedure is applied directly to dependent data, the resampled data will not

preserve the properties of the original data set. As a result inconsistent statistical
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results are provided (Ruiz and Pascual, 2002, p. 3). Consequently, alternative
approaches have been developed.

Kiinsch (1989) proposes the Moving Block Bootstrap (M BB) that divides
the original data set into overlapping blocks of fixed length, and resamples
with replacement from these blocks. Within this work, we limit to the M BB
procedure, for an overview on other bootstrap approaches the reader is referred
to Ruiz and Pascual (2002). The M BB is a widely used non-parametric approach
preserving the properties of the original data set (Kiinsch, 1989; Hall et al., 1995;
Levich and Thomas, 1993; Tabak and Lima, 2009). Let S be the number of
bootstrap samples to be generated, with ¢ = 1,...,S. Let [ be the block size
(1 <1 <08), and b(i) = {ay,..., 241} a block formed with [ consecutive
observations beginning with z;. Where b equals the number of blocks, with
i = 1,...,b. When evaluating the performance an online conversion algorithm
the length of the original data set T" equals the number of prices ¢;, and results in
T — 1 daily returns within each i-th time interval (i = 1,...,p). Then, the M BB
algorithm for resampling 7" — 1 daily returns R;(i) generated by ON is comprised
of the following steps (Hall et al., 1995; Tabak and Lima, 2009):

Algorithm 3.

Step 1: Determine the optimal block size I* according to the rule given in Hall et al.
(1995).%

Step 2: Calculate the number of blocks b = % to be resampled.

Step 3: Split the sample of observed returns into S — [ 4+ 1 overlapping blocks
bl(l) - {Rt<l), Rt + ]_('l), e 7Rt+l—1<i>}'

Step 4: Resample the blocks by(i) with replacement generating S new bootstrap
samples of length T'.

Step 5: Calculate S ‘pseudo’ time series of prices from the resampled (blocks of)
returns using S randomly chosen first prices ¢;(i) € [¢™" (i), ™ (i)] as a starting

value, and g = Ry(i) - qu—1 fort=2,...,T andi=1,...,p.

It is assumed that the blocks b;(i) are iid random variables with conditional

probability p(bi(i)) = 5= (Tabak and Lima, 2009, p. 817). Further, Hall et al.

(1995) show that the optimal block size [* depends significantly on the context,
being equal to v/T —1, /T —1 and /T —1 in the cases of variance or bias

estimation, estimation of an one-sided distribution function, and estimation of a

two-sided distribution function, respectively. The result of a bootstrap procedure

are S ‘pseudo’ time series. On each i-th bootstrap sample algorithms X €

22For [* = 1 the M BB is similar to the classic bootstrap procedure suggested by Efron (1979).
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{OPT,ON} are run, and the resulting in S arithmetic means 7(i) x are commonly
used as the estimator for the (unknown) rate of return to be expected uy in
the future, with ¢ = 1,..., 5. Thus, a typical bootstrap procedure to evaluate
an algorithm X € {OPT,ON} requires to:

1. Randomly resample from the original sample, creating S bootstrap samples

of the same size as the original sample, according to Algorithm 3.

2. Run algorithm X on each of the S bootstrap samples to get S different

arithmetic means 7(7) y for each algorithm X.

3. Statistically evaluate the performance of algorithm X on each of the S

bootstrap samples according to Algorithm 2.

4. Combine the S statistical t-test results into one summary statistic for each

algorithm X.

5. For each algorithm X estimate the return to be expected px by calculating

the mean 75 of all arithmetic means #(i)x, with i = 1,...,S.

The distribution of the i = 1,..., S different arithmetic means 7 (i) x per algorithm
X shows the ‘most likely’ stylized facts, and the ‘most likely’ performance of O PT
and ON. Summing up, when analyzing the empirical-case performance of an
algorithm X the bootstrap procedure can be used to estimate the true but unknown
(Ruiz and Pascual, 2002, p. 2)

1. distribution, or
2. probability distribution

of the population of the returns 7(i)x generated by algorithm X € {OPT,ON}
from which the return to be expected ux can be estimated through 7%. This
ensures that the online conversion algorithms considered are compared S times on
a mutual basis.

In the following we give an overview on online conversion algorithms evaluated
using stylized facts, hypothesis testing as well as a bootstrap procedure.
Unfortunately, the work related is limited to heuristic conversion algorithms. By
carrying out Algorithm 2 and Algorithm 3 the question whether the (back) tested
algorithms have predictive ability or not is to be answered. Most authors study
the Efficient Market Hypothesis (EMH): The EMH states that in a (weakly)
efficient financial market returns are not predictable (cf. Section 1.3.1). The
predictability of returns is usually measured by the first-order autocorrelation

coefficient, measuring the similarity between observations as a function of the time
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separation between them. If a sufficiently large proportion of all traders acting in a
stock market behave ‘irrationally’, then the stock prices can, at least temporarily,
deviate from economic fundamentals (DeLong et al., 1990). This deviation of stock
prices from economic fundamentals can imply autocorrelation and, hence, the
predictability of returns: Repeating price patterns occur. Returns to be expected
px are considered to be ‘predictable’ in the sense that it is possible to forecast
returns in a particular time interval by using the returns observed in a previous
time interval (Pierdzioch, 2004). In addition, most authors employ a bootstrap

procedure to test for predictability.

3.4 lLiterature Review

We limit our overview to the two heuristic conversion algorithms suggested in
the work of Brock et al. (1992), namely Mowving Average Crossover (MA) and
Trading Range Breakout (TRB). Brock et al. (1992, p. 1736) distinguish two
variants of the M A algorithm, namely Variable-length Moving Average (VM A)
and Fixed-length Moving Average (F'MA). The definition of VM A, FMA and
TRB can be found in Section 2.4.1.2. These three bi-directional algorithms are
of major interest in the literature, and have been analyzed experimentally by
several researchers (Vanstone and Finnie, 2009, p. 6673). Here, the comparison
to a passive buy-and-hold (BH) algorithm (as benchmark B) is of prime interest
using either hypothesis tests, a bootstrap procedure or both. The deviation of
stock prices from economic fundamentals is measured in terms of the return to be
expected: pony of ON € {VMA, FMA,TRB} is estimated and compared to ug
of benchmark B through backtesting. The predictive ability of ON is based on
the assumption that if Hy : pony < upg is rejected, there is good (but not certain)
chance that ON performs better than algorithm B again in the future. In case
results show that the (excess) returns generated by ON are not significant, this
suggests that predictability is not economically significant.

Brock et al. (1992) suggest the algorithms VM A, FMA and TRB and conduct
experiments with a price-weighted index on an investment horizon of approximately
90 years from the first day 1897 to the last day 1986 (exactly 25036 trading days)
using the Dow Jones Industrial Average (DJIA) index (Brock et al., 1992, p. 1734).

Experiments are carried out for five different time intervals of length 7"
1. January 1897- December 1986 (‘90 Years’) , T=25036,
2. January 1897 - July 1914 (‘World War I'), T=5255,

3. January 1915 - December 1938 (‘Depression’), T—7136,



72 CHAPTER 3  Empirical Analysis of Online Conversion Algorithms

4. January 1939 - June 1962 (‘World War IT’), T=6442,
5. July 1962 - December 1986 (‘Data Availability’), T=6155.

DJIA buy-and-hold (BH) is the benchmark considered, called ‘unconditional
returns’. The performance is measured using logarithmic returns (cf. equation
(3.6)) as they are time additive and approximate discrete returns if calculated on
a daily basis (Brock et al., 1992, p. 1737). The returns on buy (sell) signals on the
DJTA are compared to returns from simulated comparison series generated by the
following models: Autoregressive (AR(1)), generalized autoregressive conditional
heteroskedasticity in mean (GARCH-M), and exponential GARCH. The results
provide empirical support for utilizing the heuristic conversion algorithms as they
outperform not only BH but also the AR(1), the GARCH-M, and the exponential
GARCH model. The returns obtained from the algorithms are not likely to be
generated by these three models. Brock et al. (1992) conclude that VMA, FMA
and T'RB have predictive ability. The suggested algorithms are presented and
analyzed in detail in Section 4.3.

Bessembinder and Chan (1995) test whether VMA, FMA and TRB can
predict stock price movements in Asian markets. The first result is that the
algorithms are ‘quite successful” in the emerging markets of Malaysia, Thailand and
Taiwan, but have less predictive power in more developed markets such as Hong
Kong and Japan. Transactions costs which could eliminate gains are estimated to
be 1.57%. The second result is that buying and selling signals emitted by U.S.
markets have substantial forecast power for Asian stock returns beyond that of
own-market signals.

Hudson et al. (1996) test whether the finding by Brock et al. (1992) — that
VMA, FMA and TRB have predictive ability — is replicable on the FT30
(Financial Times Ordinary) Index from July 1935 to January 1994. Further, the
authors test whether the algorithms generate excess returns in a costly trading
environment. Hudson et al. (1996) conclude that although VM A, FMA and TRB
do have predictive ability in terms of UK data, their use would not generate excess
returns in the presence of costs. In general, the results presented are remarkably
similar to those of Brock et al. (1992). Thus, one conclusion to be drawn from
both studies is that VM A, FMA and T RB have predictive ability if sufficiently
long investment horizon is considered.

Mills (1997) also compares VMA, FMA and TRB to BH by conducting
experiments on the FT30 index for the time intervals 1935-1954 and 1975-1994.
In addition, trading signals generated by a geometric M A are considered. The
geometric M A gave an almost identical set of buying and selling signals as the
conventional (arithmetic) MA. Until 1980 all algorithms outperform BH. The
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results of Mills (1997) are consistent, in almost every respect, with those of
Brock et al. (1992) and Hudson et al. (1996). But from 1980 on BH clearly
dominates all other algorithms. The sample used in Brock et al. (1992) ends in
1986; so Mills (1997) concludes that there was not enough data to analyze structural
shifts that might have taken place starting in 1982.

Ratner and Leal (1999) compare VM A and FMA to BH by investigating ten
emerging equity markets in Latin America and Asia from 1982 to 1995 under
transaction costs using the S&P500 and Nikkei225 indices. Results show that VM A
and FFM A applied to emerging markets do not have the ability to outperform BH.

Parisi and Vasquez (2000) test VMA, FMA and TRB in the Chilean stock
market using the Indice de Precio Selectivo de Acciones (ISPA) from January 1987
to September 1998. The results are similar to the ones of Brock et al. (1992),
providing strong support for VM A, FMA and TRB .

Gunasekarage and Power (2001) test VMA and FM A in four emerging South
Asian capital markets from January 1990 to March 2000, i.e. the Bombay Stock
Exchange, the Colombo Stock Exchange, the Dhaka Stock Exchange and the
Karachi Stock Exchange. The findings indicate that the algorithms have predictive
ability in these markets, and reject Hy : ux = pupy with X € {VMA, FMA}.
Gunasekarage and Power (2001) conclude that VMA and FMA are able to
generate excess returns in South Asian markets.

Kwon and Kish (2002) extend the work of Brock et al. (1992) in two ways.
First, by investigating the predictive ability of VMA, FMA and TRB on the
New York Stock Exchange (NYSE) index from July 1962 to December 1996, as
well as on the National Association of Security Dealers Automatic Quotations
(NASDAQ) index from January 1972 to December 1996. Second, by including
a further M A algorithm, called Moving Average with Trading Volume (MAV).
The results support the results of Brock et al. (1992) showing that the suggested
algorithms outperform BH.

Chang et al. (2004) test whether returns generated by VM A, FMA and TRB
are predictable in eleven emerging stock markets in the US and Japan considering
data from January 1991 to January 2004. Predictability is analyzed by means of
multivariate variance ratios using bootstrap procedures. VM A, FMA and TRB
are employed and compared to BH. Results show that there is some evidence
of forecasting power but no significance. When trading costs are taken into
account only a few variants of the algorithms generate excess returns. Chang et al.
(2004) conclude that although the algorithms show some predictive ability this is
not statistically significant. Hence, Chang et al. (2004) check for robustness by
analyzing returns from 1559 different variants of the algorithms, testing different

sub-samples, and analyzing bear and bull markets. Overall the algorithms do not
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seem to have predictive power for the recent sample used.

Bokhari et al. (2005) investigate the predictive ability and profitability of
VMA, FMA and TRB for different company sizes considering different indices
form January 1987 to July 2002. Results on different Financial Times Stock
Exchange (FTSE) indices, namely FTSE 100, FTSE 250 and FTSE Small Cap,
show that the algorithms have a progressively higher predictive ability the smaller
the size of the company, but are not profitable assuming transaction costs.

Marshall and Cahan (2005) test the profitability of twelve variants of VM A,
FMA and TRB on the New Zealand equity market. The nature and regulations
suggest that the New Zealand equity market may be less efficient than large markets
in Europe or the US. This raises the possibility that the algorithms are profitable
in New Zealand. Using a bootstrap procedure, the results show that the returns
achieved in New Zealand follow a similar pattern than those in large markets.

Ming-Ming and Siok-Hwa (2006) test the profitability of VMA, FMA and
T RB on nine Asian stock market indices from January 1988 to December 2003. The
results provide strong support for VM A and FFM A in China, Thailand, Taiwan,
Malaysia, Singapore, Hong Kong, Korea, and Indonesia.

Hatgioannides and Mesomeris (2007) aim to characterize the stock return
dynamics of four Latin American and four Asian emerging capital market economies
and test the profitability of VM A and TRB. Using the Morgan Stanley Capital
International (MSCI) index BH is outperformed in all markets before transaction
costs, and in Asian markets after transaction costs.

Lento and Gradojevic (2007) test the profitability of different algorithms by
evaluating their ability to outperform BH. Different VMA, FMA, Filter rule,
Bollinger Band, and T'RB algorithms are tested on the S&P/TSX 300 Index, the
DJIA, the NASDAQ Composite Index, and the Canada/U.S. spot exchange rate. A
bootstrap procedure is used to determine the statistical significance of the results.
Considering transaction costs, excess returns are generated by VMA, FMA and
TRB for all markets except DJIA.

Lagoarde-Segot and Lucey (2008) test the Efficient Market Hypothesis (EM H)
in seven emerging Middle-Eastern North African (MENA) stock markets from
January 1998 to December 2004. The results of a random-walk test, and the
returns of VM A, FM A and TRB are aggregated into a single efficiency index. The
impact of market development, corporate governance and economic liberalization
on the latter using a multinomial ordered logistic regression is to be analyzed. The
results highlight heterogeneous levels of efficiency in the MENA stock markets.
The efficiency index seems to be affected by market depth, although corporate
governance factors also have predictive power. By contrast, the impact of overall

economic liberalization does not appear significant.
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Tabak and Lima (2009) investigate the predictive power of VM A, FMA and
TRB for the Brazilian exchange rate from 2003 to 2006. A bootstrap procedure
is employed to test for predictability. Furthermore, the ability of the algorithms
to generate significant higher returns compared to BH is tested. Results show
that the excess return generated by the algorithms is not significant, suggesting
that predictability is not economically significant. Their results are consistent with
those of Chang et al. (2004).

In the next two chapters a selection of preemptive and non-preemptive online
conversion algorithms is presented in detail. The results of the empirical evaluation

of those algorithms are given in Chapter 6.
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Chapter 4
Selected Non-preemptive Algorithms

Non-preemptive conversion algorithms are represented by one single number which
specifies when to buy or sell an asset. For each observed price the algorithm must
decide to convert ‘all or nothing’. In the following one guaranteeing algorithm and
two heuristic algorithms from the literature are presented in detail. This chapter is
used as the theoretical basis for the implementation and the experimental analysis

of the algorithms presented.

4.1 The Uni-directional Algorithm of FEl-Yanwv
(1998)

El-Yaniv (1998) suggests an uni-directional algorithm to solve the maz-search
problem presented in Section 2.2.1. Mohr and Schmidt (2008a,b) extend this
algorithm to bi-directional search in order to buy at low prices and to sell at high

prices. The original algorithm and its extension are presented in the following.

4.1.1 The Guaranteeing Algorithm

El-Yaniv (1998) provides an elegant algorithm for uni-directional non-preemptive
conversion with m and M known. The algorithm is called reservation price policy
(RPP) (El-Yaniv, 1998, p. 34).%

Algorithm 4. Accept the first price greater than or equal to ¢* =M - m.

El-Yaniv (1998) assumes that prices ¢; (t = 1,...7) are chosen by OPT from
the real interval [m, M] with m < ¢ < M, ¢ = %, and 0 < m < M. To solve the
mazx-search problem, ON is searching for the maximum price in a sequence of prices

of unknown length 7" that unfolds sequentially. Each point of time ¢t ON obtains a

23The RPP can also be found in El-Yaniv et al. (2001, p. 107).
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price quotation ¢; after which he must immediately decide whether to accept the
price ¢, or to continue observing prices. Search is closed when ON accepts some
price.

We call ¢* the reservation price (RP), and its deviation is done by the ‘error
balancing argument’ (Borodin and El-Yaniv, 1998, p. 267). The optimal ¢* under
worst-case assumptions should balance the ratio ‘best-case to worst-case’. Two
cases must be considered: 1) the computed ¢* is too low, or 2) the computed ¢* is
too high. A clever adversary with complete knowledge of the future, and ¢*, can
use this information to exploit the algorithm making the RPP perform worse, as
shown in the following. Two errors, concerning the maximum price encountered,

might occur in case of max-search:

1) Too-early error: If ¢* is too low, then OPT provides an input sequence
in such format that prices ¢; € [¢*, M|, and thus ON may suffer from the
so called ‘too early error’: ON could have achieved M but gets ¢* in the
worst-case. The competitive ratio achieved thus will be ¢; = %

2) Too-late error: If ¢* is too high, then OPT provides an input sequence in
such format that prices ¢; € [m,¢*], and thus ON may suffer from the ‘too
late error’: ON could have achieved ¢*, and gets m in the worst-case. The
competitive ratio achieved thus will be ¢y = .

m

ON must choose a ¢* while balancing the two errors, i.e. to ensure that

1 = o (4.1)
M g

¢ om

g = VM- -m.

The above reservation price policy is optimal for both finite and infinite time
horizons, and when duration 7" is known or unknown (El-Yaniv, 1998, p. 35),

resulting in a competitive ratio as given in Theorem 1.
Theorem 1. Algorithm 4 is \/p compelitive.

Worst-case analysis is done in the following. To proof Theorem 1 we assume

maz-search is carried out once (p = 1).

4.1.2 Worst-Case Analysis

Proof of Theorem 1 for Algorithm 4: Assume ¢, € [¢*, M]. Then ON sells

once at a price ¢; > ¢*. Then the maximum possible price OPT achieves is M.
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With this, from equation (2.7) the competitive ratio for maz-search equals

OPT M
- >

max M _ %_
(1) = o E—W_\/;_@' (4.2)

Further assume ¢; € [m,¢*[, i.e. no price ¢, > ¢* appears. Then ON must sell at
the last possible price gr which is m in the worst-case. Then the maximum possible

price OPT achieves is ¢* — € and, thus

Cmw(l):OPT:C]*—€> \/(]\i‘m):\/g:\/a (4.3)

ON m

The value /p measures the competitive ratio for maz-search under worst-case
assumptions in terms of maximum and minimum prices. From this follows that

the reservation price policy suggested by El-Yaniv (1998) is /p-competitive. m

4.2 Extension to Bi-directional Search of Mohr
and Schmadt (2008a)

Mohr and Schmidt (2008a,b) extend the uni-directional reservation price algorithm
for selling of El-Yaniv (1998) (cf. Section 4.1) to buying and selling, i.e. introduce

a rule for min-search.

4.2.1 The Guaranteeing Algorithm

The above results can be transferred to bi-directional search if we modify the

reservation price policy. The optimal deterministic bi-directional algorithm is the
following RPP (Mohr and Schmidt, 2008a,b):

Algorithm 5. Buy at the first price smaller than or equal to, and sell at the first
price greater than or equal to reservation price ¢* = /M - m.

Algorithm 5 is denoted by SQRT, and results in a competitive ratio as given in

Theorem 2.
Theorem 2. Algorithm 5 is (%)p competitive.

The deviation of the competitive ratio for bi-directional search, as given in

Theorem 2, assuming p > 1 trades is presented in the following.
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4.2.2 Worst-Case Analysis

When bi-directional search is carried out, the competitive ratio is measured in
terms of the (overall) return achieved.

Assume that for each of the p > 1 trades algorithm SQRT has to consider
a worst-case time series () = (W,m(i),m(i), V(M (@) - m(i)), M(z))
for buying and selling. M (z) and m(i) are upper and lower bounds of prices, with
1=1,...,p

In the worst-case the algorithm SQRT buys and sells ¢ times at reservation

price(s = (M ). Resulting in a worst-case geometric return of (cf.
equamon (3.4) and (3.5))

NSV ORIO))
Rsqrr = - - 4.4
v =11 VOG- m@) 49

=1
iff ¢*(i) is constant for each i-th trade.

OPT buys i times at minimum prices m(i), and sells ¢ times at the maximum

prices M (7). Resulting in a geometric return of (cf. equation (3.4) and (3.5))

Ropr(p) = H M(Z) (4.5)

- )

as for each i-th trade different upper bounds M (i) and lower bounds m(i) are
assumed. If m(i) = m and M (i) = M are constants, the worst-case geometeric

return of OPT equals
M

p
Ropr(p) = (E) (4.6)
assuming p > 1 trades.

Proof of Theorem 2 for Algorithm 5: In oder to buy and sell p > 1 times in
a row, for each i-th trade first the min-search problem has to be solved for buying,
and second the maz-search problem has to be solved for selling. Using equations
(4.4) and (4.5) from equations (2.17) and (2.18) for SQRT we get a worst-case

competitive ratio

Eould) = g (@.7)
ROPT(p)
RSQRT<p)

1T M)

B Hm(z)

=1
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assuming different upper bounds M (7) and lower bounds m(i) for each i-th trade.
From this follows iff the lower bounds are constants (m(i) = m), and the upper
bounds are constants (M () = M)

M p
o) = (5 (48)
assuming p > 1 trades. m
Alternatively, to calculate the worst-case competitive ratio for p > 1 trades
of SQRT the competitive ratios for min-search, and for maz-search achievable by
SQRT can be used as shown in equation (2.17).
The ratio cg5,.(p) can be interpreted as the competitive ratio the algorithm
SQRT achieves when buying and selling p > 1 times under worst-case assumptions.
The worst-case competitive ratio grows exponential with p. Compared to OPT the

more trades are carried out the worse SQRT gets.

4.3 The Bi-directional Algorithms of Brock,
Lakonishok and LeBaron (1992)

Brock et al. (1992) introduce the algorithms Moving Average Crossover (MA)
and Trading Range Breakout (TRB), which are based on technical indicators.
These algorithms are of major interest in the literature, and have been empirically
analyzed by several researchers, cf. Bessembinder and Chan (1995); Hudson et al.
(1996); Mills (1997); Ratner and Leal (1999); Parisi and Vasquez (2000);
Gunasekarage and Power (2001); Kwon and Kish (2002); Chang et al. (2004);
Bokhari et al. (2005); Marshall and Cahan (2005); Ming-Ming and Siok-Hwa
(2006); Hatgioannides and Mesomeris (2007); Lento and Gradojevic (2007);
Lagoarde-Segot and Lucey (2008); Tabak and Lima (2009), and the overview in
Section 3.4. Unfortunately, these works do not consider competitive analysis.

In the following we present the competitive analysis of M A and TRB. In
general, both heuristic conversion algorithms are reservation price (RP) algorithms.
Reservation price(s) ¢* are calculated based on the offered price(s) ¢;. Using ¢*
intersection points specifying when to buy or sell are determined.

For each i-th trade we assume a worst-case time series of prices containing only
minimum prices m(i), and maximum prices M (7). At best the considered algorithm
buys at price m(i), and sells at price M () resulting ¢ times in an optimum return
of OPT = M(i)/m(i). In the worst-case the algorithms ON € {M A, TRB} buy
at prices M (i) and sell at prices m(i) ¢ times resulting in the worst possible return
of ON = m(i)/M(i) = 1/OPT assuming p > 1 with i = 1,...,p. For ON €
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{MA, TRB}, from equations (2.17) and (2.18), we get a worst-case competitive

ratio

5 = (M@))?, (19)

o )

and in case m(i) = m and M (i) = M are constants

con(p) = <M>2p- (4.10)

m

To prove the competitive ratio given in equation (4.10) we assume that ON €
{MA, TRB} is allowed to trade only once (p = 1).

Theorem 3. The worst-case competitive ratio of the heuristic conversion
algorithms M A and TRB equals (%)zp.

The deviation of the competitive ratio for bi-directional search, as given in

Theorem 3, assuming p = 1, is presented in the following.

4.3.1 Moving Average Crossover

Assume the worst-case time series @ = (m, ..., m, M, m,...,m). Hence, the prices
iy s Q1 = m, g = M, and qpy1,...,qgr = m. The M A algorithm suggested
by Brock et al. (1992) is:

Algorithm 6. Buy on day t if MA(S); > uB(L); and MA(S)i—1 < uB(L)¢_1,
and sell on day t if MA(S); < IB(L); and MA(S);—1 > IB(L);_1.

Where MA(S); is a short moving average, MA(L), a long moving average
(S < L), and the value n € {L, S} defines the number of previous data points (days)
considered to calculate M A(n); = Z:than Prices ¢; are lagged by bands, the

upper band uB(L); = M A(L);-(146), and the lower band [B(L); = M A(L);-(1-9)
with ¢ € [0.00, oo].

4.3.2 Worst-Case Analysis

Proof of Theorem 3 for Algorithm 6: Assume S = 1, L < (¢t* — 1), and
0 = 0.00. This corresponds to increasing prices generating a buy signal if the price
crosses the long M A from below. Similarly, this corresponds to decreasing prices

generating a sell signal if the price crosses the long M A from above. Then M A

1. buys on day t* at price ¢~ = M. Because

MAQ)poy = oy =m S uB(t — Dy = MA®# = D)y = L0 =,
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2. sells on day t* + 1 at price ¢+11 = m. Because

MA@ 1 = Gegs = m < IB(E = Dpegy = MA(E — 1)y = E=20mdom
m, and

MA(D)p =g =M >1IB{t* — 1)y = MA(t* — 1) = % < M.

Taking these decisions into account M A achieves a return of m/M. Comparing this

to the optimum return achieved by OPT, the worst-case competitive ratio equals
2

i) =0PT/MA= (4)". =

4.3.3 Trading Range Breakout

Assume the worst-case time series QQ = (m+¢€,...,m+¢, M,m,...,m). Hence,
the prices q1,...,q+-1 = m +¢€, ¢ = M, and qy1,...,9r = m. The TRB
algorithm suggested by Brock et al. (1992) is:

Algorithm 7. Buy on day t if ¢ > uB(n); and ¢—1 < uB(n);_1, and sell on day
tif g <IB(n); and 41 > IB(n);_1.

Where lower band [B(n);, = ¢™(n) - (1 — §) with ¢™"(n) =
min{¢li =t —n,...,t —1}, and upper band uB(n); = ¢"**(n) - (1 — J) with
¢ (n) = max{gli=t—n,...,t —1} where 6 € [0.00,00], and n < t is the
number of previous data points (days) considered.

4.3.4 Worst-Case Analysis

Proof of Theorem 3 for Algorithm 7: Assume n < (t* — 2), and § = 0.00.
This corresponds to increasing prices generating a buy signal if the price crosses the
upper band from below. Similarly, this corresponds to decreasing prices generating

a sell signal if the price crosses lower band from above. Then TRB

1. buys on day t* at price ¢~ = M. Because
g =M > uB(t* — 2)p = ¢ (t* — 2) = max {qli =2,...,t" — 1} = m +,
and
qro1=m+e<uB(t" —2)p_1 = ¢ (" —2) =max{gli=1,...,t* -2} =

m + €.

2. sells on day t* + 1 at price ¢+11 = m. Because
Grep1 = m < IBt* — 2)py1 = ¢ (1" —2) = min{g|i =3,...,t"} =m +e,
and
@ =M > IB(t* — 2)p = ¢ (t* —2) =min{q¢li =2,...,t* =1} =m +e.

Taking these decisions into account T'RB achieves a return of m/M. Comparing
this to the optimum return achieved by OPT, the worst-case competitive ratio
equals ¢%%,(1) = OPT/TRB = (X)*. =
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Chapter 5

Selected Preemptive Algorithms

Preemptive algorithms allow to determine a function for conversion. An asset
can be converted ‘little by little’ sequentially in parts, each part at a different
price. In the following one uni-directional and two bi-directional preemptive online
conversion algorithms from the literature are presented in detail. This chapter is
used as the theoretical basis for the implementation and the experimental analysis

of the algorithms presented.

5.1 The Uni-directional Algorithm of FEl-Yaniv,
Fiat, Karp and Turpin (1992)

El-Yaniv et al. (1992) apply online algorithms to currency conversion, using
competitive analysis as performance measure. The authors focus on uni-directional
preemptive conversion: ON is given the task of converting an asset D into asset
Y while it is forbidden to convert Y already purchased back into D. The amount
sy of D to be converted into Y on days t = 1,...,7T must be determined such that
the amount of Y is maximized on day T, and 3./, s, = 1. El-Yaniv et al. (1992)

distinguish two cases:

1. Continuous case: The price fluctuates during the investment horizon, and

ON may convert continuously, i.e. at any moment.

2. Discrete case: One price is announced on each trading day ¢ and remains

fixed throughout ¢, i.e. ON converts at discrete time steps.

For both cases the suggested algorithm is identical. Thus, as in El-Yaniv et al.
(2001), we do not differ between the continuous case and the discrete case in the

following. We assume that at any point of time ¢ there is a price ¢, offered to

91
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ON. To solve the maz-search problem the following algorithm is suggested by
El-Yaniv et al. (1992, 2001).

