Universitat des Saarlandes

Fachrichtung 6.1 — Mathematik

Preprint

Convex Variational Integrals with a Wide Range of
Anisotropy. Part II: Mixed Linear/Superlinear
Growth Conditions

Michael Bildhauer

Preprint No. 55
Saarbriicken 2002



Universitat des Saarlandes

JUL T UL
VU yygyy YUV
JUUL yyyyyy JUUL

| uuuuuuuui

UUUUUU

UUUuUUY
L/ \l

Fachrichtung 6.1 — Mathematik

Convex Variational Integrals with a Wide Range of
Anisotropy. Part II: Mixed Linear/Superlinear
Growth Conditions

Michael Bildhauer

Saarland University
Department of Mathematics
Postfach 15 11 50
D-66041 Saarbriicken
Germany
E-Mail: bibi@math.uni-sb.de

submitted: February 25, 2002

Preprint No. 55
Saarbriicken 2002



Edited by

FR 6.1 — Mathematik
Im Stadtwald
D—-66041 Saarbriicken
Germany

Fax: + 49 681 302 4443
e-mail:  preprint@math.uni-sb.de
WWW:  http://www.math.uni-sb.de/



Abstract

We propose the study of variational integrands with mixed anisotropic lin-
ear /superlinear growth conditions, i.e. of energy densities with mixed “plastic/elastic”
behavior. A class of variational problems satisfying this new kind of growth con-
dition is introduced, and some recent regularity results (see [Bil] and [BF6]) are
applied to prove uniqueness (up to a constant) and local C'*®-regularity of general-
ized minimizers.

1 Introduction

Suppose that we are given a bounded Lipschitz domain {2 C R", boundary data ug of the
Sobolev class WL (2) and a smooth strictly convex energy density f € C?(R"). Then we
consider the Dirichlet problem

Jw] := /Qf(Vw) dr — min in K, (P)

where K denotes a suitable energy class of comparison functions respecting the boundary
values ug. Our main concern is the study of smoothness properties of (maybe generalized)
weak solutions of the variational problem (P) in the case of anisotropic growth conditions,
where we always concentrate on the scalar case.

Let us start with a short discussion of energy densities with anisotropic superlinear
growth conditions. As a typical example one may take (Z = (Z;,7,) € RF x R*7*,
1<k<n)

F(2)=(1+12P)% + 1+ |23 (1)

with exponents 2 < p < ¢. In this (even superquadratic) situation the estimate
AL+ |2P) 7Y < D F(Z)(Y,Y) < A1+ |2]) 7 |y P (2)

for all Z, Y € R* and with positive constants A, A is obvious. The study of variational
problems with this type of growth condition became more and more popular in the last
years and was forced in particular by Marcellini (compare [Mal]-[Ma3], see [Bil] for a
detailed overview). However, it is well known that we cannot expect regular solutions
if p and ¢ differ too much (compare, for instance, [Gi] for a counterexample), and we
additionally have to assume that (see also [BFM])

n+ 2
pap

(3)

q<p

Next we focus on the energy density (1) in the subquadratic situation 1 < p < ¢ < 2.
Alternatively, we can consider the completely anisotropic situation in the sense that

F(2)=0Q+|Z) +(1+1|2,1)2, 1<p<qg<2. (4)
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In both cases, as an essential difference to (2), we now merely have the estimate
N1+ |ZP) TP < DXF(Z)(Y,Y) < Y[ (5)

forall Z, Y € R* and with positive constants A, A. With the structure condition (5), local
Ch-regularity of solutions of problem (P) follows from [BFM] under the requirement that

(as a counterpart to (3))
n+2

2<p — (6)
Hence, if the variational integrand (4) is given with parameters 1 < p < ¢ < 2 and with
p close to one, then inequality (6) fails to be true even if ¢ — p becomes very small, and
in general no regularity results are available.
Let us now assume in addition that uy € L°°(2). With a refined study of [Ch],
it turns out (see Chapter V of [Bil|, [BF6], compare also [BF5|) that in this case the
structure condition

A1+ 1ZP) 5[V < D*F(2)(Y,Y) < A(L+ |25 Y] (7)

(again for all Z, Y € R" and with positive constants A, A) provides regular solutions
whenever y € R, ¢ > 1,

q<4—ypu, (8)

and f in addition is bounded from below by some (in particular superlinear) N-function
F. Note that (8) reduces to the trivial inequality (¢ := 2, u:= 2 —p) 2 < 2+ p in the
case of the anisotropic subquadratic examples discussed above.