5.1.1 The Guaranteeing Algorithm

The suggested online conversion algorithm is based on the assumption that there
exists a threat that at some stage during the time interval, namely on day £ < T,
the offered price will drop to a minimum level m, and will remain there until the last
day T. A worst-case time series of prices Q = (q1,42,- -, Gk, m,m, ..., m), where
t=1,...,k <T,is assumed. For a start, assume that the worst-case competitive
ratio ¢ is known to ON.?* The proposed algorithm is commonly referred to as the
threat-based strategy, and the basic rules are (El-Yaniv et al., 1992, 2001, p. 3; p.
109):

Algorithm 8.

Rule (1). Consider a conversion from asset D into assetY only if the current price

offered is the highest seen so far.

Rule (2). Whenever you convert asset D into asset Y, convert just enough D to
ensure that a competitive ratio ¢ would be obtained if an adversary dropped the price

to the minimum possible price, and kept it there throughout the game.?

Rule (3). On the last trading day T, all remaining D must be converted into Y,

possibly at the minimum price.

As long as the first price ¢; < ¢-m Algorithm 8 does not convert any D into
Y (except of course on the last day 7). Thus, El-Yaniv et al. (2001, p. 111)
assume m - c < ¢ < @2,...,< qx < M where c is the target competitive ratio.
This follows from Rule (8): A competitive ratio of ¢ is always attainable when the
maximum price is ¢ - m, even if the whole asset D is converted at the minimum m
(El-Yaniv et al., 2001, Remark 5, p. 110)
OPT c-m

ON ~— m (5.1)

El-Yaniv et al. (1992, 2001) suggest four variants of the threat-based algorithm;
each converts according to Rules (1) to (3) given in Algorithm 8, but the worst-case

competitive ratios differ depending on the assumed a-priori knowledge of ON:

24For clarity, we denote the worst-case competitive ratio by ¢ within this chapter.
25The ‘minimum possible price’ is defined with respect to the information known to ON. Which

is m if m is known and is ¢;/¢p if only ¢ = M/m is known, and ¢; is highest price seen so far.
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Variant 1a: *® Upper and lower bounds of prices, M and m, known:

Threat(m, M)

Variant 1b: 2" Upper and lower bounds of prices, M and m, as well as first price

¢1 known: Threat(m, M, ¢;)

Variant 2: 2 Upper and lower bounds of prices, M and m, as well the as number
of trading days k < T known: Threat(m, M, k)

M
m

Variant 3: ?° Maximum price fluctuation ratio ¢ = £ as well the as number of

trading days k& < T known: Threat(p, k)
Variant 4: *° Maximum price fluctuation ratio ¢ = X known: Threat(¢)

El-Yaniv et al. (1992) analyze Variants 1 to 4 under worst-case assumptions.
Without loss of generality, an optimal offline adversary (OPT) is considered that
increases the offered prices ¢; from ¢; > m continuously up to the maximum possible
price ¢z < M with 1 < k < T (El-Yaniv et al., 1992). Threat is that the price drops
to m for the ‘rest’ of the time interval, i.e. qxy1,...,qr = m. Thus, the worst-case
time series @ with m < ¢ <,..., < q < M and k < T must be considered. It is
assumed that () is monotone increasing, since both OPT and ON convert D into
Y only when ¢; reaches a new maximum. Prices that are the same or lower than
previous prices will be ignored (El-Yaniv et al., 2001, p. 111).

At the start of each trading day ¢ a price ¢ is offered to ON. Following Rules (1)
to (3) given in Algorithm 8 ON uses the (pre-)calculated worst-case competitive
ratio ¢ to determine the amount of asset D (s; € [0,1]) to be converted into Y on
day t. ON converts just enough to ensure ¢, as Rule (3) requires. On the ‘first’
day the current price is the highest seen so far, and ON converts some amount of
D iff ¢ > c¢-m. Thus, there exists some s; > 0 such that c is still attainable
if an amount of s; of D is converted into Y. The chosen amount s; is such that
c is so far guaranteed even if there will be a permanent drop to m on the next
day, and no further conversions will be conducted (except for one last on day T'
converting all remaining D). Similar arguments can be used to justify the choice
of the subsequent amounts s;, and thus Rules (1) to (3) induce a c-competitive
algorithm (El-Yaniv et al., 2001, p. 110).

The values d; and y; denote the remaining amount of asset D, and the

accumulated amount of asset Y after the ¢-th day. The threat-based algorithm

Z6Variant 2 in El-Yaniv et al. (2001).
2TNot discussed in El-Yaniv et al. (2001).
Z8Variant 1 in El-Yaniv et al. (2001).
29Variant 3 in El-Yaniv et al. (2001).
30Not discussed in El-Yaniv et al. (1992).
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starts with dy = 1 of D and yy = 0 of Y, and then converts the initial amount of
D ‘little by little’ into Y. The worst-case competitive ratio c¢ differs for Variants
1 to 4. In the following worst-case analysis is done and the competitive ratios c,
denoted by ¢*(m, M) and ¢*(m, M, q,) for Variant 1, c(m, M, k) for Variant 2,
c(p, k) for Variant 8, and ¢ (yp) for Variant 4, are derived.

5.1.2 Worst-Case Analysis of Variant 1: Threat(m, M) and
Threat(m, M, q;)

Since this is the variant where the number of trading days £ < T is not given
the threat-based algorithm, denoted by Threat(m, M) and Threat(m, M, ¢;), must
consider an adversary that may choose an arbitrary number of days T" — oo in
the worst-case (El-Yaniv et al., 2001, p. 121). The worst-case competitive ratio
c € {c*(m,M),c>*(m,M,q)}, is fixed a-priori and does not change thereafter
(El-Yaniv et al., 1992, p. 6).

For each trading day ¢t = 1,...,k < T, the values of D remaining d; and Y

accumulated y, must always satisfy that (cf. equation (2.7))

OPT s
S 5.2
ON m-d;y + v (5:2)

= C

where ON = m - d; + y; represents the performance of the threat-based algorithm
Variant 1 if OPT drops the price to m and ¢, is the performance of OPT for this
case.

In order to meet the ratio ¢ on each day ¢ the value d; must be determined such
that (Dannoura and Sakurai, 1998, p. 29) (see also Iwama and Yonezawa (1999,

p. 412))

1
d=1—=-m 21—
c c-m—m

—m

(5.3)

The optimal ¢ must satisfy d; = 0 for ¢, = M. For ¢, = M from equation (5.3) we
get (El-Yaniv et al., 1992, Case 1, p. 3)

1 M-
d = 1—=-Ih— " (5.4)
C c-m-—m
————

1

— 1—Z.¢
&

— 0.

This guarantees that the whole amount of asset D (remaining) is converted in case

the highest possible price M occurs on ¢, and thus d; = 0 after the ¢-th conversion.
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From equation (5.4) follows that the competitive ratio ¢>(m, M) is the unique
solution of ¢ (El-Yaniv et al., 2001, Formula (29), p. 122)

M—m
= In— 5.5
¢ nm-(c—l) (5:5)
M_ 1
In 2
c—1
—1
= mgp .
c—1

El-Yaniv et al. (1992) only consider the case m = 1, then (El-Yaniv et al., 1992,
Formula (3))

M—1
=1 : 5.6
c=In——r7p (5.6)
Note that when estimating ¢ equation (5.5) must be transformed to
M
Cle—=—1)="2=—-1 5.7
ce-n=2 1 (5.7

and then solved to c.

El-Yaniv et al. (1992) differ between two cases, Case 1 assumes that the first
price ¢ is unknown, and Case 2 assumes that ¢; is known to ON. In the later
work El-Yaniv et al. (2001, p. 110) only consider Case 1 as given in El-Yaniv et al.
(1992). In the worst-case the pessimistic assumption ¢ = m must be made. In
case ¢; is assumed to be known a-priori, the same worst-case ratio c is reached as
in the case where ¢; is assumed to be unknown a-priori, i.e. the knowledge of ¢
does not improve the worst-case competitive ratio c. But in case ¢; is assumed to
be known a-priori the competitive ratio, denoted by ¢*(m, M, q), is the unique
solution of ¢ ((El-Yaniv et al., 1992, p. 3, Case 2) and (Dannoura and Sakurai,
1998, p. 29))

M

In 2— ¢ € [m,cm)|

_ c—1 )

€= 1 + g—m 111 M—m (58)
q1 € [Cma M]

q1 q1—m

Thus, equation (5.5) holds for the case where the initial price ¢; is assumed to be
unknown to ON or m < ¢; < ¢®(m, M) -m (El-Yaniv et al., 1992, p. 3). Further,
depending on the value of ¢; the amount of D remaining d; equals (El-Yaniv et al.,
1992, p. 4)

p — % < In A ¢ € [m,cm)] (5.9)
= _ay . .
—‘f;l_;n — % -In —Zi_m ¢ € [em, M].

In both cases (for ¢g; known and unknown) the amount of accumulated Y on day ¢
equals
Yo = Y1+ S - q¢ with y, > 0. (5.10)
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The amount s; € [0, 1] to be converted on day ¢ equals
St = dt—l — dt with d[) =1 (511)

and d; is calculated as given in equation (5.3) for ¢; unknown, and as given in
equation (5.9) for ¢; known.

When considering worst-cases we assume ¢; = m. Thus, unless otherwise
stated, the achievable worst-case ratio of Variant I always means the value of
equation (5.5) within this work. In case of an empirical evaluation of Variant 1 the
knowledge of ¢ is of interest, then the cases considered in equation (5.8) hold. An
open question is whether or not the knowledge of ¢; improves the empirical-case
competitive ratio of the threat-based algorithm Variant 1. This is discussed in
Section 6.4.

5.1.3 Worst-Case Analysis of Variant 2: Threat(m, M, k)

This is the variant where the number of trading days k& < T'is assumed to be known.
From this follows, the worst-case competitive ratio ¢, denoted by c¢(m, M, k), is
strictly increasing with & < T, and the pessimistic assumption £ = T must be
made when considering worst-cases (El-Yaniv et al., 2001, p. 118). The worst-case
competitive ratio ¢ must be determined such that there will be no D left after the
last conversion, i.e. dr = 0. Analogously to Variant 1 the amount to be converted
on the t-th day, with t =1,...,k < T equals

St = dt—l — dt with do =1. (512)

From dy = 0 follows s7 = dp_; with (El-Yaniv et al., 2001, p. 113)

» si=1 (5.13)

t=1

The overall amount of Y after day 1" equals

T
yr=> s q. (5.14)
t=1
The amount of already accumulated Y on day ¢, y; > 0, equals

Yt = Ys—1+ St~ Gt (5.15)

with y1 = yo + $1- 1 = s1 - q1 for t = 1. Further, the amount of D remaining on
day t, d; < 1, equals
dt = dt—l — St (516)
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withdy =dy —s;=1—3s; fort =1.
El-Yaniv et al. (1992, 2001) consider maz-search as discussed in Section 2.2.1.
Rules (1) to (3) of Algorithm 8 ensure that at time ¢, ‘just enough’ of asset D is

converted that ON achieves a competitive ratio ¢. Thus (cf. equation (2.7))

OPT gt
p— 5-]—7
_ qt
(Yro1 4+ St - q) +m - (de—1 — St)
< c

The denominator y; + m - d; represents the overall amount of Y ON achieves if
OPT would drop ¢;41 to m, and the nominator ¢, is the amount of Y O PT achieves
in this case. For the case m = 1, as suggested in El-Yaniv et al. (1992), equation
(5.17) reduces to

OPT qt

_ 5.18
ON Y + dy ( )
_ qt
(Ye—1 + St - @) + (di—1 — $¢)
< c

Following Rule (3) ON must convert the minimum s; that satisfies equation (5.17).

Solving (5.17) as an equality constraint with respect to s; we get

% = Y1+ St-q+m-(di—1 — St) (5.19)
= Yy +m-di1+5s- (@ —m)
. _ 'd,
St'(Qt—m) — g — ¢ (yt 1+ m-a 1)‘

C

From equation (5.19) we get the amount to be converted on each trading day s,
(El-Yaniv et al., 2001, Formula 27)

. IQt_C'(yt—1+dt—1'm)
' C'(Qt—m)

(5.20)

and for the case m = 1, as suggested in El-Yaniv et al. (1992), from equation (5.20)
we get (El-Yaniv et al., 1992, Formula 4)

@ —c- (o1 +diq)

= 5.21
5y P (5.21)
_ qt — qt—1
¢ (¢ —1)

It remains to determine the global competitive ratio ¢ used in equation (5.20)
that is attainable by ON. For every day ¢ let ¥ = k —t + 1 be the number
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remaining days before the price drops to m. Let ¢; be the first price of this series.
Let ¢ (q1) be a local (lower bound) competitive ratio which is achievable on a
sequence of £/ < T remaining prices assuming d; = 1 and y; = 0. The overall
achievable worst-case competitive ratio ¢, with respect to M and m, in a k-day
time interval can be determined by maximizing ck/(ql, ..., qx) over all choices of
k <T (El-Yaniv et al., 2001, Formula (13))

¢ = Sup Ck/(Ql) B 7Qk) (522)
= supc (q1, )

with

q1 —m

Fa,q) =1+ L= (1~ 1) [1_ (E_m)kll] : (5.23)

Because ¢ (qy, ) is maximized for g = M supc¥ (q1, ¢) reduces to ¢*(q). As
a result, the local competitive ratio for each remaining day &', denoted by ¢*'(¢1),

can be given as (El-Yaniv et al., 2001, Formula 15)

Hlg)=1+2"" g —1). [1_ (]q\}_myl] (5.24)

q1 —m

When calculating ¢ (q;) it is assumed that each day is the ‘only’ day. When
¥ (q1) is calculated for each remaining day &’ the value c*'(q;) is decreasing with
increasing prices ¢, and is minimized when ¢, = M, ie. ¥ (M) = 1. In other
words, on each remaining day &’ the value of ¢*'(¢;) would be reached iff the whole
asset D would be converted into Y on day k' and the price drops to m on the next
day (El-Yaniv et al., 2001, p. 120).

From equation (5.24) we get the worst-case competitive ratio for Variant 2
under the assumption that each price offered qq,...,qx (kK < T) is the only (first)
price offered, and the ¢; drops to m on the next day. With m =1 and ¥ =T for a
fixed value of ¢, the ratio ¢(m, M, k) is the unique solution, ¢, of (El-Yaniv et al.,
1992, Formula 2)

c = Fg) (5.25)

¢ — 1 G —1\7"
- 1 AT =1)- 1=
" ) ( ) [ (M—l)

As a function of ¢, ¢(m, M, k) is the unique solution, ¢, of (El-Yaniv et al., 2001,

- (e 52

Lemma 8, Formula 26)

c=1T-
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It remains to derive the overall worst-case ratio including all past trading days.
Assume a sequence of w price maxima. For T' > k > 2 the best worst-case ratio ¢
can be achieved when converting at i = 1,...,w price maxima, i.e. > " s = L.
The competitive ratio ¢ when investing in all w maxima equals (El-Yaniv et al.,
1992, Formula (1))
¢ —m . qi — gi—1

c=1+ .
q1 i di—m

(5.27)

To determine the competitive ratio achievable over w days equation (5.27) must
be maximized over all choices of w < T and ¢; such that m < ¢, and ¢ < M. For
a fixed value ¢, the maximum is achieved when w = T and ¢r = M, and all w
ratios % in equation (5.27) are equal (i = 2,...,w) (El-Yaniv et al., 1992, p.

4). This leads to

_ Ch—l_w_ |y (a1 T
e=14 % 1)[1 (M—l) ] (5.28)

which equals equation (5.24) for the case m = 1 and w = k’. The detailed derivation
of equation (5.28) can also be found in Damaschke et al. (2009, Lemma 3, p. 636).
By maximizing equation (5.28) as a function of ¢ for T > k > 2, the overall

worst-case ratio ¢ (El-Yaniv et al., 2001)3!

()

which equals equation (5.26) for w =1T.

gl

] (5.29)

Let ¢ be a global (upper bound) competitive ratio assuming that ¢; is the highest
price of the whole time series, i.e. OPT converts the whole amount of asset D into
asset Y at price ¢;, and ON converts the remaining amount of asset D to asst Y.
Then from equations (5.28) and (5.29) we get (El-Yaniv et al., 2001, 1992, Formula
(1); Formula (28a))

k
qt g —m qt — qi—1
c = -1+ . —_— 5.30
di—1 - qr + Y1 qt tz; g —m ] ( )
1
q Gp—m ., g —m \¥-!
— 1+ S —-1) 1=
di—1 - qr + Y ( q ( ) [ (M—m) ])
qt Y
= e )
di—1 - qr + Y1 (a1)

The denominator d;_1 - g1 + y;—1 represents the amount of Y accumulated by ON,

and the nominator ¢; is the amount of Y achieved by OPT.

31Can also be found in Fiat and Woeginger (1998, p. 336).
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Summing up, which worst-case competitive ratio ¢ ON could reach depends on

the following cases:

1. qq is a global maximum and OPT will convert the whole of asset D at price
¢ = M. Then from equation (5.30) the worst-case competitive ratio equals
c(m, M, k) = ¥ (q,) with ¢, = M.

2. ¢ is not a global maximum and OPT will convert the whole of asset D at a
future price. Then from equation (5.24) we get
c(m, M, k) =max {*(q)|k' =1,...,k <T} = "(q).

Having calculated the achievable worst-case competitive ratio ¢ the amount to be
converted s, is calculated according to equation (5.20). When experiments are
carried out the empirical-case competitive ratio ¢* of Threat(m, M, k) equals ¢ as

given in equation (5.30) for ¥’ = 1 day remaining,.

5.1.4 Worst-Case Analysis of Variant 3: Threat(yp, k)

This is the variant where the price fluctuation ratio ¢ = % and the number of
trading days k& < T is assumed to be known. El-Yaniv et al. (2001, p. 122) observed
that the minimum price offered on day ¢ is at least q—;. Therefore, the worst-case
competitive ratio ¢ can be derived as in the analysis of Variant 2 (Threat(m, M, k)).

When specializing to the case m = %, we get (El-Yaniv et al., 2001, Formula 38)

_ (p—1)"
c = @- (1 — (Sak/(k’—l) - 1)k1> . (5.31)

In the worst-case the adversary will choose k£ to be T'. As the worst-case ratio c,

denoted by ¢(p, k), is monotone increasing with k& < T, we get (El-Yaniv et al.,
2001, p. 126, Theorem 6)

o k) = - (1 IR ) . (5.32)

(7T — 1)

5.1.5 Worst-Case Analysis of Variant 4: Threat(y)

Analogously to Variant 1 (Threat(m, M)) the number of trading days k£ < T is
not given, and Threat(p) must consider an adversary that may choose an arbitrary
number of days 7" — oo in the worst-case (El-Yaniv et al., 2001, p. 121). The
worst-case competitive ratio ¢, denoted by ¢®(y), is thus fixed a-priori and does
not change thereafter (El-Yaniv et al., 1992, p. 6). Let ¢®(p) = limr_ c(p, k),
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then from equation (5.32) we get (El-Yaniv et al., 2001, p. 126)

: (p—1" _ plng
jlgrolo = (p—1)exp oo1) (5.33)
Therefore
- Inp
>(p) = 90~<1—(s0—1)e:cp(—i_1)) (5.34)
_ p—1
PTG

It remains to compute the amount to be converted s; for the algorithms
Threat (g, k) and Threat(¢). For both El-Yaniv et al. (1992, 2001) observed that
the minimum price offered on day ¢ is at least %. From El-Yaniv et al. (2001,

Formula (5)) we know
@ _ Y + dy - (minimum possible price) (5.35)
c

By replacing the ‘minimum possible price’ by % we get (El-Yaniv et al., 2001,
Formula (30))

% — yt + dt . &

¢ ¥

1
=di=g (=) (5.36)

and from equation (5.20) we get the amount to be converted

@ —c-(po1+diq- %f)
7 (5.37)
¢ (g — ;)

St =

where y; = y;—1 + s - ¢ Note that ¢ equals ¢(p) for algorithm Threat(p), and
c(p, k) for algorithm Threat(y, k).

In the following we give some numerical examples for the above four variants
of the threat-based algorithm.

5.1.6 Numerical Examples for Variant 1 to 4

To ensure that the competitive ratio is never smaller than one and that not more
than the remaining amount of asset D is converted Cases (1) to (3) regarding the
value of the first price ¢; are derived in the following. From these cases Conditions
(1) to (3) are derived. Note that as long as there has been no conversion at all,

each price ¢; is considered as ¢;.
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Case (1): m< ¢ <c-m

From Rule (3) given in Algorithm 8 follows that a competitive ratio ¢ is only
achievable when the fist price is at least ¢-m (as ¢ > 1 ¢-m € [m, M]). Then ¢

holds even if the remaining amount of D is converted at price m. From this follows:

1. Aslong as ¢; = ¢-m, no D are converted: dy = 1 and yo = 0, and thus s; =0
(except on day T, when ON must convert all remaining D into Y, possibly

at m).

2. Aslongas ¢ <c-m, s1 <0
(more than the initial amount of D dy = 1 would be converted).

From this Condition (1) can be stated as follows:
s1=0iff ¢ <c-m (El-Yaniv et al., 2001, Remark 5, p. 110).

In the following we give some numerical examples for Condition (1). Consider
T = 5 possible prices I = (3,2,1.5,4,5). Only the increasing prices ¢; = 3, ¢4 = 4

and g5 = 5 are considered, where M =5 and m = 1.5.

Variant 1 for m < ¢; < coo(m, M)-m. For both cases (¢; assumed to be known
and unknown) the worst-case competitive ratio to decide whether ¢; > ¢>*(m, M )-m
or not is calculated using equation (5.5) in advance, i.e. equals ¢>(m, M) = 1.5136.

If price ¢; is assumed to be known a-priori, and ¢; < ¢>(m, M) - m Case 1
in El-Yaniv et al. (1992) holds. Thus, we do not need to differ between the case
where ¢; is known or unknown, as given in equations (5.8) and (5.9). The already
accumulated amount of asset Y, v, is calculated using equation (5.10), and s,
using equation (5.11). As the number of days & < T is unknown for Variant 1
there might be some amount of asset D remaining which must be converted at the
last price gr, possibly at m. From equation (5.11) thus follows s; = dr_1, and the
amount of asset D remaining, d;, is calculated using equation (5.3),

Following Condition (1), if the first price ¢; is smaller than or equal to (<)
c¢®(m, M) - m the amount to be converted s; = 0. Table 5.1 gives a numerical
example for ¢>(m, M) - m = 2.2704. For Variant 1 the achievable worst-case

competitive ratio ¢¢, denoted by ¢>(m, M), must equal

q1

= B itk @ =c>*(m,M)-m
m

o ®(m, M) -m

B m

= 1.5136
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tq St dy Yt

1 2.2704 0.0000 1.0000 0.0000
2 2 - - -

3 1.5 - - -

4 4 0.7777 0.2223 3.1108
5 5 0.2223 0.0000 4.2223

Table 5.1: Numerical example for Variant 1 with ¢, = ¢>(m, M) -m

where the value ¢; is the amount of asset Y OPT achieves and m - d; + v, is the

amount of Y achieved by ON assuming that the price drops to m on day ¢ + 1.
As ON accumulated 4.2223 Y on day T the empirical-case competitive ratio

c*¢ for Variant 1 on the considered input sequence I equals

OPT
e = 5.39
c ON (5.39)
qr )
= —— withdyr=0
m - dr + yr Wi
M

yr

5
= = 1.1842.
4.2223 s

Variant 2 for m < ¢ < (q) - m. For Variant 2, using equation (5.24), the
value ¢’ (q,) is calculated for each day t. Following Condition (1), if the a ‘first’
price g1 < ¢ (q1) - m then the amount to be converted s; = 0. For the input
sequence I considered the value ¢*(q;) - m = 1.3818 - 1.5 = 2.0727. From equation
(5.20) we get s; = 0 as long as ¢ < 2.0727. For ¢; = 2.0727 the overall worst-case

competitive ratio ¢*¢, denoted by c(m, M, k), is given by

c(m, M, k) = max{ck/(q1)|k’:1,...,5} (5.40)
= "(2.0727)
= 1.4023.

To calculate c(m, M, k) = 1.4023 it is assumed that the price drops to m on day 2

and remains there. Table 5.2 gives a numerical example.

As ON accumulated 4.2424 Y on day T the empirical-case competitive ratio
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tq Ko Flg) c St dy Yt

1 20727 5 1.4023 1.4023 0.0000 1.0000 0.0000
2 2 4 - - - - -

3 1.5 3 - - - - -

4 4 2 1.1786 1.1786 0.7576 0.2424 3.0303
5 5 1 1.0000 1.1786 0.2424 0.0000 4.2424

Table 5.2: Numerical example for Variant 2 with ¢; = ¥ (q;) - m

c*® for Variant 2 on the considered input sequence I equals

OPT

S 5.41
¢ ON (5-41)
= I Gith qr=M
yr
= 0 = 1.1786
o 4.2424 '

Variant 8 for m < q; < c¢(p,k)-m. The worst-case competitive ratio to decide
whether ¢1 < ¢(p, k) - m or not is calculated using equation (5.32), and equals
c(p, k) = 1.8040 for the input sequence I = (3,2,1.5,4,5).

Analogously to Variant 2, the already accumulated amount of asset Y, v, is
calculated using equation (5.10). The amount to be converted s; is calculated
using equation (5.37), with s = dr_;. The amount of asset D remaining, d;, is
calculated using equation (5.36).

Following Condition (1), if the first price ¢; is smaller than or equal to (<)

c(p, k) -m the amount to be converted s; = 0. Table 5.3 gives a numerical example

for ¢ = c(p, k) - m = 2.7060. For Variant 3 the worst-case competitive ratio ¢,

U q St dy Yt

1 27060 0.0000 1.0000 0.0000
2 2 - - -

3 1.5 - - -

4 4 0.3633 0.6367 1.4533
5 9o 0.6367 0.0000 4.6367

Table 5.3: Numerical example for Variant 8 with ¢; = (¢, k) - m
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denoted by ¢(¢p, k), must equal

c(p, k)

where the value ¢; is the

amount of Y achieved by ON assuming that the price drops to m on day 2.

a1 .
= —— withdy=1landy; =0
m-dy + s 1 Y1
= D Gith @ =c(p,k)-m
m
o C(QD, k) - m
N m
= 1.8040
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(5.42)

amount of asset Y OPT achieves and m - d; + v, is the

As ON accumulated 4.6367 Y on day T the empirical-case competitive ratio

c*® for Variant 3 on the considered input sequence I equals

OPT

ON
qr .

= —— withdyr =0
m'dT+yTW1 g
M

ur
2 o4
46367 '

eC

(5.43)

Variant 4 for m < ¢ < ¢(p) - m. The worst-case competitive ratio to decide

whether ¢; < ¢(p)-m or not is calculated using equation (5.34), and equals ¢(p) =
1.9405 for the input sequence I = (3,2,1.5,4,5).

Analogously to Variant 2, the already accumulated amount of asset Y, vy, is

calculated using equation (5.10). The amount to be converted s; is calculated

using equation (5.37), with sy = dr_;. The amount of asset D remaining, d;, is

calculated using equation (5.36).

Following Condition (1), if the first price ¢ is smaller than or equal to (<)

c(p) - m the amount to be converted s; = 0. Table 5.4 gives a numerical example

for ¢ = c(p) - m = 2.9108. For Variant 4 the achievable worst-case competitive

~+

Tt = W N =

4 St dy Yt
2.9108 0.0000 1.0000 0.0000
9 i - .

1.5 - - -

4 0.3076 0.6924 1.2304
5) 0.6924 0.0000 4.6924

Table 5.4: Numerical example for Variant 4 with ¢, = c(p) - m



106 CHAPTER 5  Selected Preemptive Algorithms

ratio ¢*¢, denoted by c(¢), must equal

q1

c = —— withdy=1landy; =0 5.44
(90) m-dy + s 1 hn ( )
= L with @ =c(p)-m
m
_elp)m
m
= 1.9405

where the value ¢; is the amount of asset Y OPT achieves and m - d; + y; is the
amount of Y achieved by ON assuming that the price drops to m on day ¢ + 1.
As ON accumulated 4.6924 Y on day T the empirical-case competitive ratio

c*® for Variant 4 on the considered input sequence I equals

OPT
= —— 5.45
c ON (5.45)
qr .
= —— withdr=0
m - dp +yr i

M

Yr
5
= —— = 1.0656.
4.6924
The empirical-case competitive ratio ¢* = 1.0656 of Variant 4 is better (smaller)
than the ¢* = 1.0784 of Variant & as a smaller amount s, = 0.3076 is converted

at q4 = 4.

Case (2): M >q >c-m

Analogously to Case (1), as the number of days T' is unknown for Variant 1 and
Variant 4, there might be dr > 0 of asset D remaining which must be converted

at the last price g7, possibly at m. Thus, the amount of asset D remaining

>0, for Variant 1, Variant 4,
dr = (5.46)
=0, for Variant 2, Variant 3,
and from equation (5.12) follows
ST — dT—l- (547)
From this Condition (2) can be stated as follows:

O0<sy<1liff M >q >c-m.

In the following we give some numerical examples for Condition (2). Consider
the same example of T' = 5 possible prices I = (3,2,1.5,4,5) as for Case 1. Only

the increasing prices ¢; = 3, ¢4 = 4 and g5 = 5 are considered, M = 5, and m = 1.5.
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Variant 1 for M > ¢ > ¢°(M,m)-m and ¢ assumed to be unknown
a-priori. As ¢; is assumed to be unknown equation (5.5) is used to calculate
c¢®(m, M) = 1.5136 in advance. The amount d; on each day ¢ is calculated using
equation (5.3), and s; using equation (5.11). From this follows that y; can be
calculated using equation (5.10). Table 5.5 gives an example for Variant 1 where

G =3>c(m,M)-m=22704. As q; > ¢ - m the amount to be converted on

t G St dy Yt

1 0.4402 0.5598 1.3206
2 2 - - -

3 1.5 - - -

4 0.3375 0.2223 2.6706
5 O 0.2223 0.0000 3.7821

Table 5.5: Numerical example for Variant 1a with M > ¢, > ¢>°(m, M) -m and ¢

assumed to be unknown a-priori

the first day s; = 0.4402 > 0. For Variant 1 with M > ¢; > ¢y - m with ¢; and
k < T assumed to be unknown, the amount of sy = dr_; = 0.2223 of asset D is
converted at qgr = 5.

As ON accumulated 3.7821 Y on day T the empirical-case competitive ratio

c“® for Variant 1a on the considered input sequence I equals

e _ OPT
< = 5 (5.48)

= " ithdy=0

m - dr + yr
M

yr
5

= 1.3220.
3.7821 3220

Variant 1 for M > ¢; > ¢ (m, M)-m and ¢; assumed to be known a-priori.
The worst-case competitive ratio to decide whether ¢; > ¢>(m, M) - m or not is
calculated using equation (5.5), i.e. equals 1.5136. If the first price ¢; is assumed to
be known a-priori, and ¢; > ¢>(m, M) - m Case 2 in El-Yaniv et al. (1992) holds.
Then from equation (5.8) we get a worst-case competitive ratio ¢ (m, M, q) =
1.4236 based on the value of ¢;. Equation (5.9) is used to calculate d;. Further,
from equation (5.11) we get s; (with sy = dr_1) and ¥, is calculated using equation
(5.10). Table 5.6 gives a numerical example. For Variant I with M > ¢ >
c>®(m, M) -m and ¢, assumed to be known, the a-priori knowledge of ¢; leads to a

higher amount yr as less Y are converted at the first price ¢;: Without knowing ¢;



108 CHAPTER 5  Selected Preemptive Algorithms

tq St dy Yt

1 0.4048 0.5952 1.2145
2 2 - - -

3 1.5 - - -

4 0.3588 0.2363 2.6498
5 5 0.2363 0.0000 3.8315

Table 5.6: Numerical example for Variant 1b with M > ¢; > ¢ (m, M) -m and ¢,

assumed to be known a-priori

and amount of s; = 0.4402 of asset D is converted (cf. Table 5.5), while knowing
¢ results in a smaller amount of s; = 0.4048 to be converted for ¢; = 3 (cf. Table
5.6). Thus, by the knowledge ¢; a higher amount of D remains to be converted at
a better (higher) price. From this follows ¢*“(m, M) > c¢*(m, M, q1).

As ON accumulated 3.8315 Y on day T the empirical-case competitive ratio

c*® for Variant 1b on the considered input sequence I equals

OPT
= —— 5.49
c ON (5.49)
qr .
= —— withdyr =0
m'dT+yTW g

M

yr

)
= =1
3.8315 3050

with ¢®(m, M) = 1.3220 > ¢*“(m, M, ¢1) = 1.3050.

Variant 2 for M > q, > " (q1) - m. For Variant 2, using equation (5.24), the
value ¢*'(q1) is calculated for each trading day. Following Condition (2), if a “first’
price q; > ¢ (g,) -m then the amount to be converted on this day s, > 0. Further,
as T is known for Variant 2, the amount of asset D remaining on day 1" = 5, ds, is

null. The worst-case competitive ratio ¢*°, denoted by c¢(m, M, k), equals

c(m, M, k) = max{ck’(q1)|k': 1,...,5} (5.50)
= (3)
= 1.3818.
It is assumed that in the worst-case the price drops to m on day 2 and remains

there (cf. equation (5.30)). Table 5.7 gives a numerical example for ¢; = 3 >
& (q)) -m = 2.0727.
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t ¢ K &) c

St dy Yt

1 5 1.3818 1.3818
2 2 4 - -
3 15 3 - -
4 2 1.1786 1.3270
2 9 1 1.0000 1.3270

0.4474 0.5526 1.3422

0.3373 0.2153 2.6914
0.2153 0.0000 3.7679

Table 5.7: Numerical example for Variant 2 with M > ¢ > ¥ (q1)-m
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As ON accumulated 3.7679 Y on day T the empirical-case competitive ratio

c* for Variant 2 on the considered input sequence I equals

€C

OPT
ON

= I Githgr =M

yr
5

= ——— = 1.3270.

3.7679

(5.51)

Variant 8 for M > q; > c¢(p, k)-m. The worst-case competitive ratio to decide

whether ¢; > ¢(p, k) - m or not is calculated using equation (5.32), and equals
c(p, k) = 1.8040 for the input sequence [ = (3,2,1.5,4,5).

Analogously to Variant 2, the already accumulated amount of asset Y, vy, is

calculated using equation (5.10). The amount to be converted s; is calculated

using equation (5.37), with sz = dr_;. The amount of asset D remaining, d;, is

calculated using equation (5.36).

Following Condition (2), if the first price ¢; > ¢(g, k) - m then the amount to

be converted s; > 0. Table 5.8 gives a numerical example.

L@ s Yt

1 3 0.3633 0.6367 1.0900
2 2 - - -

3 1.5 - - -

4 0.1298 0.5069 1.6090
5 5 0.5069 0.0000 4.1436

Table 5.8: Numerical example for Variant 3 with M > ¢; > c(p, k) - m

As ON accumulated 4.1436 Y on day T the empirical-case competitive ratio



110 CHAPTER 5  Selected Preemptive Algorithms

c*® for Variant 3 on the considered input sequence I equals
OPT

= —— 5.52
c ON (5.52)
qr .
= ———  withdr=90
m‘dT+yTW ’
B M
yr
5
= =1.2 .
4.1436 067

Variant 4 for M > ¢, > c¢(p) - m. The worst-case competitive ratio to decide
whether ¢; > ¢(¢) - m or not is calculated using equation (5.34), and equals ¢(p) =
1.9405 for the input sequence I = (3,2,1.5,4,5).

Analogously to Variant 2, the already accumulated amount of asset Y, v, is
calculated using equation (5.10). The amount to be converted s; is calculated
using equation (5.37), with sy = dr_;. The amount of asset D remaining, d, is
calculated using equation (5.36).

Following Condition (2), if the first price ¢; > ¢(¢) - m then the amount to

be converted s; > 0. Table 5.9 gives a numerical example.

L@ St dy Yt

1 0.3076 0.6924 0.9228
2 2 - ; ;

3 15 - - -

4 0.1099 0.5825 1.3622
5 9 0.5825 0.0000 4.2749

Table 5.9: Numerical example for Variant 4 with M > ¢, > c¢(¢) -m

As ON accumulated 4.2749 Y on day T the empirical-case competitive ratio

c® for Variant 4 on the considered input sequence I equals

OPT
€= —— 5.53
c ON (5.53)
qr .
= —— withdr=0
m - dp + yr A g
M

yr

)
= = 1.1696.
4.2749 696

The empirical-case competitive ratio ¢** = 1.1696 of Variant 4 is better (smaller)

than the ¢ = 1.2067 of Variant & as a smaller amount s; = 0.3076 is converted

at ¢ = 3.
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Case (3): ¢ =M

From Rule (2) follows that if the first price to be considered, ¢;, equals M the
whole amount of asset D is converted into Y by OPT. Whether the whole amount
of asset D is converted or not depends on the a-priori knowledge of ON: In case
the upper bound M is assumed to be known the whole asset D is converted at
g1 = M, ie. s; = 1. In case only the price fluctuation ratio ¢ = % is known the
amount to be converted s; < 1.
Condition (3) differs for Variant 1,2 and Variant 3,4.
For Variant 1 and Variant 2 Condition (3) can be stated as follows:
si=14ff =M.
For Variant 8 and Variant 4 Condition (3) can be stated as follows:
s1<1aff g =M.

In the following we give some numerical examples for Condition (3). Assume
the input sequence I = (5,2,2.5,4,1.5),i.e. ¢y = M =5 and m = 1.5.

Variant 1 for M = q;. Table 5.10 gives an example for Variant 1 where ¢; = 5.
We do not differ between the case where ¢; is known or unknown, as in both cases

the whole amount of asset D is converted on the first day at M. Equation (5.5) is

t q St dy Y

5 1.0000 0.0000 5.0000
2 i, i,
2.5 - - -
4 - i, i,
1.5 - - -

(S OV R

Table 5.10: Numerical example for Variant 1 with M = ¢,

used to calculate ¢>(m, M) = 1.5136 in advance.

In case ¢, is assumed to be unknown a-priori the amount d; on each day t is
calculated using equation (5.3). As ¢ = M the amount to be converted on the
first day s; = 1.

In case ¢ is assumed to be known a-priori Case 2 in El-Yaniv et al. (1992)
holds. Then from equation (5.8) we get a worst-case competitive ratio ¢, denoted
by ¢>*(m, M, q), based on the value of ¢, i.e. ¢ equals 1.0000. Further, from
equation (5.11) we get s; (with sz = dp_1), and y; is calculated using equation
(5.10).

As ON accumulated 5.0000 Y on day T the empirical-case competitive ratio
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c*® for Variant 1 on the considered input sequence I equals

OPT
= 5.54
¢ ON (5.54)
qr .
= —— withdp =0 and =
m-dr + yr T yr =%

M
1

= 1.0000.

| ot

Variant 2 for ¢; = M. As the number of trading days k& < T is known, the
whole amount of asset D is converted at ¢, i.e. s; = 1 and d; = 0. Thus, the

accumulated amount of Y on the last day & < T equals

yr = yr+m-dr (5.55)
g yT
= U

For Variant 2, using equation (5.24), the value ¥ (q,) is calculated for each day t.
Following Condition (3) from equation (5.20) we get s; = 1. For ¢y = M =5 the

worst-case competitive ratio ¢, denoted by c¢(m, M, k), equals

c(m, M, k) = max{ck’(q1)|k':1,...,5} (5.56)
= &(5)
= 1.0000.

It is assumed that the price drops to m on day 2 and remains there. Table 5.11

gives a numerical example.

o

t ¢ K Ckl(ih)
1.0000 1.0000 1.0000 0.0000 5.0000

St dy Yt

T = W N~
T N = W Ot
— N W = Ot

Table 5.11: Numerical example for Variant 2 with M = ¢,

As ON accumulated 5.000 Y on day T the empirical-case competitive ratio ¢
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for Variant 2 on the considered input sequence I equals

OPT
e — - 5.57
¢ ON (5.57)
= I Gith gp = M
yr

5
= - = 1.0000.
5

The whole amount of asset D is converted into Y on the first day, i.e. the

threat-based algorithm achieves the optimum amount of Y.

Variant 3 for ¢; = M. The worst-case competitive ratio to decide whether ¢; >

c(p, k) - m or not is calculated using equation (5.32), and equals ¢(p, k) = 1.8040
for the input sequence I = (5,2,2.5,4,1.5).

Analogously to Variant 2, the already accumulated amount of asset Y, v, is

calculated using equation (5.10). The amount to be converted s; is calculated

using equation (5.37), with s = dr_;. The amount of asset D remaining, d;, is

calculated using equation (5.36). Table 5.12 gives a numerical example.

L@ s dy Yt
1 5 0.3633 0.6367 1.0900
2 2 - - -
3 25 - - -
4 4 - - -
5 1.5 0.6367 0.0000 2.7716

Table 5.12: Numerical example for Variant 3 with M = ¢,

As ON accumulated 2.7716 Y on day T the empirical-case competitive ratio

c*¢ for Variant 3 on the considered input sequence I equals

Cec

OPT
= S (5.58)

= " ithdy =0

m - dr + yr

M

yr

5
= = 1.8040.
2.7716 5040

For the input sequence considered the empirical-case ratio c* equals the worst-case
ratio "¢ = ¢(p, k) = 1.8040 as the amount of sy = 0.6367 of asset D must be

converted at the minimum price m = 1.5, i.e. the worst-case occurs.
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Variant 4 for ¢y = M. The worst-case competitive ratio to decide whether ¢; >
c(p, k) - m or not is calculated using equation (5.32), and equals ¢(p, k) = 1.9405
for the input sequence I = (5,2,2.5,4,1.5).

Analogously to Variant 2, the already accumulated amount of asset Y, v, is
calculated using equation (5.10). The amount to be converted s; is calculated
using equation (5.37), with sy = dr_;. The amount of asset D remaining, d;, is

calculated using equation (5.36). Table 5.13 gives a numerical example.

U ¢ st dy Y

1 5 0.3076 0.6924 1.5308
2 2 - - -

3 25 - - -

4 4 - - -

5 1.5 0.6924 0.0000 2.5766

Table 5.13: Numerical example for Variant 4 with M = ¢

As ON accumulated 2.5766 Y on day T the empirical-case competitive ratio

c*® for Variant 4 on the considered input sequence I equals

OPT

= —— 5.59
c ON (5.59)
qr .
= ——  withdr=90
m‘dT+yTW T
B M
yr
5
= = 1.9405.
2.5766 9405

For the input sequence [ considered the empirical-case ratio c® equals the
worst-case ratio ¢ = c(p, k) = 1.9405 as the amount of sy = 0.6924 of asset

D must be converted at the minimum price m = 1.5, i.e. the worst-case occurs.

For all variants of Algorithm 8, in the worst-case, the pessimistic assumption
¢1 = m must be made. In case ¢ = M a competitive ratio of 1 is always achieved

by the threat-based algorithm Variant 2. Thus, when considering worst-cases,

the threat-based algorithm is optimal for Variant 2 (El-Yaniv et al.,
1992, p. 4).

OPT can get an optimum amount of Y by converting the whole amount of D

at price M on day k < T. Then from equation (2.7) the competitive ratio ¢ for
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maz-search of any threat-based algorithm equals

OPT
M

U +m-di

Summing up, based on the assumption of a worst-case sequence of prices,
Algorithm 8 does not convert at all iff ¢; < c¢-m (cf. Condition (1)). Further,
Conditions (2) and (3) ensure that for M > ¢ > c-m

1. not more than the whole amount of D is converted by the threat-based

algorithm, and

2. a worst-case competitive ratio
ce{c>®(m, M), c®(m, M,q),c(m, M, k),c(p, k), c>®(¢)} is achievable.

El-Yaniv et al. (1992) also suggested a threat-based algorithm for bi-directional

search, which is presented in the following.

5.2 The Bi-directional Algorithm of FEl-Yaniv,
Fiat, Karp and Turpin (1992)

El-Yaniv et al. (1992) consider bi-directional search under the assumption that
the upper and lower bounds, M and m, on possible prices are known. The
uni-directional threat-based algorithm Variant 1 presented in Section 5.1 is
extended to bi-directional search. El-Yaniv et al. (2001, p. 136) show that, to
solve the bi-directional search problem, ON does not need to know the number of
trading days k < T

5.2.1 The Guaranteeing Algorithm

ON starts with dy = 1 of asset D (and yo = 0 of asset Y') and converts back and
forth between asset D and Y according to the sequence of prices which is revealed
online. It is assumed that prices ¢; € [m, M] but may rise or fall arbitrarily. The
overall worst-case competitive ratio ¢ can be calculated either by the overall
amount of asset D or asset Y. Thus, at the latest on the last day 7" of the time
horizon all remaining s, must be converted either into D or Y (possibly at price
gr = m). The bi-directional threat-based algorithm converts according to the rules
given in Algorithm 8. But in case bi-directional search is carried out, the algorithm

divides the sequence of prices into upward and downward runs, representing price
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trends, and repeats Algorithm 8 on each run. Asset D is converted into asset Y
(maz-search) if the price is on an upward run, i.e. the value of D is increasing.
Asset Y is converted into asset D (min-search) if the price is on a downward run,

i.e. the value of D is decreasing. Worst-case analysis is done in the following.

5.2.2 Worst-Case Analysis

El-Yaniv et al. (1992) assume overall w runs, i.e. 5 upward runs and ¥ downward
runs, with overall w price minima and price maxima (i = 1,...,w). OPT converts
the whole of asset D into Y (selling) at the end of each i-th upward run (at best
at M), and converts the whole of asset Y into D (buying) at the end of each i-th
downward run (at best at m).

Since this is the variant where the number of trading days £ < T is not
given (only m, M are known) ON must consider an adversary that may choose
an arbitrary large number of days T' — oo in the worst-case (El-Yaniv et al., 2001,
p. 121).

Assume an upward run consists of ¢ < ¢ <,...,< ¢ prices, i.e. on day
t + 1 with ¢y1 < ¢ the first downward run begins (El-Yaniv et al., 1992, p. 7).
During these ¢ days ON converts D into Y according to Algorithm 8, achieving a
competitive ratio equal to ¢*(m, M) in the worst-case (cf. equation (5.5)). Thus,
for each trading day ¢t = 1, ..., ¢ within the upward run, the amount of D remaining

d; and the accumulated amount of Y, 1, must always satisfy

OPT Qs
— pr— —_— . ]-
ON m - dy + 1y (561)

= ®(m, M)

where ON = m -d; + 1y, represents the performance of the threat-based algorithm if
an adversary drops the price to m and ¢, is the performance of OPT for this case.
Thus, after day t < T ON has d; of D remaining, and accumulated y; of Y. From
equation (5.61) follows (El-Yaniv et al., 1992, p. 7)

q
m - dy + = —— 5.62
t yt Coo(m, M) < )
qt
(c°° m, M - yt)
m
Assume a downward run begins on day ¢+ 1 and consists of ¢;.1 <,..., < g prices

with £ < T. Then the remaining amount d; of D at the end of a previous upward

run must be converted into Y on day t+1, i.e. on the first day of the downward run.

Since g;11 > m, in the worst-case ON has at least - e+l L ) of asset Y at

X (m,M) = c>*(m,
the beginning the first downward run. Beginning on day ¢t +1 ON converts Y into
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D, and all remaining Y on the last day k of the downward run must be converted
into D on the first day k + 1 of the next upward run. Thus, two transactions are

carried out on the first day of each downward run:
1. The conversion of all remaining D, given by d;, into Y, and

2. the first fraction of asset Y is converted back into D with a competitive ratio

c>(m, M) as the current price is the highest seen so far.
Similarly, on the first day of each upward run, two transactions are carried out:
1. The conversion of all remaining Y, given by ¥, into D, and

2. the first fraction of asset D is converted back into Y with a competitive ratio

c¢®(m, M) as the current price is the highest seen so far.

From this follows, in each of the w runs the ratio between O PT and ON increases at
most by the factor ¢>(m, M). Thus ON achieves an overall worst-case competitive
ratio of (El-Yaniv et al., 1992, p. 7)

% = c>®(m, M)" (5.63)
assuming m and M are constants.

The above bi-directional algorithm is not optimal: On any upward (downward)
run ON can take advantage of the knowledge that, to attain a competitive ratio
of ¢ in the following run, OPT must begin the run with a certain price. This
knowledge might lead to smaller ratio than ¢>(m, M )" (El-Yaniv et al., 1992, p.
7). Unfortunately, El-Yaniv et al. (1992) give no description or technique how this
knowledge can be used.

The competitive ratio given in equation (5.63) is an upper bound, i.e. the ratio
can be improved. Let w be as described above, and assume M and m are known.
El-Yaniv et al. (1992) show that for any (unknown) number of trading days k£ < T'

w/2

it is possible to force a competitive ratio of ¢*/~ and c is defined as given in equation

(5.26), i.c. equals 1
- (%) T] | (5.64)

w
2
runs, each followed by an immediate drop to m: The price increases from m, drops

c=T-

Assume OPT constructs a sequence of k < T prices consisting of only ¥ upward

to m, and then repeats such fluctuations (Dannoura and Sakurai, 1998, Figure 2,

w

p. 30). ON converts asset D into asset Y during each of the ¥ upward runs,

and converts Y back into D at price m, i.e. achieves the optimum. The terminal

amount of asset D (Y') achieved by OPT will exceed the terminal amount achieved



118 CHAPTER 5  Selected Preemptive Algorithms

by ON by at least the ratio ¢ as given in equation (5.64). Thus, in each upward
run followed by a drop to m, the competitive ratio can be made to increase by a
factor of ¢ (El-Yaniv et al., 1992, Section 4.3). This yields to a factor of ¢*/2 for the
entire time interval of length 7. As ON must consider an arbitrary number of days
in the worst-case. For T" — oo the (lower bound) competitive ratio ¢ approaches
(El-Yaniv et al., 1992, p. 7)

OPT
_ w/2
BN = ¢ (m, M7=, (5.65)

Dannoura and Sakurai (1998) claim that the above algorithm is not optimal but
induces an optimal algorithm for bi-directional search under certain restrictions
on the sequence of prices. The improvement of the lower bound competitive ratio,
given in equation (5.65), of above bi-directional threat-based algorithm is presented

in the following.

5.3 Improvement Idea of Dannoura and Sakura:
(1998)

Dannoura and Sakurai (1998) improve the bi-directional threat-based algorithm
suggested by El-Yaniv et al. (1992), and presented in Section 5.2. The basic idea
is that a better lower bound can be achieved by assuming other restrictions on the
sequence of prices than El-Yaniv et al. (1992).

The lower bound competitive ratio given in El-Yaniv et al. (1992) equals
> (m, M)¥/? as given in equation (5.65). Dannoura and Sakurai (1998) improve
this lower bound ratio by assuming that initially the price increases from m;
(possibly to M), but then suddenly drops to mso, where m; and my satisfy

E'mg = N (566)

and
c{l+@E—1)-¢) == (5.67)

with m < my < my < M and ¢ denotes the improved lower bound competitive
ratio. Then, the price decreases from msy to m and rises suddenly to my, and
increases again from my, etc. This pattern of increasing, dropping, decreasing,
rising is then repeated (Dannoura and Sakurai, 1998, Figure 3, p. 30). The optimal
bi-directional algorithm against this sequence of prices differs between two cases

depending on the price trend (Dannoura and Sakurai, 1998, p. 30):
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Case 1. The price is on an upward run, i.e. the value of asset D is increasing.
Asset D is converted into Y (maz-search) with ¢, € [my, M] according to
Algorithm 8 presented in Section 5.1. All (remaining) D are converted into

Y when ¢; drops to ma.

Case 2. The price is on an downward run, i.e. the value of asset Y is increasing.
Asset Y is converted into D (min-search) with ¢ € [m,ms] according to
Algorithm 8 presented in Section 5.1. All (remaining) Y are converted into

D when ¢, rises to m;.

Assuming w price minima and price maxima, the best possible competitive ratio
(the improved lower bound) then equals ¢*. Dannoura and Sakurai (1998) show
that in case exactly one upward run with w = 1 is assumed, the relation ¢ >
¢ (m, M)/?) holds, where ¢>(m, M)(1/? is the lower bound by El-Yaniv et al.
(1992) given in equation (5.65).

Further, Dannoura and Sakurai (1998) observe a gap between the achievable
competitive ratio and improved the lower bound ¢“. Thus, they suggest to improve
Algorithm 8 of El-Yaniv et al. (1992) by assuming the above sequence of prices.

The improved algorithm is presented in the following.

5.3.1 The Guaranteeing Algorithm

Remember that by using the original uni-directional threat-based algorithm of
El-Yaniv et al. (1992) ON faces the threat that during an upward run the price ¢,
might suddenly drop to m. Thus, the amount of asset D converted into Y is such
that a worst-case competitive ratio ¢*; denoted by ¢ (m, M), (cf. equation 5.61)
is achievable if ¢; indeed drops to m. Dannoura and Sakurai (1998) assume w = 2
subsequent upward runs, i.e. the price increases, followed by a sudden drop to m,
then increases again, followed by a second drop to m. Each upward run leading
to a competitive ratio of ¢**(m, M). From equation (5.63) the overall competitive
ratio then equals ¢>(m, M)* = ¢ (m, M)

Dannoura and Sakurai (1998) claim that the overall competitive ratio ratio is
not ¢>(m, M)? but ¢>(m, M) in case of bi-directional search and w = 2.

Assuming the above w = 2 subsequent upward runs, and using Rule (1) to (3)
as given in Algorithm 8 to solve the bi-directional search problem, ON converts
Y into D (min-search) at the best possible rate m every time the rate drops, i.e.
achieves the optimum. Thus, the worst-case assumption of El-Yaniv et al. (1992),
i.e. the ‘threat’ of a sudden drop to m, holds only for the uni-directional case when

converting D into Y.
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In the bi-directional case a sudden drop to m leads to the best possible
competitive ratio ¢* = OPT/ON = m/m = 1 for min-search. From this follows
by using Algorithm 8 for bi-directional search ON faces too much of a ‘threat’.
Thus, Dannoura and Sakurai (1998) improve the original uni-directional algorithm
by making the ‘threat’ smaller. Like Algorithm 8 of El-Yaniv et al. (1992) the
improved uni-directional algorithm consists of three rules (Dannoura and Sakurai,
1998, p. 31) and is repeated for bi-directional search. For a start, assume that the

worst-case competitive ratio ¢, denoted by ¢, is known to ON.

Algorithm 9.

Rule (1). Consider a conversion from asset D into assetY only if the current price

offered is the highest seen so far.

Rule (2). Whenever you convert asset D into asset Y, convert ‘just enough’ D
to ensure that a competitive ratio ¢ would be obtained if an adversary dropped the

price to the minimum possible price ¢-m, and kept it there throughout the game.?

Rule (3). On the last trading day T, all remaining D must be converted into Y,

possibly at the minimum price.

Only the second rule is modified by Dannoura and Sakurai (1998): The lower
bound on the exchange rates is assumed to be ¢ - m instead of m, i.e. the threat is

‘smaller’” as ¢ > 1. In the following worst-case analysis of Algorithm 9 is done.

5.3.2 Worst-Case Analysis

Dannoura and Sakurai (1998) improve the threat-based algorithm Variant 1 of
El-Yaniv et al. (1992, 2001) assuming m and M are known. Since this is the
variant where the number of trading days & < T is not given ON must consider
an adversary that may choose an arbitrary large number of days T" — oo in the
worst-case.

In order to meet the worst-case ratio ¢ on each day the values d; and y; must be

determined such that the amount of asset D equals (Dannoura and Sakurai, 1998,

p. 31)
(5.68)

Since
¢c-m-diq) +ylg) > = (5.69)

is satisfied ON will get at least % of asset Y (under ¢; € [¢-m, M]).

32The ‘minimum possible price’ equals &-m instead of m as assumed by El-Yaniv et al. (1992).
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Dannoura and Sakurai (1998) assume that the behavior of Algorithm 9 is
identical to Algorithm 8 of El-Yaniv et al. (1992). Thus, the worst-case competitive
ratio ¢ achieved by Algorithm 9 equals

F = In—8 7 5.70
¢ n52-m—5-m ( )
M
= |p&m
c—1

When estimating ¢ equation (5.70) must be transformed to

e (6—1)= éMm — 1. (5.71)

Equation (5.69) holds for the improved uni-directional algorithm and ¢ > ¢-m
(Dannoura and Sakurai, 1998, p. 32). But, in practice, the whole amount of D
remaining might be converted at price m, e.g. on the last day T of the time interval.

In this case, since d;,y; > 0

Gom-d
med 4y > T mE”Lyt (5.72)
qi
> 2

Thus ON will achieve at least % of asset Y. Dannoura and Sakurai (1998) claim
that thus the overall achievable competitive ratio (the lower bound) of Algorithm
9 equals .

From this follows, equation (5.70) holds for the case where the initial price ¢; is
assumed to be unknown to ON or ¢; < ¢-m (Dannoura and Sakurai, 1998, p. 32).
This is of main interest when determining the competitive ratio under worst-case
assumptions as the pessimistic assumption ¢; = ¢ - m must be made.

Analogously to the threat-based algorithm Variant 1, in case the first price
q1 > m is assumed to be known a-priori, the competitive ratio, denoted by ¢, is the

unique solution of (Dannoura and Sakurai, 1998, p. 31)

1 M4 [ ) ]

D Q1 € m,c-m

c= 1+ gi—cm In M—ém c [~. M (573)
q1 ql—é.m q]. C m, ]

Further, depending on the value of ¢; the amount of D remaining d; equals
(Dannoura and Sakurai, 1998, p. 31)

g R Q1 € [m,é-m] (5.74)
ET) -4 1 G —&m ~ :
qlfé-m_z.lnm Q1€[C'm,M].

Then the competitive ratio ¢ is a function of ¢;. When considering worst-cases we

make no assumptions about ¢;. Only for the empirical evaluation of Algorithm
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9 the value of ¢; is of interest. Thus, unless otherwise stated, the ratio ¢ always
means the value of equation (5.70).
In both cases (for ¢; known and unknown) the amount of accumulated Y on
day t, vy, equals
Yt = Yp—1 + S¢ - g with y; > 0, (5.75)

and the amount s; € [0, 1] to be converted on day t equals
St — dt—l — dt with d() =1. (576)

The amount of D remaining, d;, is calculated as given in equation (5.68) for
¢; unknown, and as given in equation (5.74) for ¢; known. The suggested
uni-directional algorithm is not optimal, nevertheless it achieves a better
performance than the original uni-directional algorithm of El-Yaniv et al. (1992)
(cf. Dannoura and Sakurai, 1998, p. 32).

The improved bi-directional algorithm of Dannoura and Sakurai (1998) repeats
the proposed uni-directional Algorithm 9 in a similar manner to the original
method of El-Yaniv et al. (1992). Thus, the overall achievable competitive ratio
(the improved upper bound) is calculated as for their bi-directional algorithm,
and equation (5.63) holds. Assuming ¥ upward runs and § downward runs, ON

achieves an overall competitive ratio of (Dannoura and Sakurai, 1998, p. 33)

% _ (5.77)
as the overall w minima and maxima of prices are assumed.
Summing up, Dannoura and Sakurai (1998) improve the upper and lower bound
for bi-directional run search given in the previous work by El-Yaniv et al. (1992).
The improved algorithm is not yet optimal, thus the challenge of designing an
optimal algorithm for bi-directional search remains (Dannoura and Sakurai, 1998,
p. 33).
In Chapter 6 the above described threat-based algorithms are evaluated
empirically assuming p > 1 trades. We compare worst-case results to empirical-case

results.
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Chapter 6

Results

In this chapter selected results are given. All results are presented in the form of
research papers. Each paper is provided in its originally published or submitted
version. Thus, a preface links the paper to the previous chapters of this work. We
consider a set-up where the price fluctuates on a day to day basis, and decisions
when and how much to convert have to be made online — without any knowledge

of the future prices.