There is a completely analogous result in the linear growth situation if we formally
let ¢ =11in (7): it is proved in [Bi2] that the estimate

AL+ 2252 < D2 F(2)(Y,Y) < AL+ |23y ? 9)

for all Z, Y € R" and with positive constants A, A, gives a generalized (unique up to a
constant) O, %-minimizer of problem (P), if we assume that 1 < p < 3 and ug € L®(1).

Remark 1 Despite of the corresponding results, the superlinear and the linear growth
situation are essentially different:

on one hand, problem (P) in general fails to have solutions if f merely is of linear
growth. As a consequence, one has to introduce a suitable notion of generalized minimizers
or one must pass to the dual variational problem.

On the other hand, the upper bound of (9) corresponds to the linear growth of f itself,
i.e. (9) (in contrast to the anisotropic examples) describes a “balanced” problem.

Following the discussion of [Bil] and [BF/J, we finally note that the results of [Bi2] at
least are sharp if some additional x-dependence of the energy density is admitted, whereas
this question is completely open in the superlinear case.

The above discussion shows that under the additional assumption uy € L*®(Q) it
is possible to establish regularity results for variational problems with a wide range of
anisotropy. In particular, the improvements are substantial and open up new vistas if the
(upper) growth rate of the energy density f is of subquadratic order.



Now, the main idea of our paper can be summarized in a short observation, where we
again assume that uy € L*®(2): for the consideration of anisotropic superlinear examples
with lower growth rate close to one, we (at least) have to take the upper exponent 2 on
the right-hand side of (7) (compare the right-hand side of (5)). Then, by condition (8),
p-elliptic energy densities (in the sense that the left-hand side of (7) holds true) still are
admissible if p < 2.

On the other hand, p-elliptic variational integrands of linear growth are discussed in
[Bi2] even up to the case 1 < p < 3.

Thus, there is the hope to include variational problems with mized anisotropic lin-
ear/superlinear growth conditions (see Assumption 1 below) in our studies — at least up
to a certain extend.

Remark 2 We like to emphasize that this new kind of growth condition also seems to be
interesting from the viewpoint of material sciences: as an application one may think of
anisotropic materials with mixed plastic and elastic behavior. Note that f; (as considered
in Assumption 1 below) really is of linear growth, i.e. we do not assume a “superlinear
hardening” similar to the isotropic Llog L case studied in [FrS], [FS], [EM] and [MS].

Of course we cannot expect a one-to-one correspondence to the results obtained in
the anisotropic superlinear growth situation: we have already discussed this in Remark 1.
Note that some of our main examples even do not admit a dual solution — this is caused
by an additional anisotropic behavior of the superlinear part (compare Remark 5 and
Remark 7 below).

Nevertheless, the a priori estimates given in [Bil] and [BF6] (compare also [BF5])
are strong enough to ensure local C'*-regularity and uniqueness (up to a constant) of
generalized minimizers.

Before going into details, let us shortly sketch the line of our paper. The general
hypotheses and the main result are made precise in the next section, where we also give
some typical examples. Some facts on a suitable regularizing sequence are summarized in
Section 3, higher integrability properties are then discussed in Section 4. This enables us
to introduce a dual limit (some kind of “local stress tensor”) in Section 5, and finally the
proof of our main theorem is completed in Section 6.

2 General hypotheses and main results

In the following it is always supposed that we have

Assumption 1 The energy density f: R* — R is of class C*(R") and admits the de-
composition
f(2) = [(Z20) + fo(Z5) . Z=(Z1,2,) eR* xR, (10)

for some k € N, 1 < k < n. Here f; € C*>(RF) is a function of linear growth (see Remark
3, i) below) such that
IVA(Z) < A (11)

holds for any Z, € R* with some constant A. The function fo € C*(R"™*) is supposed to
satisfy for some 1 < p <2
1257 = o < fo(Z) (12)



now for any Z, € R** and with constants ci, co. Our assumption on the second derivative
of f = f1+ fa is given by