6.1 Results of Mohr and Schmadt (2008)

Preface

The following two research papers investigate the performance of the uni-directional
non-preemptive reservation price (RP) algorithm introduced by El-Yaniv (1998).
The RP algorithm is presented in detail in Section 4.1: Algorithm 4, p. 81.
To enable bi-directional search, this uni-directional RP algorithm for selling is
extended to buying and selling: Mohr and Schmidt (2008a,b) introduce a rule for
min-search. The resulting Algorithm 5, p. 83, and denoted by SQRT, achieves a
worst-case competitive ratio as given in Theorem 2.

For the empirical-case analysis transaction costs are assumed and backtesting
of algorithm SQRT is done on the German Dax-30 index for the investment horizon
01-01-2007 to 12-31-2007. Each of the 30 assets of the index can be chosen
by the investigated algorithms ON € {SQRT,BH, Rand} and OPT. In order
to trade multiple times the investment horizon is divided into time intervals of
different length 7" € {7,14,28,91,182,364} days. The following questions are to

be answered:

1. Does algorithm SQRT show a superior behavior to a classic buy-and-hold
algorithm (BH)?

125



126 CHAPTER 6 Results

2. Does algorithm SQRT show a superior behavior to a randomized algorithm
(Rand)?

3. How do estimates on m and M influence the performance of SQRT?

4. Which empirical-case competitive ratio ¢*“ and which worst-case competitive

ratio ¢¥¢ achieves SQRT?

To answer these questions two different variants of algorithm SQRT are assumed.
The first variant, denoted by ‘Historic’, uses estimates from the past to calculate
a reservation price ¢* = v/M - m: In case of a time interval of length 7' days the
upper and lower bounds of prices ¢;, M and m, are calculated by the T prices
preceding the actual day t. The second variant, denoted by ‘Clairvoyant’, uses
precise estimates to calculate ¢* = /M - m: In case of a time interval length of T
days the actually observed values of m and M within each T are used. It is obvious
that the better the estimates of m and M the better the performance of algorithm
SQRT.

Results show that the shorter the time intervals, the better are estimates by
historical m and M. Summing up, Mohr and Schmidt (2008a,b) analyze multiple
bi-directional conversion while trading multiple assets from an empirical-case and

a worst-case point of view.

6.1.1 Mohr and Schmidt (2008a)

Digital Object Identifier (DOI): 10.1007/978-3-540-87477-5 32.

Communications in Computer and Information Science (CCIS), Vol. 14, pp.
293-302, 2008

© Springer-Verlag Berlin Heidelberg 2008, published online: October 25,
2008.33

33The copyright permission can be found in the Appendix, cf. Section A.1 and the original

publication is available at www.springerlink.com.
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Empirical Analysis of an Online Algorithm for
Multiple Trading Problems

Esther Mohr! and Giinter Schmidt!2*

! Saarland University, P.O. Box 151150, D-66041 Saarbriicken, Germany
2 University of Liechtenstein, Fiirst-Franz-Josef-Strasse, 9490 Vaduz, Liechtenstein
em@itm.uni-sb.de, gs@itm.uni-sb.de

Abstract. If we trade in financial markets we are interested in buying
at low and selling at high prices. We suggest an active trading algorithm
which tries to solve this type of problem. The algorithm is based on reser-
vation prices. The effectiveness of the algorithm is analyzed from a worst
case and an average case point of view. We want to give an answer to
the questions if the suggested active trading algorithm shows a superior
behaviour to buy-and-hold policies. We also calculate the average com-
petitive performance of our algorithm using simulation on historical data.

Keywords: online algorithms, average case analysis, stock trading, trad-
ing rules, performance analysis, competitive analysis, trading problem,
empirical analysis.

1 Introduction

Many major stock markets are electronic market places where trading is carried
out automatically. Trading policies which have the potential to operate without
human interaction are of great importance in electronic stock markets. Very
often such policies are based on data from technical analysis [8, 6, 7]. Many
researchers have also studied trading policies from the perspective of artificial
intelligence, software agents and neural networks [1, 5, 9].

In order to carry out trading policies automatically they have to be converted
into trading algorithms. Before a trading algorithm is applied one might be in-
terested in its performance. The performance analysis of trading algorithms can
basically be carried by three different approaches. One is Bayesian analysis where
a given probability distribution for asset prices is a basic assumption. Another
one is assuming uncertainty about asset prices and analyzing the trading algo-
rithm under worst case outcomes; this approach is called competitive analysis.
The third one is a heuristic approach where trading algorithms are designed
and the analysis is done on historic data by simulation runs. In this paper we
apply the second and the third approach in combination. We consider a multiple
trade problem and analyze an appropriate trading algorithm from a worst case

* Corresponding author.

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 293-302, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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294 E. Mohr and G. Schmidt

point of view. Moreover we evaluate its average case performance empirically
and compare it to other trading algorithms.

The reminder of this paper is organized as follows. In the next section the
problem is formulated and a worst case competitive analysis of the proposed
trading algorithm is performed. In Section 3 different trading policies for the
multiple trade problem are introduced. Section 4 presents detailed experimental
findings from our simulation runs. We finish with some conclusions in the last
section.

2 Problem Formulation

If we trade in financial markets we are interested in buying at low prices and
selling at high prices. Let us consider the single trade and the multiple trade
problem. In a single trade problem we search for the minimum price m and the
maximum price M in a time series of prices for a single asset. At best we buy
at price m and sell later at price M. In a multiple trade problem we trade assets
sequentially in a row, e.g. we buy some asset u today and sell it later in the
future. After selling asset © we buy some other asset v and sell it later again;
after selling v we can buy w which we sell again, etc. If we buy and sell (trade)
assets k times we call the problem k-trade problem with & > 1.

As we do not know future prices the decisions to be taken are subject to
uncertainty. How to handle uncertainty for trading problems is discussed in [3].
In [2] and [4] online algorithms are applied to a search problem. Here a trader
owns some asset at time ¢ = 0 and obtains a price quotation m < p(t) < M at
points of time ¢t = 1,2,...,T. The trader must decide at every time ¢ whether
or not to accept this price for selling. Once some price p(t) is accepted trading
is closed and the trader’s payoff is calculated. The horizon T and the possible
minimum and maximum prices m and M are known to the trader. If the trader
did not accept a price at the first T'— 1 points of time he must be prepared to
accept some minimum price m at time 7. The problem is solved by an online
algorithm.

An algorithm ON computes online if for each j = 1,...,n—1, it computes an
output for j before the input for j + 1 is given. An algorithm computes offline if
it computes a feasible output given the entire input sequence j = 1,...,n — 1.
We denote an optimal offline algorithm by OPT. An online algorithm ON is
c-competitive if for any input [

ON(I) > 1/c+ OPT(I). (1)

The competitive ratio is a worst-case performance measure. In other words, any
c-competitive online algorithm is guaranteed a value of at least the fraction 1/¢
of the optimal offline value OPT'(I), no matter how unfortunate or uncertain
the future will be. When we have a maximization problem ¢ > 1, i.e. the smaller
¢ the more effective is ON. For the search problem the policy (trading rule) [2]
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accept the first price greater or equal to reservation price px = \/(M % 1M)

has a competitive ratio ¢ = \/ % where M and m are upper and lower bounds

of prices p(t) with p(t) from [m,M]. ¢s; measures the worst case in terms of
maximum and minimum price.
This result can be transferred to k-trade problems if we modify the policy to

buy the asset at the first price smaller or equal and sell the asset at the
first price greater or equal to reservation price px = \/(M *M).

In the single trade problem we have to carry out the search twice. In the worst
case we get a competitive ratio of ¢s for buying and the same competitive ratio of
¢ for selling resulting in an overall competitive ratio for the single trade problem
of ¢4 = cscs = M/m. In general we get for the k-trade problem a competitive
ratio of c(k) =[], _, (M(i)/m(i)). If m and M are constant for all trades

ct(k) = (M/m)*. The ratio ¢; can be interpreted as the rate of return we can
achieve by buying and selling assets.

The bound is tight for arbitrary k. Let us assume for each of k trades we have
to consider the time series (M, (M * m)Y/2 m,m, (M x m)*/? M). OPT always
buys at price m and sells at price M resulting in a return rate of M/m; ON
buys at price (M *m)'/? and sells at price (M xm)'/? resulting in a return rate
of 1, i.e. OPT/ON = M/m = c. If we have k trades OPT will have a return of
(M/m)* and ON of 1* | i.e. OPT(k)/ON (k) = (M/m)* = c(k).

In the following we apply the above modified reservation price policy to mul-
tiple trade problems.

3 Multiple Trade Problem

In a multiple trade problem we have to choose points of time for selling current
assets and buying new assets over a known time horizon. The horizon consists
of several trading periods ¢ of different types p; each trading period consists of
a constant number of h days. We differ between p = 1,2,...,6 types of periods
with length h from {7, 14, 28,91, 182,364} days e.g. period type p = 6 has length
h = 364 days; periods of type p are numbered with ¢ = 1,...,n(p). There is a
fixed length h for each period type p, e.g. period length h = 7 corresponds to
period type p = 1, period length h = 14 corresponds to period type p = 2, etc.
For a time horizon of one year, for period type p = 1 we get n(1) = 52 periods
of length h = 7, for type p = 2 we get n(2) = 26 periods of length h = 14, etc.
We may choose between three trading policies. Two elementary ones are Buy-
and-Hold (B + H), a passive policy, and Market Timing (MT), an active policy.
The third one is a random (Rand) policy. As a benchmark we use an optimal
offline algorithm called Market (M A). We assume that for each period i there is
an estimate of the maximum price M (i) and the minimum price m(i). Within
each period i = 1,...,n(p) we have to buy and sell an asset at least once.
The annualized return rate R(z), with x from {MT,Rand, B + H, M A} is the
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performance measure used. At any point of time of the horizon the policy either
holds an asset or an overnight deposit.

In order to describe the different policies we define a holding period with
respect to MT. A holding period is the number of days h between the purchase
of asset j and the purchase of another asset j’ (j’ # j) by MT. Holding periods
are determined by either reservation prices RP;(t) which give a trading signal
or when the last day T of the period is reached.

MARKET TIMING (MT)

MT calculates reservation prices RPj(t) for each day t for each asset j. At
each day t, MT must decide whether to sell asset j or to hold it another day
considering the reservation prices. Each period ¢, the first offered price p;(t) of
asset j with p;(t) > RP;(t) is accepted by MT and asset j is sold. The asset
j*, which is bought by MT is called MTasset. MT chooses the MTasset jx if
RPji(t) — pj«(t) = max{RP;(t) —p;(t)|j = 1,...,m} and p;.(t) < RPj.(t). If
there was no trading signal in a period related to reservation prices then trading
is done on the last day T of a period. In this case MT must sell asset j and
invest in asset j at day T. The holding period of MT showing buying (Buy)
and selling (Sell) points and intervals with overnight deposit (OD) is shown in
Fig. 1.

Holding Period Holding Period

|
MT | | | Rand  — { 1

Buy Sell Buy Buy Sell  Buy
i j J i j J

Fig. 1. Holding period for MT and for Rand

RANDOM (Rand)

Rand will buy and sell at randomly chosen prices p;(t) within the holding period
of MT (cf. Fig. 1).

BUY AND HOLD (B + H)

B + H will buy at the first day ¢ of the period and sell at the last day 7" of the
period.

MARKET (MA)

To evaluate the performance of these three policies empirically we use as a bench-
mark the optimal offline policy. It is assumed that M A knows all prices p;(t)
of a period including also these which were not presented to MT if there were
any. In each period i M A will buy at the minimum price py,;, > m(i) and sell
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Holding Period

OD | | OD
MA | w | |

Buy Sell Buy
J i J°

Fig. 2. Holding period for M A

at the maximum possible price piqa. < M (i) within the holding period of MT
(cf. Fig. 2).

The performance of the investment policies is evaluated empirically. Clearly,
all policies cannot beat the benchmark policy M A.

4 Experimental Results

We want to investigate the performance of the trading policies discussed in
Section 3 using experimental analysis. Tests are run for all p = 1,2,...,6 pe-
riod types with the number of periods n(p) from {52,26,13,4,2,1} and period
length h from {7, 14, 28,91, 182,364} days. The following assumptions apply for
all tested policies:

1. There is an initial portfolio value greater zero.

2. Buying and selling prices p;(t) of an asset j are the closing prices of day t.

3. At each point of time all money is invested either in assets or in 3% overnight
deposit.

4. Transaction costs are 0.0048% of the market value but between 0.60 and
18.00 Euro.

5. When selling and buying is on different days the money is invested in
overnight deposit.

6. At each point of time ¢ there is at most one asset in the portfolio.

7. Each period ¢ at least one buying and one selling transaction must be exe-
cuted. At the latest on the last day of each period asset j has to be bought
and on the last day it has to be sold.

8. In period ¢ = 1 all policies buy the same asset j on the same day t at the
same price p;(t); the asset chosen is the one MT will chose (M T asset).

9. In periods i = 2,...,n(p)—1 trades are carried out according to the different
policies.

10. In the last period i = n(p) the asset has to be sold at the last day of that
period. No further transactions are carried out from there on.

11. If the reservation price is calculated over h days, the period length is (also)
h days.

We simulate all policies using historical XETRA DAX data from the interval
2007.01.01 until 2007.12.31. This interval we divide into n(p) periods where
n(p) is from {52,26,13,4,2,1} and p is from {7,14,28,91,182,364}. With this
arrangement we get 52 periods of length 7 days, 26 periods of length 14 days,
etc. We carried out simulation runs in order to find out
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(1) if MT shows a superior behaviour to buy-and-hold policies
(2) the influence of m and M on the performance of MT
(3) the average competitive ratio for policies for M A and MT.

Two types of buy-and-hold policies are used for simulation; one holds the
MTasset within each period (MTpym) and the other holds the index over all
periods (Indexp4 ) of a simulation run. Thus, MTp, gy is synchronized with
the MT policy, i.e, MTg4+ g buys on the first day of each period the same asset
which MT buys first in this period (possibly not on the first day) and sells this
asset on the last day (note that this asset may differ from the one MT is selling
on the last day) of the period. Using this setting we compare both policies related
to the same period. Indexpm is a common policy applied by ETF investment
funds and it is also often used as a benchmark although it is not synchronized
with the MT policy. In addition to these policies also the random policy Rand
is simulated. Rand buys the same asset which MT buys on a randomly chosen
day within a holding period.

We first concentrate on question (1) if MT shows a superior behaviour to the
policies MTp4+ gy and Indexpi . For calculating the reservation prices we use
estimates from the past, i.e. in case of a period length of h days m and M are
taken from the prices of these h days which are preceding the actual day t* of
the reservation price calculation, i.e. m = min {p(t)[t = t* — 1,t* —2,...,t* — h}
and M = max {p(t)|t =t* — 1,t* —2,...,t* — h}. In Table 1 the trading results
are displayed considering also transaction costs. The return rates are calculated
covering a time horizon of one year. For the three active policies (M A, MT,
Rand) the transaction costs are the same because all follow the holding period
of MT; in all these cases there is a flat minimum transaction fee.

Table 1. Annualized return rates for different period lengths

Historic Annualized Returns Including Transaction Costs

Policy 1 Week 2 Weeks 4 Weeks 3 Months 6 Months 12 Months
n(7) = 52 n(14) = 26 n(28) = 13 n(91) = 4 n(182) = 2 n(364) = 1
MA 418.18% 138.40%  201.61%  47.93%  72.95% 61.95%
MT 41.08% 1.37% 54.86% 6.08% 32.39% 31.35%
MTgin  9.70% 0.50% 17.18%  15.80%  45.30% 35.29%
Indexp+n 20.78%  20.78% 20.78%  20.78%  20.78% 20.78%
Rand  -23.59% -21.23% 17.18%  -18.23%  6.20% 15.42%

MT dominates MTg,y and Indexp g in two cases (1 and 4 weeks). MTp4 g
dominates MT and Indexp4p in two cases (6 and 12 months). Indexp y dom-
inates MT and MTppy in two cases (2 weeks and 3 months). MT generates
the best overall annual return rate when applied to 4 weeks. M T generates
the worst overall annual return rate when applied to 2 weeks. MTpyqg policy
improves its performance in comparison to Indexp,y and MT policy propor-
tional to the length of the periods. We might conclude the longer the period the
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better the relative performance of M T, g. MT outperforms Indexp, g in four
of six cases and it outperforms M T, in three of six cases; MT and MTpym
have the same relative performance. If the period length is not greater than 4
weeks MT outperforms M1, g in all cases. If the period length is greater than
4 weeks M Tpy g outperforms MT in all cases. Indexp g outperforms MTp gy
in three of six cases. If we consider the average performance we have 27.86% for
MT, 20.78% for Indexp 1 g, and 20.63% for MTg . MT is not always the best
but it is on average the best. From this we conclude that MT shows on average
a superior behaviour to buy-and-hold policies under the assumption that m and
M are calculated by historical data.

In general we would assume that the better the estimates of m and M the
better the performance of MT'. Results in Table 1 show, that the longer the
periods the worse the relative performance of MT'. This might be due to the fact
that for longer periods historical m and M are worse estimates in comparison
to those for shorter periods. In order to analyze the influence of estimates of m
and M we run all simulations also with the observed m and M of the actual
periods, i.e. we have optimal estimates. Results for optimal estimates are shown
in Table 2 and have to be considered in comparison to the results for historic
estimates shown in Table 1.

Now we can answer question (2) discussing the influence of m and M on the
performance of MT. The results are displayed in Table 2. It turns out that in
all cases the return rate of policy MT improves significantly when estimates of
m and M are improved. For all period lengths now MT is always better than
MTp4+m and Indexpypg. From this we conclude that the estimates of m and
M are obviously of major importance for the performance of the MT policy.
Now we concentrate on question (3) discussing the average competitive ratio for
policies M A and MT. We now compare the experimental competitive ratio c.
to the analytical competitive ratio cy.. To do this we have to calculate OPT
and ON for the experimental case and the worst case. We base our discussion
on the return rate as the performance measure. We assume that we have precise
forecasts for m and M.

A detailed example for the evaluation of the competitive ratio is presented
in Table 3 considering a period length of 12 months. In this period six trades
were executed using reservation prices based on the clairvoyant test set. The
analytical results are based on the values of m and M for each holding period.

Table 2. Annualized returns for optimal historic estimates

Clairvoryant Annualized Returns Including Transaction Costs
Policy 1 Week 2 Weeks 4 Weeks 3 Months 6 Months 12 Months
n(7) =52 n(14) = 26 n(28) = 13 n(91) = 4 n(182) =2 n(364) = 1
MA 418.18% 315.81%  280.94% 183.43%  86.07% 70.94%
MT 102.60%  87.90% 76.10%  81.38%  55.11% 54.75%

MTp+u 9.70% -4.40% 2231%  19.719%  45.30% 35.29%
IndexpiH 20.78%  20.78% 20.78%  20.78%  20.78% 20.78%
Rand -23.59% -101.3%  -10.67%  47.37%  46.08% 15.42%

133



134 CHAPTER 6 Results

300 E. Mohr and G. Schmidt

Table 3. Periodic results for period length one year

Clairvoyant Data Analytical Results Experimental Results
# Trades  Holding m M cwe= Buyat Sell at Periodic cer =
n(364) =1 Period M/m MA/MT Return MA/MT
15¢ trade Week 1-14 37.91 43.23 1.1403 1.0072
MA 3791  43.23 1.1403
MT 3791 4292 1.1322
2" trade Week 14-24 34.25 38.15 1.1139 1.0069
MA 34.25 38.15 1.1139
MT 34.25 37.89 1.1063
374 trade Week 24-25 13.54 13.69 1.0111 1.0000
MA 13.54 13.69 1.0111
MT 13.564  13.69 1.0111
4" trade Week 25-30 33.57 35.73 1.0643 1.0167
MA 33.57  35.73 1.0643
MT 34.13  35.73 1.0469
5" trade Week 30-46 51.23 58.86 1.1489 1.0646
MA 51.23  58.86 1.1489
MT 52.37  56.52 1.0792
5" trade Week 46-52 82.16 89.4 1.0881 1.0061
MA 82.16 89.4 1.0881
MT 82.66  89.4 1.0815

Table 4. Competitive ratio and annualized return rates

Clairvoyant Data Analytical Results Experimental Results
Period Length # Trades OPT/ON MA MT  MA/MT Cey/Cave
12 Months 6 1.7108 71.08% 54.89% 1.2950 75.69%
6 Months 7 1.8624 86.24% 55.28% 1.5601 83.77%
3 Months 18 2.8387 183.87% 81.82% 2.2473 79.16%
4 Weeks 38 3.8185 281.85% 77.02% 3.6594 95.83%
2 Weeks 48 4.1695 316.95% 89.05% 3.5592 85.36%
1 Week 52 4.1711 317.11% 103.84% 3.0538 73.21%

The analytical results are based on the consideration that M A achieves the best
possible return and MT achieves a return of zero. E.g. for the first trade M A
achieves a return rate of 14.03% and MT achieves a return rate of 0% i.e. MT
achieves absolutely 14.03% less than M A and relatively a multiple of 1.1403.
The experimental results are also based on the consideration that M A achieves
the best possible return and MT now achieves the return rate generated during
the experiment. E.g. for the first trade M A achieves a return rate of 1.1403
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or 14.03% and MT achieves a return rate of 1.1322 or 13.22%. We compared
the analytical results with the experimental results based on annualized return
rates for the period lengths 1, 2, 4 weeks, 3, 6, and 12 months. The overall
competitive ratio is based on period adjusted annual return rates. The results
for all period lengths are presented in Table 4. Transaction costs are not taken
into account in order not to bias results. As the policies are always invested there
is no overnight deposit. E.g. For the period of 12 months the analytical worst
case ratio OPT/ON 1is 1.7108 and the average experimental ratio MA/MT is
1.2950. The values of the competitive ratios for the other period lengths are also
given in Table 4. The return of MT reached in the experiments reaches at least
27.33%, at most 77.22% and on average 45.67% of the return of MA.

5 Conclusions

In order to answer the three questions from section 4 twelve simulation runs were
performed. MT" outperforms buy-and-hold in all cases even when transaction
costs are incorporated in the clairvoyant test set. Tests on historical estimates
of m and M show that MT outperforms buy-and-hold in one third of the cases
and also on average. We conclude that when the period length is small enough
MT outperforms B + H.

It is obvious that the better the estimates of m and M the better the perfor-
mance of MT'. Results show that the shorter the periods, the better are estimates
by historical m and M. As a result, the performance of MT gets worse the longer
the periods become.

In real life it is very difficult to get close to the (analytical) worst cases. It
turned out that the shorter the periods are the less MT achieves in comparison
to MA. A MT trading policy which is applied to short periods leads to small
intervals for estimating historical m and M. In these cases there is a tendency to
buy too late (early) in increasing (decreasing) markets and to sell too late (early)
in decreasing (increasing) markets due to unknown overall trend directions, e.g.
weekly volatility leads to wrong selling decisions during an upward trend.

The paper leaves also some open questions for future research. One is that of
better forecasts of future upper and lower bounds of asset prices to improve the
performance of MT. The suitable period length for estimating m and M is an
important factor to provide a good trading signal, e.g. if the period length is h
days estimates for historical m and M were also be calculated over A days. Sim-
ulations with other period lengths for estimating m and M could be of interest.
Moreover, the data set of one year is very small. Future research should consider
intervals of 5, 10, and 15 years.
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Summary. If we trade in financial markets we are interested in buying at
low and selling at high prices. We suggest an active reservation price based
trading algorithm which tries to solve this type of problem. The effectiveness
of the algorithm is analyzed from a worst case point of view. We want to
give an answer to the question if the suggested algorithm shows a superior
behaviour to buy-and-hold policies using simulation on historical data.

1 Introduction

Many major stock markets are electronic market places where trading
is carried out automatically. Trading policies which have the potential
to operate without human interaction are often based on data from
technical analysis [5, 3, 4]. Many researchers studied trading policies
from the perspective of artificial intelligence, software agents or neural
networks [1, 6]. In order to carry out trading policies automatically
they have to be converted into trading algorithms. Before a trading
algorithm is applied one might be interested in its performance. The
performance of trading algorithms can basically be analyzed by three
different approaches. One is Bayesian analysis, another is assuming un-
certainty about asset prices and analyzing the trading algorithm under
worst case outcomes. This approach is called competitive analysis [2].
The third is a heuristic approach where trading algorithms are ana-
lyzed by simulation runs based on historical data. We apply the second
and the third approach in combination.
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The reminder paper is organized as follows. In the next section different
trading policies for a multiple trade problem are introduced. Section
3 presents detailed experimental findings from our simulation runs. In
the last section we finish with some conclusions.

2 Multiple Trade Problem

In a multiple trade problem we have to choose points of time for sell-
ing current assets and buying new assets over a known time horizon.
The horizon consists of several trading periods ¢ of different types p
with a constant number of h days. We differ between p = 1,2,...,6
types of periods numbered with ¢ = 1,...,n(p) and length h from
{7,14,28,91, 182,364} days, e.g. period type p = 6 has length h = 364
days. There is a fixed length h for each period type p, e.g. period length
h = 7 corresponds to period type p = 1, period length h = 14 corre-
sponds to period type p = 2, etc.

We differ between three trading policies. Two elementary ones are Buy-
and-Hold (B + H), a passive policy, and Market Timing (MT), an
active policy. The third one is a Random (Rand) policy. To evalu-
ate the policies’ performance empirically we use an optimal algorithm
called Market (M A) as a benchmark. We assume that for each period
i there is an estimate of the maximum price M (i) and the minimum
price m(i). Within each period i = 1,...,n(p) we have to buy and
sell an asset at least once. The annualized return rate R(x), with z
from {MT, Rand, B + H, M A} is the performance measure used. At
any point of time a policy either holds an asset or overnight deposit.
In order to describe the different policies we define a holding period
with respect to MT'. A holding period is the number of days h between
the purchase of asset j and the purchase of another asset j’ (j' # j)
by MT. Holding periods are determined either by reservation prices
RP;(t) which give a trading signal or by the last day T of a period.

MARKET TIMING (MT). Calculates RP;(t) for each day ¢ for
each asset j based on M (i) and m(i). The asset j* MT buys within
a period is called MTasset. An asset j* is chosen by MT if RPj«(t)—
py-(t) = max {RP;(t) — pj(#)j = 1,...,m} and pj-(t) < RP;(1).
Considering RPj«(t) MT must decide each day t whether to sell
MTasset 7* or to hold it another day: the first offered asset price
pj+(t) with pj«(t) > RPj«(t) is accepted by MT and asset j* is sold.
If there was no signal by RPj«(t) within a period trading must be
executed at the last day T of the period, e.g. MT must sell asset
j* and invest asset j' (j' # j*).
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RANDOM (Rand). Buys and sells at randomly chosen prices p;=(t)
within the holding period.

BUY AND HOLD (B + H). Buys j* at the first day ¢ and sells at
the last day T of each period.

MARKET (MA). Knows all prices p;«(t) of a period in advance.
Each holding period M A will buy the MTasset at the minimum
possible price ppin > m(i) and sell at the maximum possible price

Pmax S M(l)

The performance of the investment policies is evaluated empirically.

3 Experimental Results

Simulations of the trading policies discussed in Section 2 are run for all
six period types with number n(p) from {52,26,13,4,2,1} and length
h. Clearly the benchmark policy M A cannot be beaten. Simulations
are run on Xetra DAX data for the interval 2007/01/01 to 2007/12/31

in oder to find out

(1) if MT shows a superior behaviour to buy-and-hold policies
(2) the influence of m and M on the performance of MT

Two types of B4+ H are simulated. (M Tpg. ) holds the M Tasset within
each period and (Indexp,p) the index over the whole time horizon.
MTpyp is synchronized with MT, i.e. buys the MTasset on the first
day and sells it on the last day of each period. Indexp, p is a common
policy and often used as a benchmark. In addition the random policy
Rand buys and sells the MTasset on randomly chosen days within a
holding period.

We first concentrate on question (1) if MT shows a superior be-
haviour to MTp+y and Indexp,pm. Simulation runs with two dif-
ferent reservation prices are carried out, called A and R. For cal-
culating both reservation prices estimates from the past are used,
i.e. in case of a period length of h days m and M are taken from
these h days which are preceding the actual day t* of the reservation
price calculation, i.e. m = min{p(¢)|t =t* —1,t* — 2,...,t* — h} and
M = max{p(t)[t =t —1,t* —2,...,t" — h}. Table 1 displays trading
results under transaction costs. For M A, MT and Rand) transaction
costs are the same; all follow the holding period of MT'. The M'T policy
for both reservation prices, R and A, dominates M T g and Indexp g
in two cases (1 and 4 weeks). MTp4 g dominates M T and Indexp, p in
two cases (6 and 12 months). Indexp g dominates MT and MTgp g
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Table 1. Annualized return rates for different period lengths

Historic R Annualized Returns Including Transaction Costs

Policy 1 Week 2 Weeks 4 Weeks 3 Months 6 Months 12 Months
n(7) =52 n(14) = 26 n(28) = 13 n(91) =4 n(182) =2 n(364) =1

MA 418.18%  138.40%  201.61%  47.93% 72.95% 61.95%
MT 41.08% 1.37% 54.86% 6.08% 32.39% 31.35%
MTB+H 9.70% 0.50% 17.18% 15.80% 45.30% 35.29%
Indexp+m  20.78% 20.78% 20.78% 20.78% 20.78% 20.78%
Rand -23.59%  -21.23% 17.18% -18.23% 6.20% 15.42%

Historic A Annualized Returns Including Transaction Costs

Policy 1 Week 2 Weeks 4 Weeks 3 Months 6 Months 12 Months
n(7) =52 n(14) = 26 n(28) = 13 n(91) =4 n(182) =2 n(364) =1

MA 437.14%  164.44%  201.61%  50.27% 75.27% 61.94%
MT 31.52% 13.37% 57.02% 2.09% 45.28% 34.50%
MTp+m 7.45% 11.53% 17.18% 15.80% 45.29% 35.28%
Indexp+m  20.78% 20.78% 20.78% 20.78% 20.78% 20.78%
Rand -1.49% -12.97% 5.36% -20.80% 24.37% 12.64%

in two cases (2 weeks and 3 months). MT generates the best overall
annual return rate when applied to 4 weeks. In case R MIg gener-
ates the worst overall annual return rate when applied to 2 weeks, in
case A when applied to 1 week. M T,y improves its performance in
comparison to Indexp g and MT proportional to period length h. The
longer the period the better the relative performance of MTp . MT
outperforms Indexp, py in two-thirds and MTp g in one-thirds of the
cases. If period length h < 4 MT outperforms MTp g in all cases and
if h >4 MTp4 g outperforms MT in all cases. Indexp;py outperforms
MTpyg in half the cases. If we consider the average performance we
have 27.86% for MT, 20.78% for Indexpy, and 20.63% for MTgy
in case R and 30.63% for MT, 20.78% for Indexpp, and 22.09% for
MTp, g in case A. MT is best on average. On average MT shows a
superior behaviour to B 4+ H policies under the assumption that m and
M are based on historical data.

In general we assume that the better the estimates of m and M the
better the performance of MT. Results in Table 1 show that the longer
the periods the worse the relative performance of MT. This might
be due to the fact that for longer periods historical m and M are
worse estimates in comparison to those for shorter periods. To analyze
the influence of estimates of m and M simulations are run with the
observed m and M of the actual periods, i.e. we have optimal estimates.
Results shown in Table 2 have to be considered in comparison to the
results for historic estimates in Table 1. Now we can answer question
(2) discussing the influence of m and M on the performance of MT. In
all cases the returns of policy MT improve significantly when estimates
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Table 2. Annualized returns for optimal historic estimates

Clairvoryant R Annualized Returns Including Transaction Costs
Policy 1 Week 2 Weeks 4 Weeks 3 Months 6 Months 12 Months
n(7) =52 n(14) = 26 n(28) = 13 n(91) =4 n(182) =2 n(364) =1
MA 418.18% 315.81%  280.94% 183.43%  86.07% 70.94%
MT 102.60%  87.90% 76.10% 81.38% 55.11% 54.75%
MTe+H 9.70% -4.40% 22.31% 19.79% 45.30% 35.29%
Indexp4m 20.78% 20.78% 20.78% 20.78% 20.78% 20.78%
Rand -23.59%  -101.3% -10.67% 47.37% 46.08% 15.42%
Clairvoryant A Annualized Returns Including Transaction Costs
Policy 1 Week 2 Weeks 4 Weeks 3 Months 6 Months 12 Months
n(7) =52 n(14) = 26 n(28) = 13 n(91) =4 n(182) =2 n(364) =1
MA 437.14% 317.87T%  271.57% 153.68%  66.33% 76.14%
MT 119.77%  98.11% 85.65% 63.61% 46.55% 62.65%
MTp+m 6.21% -4.40% 27.16% 19.79% 45.30% 35.29%
Indexp4m 20.78% 20.78% 20.78% 20.78% 20.78% 20.78%
Rand -34.04%  -24.39% -19.67% 52.93% 26.01% 37.18%

of m and M are improved. For all period lengths MT is always better
than MTp, g and Indexp . The estimates of m and M are obviously
of major importance for the performance of MT.

4 Conclusions

To answer the questions from section 3 24 simulation runs were per-
formed. In the clairvoyant test set M1 outperforms B + H in all cases
even under transaction costs. Tests on historical estimates of m and M
show that MT outperforms B + H in one-thirds of the cases and also
on average. We conclude that if the period length is small enough MT
outperforms B+ H. It is obvious that the better the estimates of m and
M the better the performance of MT. Results show that the shorter
the periods, the better the estimates by historical data. As a result, the
performance of MT gets worse the longer the periods become. It turned
out that the shorter the periods the less achieves MT" in comparison to
MA. A MT trading policy which is applied to short periods leads to
small intervals for estimating historical m and M. In these cases there
is a tendency to buy too late (early) in increasing (decreasing) markets
and to sell too late (early) in decreasing (increasing) markets due to
unknown overall trend directions, e.g. weekly volatility leads to wrong
selling decisions during an upward trend.

The paper leaves some open questions for future research. One is that
of better forecasts of future upper and lower bounds of asset prices
to improve the performance of MT. The suitable period length for
estimating m and M is an important factor to provide a good trading

143
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signal. Simulations with other period lengths for estimating m and M
could be of interest. Moreover, the data set of one year is very small.
Future research should consider intervals of 5, 10, and 15 years.
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Preface

The following research paper investigates the performance of different online
conversion algorithms. The bi-directional non-preemptive reservation price (RP)
algorithm of Mohr and Schmidt (2008a,b) (Algorithm 5, p. 83) is compared to the
preemptive threat-based algorithm of El-Yaniv et al. (1992, 2001) (Algorithm 8, p.
92). Algorithm 5 is presented in detail in Section 4.1, and Algorithm 8 in Section
5.1.

Algorithm 5, denoted by SQRT, achieves a worst-case competitive ratio as given
in Theorem 2. Schmidt et al. (2010) consider Variant 2 of Algorithm 8, denoted
by Threat(m, M, k), i.e. the a-priori knowledge of m, M and the number of trading
days k < T is assumed. The worst-case competitive ratio of Algorithm 8 is strictly
increasing with k, and calculated as given in equation (5.24).

For the empirical-case analysis transaction costs are not considered, and the
backtesting of the algorithms is done on the German Dax-30 index for the
investment horizon 01-01-1998 to 12-31-2007; stylized facts are given in Example
2, p. 62. Only the index itself can be traded by the investigated algorithms
ON € {SQrr, Threat(m, M,k),CR, BH} and OPT. The investment horizon
is divided into several time intervals of different length 7. Within each T
uni-directional search, solving either the min-search problem for buying or the
maz-search problem for selling, might be carried out. As suggested in the work of
Borodin et al. (2004), two consecutive time intervals of equal length 7" built trading
intervals of length 2 - T, with T" € {260, 130, 65,20, 10}. In order to trade multiple
times for example 2 - T = 260 days equal T = 130 days for buying, and T = 130

days for selling, etc. The following questions are to be answered:

1. How does the empirical performance of the algorithms compare?

2. How do the empirical-case competitive ratios ¢ found in the experiments

compare?

3. How do the worst-case competitive ratios ¢ which could have been possible

from the experimental data compare?

35The copyright permission can be found in the Appendix, cf. Section A.2 and the original

publication is available at www.elsevier.com/locate/endm.
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4. What are the performance ratios |[Threat(m,M, k)/SQRT| in the

empirical-case and in the worst-case?
5. Can the answers to Questions 1 and 2 be confirmed by a statistical ¢t-test?

Algorithm SQRT uses precise estimates to calculate a reservation price ¢* =
VM -m: In case of a time interval of length T" days the actually observed values
of m and M within each T" are used. Analogously, Threat(m, M, k) uses precise
estimates of M, m and k to calculate the amount to be converted s; using equation
(5.20).  The constant rebalancing algorithm (C'R) converts the same amount
sy = 1/T of the index on each day t. The empirical-case performance is evaluated
by a t-test, as given in Algorithm 2, p. 67.

Results show that Threat(m, M, k) clearly outperforms BH and C'R. To reduce
the number of conversions SQRT is a good alternative to Threat(m, M, k) as it also
outperforms BH. The results found in the experiments could be confirmed by the
t-test. Summing up, Schmidt et al. (2010) analyze uni-directional conversion while

converting a single asset from an empirical-case and a worst-case point of view.
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Trading decisions in financial markets can be supported by the use of online algo-
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1 Introduction

The performance analysis of trading algorithms can basically be carried out by
three different approaches. One is Bayesian analysis where a given probability
distribution of asset prices is a basic assumption. Another one is competitive
analysis where uncertainty about asset prices is assumed. Algorithms are
analyzed under worst case outcomes. The third one is a heuristic approach
where analysis is done on historic data by simulation runs. We apply the
second and the third approach considering single and multiple trade problems.

2 Problem Formulation

In a single trade problem we search for the minimum price m and the maximum
price M once. In a multiple trade problem we trade more than once. If we
buy and sell assets k times we call the problem k-trade problem with k£ > 1.
As we do not know future asset prices decisions to be taken are subject to
uncertainty. Trading is represented by search. To solve the financial search
problem a trader observes prices ¢(t) with m < ¢(t) < M at points of time
t=1,2,...,T. For each ¢(t) he must decide which fraction of his current asset
s(t) he wants to sell at time ¢. At the last price ¢(T) the trader must sell all the
remaining fractions of the asset he holds. It is assumed that the time interval
[1,7] and the possible minimum and maximum prices m and M are known.
The problem to determine s(t) is solved by online algorithms. An algorithm
ON computes online if for each j =1,...,T — 1, it computes an output for j
before the input for j + 1 is given. An algorithm OPT computes offline if it
computes a feasible output given the entire input sequence j = 1,...,7 — 1.
An online algorithm ON is c-competitive if for any input 1

(1) ON(I) > % .OPT(I).

If the competitive ratio is related to a performance guarantee it must be
a worst case measure. Thus any c-competitive online algorithm guarantees
a value of at least the fraction 1/c¢ of the optimal offline value OPT(I) no
matter how unfortunate or uncertain the future will be. As we have a maxi-
mization problem ¢ > 1 the smaller ¢ the more effective is ON. We analyze
the competitive ratio of two online algorithms based on a reservation price
policy (s(t) € {0,1}) and a threat-based policy (0 < s(t) < 1).

! Email: gs@itm.uni-sb.de
2 Email: em@itm.uni-sb.de
3 Email: mk@itm.uni-sb.de
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Reservation Price Policy. For the search problem the selling rule s intro-
duced by [2] “sell at the first price greater or equal to reservation price

q¢* = v M -m” has a worst case competitive ratio ¢, = \/% where M and

m are upper and lower bounds of prices ¢(t) € [m,M]. This result can
be transferred to a single trade problem if we modify the rule to “buy at
the first price smaller or equal and sell at the first price greater or equal to
¢ = VM -m”. In the single trade problem we have to carry out search
twice. In the worst case we get ¢, for buying and the same ¢, for selling
resulting in an overall competitive ratio for single trading ¢, = ¢, - ¢, = .

m
For the k-trade problem we get a worst case competitive ratio of

f()

i=1

If m and M are constant for all trades ¢;(k) = (%)k The ratio ¢;(k) can
be interpreted as the geometric return we can achieve by buying and selling
sequentially as stated in [5].

Threat-based Policy. To solve the search problem the following procedure
is suggested by [3]: (i) Choose a competitive ratio ¢ and select a trading
policy which can guarantee c. (ii) Consider trading asset d for asset y only
when the current exchange rate ¢(t) is the highest seen so far. (iii) Whenever
you trade asset d for asset y convert just enough to ensure that the given
¢ would be obtained if an adversary dropped the next rate q(t + 1) to the
minimum possible rate m and kept it there until the end of the time horizon
T, i.e. that this threat exists. Let k < T be the remaining exchange rates
in the time series. Let ¢/(1) be the first exchange rate of this time series.
Let ¢®(¢'(1)) be a competitive ratio which is achievable on a sequence of k
exchange rates ¢/(1),...,¢ (k). The achievable competitive ratio ¢*(¢'(1))
for k remaining trading days is

(3) q'(1) =1+ 7(1) (k—1) <1 {M—m} )

c=sup " (q(1),q(2),...,q(k)|k <T) is the optimal competitive ratio for
the search problem [3]. For each trade we conduct the threat-based algo-
rithm twice. The competitive ratio for trading of the threat-based algorithm
can be calculated in the same way as it is done for the reservation price al-
gorithm.
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3 Experiments

We use daily closing prices of the DAX-30 index for the time interval 01-01-
1998 to 12-31-2007 and divide the time horizon into several trading periods ¢
of different length K. Each i consists of two sub-periods 7' = [ 4] for buying
(buying period b) and T' = L%J for selling (selling period s). We differ between
trading periods with length 260, 130, 65, 20, 10 days, i.e. for K = 260 days
T = 130 days for buying (selling) etc. We investigate the following trading
algorithms:

Optimal Trading. Optimal Trading (OPT) is an offline algorithm which
achieves the best possible return in each ¢. We assume that OPT knows all
prices of i. OPT buys at the minimum realized price p,,;, > m(b) and sells
at the maximum realized price pp,q., < M(s) in each sub-period.

Threat-based Trading. Every time an exchange is carried out the threat-
based algorithm (T'hreat) calculates the achievable competitive ratio and
buys (sells) the corresponding quantities such that the achievable c is real-
ized in each sub-period.

Reservation Price Trading. For every sub-period the reservation price al-
gorithm (Square) calculates reservation prices RP(t) for each day t. Square
buys (sells) the index at the first price ¢(t) < (>)RP(t). If there was no
such price buying (selling) has to be done on the last day 7" of a period.

Average Price Trading. The average price algorithm (Constant) buys (sells)

with the constant fraction % in each sub-period.

Buy and Hold. Buy and Hold (BH) buys on the first day of the buying
period and sells on the last day of the selling period.

The following assumptions apply for all algorithms: (1) there is an initial cash
value greater zero; (2) transaction costs are not considered; (3) minimum price
m, maximum price M, and the length T" of each sub-period are known; (4)
interest rate on cash is zero; (5) within each b all cash must be exchanged in
the index and within each s all index must be exchanged back into cash; (6)
the performance measure is the average trading period return (AR). AR tells
us which performance we could expect within 7. Let d; and D; be the amount
of cash at the beginning and at the end of period i. Let r; = % be the return
in 7. Let n be the number of trading periods considered. Theri,

(4) AR(n) = (H Ti) " .
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We also calculate the worst case competitive ratio and the empirical case
competitive ratio. The competitive ratio is calculated by solving equation
(1) to ¢ where ON € {Threat, Square, Constant, BH}. Let ¢, be the worst
case competitive ratio and let ¢, be the empirical case competitive ratio. For
the worst case competitive ratio ON(I) is the worst case return which could
have been achieved taking the data of the problem instance into account; for
the empirical case competitive ratio ON(I) is the empirical case return which
actually was achieved by ON and is calculated according to equation (4). We
only consider ¢, for algorithms Threat and Square. For T hreat the empirical
ratio can be achieved also in the worst case. Thus, ¢, of Threat is the same
as its ¢.. For Square we must calculate ¢,,. Let m(b) and M (b) be the bounds
for b and let m(s) and M (s) be the bounds for s. Then, for trading the worst
case competitive ratio is ¢, = /(M(b) - M(s))/(m(b) - m(s)). To find out
how Threat and Square behave relative to each other in the empirical and in
the worst case we calculate empirical case ratio by ARrpreat(n)/ARsquare(1)-
For the worst case we want to know the worst case return ratio of T'hreat and
Square, i.e. c(Square)/c(Threat) = Threat(I)/Square(I) where Threat(I)
and Square(I) relate to worst case performances.

4 Experimental Results

We carried out simulation runs in order to find out how the following mea-
sures compare: (1) the empirical performance of the algorithms; (2) the c,
found in the experiments; (3) the ¢,, which could have been possible from the
experimental data; (4) the performance ratios Threat/Square in the empiri-
cal case and in the worst case. Clearly, all online algorithms cannot beat the
benchmark algorithm OPT.

Question 1: How does the empirical performance of the algorithms com-
pare? Answering this question we calculated the experimental performance of
the online algorithms Threat, Square, BH, and Constant and compared it to
OPT (cf. equation (4)). Results are presented in Table 1. Threat dominates
all other online algorithms. Square dominates BH and Constant. Constant
is dominated by all other algorithms except for 65 days. We can conclude that
in our experiments it is better to have more periods i than longer ones.

Question 2: How do the ¢, found in the experiments compare? Clearly,
the answers to Question 1 regarding the performance comparison of the algo-
rithms are also true for Question 2 because the numerator in ¢ > OPT(I)/ON(I)
is constant for all algorithms in each ¢. The shorter the trading period length
the better is the c. of the algorithms, i.e. the algorithms loose performance
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Table 1
Average Period Return in the interval 1998-2007

1998-2007 Empirical case: Average period return

Period Length 10 days 20 days 65 days 130 days 260 days

OPT 1.0308 1.0562 1.1320 1.2110 1.2923
Threat 1.0236 1.0376 1.0807 1.0981 1.1636
Square 1.0218 1.0302 1.0602 1.0528 1.1220
BH 1.0024 1.0050 1.0137 1.0242 1.0568
Constant 1.0005 1.0028 1.0154 1.0099 0.9930

compared to OPT the longer the periods are.

Question 3: How do the ¢, which could have been possible from the
experimental data compare? Answering this question we calculated the ¢,
for Threat and Square which are possible from the data set. The results are
shown in Table 2. Using the worst case criteria Threat clearly outperforms
Square, i.e. if we like to minimize worst case returns we choose T'hreat. More-
over the performance of Square gets worse compared to Threat the longer the
periods are.

Table 2
Worst case competitive ratio for the interval 1998-2007

1998-2007 Worst case: ¢, average period return

Period Length 10 days 20 days 65 days 130 days 260 days
OPT/Threat 1.0070 1.0179 1.0475 1.1028 1.1106
OPT/Square 1.0302 1.0529 1.1109 1.1962 1.2913

Question 4: What are the performance ratios Threat/Square in the
empirical case and in the worst case? Comparing Threat and Square by
their ¢,, we know that Threat outperforms Square (cf. Table 2). Answering
Question 4 we want to know how the ratios of the worst case and of the
empirical case differ, i.e. where the out-performance is greater. The answer is
given in Table 3. Using the AR as performance measure the ratio is between
2.3% and 16.3% in the worst case and only between 0.18% and 4.31% in the
experiments. So we conclude that trading with Square is a good alternative
to Threat in practical applications especially if we want to reduce the number
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of transactions.

Table 3
Empirical case versus worst case ratio for the interval 1998-2007

1998-2007 c. and ¢, average period return Threat/Square

Period Length 10 days 20 days 65 days 130 days 260 days
Empirical Case 1.0018 1.0072 1.0193 1.0431 1.0370
Worst Case 1.0230 1.0343 1.0605 1.0847 1.1627

Question 5: Can the answers to Questions 1 and 2 be confirmed by
a statistical t-test? The null hypothesis Hy is that the AR of one algorithm
Ay < A,. Before running a t-test we have to check if the r; of the compared
two algorithms (t-test samples) are normally distributed (Jarque-Bera test)
and have equal variances or not. If data is normally distributed, the Bartlett
test is used to test the variances; if not the Levene test [1]. The r; are used
to run the t-test. Depending on the results for the variances different kinds of
t-tests are used. We use a significance level of 5%. We run five t-tests for each
pair of algorithms, one for each period length. For six pairs of algorithms 30
t-tests were conducted. The answers to the above questions are summarized
in Table 4: the 'no’ entries in column ’t-test’ mean that the null hypothesis
cannot be rejected; the ’(yes)’ entry means that the null hypothesis could not
be rejected for two period lengths. The results found in the experiments could
be confirmed clearly in three cases and weakly in one case. This is also true for
the corresponding competitive ratio. Where the results from the experiments
cannot be confirmed by a t-test the returns generated by the two algorithms
are too close to produce significance.

5 Conclusions

Threat clearly outperforms BH and Constant. If transaction costs have to
be considered Threat still outperforms Constant because it never generates
more transactions. If we want to reduce transaction costs Square is a good
alternative to Threat, i.e. it also outperforms BH. The worst AR is achieved
by Constant. BH looses performance relative to Threat and Square the
shorter the periods are. For the worst case ratio AR values are increasing
the longer the periods are. The worst case performance is the greater the
greater the difference in m and M, which gets greater with longer periods.
It would be interesting to analyze the performance of Threat compared to
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Table 4
Summary of simulation and ¢-test results

10 Year Interval 1998-2007

Average Period Return Simulation ¢-test
(1) Threat dominates Square yes no

(2) Threat dominates BH yes yes
(3) Threat dominates Constant — yes yes
(4) Square dominates BH yes yes
(5) Square dominates Constant yes (yes)
(6) BH dominates Constant yes no

Square and BH in further experiments taking transaction costs into account.
Another open question is to conduct experiments with forecasts for m and M.
The suitable period length for estimating m and M is an important factor to
provide good online algorithms. It would be of further interest to assume that
we do not have information about m and M. One approach is to observe a
certain number k of the T prices within a time horizon with & < v < T and
then trade to the next best price q(v) > max (< min) {q(j)|lj=1,...,k}
(cf. the secretary’s problem [4]).
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Preface

Inspired by the survey of Graham et al. (1979) the following paper provides a
classification scheme for online conversion problems.

A considerable amount of literature is devoted to online conversion algorithms,
an overview is given in Section 2.4. In addressing the conversion problem, various
aspects are covered and different settings are assumed. In addition, the terminology
used is not coherent and standardized. The great variety of online conversion
algorithms, and the non-adherence to standards might lead to misconception on
part of the reader. As each online conversion algorithm assumes different problem
settings, assumptions and nomenclature it is difficult to evaluate the suggested
algorithms on existing methods, or to compare them on a mutual basis. We provide
a novel scheme to classify online conversion algorithms based on the problem setting
they are using. Similarly, we define a standard nomenclature for the terms used in
the literature in relation to online algorithms for conversion problems.

Our aim is to remove the discrepancies currently existing in the literature, and
to introduce a standard classification scheme. Further, we provide a comprehensive
review of the literature addressing online conversion problems. We restrict the
literature review to competitive search algorithms in the context of conversion in
financial markets, i.e. the search for best prices in order to buy and sell assets
(min-search and maz-search). Different classes of online conversion algorithms are
discussed, and their competitive ratios are derived. We conclude indicating some

problems for future research and give a selective bibliography.
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Abstract

A considerable amount of literature is devoted to online conversion problems
which signifies its growing importance. We provide a standard nomenclature
and a unique classification scheme for online conversion problems (maximum
and minimum search). Based on the suggested scheme, we classify the ex-
isting work and provide a short review of the literature. Different classes of
online conversion algorithms are discussed, and their competitive ratios are
shown as well. We also provide an insight into future work, and potential
new areas of research.

Keywords: Classification Scheme, Online Conversion Problem, Online
Algorithms, Competitive Analysis, Trading Algorithms

1. Introduction

An online conversion problem deals with the scenario of converting an
asset D into another asset Y with the objective to get the maximum amount
of Y after time T. The process can be repeated in both directions, i.e.
converting asset D into asset Y, and Y back to asset D. In a typical problem
setting, on each day ¢, the player is offered a price ¢; to convert D to Y, the
player may accept the price ¢; or may decide to wait for a better price. The
game ends when the player converts whole of the asset D to Y.

Based on the context of decision making, algorithms can broadly be clas-
sified in two categories, a) those which make a decision based on the complete
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n  knowledge about future input data, resulting in an optimum solution, and
1> are referred to as optimum offline algorithms and, b) those which make a de-
13 cision with no or partial knowledge about future input data, very often not
1 resulting in an optimum solution, and are referred to as online algorithms. It
15 is nevertheless desired to evaluate its effectiveness against the performance
16 of other algorithms for the same problem. The technique used to evaluate
17 online algorithms is called competitive analysis. It compares the performance
18 of an online algorithm to that of an optimum offline algorithm. Let ‘ON’
19 be an online algorithm for some maximization problem ‘P’ and ‘Z’ be set of
2 all inputs. Let ON(I) be the return of algorithm ‘ON’ on input instance
a [ € Z. Let ‘OPT’ be the optimum offline algorithm for the same problem
2 ‘P’ and OPT(I) its return for the input on the same instance I € Z. An
23 online algorithm ‘ON’ is called c-competitive if V I € 7

ON(I) > - - OPT(I). (1)

Q-

2 Problem Setting

2 Consider a player who wants to convert an asset D into another asset
2 Y. Assume that the player starts with dy=1 and yo=0. At each time ¢t =
1,2, ...,T the player is offered a price ¢;, and must immediately decide whether
s to accept the offered price ¢; or not. If the player decides to accept the price,
20 he can convert a portion or the whole amount of asset D at the offered price
s @. The game ends when the player has converted D completely into Y. If
s there is still some amount of asset D remaining on the last day 7', it must
2 be converted at the last offered price gy which might be the worst(lowest)
53 offered price.

34 Based on the design pattern of conversion algorithms, we can broadly
s classify them into two classes, a) online conversion algorithms — developed to
1 give a performance guarantee under worst-case conditions, and referred to as
s guaranteeing conversion algorithms. The worst-case performance guarantee
s is usually evaluated using competitive analysis [15], and b) heuristic conver-
3 sion algorithms — which are developed to achieve a preferably high average-
w0 case performance . Very often heuristic conversion algorithms are based on
s data from technical analysis [37]. The assumptions of heuristic conversion
s« algorithms are found similar to guaranteeing conversion algorithms. Both
i classes work without any knowledge of future input. Guaranteeing conver-
s« sion algorithms as well as heuristic conversion algorithms are referred to as
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online conversion algorithms. Both classes can be evaluated using competi-
tive analysis.

Motivation

A great deal of literature is devoted to the study of online and heuris-
tic algorithms for conversion problems. In addressing the problem, various
aspects are covered, and different settings are assumed. For instance, some
algorithms are designed based on assumptions that expected lower and up-
per bounds of offered prices, m and M, are known to the online algorithm
[11, 13, 20, 38]. Whereas others consider assumptions in which the knowl-
edge of the fluctuation ratio ¢ = M/m, and the length of the time interval
T is assumed [13, 18]. Other variants also exist, and each depends on dif-
ferent assumptions [22]. In addition, the terminology used is not coherent
and standardized. The great variety of online conversion algorithms, and
the non-adherence to standards might lead to misconception on part of the
reader. As each online conversion algorithm assumes different problem set-
tings, assumptions, and nomenclature it is difficult to evaluate the suggested
algorithms on existing methods, or to compare them on a mutual basis. We
provide a novel scheme to classify online conversion algorithms based on the
problem setting they are using. Similarly, we define a standard nomenclature
for the terms used in the literature in relation to online algorithms for conver-
sion problems. Our aim is to remove the discrepancies currently existing in
the literature, and to introduce a standard classification scheme. Further, we
provide a comprehensive review of the literature addressing online conversion
problems. We restrict the literature review to competitive search algorithms
in the context of conversion in financial markets, i.e. the search for best
prices in order to buy and sell assets. Further applications like algorithmic
trading, and online auctions are not considered. (cf. [4, 8, 23]). We conclude
presenting open questions and potential future research directions.

2. Classification Scheme

Our proposed classification scheme is based on three pillars, a) the nomen-
clature — a standardized set of definitions, b) the classification factors — pa-
rameters that affect the class of problems, for example the knowledge about
the future prices, and c¢) the tree — the resultant structure that will classify
existing (and future) work.

159
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0 2.1. Nomenclature

80 We provide a standard nomenclature to define the terms used in relation
&1 to online conversion problems. The objective of the nomenclature is to adhere
&2 to a standard set of definitions, and to avoid ambiguity.

&3 1. Transaction: A transaction is either selling or buying of an asset.

sa 11. Trade: A trade consists of two transactions, one is buying and one is

& selling. The number of trades is p, with¢=1,...,p

s 299. Investment Horizon: The total time duration in which all transactions
87 must be carried out. The investment horizon can be divided into one or
88 more time intervals for conversion.

9o 1v. Uni-directional search (uni): Searching for maximum (max-search) or
% minimum (min-search) price(s) to carry out either a selling or a buying
o1 transaction within one time interval.

2 v. Bi-directional search (bi): Searching for maximum (max-search) and

93 minimum (min-search) price(s) to carry out both a buying and a selling
o transaction within one time interval, i.e. bi-directional search is synonym
% for trading.

o vi. Non-Preemptive conversion (non-pmitn): Search for one single price within
o7 the time interval to convert the asset.

% vii. Preemptive conversion (pmitn): Search for more than one price within

% the time interval to convert the asset. Typically the number of prices
100 considered for conversion is determined by the algorithm. Except in one
101 special case where the player desires to convert at a specific number u of
102 prices. This is referred to as u-preemption (u — pmin); the player must
103 specify u.

we viii. Offered Price (q;): A price from a sequence of prices presented to the

105 player to carry out a transaction. Offered prices are denoted by Q =
106 q1, ¢, - -.,qr, where ¢; is the price offered at time ¢ within the time
107 interval.

ws ix. Predicted Upper Bound (M ): Represents the upper bound on possible
100 prices during the time interval.
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129

Predicted Lower Bound (m): Represents the lower bound on possible
prices during the time interval.

Fluctuation Ratio (¢): The predicted maximum fluctuation of prices

that can possibly be observed during the time interval, calculated by

Duration (T'): The length of the time interval, where t = 1,..., T

Threat Duration (k): The number of trading days after which the offered
price might drop to some minimum level, for instance m, and stays there
until the last day T, where k < T.

Price Function (g(q;)): Models a price ¢, based on some predefined
function; for instance the current price ¢; is a function of the previous

price ¢_1, i.e. ¢ = g(q-1)

Amount Converted (s;): Specifies which fraction of the amount available
(e.g. wealth) is to be converted at price ¢, on day ¢, with 0 < s, < 1.

Return Function (f(q;)): The return r, for accepting a price ¢, is not
exactly the price itself but a function of the price. Such as accepted
price minus the accumulated sampling costs for observing a time series
of prices during the time interval T'.