AL+ |ZP) 5 Y < D*f(Z)(Y,Y) < AJY]? (13)
for all Z,Y € R™, with constants A\, A and with an exponent of ellipticity
l<pu<?2. (14)

Remark 3 i) W.lo.g. we will assume in Sections 4—6 that f;(0) =0, i = 1, 2, and
V£(0) =0 (to verify the second claim replace f by f — V f(0)-Z).

ii) The ellipticity condition on the left-hand side of (13) shows that Vf(Z) - Z is at
least of linear growth, which in turn implies

alZ| -b< f(Z) forall ZeR"
and with some real numbers a > 0, b.

iii) From the right-hand side of (18) we see that f is at most of quadratic growth and
therefore (compare [Da], Lemma 2.2, p. 156)

\VF(Z)| <c(1+|Z|) forall ZeR",
where c 1s another positive constant.

At this point we should give some examples to describe the class of energy densities
which we have in mind.

Example 1 With the notation of Assumption 1 we may take:

i) A linear growth integrand with u-ellipticity, 1 < p, was introduced in [BFM] (com-
pare [BF2] and [Bi2] for a more detailed discussion). Here we suppose that 1 < pu < 2

and let
/ / (1+t)"5dtds, reRS.
Then we may choose f1(Z,) = (| Z1]).

ii) The most elementary superlinear part is of power growth, i.e.

fo(Ze) = 1L+ |22, 1<p<2.

iii) Anisotropic behavior of fy itself is not excluded: if Zo = (P,Q) € R" %, n—k > 2
then
fo(Ze) = L+ [PPYP2+ (1+1QP)?, 1<p<qg<2,

18 an admissible choice.

iv) With the notation of iii), there is no need to assume the above additive decomposition
of fa, i.e. one may also think of

Lz = 14+ PP+ + QR3]

as another example.



We now come to a precise formulation of our main results: we consider the Dirichlet
problem

Jlw] = /Q F(Vw)dz — min  in ue+ W(Q), (P)

where the boundary values ug are supposed to be of class WL (Q) (compare Remark 8
below for this choice). Since f;, i = 1, 2, is at least of linear growth, J-minimizing
sequences are uniformly bounded in the space of functions with bounded variation. Hence,
we define generalized minimizers u* € BV () of problem (P) by

ueM = {u € BV(Q) : u is the L'-limit of a J-minimizing
sequence from ug+ V;/f (Q)} :

Remark 4 In the case of variational problems with linear growth, the elements of M are
in one-to-one correspondence with the solutions of any relazed version of problem (P) (see

[BF3)).

Then the smoothness properties of generalized minimizers are summarized in the
following main

Theorem 1 Let f satisfy the general hypotheses, i.e. Assumption 1, and suppose that
ug € WL (Q). Then any generalized minimizer u* € M of problem (P) is of class CH*(£2)
for any 0 < a < 1. Moreover, the elements of M are uniquely determined up to a
constant.

Before going into the proof of Theorem 1, we recall the notions from Assumption 1,
in particular the decomposition Z = (Z;,7,) € RF x R**, 1 < k < n, and f(Z) =
f1(Z1) + f2(Z5), and introduce the notation

Vuw = (Vaw, Veew) € RE x RVF

for any weakly differentiable function w: Q — R, w(z) = w(z',2?), z = (z',2?) € Q C

RF x R*~*. Moreover, on account of the growth rate of f, the domain uy+ W' (Q2) of the
energy J is replaced in the following by the anisotropic space

ot Wy (0) = {weu+ WHQ) : Vaou € (R4}

Finally, various facts from duality theory enter the proof of Theorem 1. We only give
some short remarks on this topic — the book of Ekeland and Temam ([ET]) serves as a
general reference.

Let ff, 1 =1, 2, denote the conjugate function of f;, respectively. For instance, f;:
R* — R is defined through the formula

(@) == sup {Q1-Zi— fi(Z1)} forall Q@ € R".

Z1 Rk

Note that the conditions f; > 0 and f;(0) =0, ¢ = 1, 2, yield the same properties for the
conjugate functions.