Risk Tolerance (a): An acceptable level of risk (risk tolerance) the player
is willing to take for some higher reward.

o 2.2. Classification Factors

131

The factors used to classify the conversion problems are discussed as

132 follows:

133 «. Nature of search

134

135

136

137

138

139

ay1. Uni-directional: In uni-directional search, the player converts an
asset D into another asset Y, but conversion back from Y to D is
forbidden. There is no restriction on the number of transactions.

ag. Bi-directional: In bi-directional search, the player converts an as-
set D back and forth, i.e. converts D into Y, and Y back to D
etc. There is no restriction on the number of transactions.

161
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140 8. Amount converted per transaction

14 B1. Non-preemptive conversion: Search for one single price in the time
142 interval to convert the asset. Typically, the whole amount avail-
143 able is converted in one single transaction, i.e. s; € {0, 1}.

144 By. Preemptive conversion: Search for more than one price in the
145 time interval to convert the asset. Typically, only a fraction of
146 the whole amount available is converted in one transaction, i.e.
147 St € [0, 1].

148 v. Given information

149 Parameters assumed to be known a priori, such as

150 ~1. predicted upper bound M,

151 2. predicted lower bound m,

152 ~v3. fluctuation ratio ¢ = M/m,

153 v4. duration T,

154 ~s. threat duration k < T,

155 v6. price function g(q;),

156 7. return function f(q;),

157 7s. risk tolerance a € [1,OPT/ON].

s 2.3. The Tree

150 Based on the classification factors, we can divide a conversion problem
160 into one of four main categories, as shown in Fig: 1. 4) Uni-directional Non-
161 preemptive, 77) Uni-directional Preemptive, iii) Bi-directional Non-preemptive,
162 and v) Bi-directional Preemptive. One observation from the tree structure
163 is that a solution for a problem at the higher level (closer to the root) is also
16 a solution for the problem setting at the lower level in the same path. For
15 instance a solution for the problem setting of uni-directional preemptive con-
166 version with only M and m known is also a solution for the lower level in the
1z same path, where further knowledge is assumed; for example the duration 7.
s This however does not guarantee the same performance, i.e. the solution for
160 a higher level may not necessarily be as good as the one where more a priori
o knowledge is assumed. It must be noted that for the sake of clarity, we do
i not show all the possible nodes in the tree (Fig:1). Likewise, a scenario where
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the player has no knowledge about the future, is not represented as separate
node in the tree and can be represented at the same level as non-preemptive
(61) or preemptive (3). We limit our review only to those nodes relevant to

the problems addressed in the literature.

A

Y

A

Unidirectional ()

Conversion Problem

A4

y

Bidirectional (a2)

A

M

Figure 1: Classification tree based on the classification factors

3. Uni-directional Search

The main focus of conversion problems remains on uni-directional search.
We classify the uni-directional search problem in two main categories based
on the amount converted per transaction. We relate our discussion w.l.o.g.

to max-search.

Non-Preemptive Preemptive Non-Preemptive Preemptive
(Br) (B2) (By) (=)
m T M ) M m M
Mym Tgla)| | Mm || 6, T | | 6.k | | Mm Mm
W, e M, m, || M, m, | |M, m, M, m,
fla) Q1 T k a Problems addressed in literature
M, m,
T, f(at)
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w1 3.1. Uni-directional Non-preemptive Conversion

182 In the uni-directional non-preemptive scenario, the player is allowed to
183 convert an asset D into an asset Y in one single transaction, based on a
18 pre-calculated reservation price (RP). The literature concerning the uni-
15 directional non-preemptive scenario is either based on one single R P, denoted
16 by ¢*, or on a time varying RP, denoted by ¢;. In both cases, each price
w  q offered at day t is checked against the pre-calculated RP: If the offered
188 price q; is greater than or equal to RP the price ¢ is accepted, and search
189 is closed. Otherwise the search continues until the desired price is offered or
1o the last price ¢r occurs which the player must accept. At this point, asset D
11 must be converted at price gy, which might be m.

102 Problems from the literature addressing the uni-directional non-preemptive
103 scenario are discussed in the following.

s 3.1.1. Problem: uni|non-pmtn|M,m
105 El-Yaniv [12] provided an elegant algorithm for uni-directional non-preemptive

106 conversion with m and M known. The algorithm is called ‘Reservation Price
w7 Policy’ (RPP).

108 Algorithm 1. Accept the first price greater than or equal to ¢* = M - m.
1w Theorem 1. Algorithm 1 is \/M/m competitive.

20 Proof. Let the reservation price (RP) be ¢*. Two cases exist: i) the com-
21 puted RP is too low, or i7) the computed RP is too high. A clever adversary
202 with complete knowledge of the future, and the RP, can use this information
203 to exploit the algorithm making the player perform worse, as shown in the
204 following.

205 Case 1: If ¢* is too low, then the adversary provides an input sequence
206 in such format that M > g0 > ¢*, and thus the player may suffer from the
207 8o called ‘too early error’: The player could have achieved M but gets ¢* in
208 the worst-case. The competitive ratio achieved thus will be ¢; = M/¢*.

200 Case 2: 1f ¢* is too high, then the adversary provides an input sequence
210 in such format that m < g < ¢*, and thus the player may suffer from
o the ‘too late error’: The player could have achieved ¢*, and gets m in the
22 worst-case. The competitive ratio achieved thus will be ¢; = ¢*/m.
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The player must choose a ¢* while balancing the two errors, i.e. to ensure
that

Ci = (o (2>
M/q¢* = ¢ /m
G = VM-m

Thus, we get an overall competitive ratio of \/M/m. =

3.1.2. Problem: uni|non-pmtn|M,T

Damaschke et al. [10] considered a problem setting in which the upper
bound M, and the duration T is known. The model assumes that the prices
offered ¢, € [M/T, M], i.e. the minimum possible price ¢;, = M /T, and the
maximum possible price ¢ = M, witht =1...7T.

Algorithm 2. Accept the first price greater than or equal to q* = M/\/T
Theorem 2. Algorithm 2 is /T competitive.

Proof. Let the reservation price (RP) be ¢*, and ¢ < M the highest
price selected by the adversary. At any time ¢ < T the player accepts an
offered price if ¢, > ¢*. If no such price occurs, the player must accept the
minimum value ¢,;, = M/T. Two cases exist: ¢) the computed RP is too
low, or 7i) the computed RP is too high. A clever adversary with complete
knowledge of the future, and the RP, can use this information to exploit the
algorithm making the player perform worse, as shown in the following.

Case 1: If ¢* is too high, the adversary will choose ¢nee < ¢*. As no
offered price ¢; will satisfy the condition ¢; > ¢* during T, the player must
accept ¢min = M /T on day T in the worst-case. Thus, the competitive ratio
in this case equals

¢, = OPT/ON (3)
Qma:r
(M/T)

q

(M/T)

Case 2: If ¢* is too low, the adversary will offer ¢* as the first price ¢;.
The player will accept ¢, and the game ends. Afterwards, the adversary

9
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236 increases the prices up to ¢mqe = M. Thus, the competitive ratio in this case
237 equals
ca = OPT/ON (4)
= M/q".

28 'The player must choose a ¢* while balancing the competitive ratios ¢; and
230 C9, resulting in

CT = (9 (5)
Qmal’ *
arry — M

¢ = M/VT.
a0 Thus, we get an overall competitive ratio of VT. m

a1 3.1.8. Problem: uni|non-pmitn|M,m, f(q;)

242 Xu et al. [38] presented a uni-directional non-preemptive RP algorithm
23 based on the assumption that the lower and upper bounds, m and M, as well
24 as the return function f(g;) are known to the player. The model extends the
25 algorithm by El-Yaniv [12] (c¢f. Problem: uni|non-pmin|M,m) by introducing
xus  sampling costs for observing prices ¢;. It is assumed that the achievable
a7 return 1, when accepting a price ¢; on day t is not exactly the price itself,
2 but a function of the price (accepted price minus accumulated sampling cost).
29 In contrast to El-Yaniv [12] the considered RP is not constant but varies
250 with time, and thus is denoted by ¢;. After the player accepts one specific
1 price ¢’ the game ends. It is assumed that a larger price results in a larger
2 return 1’ for ¢/. Further, the achieved return r’ is higher when accepting the
53 price ¢’ earlier, as less sampling costs occur. These basic assumptions are
s summarized as follows:

25 1. The values m, M and f;(¢') are known to the player, and the price
256 g € [m, M] with 0 < m < M.

57 4i. The return function f;(¢') with ¢ = 1,2,...,T is continuous, and in-
258 creasing in ¢'.

20 1ii. For any accepted price ¢ € [m, M] the return for accepting ¢’ is the
260 higher the earlier ¢’ is accepted: fi(¢") > fa(¢') > -+ > fr(¢') > 0.

10
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Algorithm 3. On dayt, accept price q; if ¢ > qf resulting in a return fi(q;).

If no price was accepted until the last day 7', the last price gr must be
accepted (possibly ¢y = m resulting in fr(m)).

Xu et al. [38] focus on the case where fi (M) > fi(m) for t € [1,T —1],
because if fi1(M) < f;(m) the game ends on or before day ¢ as the player
achieves a return of f;(g;) > fi(m) when accepting ¢; at day j € [1,¢].

Calculating Reservation Price q;

From assumption (i.) follows that for 7' = 1 the unique price ¢; = ¢’ with
the same return is accepted. Thus, the case where T' > 2 is of main interest.
For each (unknown) duration L € [1,7] let

= min max Jenn(M) [ f2(M) — _ fo(M)
Zp = {{ { Fi(m) ft(m)}’t 1,...,L 1}, fL(m)}
(6)

with Z;, > 1 since fii1(M) > fi(m), and fo(M) > fr(m). Let
L':maX{L\L:arg max ZL}. (7)
2< LT

This means that Z;, > Z, for every L € [2,T]. By definition of Z;, there
exists a natural number z, such that

o= %forxﬁ[f—l, (8)
or
M
7= ]}i((m)) for x < L,
with

ZL/ = min{Z',, Z/}

*

Let the reservation price be ¢f. From eq (8) ¢; is derived by the following
cases:
Case 1: Zy, = Z,. For t € [1,z] let ¢; either be the solution of

Zpfla) = fin(M), (9)
or
g, = m if no solution exists.

11
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277 Case 2: Zy, = Z},. Let t* = max{t|fr1(M) > /fo(M) - fo(m)}.

278 Case 2.1: For min{t*,x — 1} <t <z,
q, =m. (10)
279 .
260 Case 2.2: For 1 <t < min{t*,z — 1} let ¢/ be either the solution of
Zifla) = fer(M), (11)
or
g; = m if no solution exists.

281
22 Theorem 3. Algorithm 3 is Z;, competitive.

23 The proof for the competitive ratio Zp/, discussing several cases and worst-
28 case time series, is not given here due to its length. The reader is referred to
25 Xu et al. [38], Section 4.2.
286 For the problem considering different return functions, an extension of
s7 the current work can possibly be to design randomized algorithms to achieve
28 a better competitive ratio.

20 3.1.4. Problem: uni|non-pmin|M,m,T,f(q;)

200 In the previous section, we did not consider the knowledge of duration 7.
21 Based on this additional knowledge, Xu et al. [38] proposed a second RP
22 algorithm which is presented in the following. Assumptions as well as the
203 proposed algorithm are identical to Algorithm 3. Only the calculation of the
24 RP q; differs.

25 Algorithm 4. On day t, accept price q; if ¢ > q; resulting in a return of
296 ft(Qt)

207 Calculating Reservation Price qf

208 For each (known) duration 7, let
oL freon [R00Y L, o [ROD)
z- {{ . { ) ft(m)},t Lo 1}, fT(m)}
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with T > 1 as fi 1 (M) > fi(m) and fo(M) > fi(m). By definition of Z
there exists a natural number y, such that

7 = @Z?—%forygT—l, (13)
" f2<M)
7" = for
fy(m) ory =t
with

Z = min{Z' 7"}.

From eq(13) the RP ¢} is derived by the following cases:
Case 1: Z =7'. For t € [1,y] let ¢; either be the solution of

Zfq) = firn(M) (14)
or
g, = m if no solution exists.

Case 2: Z = Z". Let t* = max{t|f1(M) >/ fo(M) - f,(m)}.
Case 2.1: For min{t*,y — 1} <t <y,

4 =m. (15)

Case 2.2: For 1 <t < min{t*,y — 1} let ¢; be either the solution of

Zfq) = fir(M), (16)
or
g, = m if no solution exists.

Theorem 4. Algorithm j is Z competitive.

The proof for the competitive ratio Z, discussing several cases and worst-case
time series, is not given here due to its length. The reader is referred to Xu
et al. [38], Section 3.2.
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an 3.2. Uni-directional Preemptive Conversion

312 In uni-directional preemptive conversion, asset D can be converted in
a3 parts with the possibility to convert at different points of time during the
se time interval, i.e. s; € [0,1]. The only restriction is that during the time
a5 interval the player must convert asset D into the asset Y completely, i.e.
316 23:1 s¢ = 1.

317 A great deal of literature addresses the problem of uni-directional pre-
us emptive search. El-Yaniv et al. [13, 14] introduced a genre of algorithms
s19  based on the assumption that there exists a threat that at some stage during
20 the time interval, namely on day k < T, the offered price will drop to a
21 minimum level m, and will remain there until the last day 7. The algorithm
22 proposed is commonly referred to as the threat-based strategy [14, p. 109].

23 Algorithm 5. The basic rules of the threat-based algorithm are:

wdule 1. Consider a conversion from asset D into assetY only if the price offered
325 1s the highest seen so far.

adtule 2. Whenever you convert asset D into asset Y, convert just enough D

327 to ensure that a competitive ratio ¢ would be obtained if an adversary
328 dropped the price to the minimum possible price m, and kept it there
320 afterwards.

sdule 3. On the last trading day T', all remaining D must be converted into Y,
331 possibly at price m.

332 El-Yaniv et al. [13, 14] discussed four variants of the above algorithm,
sz each assuming a different knowledge about the future. Dannoura and Sakurai
s [11] improved the algorithm by improving the lower bound given in El-Yaniv
s et al. [13, 14]. It is shown that the threat is ¢ - m > m (where ¢ > 1 is the
1 competitive ratio), and not m as assumed by El-Yaniv et al. [13, 14].

337 Further variants of the threat-based algorithm can be found in the litera-
133 ture. Chen et al. [9] considered a price function g(¢q;). Each ‘next’ price q; 41
30 depends on the current price ¢; in a geometric manner: ¢;/B < q;11 < A- ¢,
s where A and B are constants. It is assumed that 7', A and B are known a
s priori to the player.

342 Hu et al. [18] suggested two algorithms assuming the fluctuation ratio ¢ =
33 M/m, and T is known. The first algorithm (static mixed strategy) is deemed
s to be overly pessimistic since it fixes the competitive ratio based on the

14



Results of Ahmad, Mohr and Schmidt (2010)

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

assumption of a worst-case input sequence of prices, and does not change it
thereafter. Thus, they offered a second algorithm (dynamic mixed strategy)
which converts based on the number of remaining days 7" = T'—t+1, and the
fluctuation ratio ¢. Thus, the competitive ratio is improved by recalculating
the achievable competitive ratio.

Damaschke et al. [10] assumed prior knowledge of m, M (t) and T. The
original threat-based algorithm by El-Yaniv et al. [13, 14] is improved by
assuming that the upper bound is a decreasing function of time, i.e. M(t) =
M/t, and the lower bound m is constant.

Lorenz et al. [27] studied the max- (min-) search problem, and provided
solution based on u-preemption and reservation prices. It is assumed that a
player wants to convert at a specific number of prices u. The problem setting
assumed that m and M are known.

The above algorithms are described in detail in the following text.

3.2.1. Problem: uni|pmtn|M,m,k

El-Yaniv et al. [13, 14] presented a threat-based strategy that works on
rules 1 to 3 as described in Algorithm 5. With known m, M and k& < T
the algorithm achieves a pre-calculated competitive ratio c. Let d; be the
amount of asset D remaining after day ¢, and y, be the amount of asset Y
accumulated after day t. In order to achieve the competitive ratio ¢, the
amount to be invested at time ¢, denoted by s;, must be determined such
that ¢ holds in case the price drops to m, i.e. the worst-case occurs.

Lemma 1. If A is a c-competitive threat-based algorithm then for everyt > 1

@ —c- (Y1 +di_q - m)
c- (g —m)

(17)

St =

%:yt,1+m-d(t—1)+st-(qt—m). (18)

Proof. The threat-based algorithm ensures that at time ¢, enough D is
converted to achieve the pre-specified competitive ratio ¢. Thus

PT
ort @ (19)
ON Ye +m - dy
_ qt
(Yr—1 4+ St - qr) +m - (di—1 — s¢)
< c
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an2 The denominator y; + m - d; represents the return of ON if an adversary
;i3 drops the price to m and the nominator ¢; is the return of O PT for this case,
s as @ is the maximum and OPT will invest all D at price ¢;. According to
ws rule 3 ON must spend the minimum s; that satisfies eq (19). Solving eq (19)
s  as an equality constraint with respect to s, results in eq (17). Thus, for t =1
7 we get

5 = L i—cm (20)

c @G —m

s as dyg =1 and yo = 0. Using eq (18) we get

:1.%—%—1
c qG—m

S (21)

379 W

0 Definition 1. A threat-based algorithm Ac is c-proper iff

T
381 1. Zst <1,
t=1

OPT(Q)
382 2. Ac(Q) < C,

33 where Q) is the sequence of prices offered to the online player (algorithm).

s Lemma 2. Let () be the sequence of offered prices. If algorithm Ac is c-
s proper with respect to Q, then for any ¢ > ¢, algorithm Ac is ¢ -proper.

s Proof. We assume that Q = q1,¢o,...,qe,m,m,.... mwith m < ¢ < gz <
s ,...,< q,and t = 1,...,T. At any given time t, the amount converted s;
s by Ac is smaller than or equal to the amount converted s; by Ac’. Using eq
389 (20), on day t=1

/ q1 1 1
—s =1 (2> 22
S]_ 81 (ql _m)(c Cl) - ) ( )
s0 and for ¢t > 1 1 1
qt — qi—1
P Y ) (23)

(g—m)'c ¢

T / T . T T /
s As >, 8, <>, 15, and as Acis c-proper ) ,_; s, < 1. Hence, Y, ; s} <
s2 1. As the competitive ratio ¢’ is achievable Ac selects transactions that
33 ensure a competitive ratio ¢, even if the prices drop to m. Hence, Ac is
54 C/-proper. m
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3.2.2. Problem: uni|pmtn|M,m

El-Yaniv et al. [13, 14] addressed the scenario where the player knows
only the lower and upper bound, m and M, of the offered prices and presented
a threat-based strategy. The basic rules of the strategy remain the same as
discussed in Algorithm 5. As the player is oblivious about the time interval T,
it is assumed that the adversary selects T — oo. Let Ac™ be the algorithm,
then as per Lemma 2, the algorithm Ac* is ¢>-proper for any input sequence
@, and hence ¢* is an attainable competitive ratio. We now calculate ¢*,
using ¢ - m as lower bound.

Let X = %, then

limr—ooT(1 — XYT) = limp_scr(m, M) (24)

XUn . n X/T?

= limr_e =y [UsingL' Hopital's Rule]
= limpe — X" In X
—In X.

Thus ¢*(m, M) is the unique solution ¢, and

M_q
=In2 ) 25
c mc_1 (25)

It can be seen that ¢ = O(In ¢), where ¢ = M/m.

Dannoura and Sakurai [11] improved the lower bound presented by El-
Yaniv et al.[13, 14], and suggested a more competitive algorithm. They
claimed that a player using the algorithm of [13, 14] assumes a much greater
threat than actually faced by the player. The threat assumed by [13, 14]
is that the price might drop to m, and will remain there for the rest of the
time interval. Dannoura and Sakurai observed that the proposed algorithm
suggested by El-Yaniv et al. does not convert unless the price is as large as
c-m, i.e. the threat is at most ¢ - m, and shall not go beyond this point.
Thus ¢*(m, M) is unique solution of ¢, and

c=In<"——0! (26)

3.2.8. Problem: uni|pmtn|M,m,q
El-Yaniv et al. [13, 14] and Dannoura and Sakurai [11] addressed the
scenario where the player knows the lower and upper bound, m and M, of

17
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a0 the offered prices, as well as the first price ¢;, and presented a threat-based
w0 strategy. The basic rules of the strategy remain the same as discussed in
s Algorithm 5. Although we know ¢, the same c is reached as in the case we
w22 would not know it (cf. Problem: wuni|pmin|M,m). So the knowledge of ¢
#23 does not improve the competitive ratio, and eq (25) holds.

a2 For calculating the competitive ratio ¢, an arbitrary number of trading
ws days T' — oo is considered. Thus ¢>*(m, M, q) is the unique solution of ¢,
w26 and [11, p. 29

M_q

R ER I @
+ 4 EIno=n g € [em, M.

wr 8.2.4. Problem: uni|pmin|p

428 El-Yaniv et al. [13, 14] addressed the scenario where the player knows only

w9 the price fluctuation ratio, ¢ = M/m, of the offered prices, and presented

a0 a threat-based strategy. The basic rules of the strategy remain the same

s as discussed in Algorithm 5. As the player does not know 7', the player

a2 assumes the adversary to choose ' — oco. El-Yaniv et al. [13, 14] computed

a3 the optimal achievable competitive ratio to be ¢>(¢), and is calculated as

s follows. Let ¢ (¢) = limy_, cr(¢), then

(60— 1) ¢1n¢>_

($T/T—1) — )71 = (¢ —1exp (—¢ 1 (28)

limTﬂoo

s Therefore

=(9) = ¢ (1 (6 — Dexp <—fﬁ‘¢1)) (29)
6—1

¢- P/ (-1

s 3.2.5. Problem: uni|pmin|¢,k

a3 In this scenario, the online player along with the duration k (k < T)
ss knows only the fluctuation ratio ¢ = M/m, but the real bounds on M and m
a0 are not known. The basic rules of the strategy remain the same as discussed
wo in Algorithm 5. El-Yaniv et al. [13, 14] discussed the scenario, and observed
w1 that minimum price offered on day ¢ is at least ¢;/¢. Using eq (17) and (18),
w2 and replacing the minimum possible price in these equations by ¢;/¢ from eq

18
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(18), we get

Yy + di(q/d) = ai/c

Ly
=d; = ¢>(E - ;)- (30)
From eq (17), we get
5 = g — (Y1 +di—1 - ¢/ @) (31)
c(qe — q:/9)
On day t = 1, we know that yy = 0, and dy = 1. Thus
¢ —c
CE

Similarly, for ¢t > 1, we have
5, — Y19 ( 1 1)
t — _— — — .
o—1\@g1 @

Theorem 5. Competitive ratio of threat-based algorithm with ¢ and k known
18:

(6. k) = o (1= (6 - 1)/ (6740 - 1)) (32)

For proof of Theorem 5, the reader is referred to El-Yaniv et al. [14] Section
4.4.

3.2.6. Problem: uni|pmin|M(t),m,T

Damaschke et al. [10] assumed that the player knows the lower and upper
bounds of the offered prices, m and M (t), as well as the duration 7. Their
model is based on the assumption that the upper bound is not constant but
varies with time (M (t) = M/t). Damaschke et al. presented a threat-based
strategy, the basic principle remains the same as described in Algorithm 5.
Let s; be the amount converted at time ¢, then

o) t=1
= 1 Qt*Qt—l) te [2 T] (33)
c qt—m ’ :
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wo Theorem 6. The competitive ratio ¢ achieved is

) 1/k
C_
¢ = syt 1_<—m_1> 3

m

w1 where ¢; is price offered to the player at time ¢, and is modeled as m < ¢; <
w2 M(t), where M (t) is decreasing function of time and m is constant.

463

ws  3.2.7. Problem: uni|pmin|p, T

465 In this scenario, the online player, along with the knowledge of duration
w6 T knows only the fluctuation ratio ¢ = M/m but the real bound on M and
w7 m are not known. Hu et al. [18] presented two algorithms to achieve optimal
ws competitive ratio under worst case assumptions, namely the Static Mizved
wo  Strategy and the Dynamic Mized Strategy.

470

an1 Static Mixed Strategy: The static mixed strategy allocates the amount
a2 to be converted based on the worst-case input sequence of prices.

a3 Algorithm 6. Determine the amount to be converted at time t by the fol-
a lowing rules

1+¢ _
(T-1)p+2 t=1

1 —
(T-1)p+2 t=T

a5 Theorem 7. The competitive ratio ¢ achieved by Algorithm 6 is

c:1+§(T—1) (36)

s For the proof of Theorem 7, the reader is referred to Hu et al. [18] Theorem 1.
477

a78 Dynamic Mixed Strategy: The worst-case scenario does not occur
a9 that frequently as assumed by the static mixed strategy. The dynamic mixed
a0 strategy addresses this issue, and allocates s; based on the remaining number
w1 of days T in the time interval.

20
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Algorithm 7. Determine the amount to be converted at time t by the fol-
lowing rules

)W t=1

(T"-1)p+2
St = m Wt/ t e [2,T — 1} (37)
1 —
T 1Dér2 Wt/ t="1T

where W) denotes the remaining amount of wealth at day t.

Theorem 8. The competitive ratio ¢ achieved by Algorithm 7 based on the
remaining number of days T' is

(" =1)¢
5

For the proof of Theorem 8, the reader is referred to Hu et al. [18].

c=1+ (38)

The dynamic mixed strategy is more competitive than the static mixed
strategy but the competitiveness does not exist when the the duration 7' is
extended to infinity, therefore designing a strategy which works independent
of the duration 7 is an open question. In addition, investigating bi-directional
strategy, and incorporating transaction cost also requires further research.

3.2.8. Problem: uni|pmtn|T,g(q:)

Chen et al. [9] presented an algorithm for uni-directional search. The
model assumes prior knowledge of the duration 7', and the price function
g(q:). The constants A and B (A, B > 1) determine the prices offered on a
day t, and ¢ is modeled as ¢;_1/B < ¢ < A-q—1. The algorithm and the
the amount invested s; on day t is described as follows:

Algorithm 8. Determine the amount to be converted at time t by the fol-
lowing rules

A(B-1) =1
TAB—(T—1)(A+B)+(T-2)
5 = (AL te2,T—1] (39)

TAB—(T-1)(A+B)+(T-2)
(A-1)5 t="T.

TAB—(T—1)(A+B)+(T—2)
Theorem 9. The competitive ratio ¢ achieved by Algorithm 8 is

 TAB—(T—1)(A+B)+ (T —2)
°= AB —1
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ss  For proof of Theorem 9, the reader is referred to Chen et al. [9] Theorem 3.4.
504

505 The problem requires further investigation where there is a continuous
s6  flow of wealth/cash instead of one time fixed cash. Similarly replacing the
sor constants A and B with some known probability distribution can also be
so8 investigated.

0 3.2.9. Problem: uni|pmtn|M,m,a

510 The threat-based algorithm presented by El-Yaniv et al, [13, 14] (and
su its variants) attempts to safe guard against a clever adversary who might
sz drop the offered prices at some point during the time interval to the lowest
si3 level m, and keep it there for the rest of the time interval. The threat-based
sie strategy is thus risk-averse, i.e. it mitigates the amount of risk involved, and
si5 provides a solution that ensures an optimal competitive ratio under worst
si6 case assumption. Al-Binali [1] introduced the concept of risk management,
si7 - and presented a risk-reward framework. The main idea is to allow the player
si8 1o manage his risk for some kind of reward, and to allow the player to develop
si9 a trading algorithm based on risk tolerance and forecast. A forecast is the
s20 prospected value of the price that might be reached in the time interval. The
sz forecast can either be on the maximum value in the future (‘above forecast’
s2 M) or on the minum value in the future (‘below forecast’). Iwama and
3 Yonezawa [20] presented an extension of the threat-based algorithms using
s generalized forecasts and incorporating a risk tolerance level of the player.
ss5  In general, the risk-reward threat-based algorithms are based on the scenario
s2  where a single above forecast is assumed They also discussed scenarios where
s27 ‘double above forecast’ and ‘single above and below forecast’ are assumed.
s 'They are natural extensions of the more generalized single above forecast.
s The algorithm runs in two phases, phase 1 assumes that the forecast will
s not come true and thus enough wealth is converted to ensure a competitive
ss1 ratio a - ¢g. Phase 2 starts when the forecast becomes true, at this stage a
52 new competitive ratio ¢q is computed, and the wealth is converted at offered
s33 prices to achieve ¢;. The formal algorithm is outlined as follows. Assume the
s%  starting price g is greater than ¢-m (qo > ¢-m), and M, is the forecasted
s upper bound.

s Algorithm 9. q¢ € [qo, M| : Convert just enough to ensure a competitive
s ratio of a - ¢y 1s achieved.
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cp = In {M} , (41)
com —m
di(q) = 1-— (L) In [M} , (42)
acy acom —m
1 _
Z/l(fh) = — {m : lnM + g — acom] . (43)
acy acom —m

qt € [My,M] : compute the new competitive ratio c¢i (better than cy), and
convert just enough to achieve this ratio. Let do(x) and yo(x) be the amounts
of dollars and yen in this phase. Then

do(q)) = d — (0—11) In [ﬁ] , (44)

1 QG —m
= — |m.l — M| . 4
y2(ar) vt {m "N —m @ 1] (45)
In eq (44), and (45), d is dollars and y is the amount of yens at hand, given
by
M, 1 1
d=dy(M;) — - — 4
1(0) (M1 —m) (cl aco)’ (46)
and

v=non) - (5 (5 - o). (47)

The optimal strategy enforces the condition that all dollars must be con-
verted, such that dy(M) =0 or

1
1——1 —
aco nacom -—m M;—m

=0 (48)

C1 aco
By solving eq (48), we get the competitive ratio ¢;

M, - M M-
¢ = il ( L i in m) (49)
(Ml—m)( _Llan—m>+% M, —m M, —m

acop acom—m

acop

The work is based on the simple assumption that a forecast can either be
true or false. However in practice a forecast has an associated probability p
to become true, so the reward can be represented as function of p when the
forecast becomes true.
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53 3.2.10. Problem: uni|u-pmtn|M,m
554 Lorenz et al. [27] designed a strategy for v —pmin with m and M known.
sss L'wo different strategies are proposed one each for buying and selling.

ss6  Algorithm 10. 1. Maz-search (selling) Problem: At the start of the game

557 compute reservation prices ¢ = (¢, q5,..-q2), where i = 1,..,u. As the
558 adversary unfolds the prices, the algorithm accepts the first price which
559 is at least qi. The player then waits for the next price which is at least
560 ¢y, and so on. If there are still some units of asset left on day T, then
561 all remaining units must be sold at the last offered price, which may be
562 at the lowest price m.