Following [ET| we obtain the representation formula (p' = p/(p — 1))

Jw]= sup {/%'dex—/ff(%l /f2 20 dx} (15)
seLoor (QR™) Q Q

for any w € ug+ I/Iofll,p(Q), where for 1 < s,¢ < oo the notation
5 € LU RY) & 2 = (50, 30) € L (G RY) x LY, R F)

is used. Note that the assumptions of Proposition 2.1, [ET], p. 271, are clearly satisfied
without a further specification of the upper growth rate of fy, thus (15) really follows
from our standard reference [ET| without essential modifications (see also [Bil]). We

next define the Lagrangian [(w), s¢) for all (w, ) in the class (uo+ I/I(}lljp(Q)) x L¥ (Q; R™)

by the formula
2
l(w, 5) = / »-Vwdr — Z/ () dz
Q =1 Q

Remark 5 If f; is of standard p growth, i.e.

p
2

for all Zy € R* then we may follow the lines of [ET], define the dual functional R:
LoP (Q; RM) — R,
R = inf  l(w, ),
w€u0+VI;11,p(Q)

and obtain the dual variational problem
to mazimize R among all functions » € L% ((;R") . (P*)

Note that for any » € L®¥ (Q;R")

| - if divae #0,
R[%]_{ l(ug, 2) if divie=0.

With (16), the existence proof for a dual solution also is standard (see [ET], Theorem 4.1,
p. 59), moreover we have

inf  J[w| = sup  R[#].

o
weug+Wi (Q) e Loop ((R7)

Here we do not want to restrict to the consideration of energy densities satisfying (16)
(see the discussion of Example 1). Then, due to the lack of continuity of J on W} (),
the existence Theorem 4.1 of [ET], p. 59, is no longer applicable. Nevertheless, assuming

divie=0, € L®P(R"), fr) el (), i=1,2, (17)

we again let
R == l(uo, 5) .

Note that on account of ug € WL (Q) and since we have (17), we do not have to suppose
sy € LV (R F).



3 Regularization

Now we introduce a (standard) regularization of problem (P), i.e. for § € (0,1) we let us
denote the unique solution of the variational problem

Js[w] := / f5(Vw)dz — min  in up+ Vf/;(Q), (Ps)
Q
where we have set 5
f5(Z2) = f(Z) + 5\2\2-
The definition of us immediately gives

Lemma 1 i) There is a positive number c, independent of §, such that we have for
any 6 € (0,1)
5/|Vu,5|2dx§c, /fi(Vwiu,s)dxgc, i=1,2.
Q Q

ii) For any § € (0,1), us is a solution of

/ V£(Vus) - Vodr =0 for all ¢ € Cy(9),
Q

hence divos = 0 if we let
o5 := V f5(Vus) .

iii) For any § € (0,1), us is of class W3, "W, 15.(€).

loc

iv) For any 6 € (0,1) and for any v =1,...n we also have
/ D?f5(8,Vus, V) dz =0  for all ¢ € Cy(9).
Q

Proof. The proof of i) is immediate by Js[us] < J5[ug] < Ji[ug], ii) is the Euler equation
for us. The third claim follows from [LU], Theorem 5.2 of Chapter 4, hence we may
differentiate the Euler equation with iv) as a result. |

Remark 6 As a main corollary of the differentiated Euler equation, two Caccioppoli-type
inequalities are proved in Lemma 3 of [BF6] (compare also Lemma V.2.8 of [Bil]), where
also the case of obstacle problems is included. Here we immediately obtain the correspond-
ing results by taking (for some cut-off function n) ¢ = n*dyus(1 + |Vusl?)*, s > 0, and
¢ = n*Oyusmax[(1 + |Vus?) — k,0], k > 0, as a test-function, respectively.

In particular, the choice ¢ = n*dyus, n € C(R), 0 < n <1, gives

/ D2 £5(0, Vs, 8, Vug)i? de < / D2 5(Vug) || Vs 2|V 2 da (18)
Q Q

where the constant ¢ is independent of § and where we always take the sum w.r.t. repeated
Greek indices vy =1,...,n.



4 Integrability results

In this section we are going to discuss some global and local uniform integrability results
of the sequence {(us,05)} and its weak derivatives. We have

Lemma 2 i) The sequence {os} is uniformly bounded in L?*?(Q2;R").

ii) The sequence {Vus} is uniformly bounded in L2, (Q; R™).

loc

iii) The sequence {05} is uniformly bounded in Wy ,,.(2; R"™).

Jloc

iv) There is a local constant ¢, independent of 6, such that
||V2U6||L2(§;Rnn) < C(ﬁ)
for any domain Qeq.
Proof. ad i) We have by definition
o5 = (05,03) = §(Varug, Varus) + (V1(Varus), V fo(Verus))
and the uniform bounds of Lemma 1, i), even give
|0Vus||2mny — 0 as 6 = 0.

Hence, since we also have p < 2, the estimates for the J-terms are immediate.

Now the assertion for o follows from (11), whereas (12) (together with i) of Lemma
1) gives a uniform bound for ||V 2us||1e(rn). As a consequence, we may apply Remark
3, iii) with the result

/ |V fo(V2us)|” do < 6{1 +/ Va2ug[P dx} <c,
Q Q
which establishes the first claim.

ad ii). Local uniform gradient bounds for a regularizing sequence are proved in
Theorem 3 of [BF6] (compare Theorem V.2.10 of [Bil]). In order to apply this theorem
in the case of anisotropic linear/superlinear growth, we first observe that we again have
a similar Caccioppoli-type inequality (this was already outlined in Remark 6).

Moreover, (14) gives (q=) 2 < 4 — p, hence assumption (4) of [BF6] (again compare
[Bil], assumption (4) of Section V.1).

Under this assumption, uniform local higher integrability of the gradients is estab-
lished in [BF6], Theorem 2 (Theorem V.2.9 of [Bil]), where the choice ap = 0 has to be
admissible in order to start the iteration procedure at the end of the proof. This means
that we need a uniform local bound for

/(1 + |Vug|?) 2" da,
which is obvious by (2 — 1)/2 < 1/2 (again recall (14) and the lower growth rate 1 of f).
Once uniform local higher integrability in the sense of [BF6], Theorem 2 ([Bil], The-
orem V.2.9), is established, our claim ii) exactly follows as in [BF6], Theorem 3 ([Bil],
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Theorem V.2.9).

ad iii). The Cauchy-Schwarz inequality implies that a.e.

\V05|2 = DQfJ(Vu(;)(&YVu(;,&,o(;)

S sz(;(Vu(;) (87Vu,5, 87Vu,5)] ? [DQf(s(Vu,s)(870'5, (970'5) : y

and since |D?f;| is uniformly bounded there exists a constant, independent of §, such that
a.e.

‘V05|2 S CDQf(j(V’U,J) (BWVu(;, 67Vu5) .

Hence, the assertion immediately follows from ii) and (18).

ad iv) Recalling the ellipticity condition (13), we again observe on account of ii) and
(18) that for any domain Q €

[ (1 + [Vus)~410, Vg do < / D2 £5(Vus) (9, Vg, 0, Vug) de
Q Q

< ¢() < 0,

and if we once more apply ii) on the left-hand side, then iv) is proved as well. [ |

Remark 7 Note that we have a lack of integrability in i) which is due to the anisotropic
behavior of the function fy. If we restrict ourselves to the consideration of linear/p-growth
energy densities as discussed in Remark 5, then V fo has a growth rate p — 1. Hence
V fo(Va2us) is uniformly bounded in LP (;R™), p' = p/p — 1. Moreover, f; is of power
P and f3(V f2(Vaeus)) is uniformly bounded in L'(S)). Besides the existence of a dual
solution, this essentially enlarges the class of admissible boundary values (see Remark 8
below).

Corollary 1 i) Ifu* denotes a L'-cluster point of the sequence {us}, then, after pass-
g to a subsequence,

Vus; — Vu* ae. inQas 6§ —0.

ii) If o denotes the corresponding L*P-cluster point of {os}, then the limit version of
the duality relation, i.e.

o=V f(Vu)

holds true a.e.
iii) In particular, o is a mapping into the open set U := Im(V f).