*_
g =m

L (e — 1) (1 + %)1 (50)

563 Where ¢* is the competitive ratio for the max-search (selling) problem.
564 2. Min-search (buying) Problem: Follows the same procedure as for maz-
565 search problem, the reservation prices are computed as follows;
1 1o\t
quM[l—(l——)(l—k ) ] (51)
c* U - c*
566 Where ¢* is the competitive ratio for the min-search (buying) problem.

Theorem 10. Letu € N, ¢ > 1, there exists a c*-competitive deterministic
algorithm for u maz-search problem where ¢* = c*(u, @) is the unique solution

of
—1 *\ U
@-Y _(1,.<)
(¢t —1) u
Theorem 11. Letu € N, ¢ > 1, there exists a c*-competitive deterministic
algorithm for u min-search problem where ¢* = ¢*(u, ¢) is the unique solution

’ =
1-1 u
<1—§>:<“c*1-u>'
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4. Bi-directional Search

Bi-directional search allows the player to convert asset D into asset Y,
and asset Y back into asset D during a time interval. We assume that the
objective is to maximize the amount of D at day T, i.e. the player has the
objective to maximize his final wealth in terms of asset D. We classify the
bi-directional search problem into two main classes based on the amount of
wealth converted.

4.1. Bi-directional Non-Preemptive

Bi-directional non preemptive algorithms allow the player to conduct bi-
directional search with the restriction to convert the whole amount of wealth
at one point during a conversion. This implies that only two transactions are
permissible during a single trade. This however, does not restrict the player
to trade only once in the time interval, the player can either trade only once
(single trading), and can repeat the trading (buying followed by selling) as
many times (multiple trading) as he wishes. Kao and Tate [22] presented an
algorithm for profit maximization (named difference maximization), Mohr
and Schmidt [31] extended the reservation price algorithm for selling by El-
Yaniv [12] to buying and selling.

4.1.1. Problem: bi|non-pmtn| —
i. Algorithm by Kao and Tate [22]

Kao and Tate [22] presented a solution to the bi-directional search prob-
lem without any assumptions made regarding the future. The prices are
arbitrary real numbers, for each price ¢;, a rank x; is calculated. The value
of x; represents the rank of ¢; in the already observed sequence of prices. The
algorithm attempts to achieve the maximum possible profit by buying at low
and selling at high prices while maximizing the difference in ranks between
the buying and selling prices.

The authors addressed two scenarios, the first scenario is called single pair
selection, solves the single trade problem and the second scenario is called
multiple pair selection, solves the multiple trade problem.

e Single pair selection: The player is allowed to make two selections, one
for buying (low selection) ¢;, and one for selling (high selection) gy.
The difference (g5, — ¢;) is the profit. Alternatively, the profit can also
be the difference in the rank of two selections, i.e. x;, — ;.
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601 e Multiple pair selection: The player is allowed to make multiple low and
602 high selections during the time interval. The sum of the differences thus
603 is the pI"Oﬁt.

604 No assumptions are made regarding the distribution of the sequence of

s prices. It is obvious to assume that all permutations of the final ranks are
s0s equally likely. If the rank of a price ¢; is x; among the first ¢ prices, then the
sr expected final rank will be (%) ;.

608 Let Hp(t) be a high selection limit, and Ry (7)) the expected final rank
s0 of the high selection if the optimal algorithm OPT is followed starting at
s the time t. Let Lp(t) be a low selection limit, and Pr(t) be the expected
su high-low difference if the optimal algorithm OPT for making the low and

s12  high selections is followed starting at time ¢, with

0 t=T,
Pr(t) =
r(t) {PT(t+1)+LT—“)-(RT(t+1)—PT(t+1)—w.M> t<T.

t il 2
(52)
613
614 AlgOI‘ithm 11.
as  High Selection Criteria: Select q; at time t iff x, > Hrp(t), where
t+1
Hr(t) = |—— - Rr(t+1)]|. 53
o) = | Rele+ 1) (53)

a6 Low Selection Criteria: Select q; at time t iff x; < Lp(t), where

0 t=T,
”@:{H%«mw+w—&@+mJt<T "

sz 1f no selection is made before the last offered price g7, the last price gr has
ae  to be accepted with rank Ry(T') = 25

619 Kao and Tate [22] stated that the competitive ratio for single pair se-
s20 lection equals one, and for multiple pair selection equals %. The proof for
e1 the competitive ratios is not given here due to its length. The reader is re-
o2 ferred to Kao and Tate [22], Section 3. Further work can be carried out by
23 investigating to maximize quantities other than the difference in rank.
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i1. Heuristic Conversion Algorithms

In the following we present the competitive analysis of three heuristic
conversion algorithms, namely Moving Average Crossover (MA), Trading
Range Breakout (T RB), and Momentum (M M) which are based on technical
indicators.

In general, heuristic conversion algorithms are also reservation price (RP)
algorithms. Reservation price(s) are calculated based on the offered price(s)
q;- Using the RP, the algorithm determines intersection points specifying
when to buy or sell.

For each i-th trade we assume a worst-case time series of prices containing
only minimum prices m(i), and maximum prices M (7). At best the consid-
ered algorithm buys at price m(7), and sells at price M (i) resulting in an
optimum return OPT = M (i)/m(i). In the worst-case the above heuristic
conversion algorithms ON € {MA,TRB, MM} achieve the worst possible
return of ON = m(i)/M (i) = 1/OPT, resulting in a competitive ratio of

)

m(i)

2

and in case m(i) and M (i) are constants

- (%)zp. (56)

To prove the competitive ratio given in eq (56) we assume that an algorithm
ON € {MA,TRB, MM} is allowed to trade only once, i.e. p=1.

Theorem 12. The competitive ratio of the heuristic conversion algorithms
MA, TRB, and MM equals ¢ = (%)2

1. Algorithms by Brock et al. [6]

Brock et al. [6] introduced the algorithms M A and TRB. These al-
gorithms are of major interest in the literature, and have been empirically
analyzed by several researchers, cf. Bessembinder and Chan [3]; Hudson et al.
[19]; Mills [29]; Ratner and Leal [33]; Parisi and Vasquez [32]; Gunasekarage
and Power [16]; Kwon and Kish [24]; Chang et al. [7]; Bokhari et al. [5];
Marshall and Cahan [28]; Ming-Ming and Siok-Hwa [30]; Hatgioannides and
Mesomeris [17]; Lento and Gradojevic [26]; Lagoarde-Segot and Lucey [25];
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> Tabak and Lima [36]. A detailed literature overview of heuristic conversion
653 algorithms M A and TRB is given in Mohr and Schmidt [31].

e 1.1. Mowing Average Crossover (MA).

s Assume the following worst-case time series m,...,m, M, m, ..., m. Hence,
6 the prices q1,...,q+_1 = m, q = M, and q+y1,...,gr = m. The MA
es7 algorithm suggested by Brock et al. [6] is:

s Algorithm 12. Buy on dayt if MA(S); > uB(L); and MA(S);—1 < uB(L)¢-1,
es0 and sell on day t if MA(S): <IB(L); and MA(S)i—1 > 1B(L);-1.

0 Where MA(S); is a short moving average, M A(L); a long moving average
1 (S < L), and the value n € {L, S} defines the number of previous data points

s> (days) considered to calculate M A(n); = M Prices ¢; are lagged by
s6s bands, the upper band is uB(L); = M A(L); - (1 +b), and the lower band is
eos [B(L)y = MA(L);- (1 —b) with b € [0.00, 0.

s Proof of Theorem 12 for Algorithm 12: Assume S =1, L < (t* — 1),
sc and b = 0.00. This corresponds to increasing prices generating a buy signal
s7 if the price crosses the long M A from below. Similarly, this corresponds to
s decreasing prices generating a sell signal if the price crosses the long M A

0 from above. The M A algorithm
670 1. buys on day t* at price ¢~ = M. Because MA(1)y = g = M >

uB(t = 1) = MA(t* — 1), = E225 < M, and MA(1)e 1 =
o2 g1 =m S uB(t = V)py = MA(t" = 1)y = T2 = m.

673 2. sells on day t* 4+ 1 at price gy1 = m. Because MA(1)py1 = qpy1 =
674 m < IB(t" — )py1 = MA({t" — 1)py1 = W# > m, and
MA(1)p =g = M > IB(t* = 1) = MA(#* — 1) = L2558 <

s Taking these decisions into account algorithm M A achieves a return of m /M.
sz Comparing this to the optimum return achieved by algorithm OPT, the
s worst-case competitive ratio equals OPT /M A = (%)2 ]

oo 1.2. Trading Range Breakout (I'RB).

ss0  Assume the following worst-case time series m +¢€,....,m+¢, M, m,...,m.
1 Hence, the prices qq,...,q+—1 =m-+e¢€, ¢~ = M, and @¢=41,...,qr = m. The
2 T RB algorithm suggested by Brock et al. [6] is:

s Algorithm 13. Buy on day t if ¢ > uB(n); and ¢—1 < uB(n);_1, and sell
e on dayt if ¢ <IB(n); and ¢—1 > 1B(n)—1.
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Where lower band [B(n); = ¢/""(n)-(1—b) with ¢/ (n) = min {g;|i =t — n, . ..

185

Jt—1},

and upper band uB(n); = ¢,"**(n)-(1—b) with ¢"**(n) = max{¢li =t —n,...,t — 1}

where b € [0.00, 00|, and n < t is the number of previous data points (days)
considered.

Proof of Theorem 12 for Algorithm 13: Assume n < (t* — 2), and
b = 0.00. This corresponds to increasing prices generating a buy signal if
the price crosses uB from below. Similarly, this corresponds to decreasing
prices generating a sell signal if the price crosses (B from above. The TRB
algorithm

1. buys on day t* at price ¢« = M. Because ¢f = M > uB(t* — 2); =
gt —2) =max{qli =2,...,tx =1} =m+e,and g1 =m+e <
uB(t" — 2)p_y = ¢ (t" — 2) = max{¢gli=1,...,t" =2} =m +e.

2. sells on day t* + 1 at price g1 = m. Because qpy1 = m < [B(t* —
2)p = ¢t —2) =min{gli =3,....tx} =m+e and ¢ = M >
IB(t* — 2)p = ¢ (t* —2) =min{g|i =2,...,t* = 1} =m +e.

Taking these decisions into account algorithm T'RB achieves a return of
m/M. Comparing this to the optimum return achieved by algorithm OPT,

the worst-case competitive ratio equals OPT /T RB = (%)2 [

2. Mommentum (MM) [21]

Assume the following worst-case time series m+¢e,m,...,m, M, m, ..., m.
Hence, the prices ¢ = m+¢€, qa, ..., @1 =m, @« = M, and qpy1,...,q7 =
m. The M M algorithm suggested by Jagadeesh and Titman [21] is:

Algorithm 14. Buy on day t if MM(n) > 0 and MM,_1(n) <0, and sell
on day t if MM(n) <0 and MM,_1(n) > 0.

Where the momentum M M,(n) = ¢ — G4—n+1, and n < t is the number of
previous data points (days) considered.

Proof of Theorem 12 for Algorithm 14: Assume n < (t* — 1) and
0 < m < M. This corresponds to increasing prices after a series of decreasing
prices (trend revision) generating a buy signal if the MM crosses the zero
line from below. Similarly, this corresponds to decreasing prices after a series
of increasing prices (trend revision) generating a sell signal if the M M crosses
the zero line from above. The M M algorithm
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77 1. buys on day t* at price g+ = M. Because MMy (t* — 1) = ¢f — ¢ =
718 M—m>0,and MMp_1(t* = 1) =qp—1—q1 =m— (m+¢€) <O0.

719 2. sells on day t* + 1 at price qy1 = m. Because MMy (" — 1) =
720 i1 —@=m—m<0,and MMp(t*—1)=qf —qg=M —m > 0.

= Taking these decisions into account algorithm M M achieves a return of m /M.
722 Comparing this to the optimum return achieved by algorithm OPT, the
73 worst-case competitive ratio equals OPT /MM = (%)2 ]

724 Thawornwong et al. [35] gives a further heuristic conversion algorithm,
s called Relative Strength Index (RST). Worst-case analysis can be done in the
726 same manner; the worst-case time series used for M A must be considered.

w1 4.1.2. bilnon-pmitn|M,m

728 Schmidt et al. [34] extended the uni-directional reservation price algo-
70 rithm for selling by [12] (cf. Problem: uni|non-pmtn|M,m) to buying and
720 selling, i.e. introduce a rule for min-search. In this case the optimal deter-
73 ministic bi-directional algorithm is the following RPP.

2 Algorithm 15. Buy at the first price smaller or equal, and sell at the first
133 price greater or equal to reservation price ¢ =M - m.

7 If m and M are constants, the worst-case competitive ratio assuming p > 1

735 trades then equals
MY?
=|— 57
¢ (m) ’ (57)

V4 .
M{i)
() %)
i=1
7 as for each i-th transaction (i = 1,...,p) different upper bounds M (i) and
78 lower bounds m(i) are assumed.

736 otherwise

130 4.2. Bi-directional preemptive
740 Bi-directional preemptive allows player to follow either the single trade
71 or multiple trade policy. El-Yaniv et al. [13, 14], and Danoura and Sakurai
72 [11] extended their work for uni-directional preemptive search to allow bi-
u3  directional preemptive search.
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74

775

776

7

778

4.2.1. bilpmitn|M,m

El-Yaniv et al. [13] considered bi-directional run search under the as-
sumption that the upper and lower bounds, M and m, on possible prices are
known. To solve bi-directional problem, the player does not need to know
the number of days 7' > k (El-Yaniv et al. [14, p. 136]). The suggested al-
gorithm divides the sequence of prices into upward and downward runs and
repeats the uni-directional threat-based algorithm presented in Algorithm 5.
Asset D is converted into Y (max-search) if the price is on an upward trend
(run). Y is converted into D (min-search) if the price is on a downward
trend (run). Assuming p/2 upward runs, and p/2 downward runs, the online

(%71) P
&5y )" as the overall

investor achieves an overall competitive ratio of ¢ = (In

number of p trades is carried out [13, p. 7.

Dannoura and Sakurai [11] improved the bi-directional algorithm of [13]
by making the threat smaller, and thus achieve a better competitive ratio
¢ = (In (C(‘NT’I[—II))p . Dannoura and Sakurai [11] also improved the upper and
lower bound for bi-directional run search given in the previous work of El-
Yaniv et al. [13]. The improved algorithm is not yet optimal, thus the
challenge of designing an optimal algorithm for bi-directional search remains

[11, p. 33].

5. Conclusion

Though a considerable amount of work addresses the online conversion
problems, a number of questions are still unanswered, and require further
consideration. These questions relate to theoretical and practical aspects.
In order to verify the applicability of the suggested algorithms to practical
problems more experimental studies are required. From the experimental
studies competitive ratios can be defined and compared to worst-case theo-
retical ratios. Especially information about future prices of a time series in
most practical cases is not available. To apply the online conversion algo-
rithms, we need estimates of this information which are necessarily bound
to errors. It would be helpful to investigate competitive ratios which depend
on given errors due to the input data of the algorithms. If we assume that
information about the future is available it will be of great interest which
information is more valuable, for instance the knowledge of the upper bound
M, or the knowledge of fluctuation ratio ¢. Similarly an experimental study
to investigate the worth of future information available may also be of inter-

31

187



188 CHAPTER 6 Results

o est. Intuitively, the more information available to an algorithm, the better
70 it should perform in the worst-case; e.g. an algorithm which utilizes m and
71 M should perform better than then one which utilizes only ¢ as input. Ex-
w2  perimental studies can be conducted to verify the claim.

783 A significant drawback of threat-based algorithms is the large number of
7 transactions carried out. As in the real world, each transaction has an associ-
s ated transaction fee, so the large number of transactions adversely affects the
s practical performance of these algorithms. Hence, designing a strategy that
77 reduces the number of transactions while maintaining the competitive ratio
78 needs further research. Similarly, the algorithms designed for bi-directional
780 search do not perform optimally and pose themselves as an open question.
790 Al-Binali [1] introduced the notion of acceptable level of risk in term of
71 competitive ratio. When risk in terms of competitive ratio is considered, the
72 question remains open if the competitive ratio is a coherent measure of risk
793 [2] or not. Further, our proposed classification scheme can be used to address
7« the unaddressed areas of online conversion problems.
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Manuscript submitted for publication, November 30, 2010

Preface

Comparing an online conversion algorithm to the optimal offline algorithm
can be thought of as measuring the value of the information of future prices
(Larsen and Wghlk, 2010, p. 685). Inspired by Karp (1992a,b) we answer the
question ‘how much is it worth to know the future in online conversion problems’
using the competitive ratio as an indicator for the quality of information about the
future. We define information to be more valuable if the worst-case competitive
ratio can be improved by this information. We calculate the empirical-case
competitive ratios of the different variants of the threat-based algorithm of
El-Yaniv et al. (1992, 2001) (Algorithm 8, p. 92). Due to Rules (1) to (3) of
Algorithm 8, for all variants of the threat-based algorithm, the prices considered
for conversion are identical. Only the calculation of the amount to be converted s;
differs based on the information assumed to be known a-priori.

For the empirical-case analysis transaction costs are not considered and the
backtesting of the algorithms is done on the German Dax-30 index for the
investment horizon 01-01-1998 to 12-31-2007; stylized facts are given in Example
2, p. 62. Only the index itself can be traded by the investigated algorithms ON &
{Threat(X), BH} with X € {(m, M, k), (m, M), (m, M, q), (¢, k), (¢)}, and OPT.
The investment horizon is divided into several time intervals of different length 7'.
Within each T uni-directional search, solving either the min-search problem for
buying or the maz-search problem for selling, might be carried out. As suggested
in the work of Borodin et al. (2004), again two consecutive time intervals of equal
length 7" built trading intervals of length 2 - T, with 7" € {260, 130, 65,20, 10}. In
order to trade multiple times for example 2 - T" = 260 days equal T = 130 days
for buying and T" = 130 days for selling, etc. The following questions are to be

answered:

1. How do the worst-case competitive ratios ¢ which could have been possible

from the experimental data compare?

2. How do the empirical-case competitive ratios ¢ found in the experiments

compare?

3. Are the answers to Question 2 significant?
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We compare our empirical-case results to the analytical worst-case results given in
the literature. The empirical-case performance is evaluated by a t-test, as given in
Algorithm 2, p. 67.

Analytical results show that the better the information the better the worst-case
competitive ratios. However, experimental analysis gives a slightly different view.
We show that better information does not always lead to a better performance in
real-life applications. The empirical-case competitive ratio is not always better with
better information, and some a-priori information is more valuable than other for
practical settings. We conclude that the value of information can only be estimated

by worst-case scenarios.
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Abstract

We answer this question using the competitive ratio as an indicator for the
quality of information about the future. Analytical results show that the
better the information the better the worst-case competitive ratios. How-
ever, experimental analysis gives a slightly different view. We calculate the
empirical-case competitive ratios of different variants of a threat-based on-
line algorithm. The results are based on historical Dax data. We compare
our empirical-case results to the analytical worst-case results given in the
literature. We show that better information does not always lead to a better
performance in real life applications. The empirical-case competitive ratio is
not always better with better information, and some a-priori information is
more valuable than other for practical settings.

Keywords: Online Algorithms, Competitive Analysis, Empirical-case
Analysis, Worst-case Analysis, One-way Trading, Uni-directional Algorithm

1. Introduction

[1] answers the question considering multiprocessor scheduling, interval
coloring, and the k-server problem. We want to answer the question for
online conversion problems. A conversion problem deals with the scenario
of converting an asset D into another asset Y with the objective to get the
maximum amount of Y after time 7". The process can be repeated in both

*Principal corresponding author
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Schmidt)
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directions, i.e. converting asset D into asset Y, and asset Y back to asset
D. On each day t, the player is offered a price ¢; to convert D to Y'; he may
accept the price ¢; or may decide to wait for a better price. The game ends
when the player converts whole of the asset D to Y.

Based on the amount converted s;, two classes of online conversion algo-
rithms exist, (i) preemptive online conversion algorithms - designed to convert
asset D at more than one price within the time interval, i.e. s, € [0,1], and
(ii) non-preemptive online conversion algorithms - designed to convert asset
D at one single price within the time interval, i.e. s, € {0,1}.

Several authors suggest uni-directional preemptive algorithms for (i) us-
ing the competitive ratio as performance measure [2, 3, 4, 5, 6, 7, 8. An
algorithm must determine which amount s; € [0, 1] to be converted on days
t =1,...,T such that the amount of asset Y is maximized on day 7. The
only restriction is that during the time interval the player must convert asset
D into the asset Y completely, i.e. Zthl s¢ = 1, and conversion back to D is
forbidden.

Related work focuses on worst-case performance guarantees using com-
petitive analysis [9]. The performance of an online algorithm ON is compared
to that of an adversary, the optimal offline algorithm OPT'. Each input can

be represented as a finite sequence I with ¢ = 1,...,T elements, and a feasi-
ble output can also be represented as a finite sequence with 7" elements. An
algorithm ON computes online if for each t = 1,...,T — 1, it computes an

output for ¢ before the input for ¢+ 1 is given. An algorithm OPT computes
offline if it computes a feasible output given the entire input sequence I in
advance. An online algorithm ON is c-competitive if for any input

ON(I) > % -OPT(I). (1)
If the competitive ratio is related to a performance guarantee it must be
a worst-case measure. Any c-competitive algorithm ON([I) is guaranteed
a value of at least the fraction 1/c¢ of the optimal offline value OPT(I) no
matter how unfortunate or uncertain the future will be. We consider con-
verting assets as a maximization problem, i.e. ¢ > 1. The smaller ¢ the more
effective is algorithm ON.

In case the input data processed by an online (conversion) algorithm does
not represent the worst-case input, its performance is often considerably bet-
ter than the competitive ratio tells. For this reason competitive analysis is

criticized as being too pessimistic. In terms of converting assets the com-
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petitive ratio does not reveal which returns can be expected, nor whether
these returns are positive or not. There is related work which conducts per-
formance analysis assuming that input data is given according to a certain
probability distribution. This approach is called ‘Bayesian Analysis’ [9, pp.
34-35]. The objective is to optimize the performance of an algorithm assum-
ing a specific stochastic model [1]. Either assumptions about the distribution
of the input data are made, or the distribution of the input data is assumed
to be known beforehand [10]. However, this approach can often not be ap-
plied as distributions are rarely known precisely. Thus we will not make
assumptions about input distributions or probabilities.

This leads to an exploratory approach. The algorithms are implemented,
and the analysis is done on historic or artificial data by simulation runs. The
objective of exploratory data analysis (EDA) is to 1) suggest hypotheses
to test (statistically) based on the results generated, 2) assess assumptions
on the statistical inference, 3) support the selection of appropriate statisti-
cal tools and techniques for further analysis, 4) provide a basis for further
data collection through experiments. It is important to distinguish the ED A
approach from the classical empirical approach, which starts with a-priori
formulated hypotheses [11]. By applying EDA the observed empirical-case
results are evaluated statistically, mainly by hypothesis tests, bootstrap pro-
cedures, or Monte Carlo simulation, cf. [12, 13, 14].

We apply the experimental approach (EDA) as well as competitive analy-
sis, considering a worst-case and an empirical-case point of view, and limit to
uni-directional preemptive algorithms introduced by [2, 3]. The investigated
online conversion algorithms are based on the assumption that there exists a
threat that at some stage during the time interval, namely on day k£ < T, the
offered price will drop to a minimum level m, and will remain there until the
last day T. We assume a time series of prices QQ = q1,q2, ..., @, M, M, ..., M
where t = 1,...,k < T. The algorithms proposed are commonly referred to
as the threat-based, and the basic rules are [3, p. 109]:

Algorithm 1.

Rule 1. Consider a conversion from asset D into asset Y only if the price
offered is the highest seen so far.

Rule 2. Whenever you convert asset D into asset Y, convert just enough D
to ensure that a competitive ratio ¢ would be obtained if an adversary dropped
the price to the minimum possible price m, and kept it there afterwards.
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Rule 8. On the last trading day T, all remaining D must be converted into
Y, possibly at the minimum price m.

[2, 3] discussed four variants of the above algorithm, each assuming a different
information about the future. [4] improved the algorithm by improving the
lower bound given in [2, 3]. It is shown that the lower bound (the threat)
equals c-m > m (where ¢ > 1 is the competitive ratio), and not m as assumed
in [2, 3]. The basic rules of the five variants of the threat-based algorithm
remain the same. The variants differ in how the amount to be converted s;
is computed, and s; is dependent on the worst-case competitive ratio ¢ the
algorithms are approaching. This leads to the following research question to
be answered:

Can better competitive ratios be explained by higher quality of
a-priori information about the future used in online conversion
algorithms?

When answering this question we do not refer to the work of [5, 6, 7, §].
These uni-directional preemptive conversion algorithms are not threat-based,
and thus not comparable on a mutual basis. In addition, the authors make
assumptions which do not hold in most practical settings. [5] assume a price
function ¢(¢;). The constants A and B (A, B > 1) determine the prices
offered on day ¢, and ¢; is modelled as ¢—1/B < ¢ < A+ ¢—1. Further, [7]
assume that the upper bound of the prices M is a decreasing function of time
and modelled by M; = M/t. The algorithm by [8] requires specifying the
maximum number of preemptions.

Our aim in this paper is twofold. First, we want to experimentally eval-
uate the performance of the uni-directional preemptive threat-based algo-
rithms suggested by [2, 3, 4]. Then we apply EDA as well as competitive
analysis considering a worst-case and an empirical-case point of view. In
related work it is shown that the analytic worst-case competitive ratio ¢*¢
is the better the better the quality of the information about the future is.
We will investigate if this also holds for the empirical-case competitive ratio
c®“. The better the competitive ratio, the better should be the quality of
information. This presumption is to be evaluated through experiments.

The reminder of this paper is organized as follows. In the next section
the problem is formulated, and the algorithms considered are presented in
detail. Section 3 presents the experimental design as well as the experimental
findings from our simulation runs. We finish with some conclusions and
suggestions for future research in the last section.

4



Results of Mohr and Schmidt (2010) 199

2. Problem Formulation

Each threat-based algorithm ON considered converts asset D to asset Y
according to the rules given in Algorithm 1. Algorithm ON obtains price
quotations ¢ (m < ¢ < M, and 0 < m < M) at points of time ¢t =
1,...,T. For each price ¢; ON calculates the amount to be converted s; €
[0, 1] according to Rules 1 to 3. Remaining open positions must be converted
at the latest on the last possible price gr, which might be the worst-case.

Let us consider the multiple conversion problem, i.e. we want to convert
asset D more than once. As we consider uni-directional search, to convert
asset D p>1(i=1,...,p) times, the investment horizon must be divided
into time intervals of length 7" days. As in [15] we assume two consecutive
time intervals of equal length T' are pooled, resulting in trading periods of
length 2-7. Within the first 7" days min-search is carried out in order to buy
at possibly low prices, and within the second T' days max-search is carried
out in order to sell at possibly high prices. With this setting we ensure that
each ¢-th trade consists of exactly one complete buying and one complete
selling. Buying (selling) is complete as soon as the whole amount of D is
converted, i.e. Zthl sy = 1. At the beginning of each time interval of length
T days let dy = 1 be the amount of asset D remaining, and let yo = 0 the
amount of already accumulated asset Y. Let d; be the amount of asset D
remaining after day ¢, and y; be the amount of asset ¥ accumulated after
day t. Fort =1,...,T the amount of asset D remaining equals d; = d;_1 — $;
and the accumulated amount of asset Y equals y; = s - ¢ + yi_1.

In the following we present the five variants of the threat-based algorithm
suggested by [2, 3, 4]. Based on the assumed a-priori information about the
future, each algorithm determines s; such that ¢ holds in case the price drops
to m, i.e. the worst-case occurs.

2.1. Algorithm: Threat(m, M, k)

[2, 3] addressed the scenario where the player knows the upper and lower
bounds of prices, m and M, as well as the number of days £ < T'. Rules 1 to
3 of Algorithm 1 ensure that at time ¢, ‘just enough’ of asset D is converted
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that Threat(m, M, k) achieves a competitive ratio ¢. Thus

orT  _ qt 2)
ON Yy +m - dy

_ q

B (Y1 + 8¢ - q) +m - (di—y — 5¢)

< c

The denominator y; + m - d; represents the return of ON if an adversary
drops the price to m and the nominator ¢; is the return of O PT for this case,
as ¢; is the maximum and OPT will convert the whole asset D at price ¢;.
According to Rule 3 ON must spend the minimum s; that satisfies eq (2).
Solving eq (2) as an equality constraint with respect to s; results in eq (3).
Thus, we get

¢ —c- (Ye—1 +di—1 - m) (3)

¢ (g —m)

It remains to determine the global competitive ratio ¢ used in eq (3) that is
attainable by algorithm Threat(m, M, k). For every day t let ¥’ = k—t+1 be
the remaining days of the time series considered. Let ¢} be the first price of
this time series. Let c®(q}) be a local (lower bound) competitive ratio which
is achievable on a sequence of k' < T remaining prices assuming d; = 1 and
y: = 0 [3, Formula 15]

W g —m g —m Y
N=1 (K -1)- (1 . 4
o) =1+ =——- (K = 1) (M_m) (4)

St —

1

Let ¢ be a global (upper bound) competitive ratio assuming that ¢} is the
highest price of the whole time series, i.e. OPT converts the whole amount
of asset D to asset Y at price qj, and ON converts the remaining amount of
asset D to asst Y. Thus [3, Formula 28a]

qi k'
c=—"79H2Z29Z—.-¢(q 5
di1-q) + Y1 (@) (5)
The denominator d;_1 - ¢} + y;—1 represents the return of ON, and the nom-
inator ¢ is the return of OPT. We now have to calculate which worst-case
competitive ratio we could reach taking into account the following cases:

1. ¢ is a global maximum and OPT will convert the whole of asset D
at price ¢ = M. Then from eq (5) the worst-case competitive ratio
equals c(m, M, k) = ¥ (¢}) with ¢} = ¢, = M.

6
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2. ¢y is not a global maximum and OPT will convert the whole of asset
D at a future rate. Then from eq (4) we get
c(m, M, k) = max {ck/(qi)]k" =1,....k< T} =cI(q)).

Note that when experiments are carried out the empirical-case competitive
ratio ¢ of Threat(m, M, k) equals ¢ (¢}) where k' = 1.

2.2. Algorithm: Threat(m, M)

[2, 3] addressed the scenario where the player knows only the lower and
upper bound, m and M, of the offered prices. As the player is oblivious about
the length of the time interval T, it is assumed that the adversary selects
T — o0o. In order to meet the ratio ¢ the d; must be determined such that
the whole (remaining) amount of D is converted in case the highest possible
price M occurs on day t. From this follows that d; equals [2, p. 4, Case 1]

1 M —m (6)

di=1—--In—
’ ¢ (c—1)
with s; = d;_1 —d; and dy = 1. From eq (6) the worst-case competitive ratio,
denoted by ¢>(m, M), can be derived using ¢ - m as lower bound

1 M —
d = 1—>-In———" (7)
c _c-m—m
—_——
1
= 1—---¢
c
= 0.
Thus ¢>(m, M), is the unique solution ¢ [3, Formula 29]
M
My
=In"™ . 8
c=In"— (8)

2.3. Algorithm: Threat(m, M, q)

[2, 3] and [4] addressed the scenario where the player knows the lower
and upper bound, m and M, of the offered prices, as well as the first price
¢1. For calculating the worst-case competitive ratio an arbitrary number of
trading days T' — oo must be considered. Thus the worst-case competitive
ratio, denoted by ¢*(m, M, ¢1), is the unique solution of ¢ [4, p. 29]

In %__11 ¢ € [m,c-m]
c= (9)

—m M—m
1+qlq_11I1qle qle[c-m,M].

7
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Further, depending on the value of ¢; the amount of D remaining d; equals

[2, p. 4, Case 2]
Lo f1mtmEm e 10
t a-(a/c 1 1y a=m ¢ € [c-m, M] (10)
q—m ¢ q—m ! ’

with St — dt,1 — dt and do = 1.

2.4. Algorithm: Threat(¢)

[2, 3] addressed the scenario where the player knows only the price fluc-
tuation ratio, ¢ = M/m, of the offered prices, but the real bounds on M
and m are unknown. As the player does not know 7', the player assumes the
adversary to choose T — oo. The worst-case competitive ratio, denoted by
(), is computed as follows. Let ¢ (¢) = limp_.o c7(¢), then

(¢ — 1)T ¢lno
(@D — )1 (¢ — Dexp <—¢ — 1) .

limT_,oo

(11)

Therefore

() = o(1- - e (-927)) (12)
b—1

= ¢~ Gue-

2.5. Algorithm: Threat(¢, k)

[2, 3] addressed the scenario where the player knows the price fluctuation
ratio ¢ with the duration & < T. [3, p. 122] observed that the minimum
price offered on day ¢ is at least ¢;/¢. Therefore, the worst-case competitive
ratio, denoted by c(¢, k), can be derived as in the analysis of Algorithm
Threat(m, M, k) specializing to the case in which m = ¢;/¢, resulting in [3,
p. 126, Theorem 6]

(6. k) = o (1= (60— 1)/ (6740 1)) (13)

It remains to compute the amount to be converted s; for the Algorithms
Threat(phi) and Threat(phi, k). For both [2, 3] observed that the minimum
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price offered on day ¢ is at least ¢;/¢. By replacing the minimum possible
price m by ¢;/¢ we get

v i =
Ly
=0 - ) (19
From eq (3), we get
— ety +do s -
5 = G — (Y1 +di—1 - @1/ 9) (15)

c(q — Qt/¢)

Where ¢ equals ¢(¢) for Algorithm Threat(phi), and ¢(¢, k) for Algorithm
Threat(phi, k). In the following the results of our simulation runs are pre-
sented.

3. Results

In the following we present the assumed test design, the performance
measure as well as the computational results.

3.1. Test Design

Our experiments are based on the Dax-30 index prices for the invest-
ment horizon 01-01-1998 to 12-31-2007. We excluded weekends and country-
specific holidays resulting in overall 2543 trading days. To ensure an identical
number of trades for all algorithms considered we divide the investment hori-
zon into trading periods of length 2 - T where T' € {130, 65, 33(32), 10,5} re-
sulting in trading periods of length 260, 130, 65, 20 and 10 days. We assume
asset D to be cash and asset Y to be Dax-30 index. Within each ‘first’ time
interval of length 7' uni-directional search is carried out in order to convert
all cash into index, and within the ‘second’ T" days the index is converted
back to cash. As the threat-based algorithms are allowed to convert in maxi-
mum 7 fractions (s; € [0, 1]), this setting ensures that one trade is completed
within each 2 - T" days. We assume that in each time interval for buying b
(selling s) of length T' there are precise estimates of the possible maximum
prices M,(i) (M(i)), and the possible minimum prices mg(i) (ms()). In our
experiments we compare the following algorithms.
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3.1.1. Algorithm OPT

OPT is an offline algorithm which achieves the best possible return within
each trading period of length 2-7". It is assumed that OPT knows all prices.
OPT will buy at minimum prices my (i) > m, and will sell at maximum prices
M, (i) < M within each T.

3.1.2. Algorithm Threat(x)

Each variant x € {(m, M, k), (m, M), (m, M, q), (¢, k), (¢)} of the threat-
based algorithm converts according to Rules 1 to 3 given in Algorithm 1. We
assume the number of remaining trading days to be 7" =T — ¢t + 1. Each
algorithm Threat(z) calculates the achievable worst-case competitive ratio
"¢ for each time interval and converts the corresponding quantities such
that this ¢¢ would be realized in case the price drops to m. There might
be as many buying (selling) transactions as there are days 7' in each time
interval.

3.1.8. Algorithm BH
BH buys the index on the first day ¢t = 1 of each trading period and sells
it 2-T days later. BH is used as a benchmark.

3.2. Performance Measurement

The following assumptions apply for algorithms 3.1.1 to 3.1.3.
1. There is an initial amount of cash greater zero.

2. Possible transaction prices are daily closing prices.

3. Transaction costs are not considered.

4. Interest rate on cash is assumed to be zero.

The empirical-case competitive ratio ¢ of the above algorithms is derived
by the return achieved. Let r; be the trading period returns, calculated by
(accumulated) selling price divided by (accumulated) buying price for each
i-th trade (¢ = 1,...,p). Then the overall return r(p) after the last trade
equals

rv) =] (16)

i=1



Results of Mohr and Schmidt (2010) 205

From eq (16) we get the annualized return

R(y) = r(p)"" (17)

where y equals the number of years within the investment horizon consid-
ered. For the considered 10-year investment horizon the annualized return is
calculated for y = 10, and tells us which return we could expect within one
year.

We calculate the competitive ratios ¢ of the considered conversion algo-
rithms according to eq (1)

> OPT(I) (18)
ON(I)
where ON € {Threat(x), BH}.

Let ¢“¢ be the worst-case competitive ratio, and let ¢** be the empirical-
case competitive ratio. When calculating ¢“¢ we assume algorithm ON is
confronted with the worst possible sequence of prices i = 1, ..., p times, and
derive the ¢*¢ of each threat-based algorithm as given in Section 2 taking
the data of the problem instance into account. To calculate ¢*¢ for BH we
assume BH buys ¢ times at the maximum possible price M;(b), and sells i
times at the minimum possible price m4(i). Thus ¢*¢ of the BH algorithm
equals [, = 17 (M;(7) - My(7)) / (ms() - my(4)) as shown in [16].

When calculating ¢ the return which actually was achieved by ON and
OPT is used, thus ¢ < ¢*°.

3.3. Computational Results

In this section we present the numerical results achieved by the online
conversion algorithms presented above. For each trading period of length
2-Te {260,130, 65, 20, 10} the algorithms ON € {Threat(z), BH} and OPT
are run. As performance measure we consider the worst-case competitive
ratio ¢¢, and the empirical-case competitive ratio c¢®“. Clearly, the algorithms
ON cannot outperform the optimal offline algorithm OPT. We carried out
35 simulation runs in order to find out how the following measures compare:

1. the worst-case competitive ratios ¢ taking the data of the problem
instance into account, and

2. the empirical-case competitive ratios ¢ found in the experiments.

11



206 CHAPTER 6 Results

Table 1 to 7 present the computational results. We answer these questions
conducting experiments using the Life Trader system.

Question 1: How do the worst-case competitive ratios which could have
been possible from the experimental data compare?

Answering this question we calculated the worst-case competitive ratios
c¢ based on the Dax-30 data. For each buying and selling period we deter-
mine my(i) (ms(i)) and My(i) (M(i)) and calculate the possible worst-case
ratios according to eq (18). The results are shown in Table 1. In case of
BH the ratio ¢*¢ grows exponentially with p, i.e. the greater the number
of trades, the worse BH gets. Column 2 to 6 give the worst-case ratios ¢**

1998-2007: Worst-case ratio ¢ = OPT/ON

2-T 10 days 20 days 65 days 130 days 260 days

Trades p 254 127 39 20 10

OPT/BH 4.9067  3.9698  2.3376 1.9717 1.7012

OPT /Threat(¢) 2.7193  2.3735  1.6964 1.5194 1.3828

OPT /Threat(¢, k) 2.5416  2.3086  1.6878 1.5162 1.3816

OPT /Threat(m, M) 1.7908  1.6572 1.3634 1.2798 1.2118
(

OPT /Threat(m, M,q;) 1.4080 1.3698  1.2696 1.2081 1.1356
OPT/Threat(m, M, k) 12746 13174  1.2587 1.2052 1.1342

Table 1: Worst-case competitive ratios ¢*¢ for 1998 to 2007

for each algorithm and trading period length considered. As expected, the
results are consistent with the analytical results by [2, 3, 4]. When com-
paring Threat(m, M) and Threat(¢, k) knowing the exact upper and lower
bounds, m and M, is more valuable than knowing ¢ = M/m and k < T
as it leads to a better ¢“¢. Similarly, it is more valuable to know k < T
as ¢ of Threat(m, M, k) is better than ¢*¢ of Threat(m, M, q;). From this
we conclude that some information is more valuable than other. We also
conclude that the better ¢*¢ the more valuable the information is.

! LifeTrader is a software system for the evaluation of conversion algorithms, details
can be found in [17].

12
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Question 2: How do the empirical-case competitive ratios found in the
experiments compare?

Answering this question we calculated the empirical-case competitive ra-
tios ¢*° taking the Dax-30 data into account, given in Table 2. When calcu-
lating the ratios ¢°“ the empirical-case return which actually was achieved by
ON is compared to OPT, where ON € {Threat(x), BH}. The results which

1998-2007: Empirical-case ratio ¢** = OPT/ON

2-T 10 days 20 days 65 days 130 days 260 days
Trades p 254 127 39 20 10
OPT/BH 2.2104 1.9194 1.5081  1.4387 1.2586
OPT /Threat(¢) 2.1574  1.9258  1.5208 1.4199 1.2850
OPT /Threat(¢, k) 21378  1.9222 1.5214  1.4198 1.2850
OPT /Threat(m, M) 1.1613  1.2309 1.2125 1.18056 1.1244
OPT/Threat(m, M,q) 1.1606 1.2307 1.2122 1.1802 1.1239

OPT /Threat(m, M, k) 1.2012 1.2459 1.2149 1.1809 1.1241

Table 2: Empirical-case competitive ratios ¢®¢ for 1998 to 2007

are not consistent with the worst-case results given in Table 1 are marked
bold.

In three cases, for 20, 65 and 260 days, BH achieves a greater value of
OPT than Threat(¢), as BH achieves a better ¢*°. This is due to the time
series considered, for example if price ¢ << qr for several periods. Fur-
ther, in two cases, for 65 and 260 days, Threat(¢) achieves a better ¢* than
Threat(¢, k). Following Rule 1 both variants convert at identical prices ¢;.
But within some periods i (due to luck) Threat(¢) calculated a greater s; and
thus converts more at a higher price than Threat(¢). Resulting in a higher
accumulated amount of index after time 7. For example Threat(¢) outper-
forms Threat(¢, k) if the prices in the time series considered are decreasing.
In contrast, the analytical worst-case competitive ratio ¢“¢ is improved by
knowing k£ < T', as given in Table 1. This is also true for the case where
Threat(m, M) achieves a better ¢*“ than Threat(m, M, k). From this we
conclude that some information is more valuable than other.

Surprisingly, the best results are achieved by Threat(m, M, ¢;), i.e. for all
trading period lengths the maximum amount 1/c¢*“ of OPT can be achieved
for the time series considered. Due to luck regarding the value of the first
price ¢; the empirical-case ratio ¢ of Threat(m, M, q;) is always better than

13
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¢ of Threat(m, M, k). In contrast, the analytical worst-case competitive
ratio ¢ is improved by knowing k£ < T instead of ¢, as given in Table 1.

Question 3: Are the answers to Question 2 significant?

In order to answer this question we use a student t-test to show signifi-
cance of results. The t-test generates useful output if the sample size (number
of period returns) is greater 30 or the period returns are normal distributed.
To test for the normality assumption of the t-test we use the Jarque-Bera
(JB) test. The null hypothesis of JB is that the period returns of each algo-
rithm and each trading period length are normal distributed, i.e. for the six
algorithms and five different period lengths we conducted 30 JB tests. We
found out that all period returns are normal distributed, or that the sample
size is greater than 30.

Based on the empirical findings given in Table 2 the null hypothesis (Hy)
to be rejected is:

The empirical-case competitive ratio of an algorithm ON using
more valuable information is greater or equal (>) to the empirical-
case competitive ratio of an algorithm ON using less valuable
information.

Before running a t-test we check if the returns generated by the compared
two algorithms (¢-test samples) have equal variances or not. Depending on
the results on the variances different ¢-test variants are used [12]. The sample
sizes for each t-test refers to the number of returns generated from 01-01-1998
to 12-31-2007, i.e. for a trading period length of 10 days we have a sample
of 254 returns, for trading period length 20 we have a sample of 127 returns,
ete.

The t-test statistics given in Tables 3 to 7, and are calculated depending
on the results of the normality test and the variance equality test for the algo-
rithms. We use a significance level of 5%. Overall we conducted 15 t-tests for
each trading period length (10, 20, 65, 130, 260 days), resulting in overall 75
statistical tests. The lower the p-value, the more ’significant’ is the result of
the t-test concerning the rejection of Hy. In case the p-values are greater than
5% the null hypothesis Hy cannot be rejected. In case Hy can be rejected the
p-values are marked bold with « € {(m, M, k), (m, M), (m, M, q1), (¢, k), (6)}.

Results show that for all trading period lengths the returns generated by 1)
Threat(m, M), 2) Threat(m, M, k) and 3) Threat(m, M, ¢;) are significantly
greater (>) than the returns by BH and Threat(¢). Thus we conclude the

14
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1998-2007: p-values of Test 1 for 2 -7 = 10 days

Hy: Threat(x) BH  Threat Threat Threat  Threat
= (@) (k) (m M) (m,M,k)
Threat(¢) 6.03% - - - _
Threat(¢, k) 4.03% 44.35% - - -

Threat(m, M, k) 0.00% 0.00% 0.00% 68.45% -

(
(

Threat(m, M) 0.00% 0.00% 0.00% - -
(

Threat(m, M,q;) 0.00% 0.00% 0.00% 49.67%  31.25%

Table 3: Student t-test results for 10 days from 1998 to 2007

1998-2007: p-values of Test 2 for 2 -7 = 20 days

Hy: Threat(x) BH  Threat Threat Threat  Threat
> () (k) (m, M) (m,M,Fk)
Threat(¢) 10.60% - - - _

(¢
Threat(¢, k) 0.63% 48.77% - i i
Threat(m, M)  0.00% 0.00% 0.00% - -
Threat(m, M, k) 0.00% 0.00% 0.00% 58.33% -
Threat(m, M,q;) 0.00% 0.00% 0.00% 49.86%  41.53%

Table 4: Student t-test results for 20 days from 1998 to 2007

1998-2007: p-values of Test 3 for 2-T = 65 days

Hy: Threat(x) BH  Threat Threat Threat  Threat
= (0) (k) (m,M) (m,M,Fk)
Threat(¢) 7.14% - - _ N
Threat(o, k) 7.30%  50.26% - - -

Threat(m, M, k) 0.00% 0.03% 0.03% 51.23% -

(
(

Threat(m, M) 0.00% 0.03% 0.03% - -
(

Threat(m, M,q;) 0.00% 0.03% 0.02% 49.89%  48.66%

Table 5: Student t-test results for 65 days from 1998 to 2007

higher the value of the information the significantly better the empirical-case
competitive ratios are. But this is not true for BH as the empirical-case
competitive ratios of Threat(¢, k) are only significantly higher for 10 and
130 days, cf. column BH in Tables 3 and 6.

When comparing the empirical-case competitive ratios of Threat(¢, k)
and Threat(m, M) we conclude knowing the real bounds on the prices is

15
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1998-2007: p-values of Test 4 for 2 -7 = 130 days

Hy: Threat(x) BH  Threat Threat Threat  Threat
= (@) (k) (m M) (m,M,k)
Threat(¢) 3.71% - - - _
Threat(¢, k) 3.69% 49.99% - - -

Threat(m, M, k) 0.00% 0.09% 0.09% 50.28% -

(
(

Threat(m, M) 0.00% 0.09% 0.09% - -
(

Threat(m, M,q;) 0.00% 0.09% 0.09% 49.83%  49.55%

Table 6: Student ¢-test results for 130 days from 1998 to 2007

1998-2007: p-values of Test 5 for 2-T = 260 days

Hy: Threat(x) BH  Threat Threat Threat  Threat
= (0)  (¢,k) (m, M) (m,M,F)
Threat(¢) 21.29% - - - _
Threat (¢, k) 21.26% 49.97% - - -

Threat(m, M, k) 0.54% 3.94% 3.95% 49.84% -

(
(

Threat(m, M) 0.53% 3.95% 3.96% - -
(

Threat(m, M,q;) 0.53% 3.92% 3.93% 49.75%  49.91%

Table 7: Student ¢-test results for 260 days from 1998 to 2007

more valuable as ¢¢ and ¢ are always significantly better for Threat(m, M).

When comparing Threat(m, M, ¢;) to Threat(m, M, k) the empirical-case ra-

tios ¢ of Threat(m, M, ¢;) are not significantly better than those of Threat(m, M, k).
From this we conclude that due to luck regarding the value of first price ¢;

the ¢* of Threat(m, M, q;) is better than the ¢ of Threat(m, M, k).

4. Conclusions

Due to Rules 1 to 3 of Algorithm 1 for all the five variants of the threat-
based algorithm the prices considered for conversion are identical; but the
calculation of s; is different for the algorithms based on the information
assumed to be known.

In order to answer the question how much it is worth to know the future
in online conversion problems we have suggested to identify a strict order of
the value of information using worst-case competitive ratios ¢¢. We have
defined information to be more valuable if the worst-case competitive ratio
can be improved by this information.
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Taking the problem data into account we could identify a strict order on
the value of information based on the worst-case ratios ¢ (Table 1). For the
empirical-case scenarios (Table 2) this was not possible. In contrast to the
worst-case scenarios we could see here that the value of a-priori information
is not as powerful as a ‘luckily’ behaving time series. We conclude that the
value of information can only be estimated by worst-case scenarios.

We assumed the precise values for m, M, ¢, ¢ and k < T to be known
for calculating competitive ratios. This assumption might be to optimistic.
An open question would be to weaken this assumption and considering errors
in forecasts. Further it would be interesting to take transaction costs into
account as in the worst-case a preemptive conversion algorithm converts at
each price presented, i.e. at all T prices.
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Chapter 7
Conclusions and Future Work

This chapter summarizes, in a nutshell, the answers to the research questions on the
applicability of the investigated non-preemptive and preemptive online conversion
algorithms. We conclude indicating some open questions for future research and

give a selective bibliography.

7.1 Conclusions

In finance, the traditional approach when analyzing online conversion algorithms
is to derive the return to be expected through experiments. The competitive
ratio, giving a performance guarantee assuming worst-case scenarios, is not
considered.  Traditional empirical-case analysis assumes the input follows a
particular distribution, and aims to analyze and optimize the empirical-case
performance of an algorithm assuming a specific stochastic model. But in case
an investor does not want to rely on a stochastic model, or it is unknown, the
worst-case competitive analysis approach provides an attractive alternative to this
traditional approach. Whatever the reason for the absence of information about
stochastic processes is, worst-case competitive analysis offers a reasonable initial
solution upon which a more elaborate online conversion algorithm can be chosen
after additional information is determined. Empirical-case analysis provides this
additional information.

The suggested conjoint approach provides bounds that minimize the maximum
regret based on worst-case scenarios. In addition, the empirical-case results can be
used to draw conclusions on the statistical inference of the return to be expected.
The outcome is an answer to the research questions stated.

First, we stated the question ‘can the applicability of heuristic conversion
algorithms be verified through competitive analysis, and which worst-case

competitive ratio do they achieve?’ addressing the new field of worst-case analysis
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of heuristic conversion algorithms. From a conceptual point of view, a heuristic
conversion algorithm that performs well in an experiment is not necessarily a
‘good’ online conversion algorithm. In contrast to the worst-case scenarios there
is always the probability of a ‘luckily’ behaving time series. But in case of a
stock market meltdown worst-case performance guarantees are essential, as they
provide a definite upper bound. This is what competitive analysis offers. Thus
it is reasonable to apply the analytical competitive analysis approach to heuristic
conversion algorithms when analyzing their applicability.

Second, we stated the question ‘can the applicability of guaranteeing conversion
algorithms be verified through experiments, and which empirical-case performance
do they achieve?””  addressing the new field of empirical-case analysis of
guaranteeing conversion algorithms. An algorithm that guarantees a small
worst-case competitive ratio does not necessarily achieve a ‘good’ empirical-case
performance. The assumptions made when the competitive ratio is derived
analytically are often far from reality. Backtesting solves this problem by taking
an algorithm, and going back in time in order to see what would have happened if
the algorithm had been followed in practice. This is what empirical-case analysis
offers. Thus it is essential to apply experimental analysis to guaranteeing conversion
algorithms when analyzing their applicability.

Our experimental results provide support for utilizing the considered
guaranteeing conversion algorithms Threat and SQRT in practice. In case the
data processed by those algorithms does not represent the worst-case input the
return to be expected is significantly better than the worst-case competitive
ratio tells. Results show that the five threat-based algorithms Threat(X)
with X € {(m, M, k), (m, M), (m, M,q), (¢, k), (p)} clearly outperform constant
rebalancing as well as classical buy-and-hold. To reduce the number of conversions
the non-preemptive algorithm SQRT is a good alternative to the preemptive
threat-based algorithms as SQRT also outperforms buy-and-hold. For example if
we want to reduce transaction costs. The results could be confirmed statistically.

In contrast, the worst-case competitive ratio of the considered heuristic
conversion algorithms M A and TRB does not provide support for utilizing these
algorithms in practice. The worst-case competitive ratio equals (%)ZP, as we found
the worst-case return of ON € {MA,TRB} to be §;. Even worse, the worst-case
ratio grows exponential with p, where f(x) = 2?P and z = % The greater p and/or
the %—ratio get, the greater is the worst-case competitive ratio.

We conclude that an online conversion algorithm should only be chosen for
practical application in case both measures, its competitive ratio and the return to
be expected, are promising.

Besides answering the general question on (how to measure) the quality of
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an online conversion algorithm, as addressed in the works given in Chapter 6,
several related questions can be answered by computing both the empirical-case
performance as well as the worst-case performance. We compare an online
conversion algorithm to the optimal offline algorithm. In this way, we get a measure
of the return obtained by ON compared to the optimal return that could have been
obtained if we had known all future prices. This can be thought of as measuring
the value of the information of future prices. We answered the question ‘how much
is it worth to know the future in online conversion problems?’ addressing the
value of the assumed a-priori knowledge of different online conversion algorithms.
We conclude that the value of information can only be estimated by worst-case
scenarios, and define information to be more valuable if the worst-case competitive
ratio can be improved by this information.

In the following we give different directions for future work. We suggest to
answer these open questions using the worst-case as well as the empirical-case

competitive ratio, and the return to be expected.

7.2 Future Work

When carrying out experiments, we assumed the precise values for m, M, ¢, ¢; and
k < T to be known for calculating the competitive ratios. This assumption might
be too optimistic. A first open question would be to weaken this assumption, and
to consider forecasts to estimate these values.

Al-Binali (1999) suggests the risk-reward competitive analysis approach which
contains two approaches. The first approach is to allow an online conversion
algorithm to benefit from the investors capability in correctly forecasting the
future sequence(s) of prices. The second approach is to allow the investor to
control the risk by selecting ‘near optimal’ algorithms subject to the personal risk
tolerance. The result are online conversion algorithms with a bounded loss within
a pre-specified risk tolerance. An open question is to analyze the applicability of
the risk-reward approach in practice.

It would be favorable to ensure that a forecast is correct with a certain
probability. An open question is whether the solution of the secretary problem
can be exploited to calculate this probability. The solution is to observe the first
T'/e values, and then to accept the first value which is better than all the previous
ones. For T — oo, the probability of selecting the best value then goes to 1/e,
which is around 37% (Babaioff et al., 2008). An open question is to exploit this
solution, and to analyze wheter estimates for m, M, ¢, q; and k < T are correct

in about 37% of the cases in practice.



218 CHAPTER 7 Conclusions and Future Work

Further, when allowing forecasts on m, M, ¢, ¢; and k < T, these values might
be under- or overestimated. A related open question is how these errors in forecasts
influence the performance of an online conversion algorithm. In would be of interest
to find an algorithm that takes advantage of the forecasts when they are accurate,
while at the same time maintaining a good worst-case competitive ratio in case
they are incorrect (Mahdian et al., 2007, p. 288).

In case worst-case competitive analysis is applied, this leads to the development
of online conversion algorithms with minimum relative performance risk. This
property is favorable for risk-averse investors who prefer an inferior but guaranteed
performance to a better but uncertain expected performance. The second approach
suggested by al-Binali (1999) allows to control risk, not to avoid it. An investor
has the possibility to take (or even increase) risk for some form of (higher)
reward. On open question is to introduce risk levels an investor is willing to
take, and to develop ‘optimal’ online conversion algorithms incorporating these
levels (Iwama and Yonezawa, 1999). Further, the competitive ratio of an online
conversion algorithm measures the return and the incorporated risk within a single
number — the ratio c. When allowing a risk control mechanism based on the
competitive ratio as suggested by al-Binali (1999), an open question is whether the
competitive ratio is an appropriate measure of risk measure or not. Artzner et al.
(1999) introduce coherent measures of risk. A set of four desirable properties
are presented and justified; risk measures satisfying these properties are called
‘coherent’. It is to be shown whether the competitive ratio is ‘coherent’ or not.

When considering worst-case scenarios to derive a ¢*¢ an arbitrary volatility of
the worst-case time series () is assumed. An open question is whether the worst-case
competitive ratio can be improved by replacing ‘unrealistic’ worst-case scenarios.
Considering the data history more realistic worst-case sequences of prices could be
assumed taking a bounded volatility into account (Hu et al., 2005, p. 229).

In case an online conversion algorithm is considered for practical application
it would be of interest to determine and analyze its empirical-case competitive
ratio ¢ assuming proper input distributions. Fujiwara et al. (2011) state the
question ‘when it comes to average-case evaluation with an input distribution,
what is an adequate measure?’, and suggest average-case competitive analysis: The
competitive ratio of an online conversion algorithm is determined while making
various assumptions on the underlying price processes. An open question is
to analyze the presented online conversion algorithms assuming different input
distributions. Further, empirical results show that price movements between two
stocks are bounded in some markets (Zhang et al., 2010, p. 2). The considered
online conversion algorithms assume that prices are bounded within an interval,
for example ¢, € [m, M| (El-Yaniv et al., 2001, p. 107). It would be of interest
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to evaluate the performance of these algorithms assuming the prices itself are
interrelated, for example by assuming that a price depends on its preceding price.

El-Yaniv et al. (1992, 2001) have shown the uni-directional threat-based
algorithm to be optimal. But the suggested bi-directional algorithm, which
repeats the uni-directional algorithm, is not (Dannoura and Sakurai, 1998, p.
28). Therefore, the problem of designing an optimal threat-based algorithm for
bi-directional search remains unanswered so far. Moreover, it would be interesting
to take transaction costs into account as in the worst-case a threat-based algorithm
converts at each of the T prices presented.

The outcome of any online conversion algorithm are buy and sell signals. As
an order, these signals can be executed on the stock market. Before submitting
an order it might be of interest that the signals produced are correct — in the
sense that they are ‘bug-free’. Clertifying algorithms solve this problem. With
each output they produce a certificate or witness (easy-to-verify proof) that the
particular output has not been compromised by a bug (Mehlhorn and Schweitzer,

2010). An open question is to apply this approach to online conversion algorithms.
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