Proof. Since {us} is uniformly bounded in L*(£2) and on account of Lemma 2, ii), we
have as 6 — 0

us — u*in W, 10.(9), (19)



at least for a subsequence. Moreover, from Lemma 2, ii), iv), and Sobolev’s embedding
theorem we deduce the existence of a subsequence such that

50 . 2n
Vus =:w in Lt 5
n —_—

loc

(;RY), t<

With (19) we have w = Vu*, and passing to another subsequence, if necessary, the first
claim is proved. The second one immediately follows from o5 = V f5(Vus). It remains to
show that U is an open set. In fact, we have for Z #Y € R"

[VI(Z)-VIY)]-(Z-Y)

= /lsz(sZ—i-(l—s)Y)((Z—Y),(Z—Y)) ds > 0. (20)

Setting g(s) := f(sZ + (1 — s)Y), equality would give ¢”(s) = 0 for all s € (0,1) which
contradicts the strict convexity. Thus, the strict inequality holds in (20) and V f is one-
to-one. Then we may apply the Theorem on Domain Invariance (compare [Sch], Corollary
3.22, p. 77) to see that U is an open set. [ |

5 A dual limit

From now on a weak L?P-cluster point o of the sequence {05} is fixed and (without
relabelling) we always pass to subsequences if necessary. Let

7= Vfi(Vgus), i=1,2,
hence 74 is uniformly bounded in L>°*?(Q; R") and we may assume as 6 — 0
s =t in L®(RF), 2 —7? in LP(OQ;R™F).

Note that Corollary 1 immediately gives 7 = 0. The main properties of ¢ are summarized
in the following lemma, where we should keep Remark 7 (compare again Remark 5) in
mind.

Lemma 3 i) The limit o is R-admissible in the sense that divo = 0.
ii) o also satisfies the remaining assumptions of (17).
iii) inf {J[w] : w € uo+ W, (Q)} < Rlo].
Proof. Passing to the limit 6 — 0, i) follows from divos; = 0.
ad ii). The duality relation for the conjugate function (once more see [ET]) reads as
73 - Vaits — f7(15) = fi(Vaius), i=1,2.

At this point let us shortly discuss the global starting integrabilities: since ug is of class
W4 () and since V f is at most of linear growth (see Remark 3, iii)), 75 is of class L?(§2; R")
and the same is true for o5. Moreover, f(Vus) is of class L'(2) (even uniformly) and

10



the duality relation proves L'-integrability (of course not uniformly) for f7 (%), i =1, 2,
as well. As a consequence, the expressions of inequality (21) below are well defined. We
write (using the definition of o5 together with div o5 = 0)

J[u(s] = Z/ 7'5 Vgitg — f ( 6)] dx
= —5/9 Vug|* dz + ;/ﬂ [Jf; - Vgiug — fz'*(T;)} dz
= —(5/Q \Vus|* dz + g/ﬂ [Jf; - Vgiug — fz*(T;)] dz. (21)

Let us have a closer look at (21): obviously Js[us] + 6 [, |Vus|? dz is uniformly bounded

and
/ os - Vugdx
0

(independent of 0) follows from Lemma 2, i), and the smoothness assumptions on uy.
Moreover, by the duality relation, by (11) and Lemma 1, i),

<c

/ fi(rs) do = / (7’51 - Vpils — fl(Vz1U5)) dr < c, (22)
Q Q

again with a constant which does not depend on 6. Thus the representation formula (21)
gives a positive number ¢ such that for any § > 0

Kﬁﬁgymgc. (23)

Note that the integrability established in Lemma 2, i), is not sufficient to imply (23).
Once (22) and (23) are established, the second claim follows form Fatou’s Lemma and
Corollary 1, i).

ad iii). Now that the limit o is seen to be R-admissible, the third claim is proved
exactly as in [BF1] using (21) (compare [SE1]-[SE3] for the case of integrands depending

on the modulus of Vu):

inf {J[w] : w € upt Wik ()} < Jug]

< —6/|Vu(5\ dx+2/ 05 - Vaiug — f; (15) | dz .

Passing to the limit § — 0 we obviously have (recall Lemma 2, 1))

2 2
E / ok - Vgithg dz — E / ot - Vg de
i=1 7O i=1 Y8

moreover,

2
limsup—Z/fi*(Tg) de < — h%ri)l(}lf/f ) d
i=1 79

6—0

11



As in ii), Fatou’s lemma proves the last assertion. |

Remark 8 Let us shortly discuss the choice of ug. The assumption uy € L*®(Q) is
needed to obtain uniformly bounded solutions us, hence we may apply the results of [BF6]
(Chapter V of [Bil]) and obtain uniform local a priori gradient bounds.

If the boundary values ug are not supposed to be in addition of class WL (), then we
may pass to an approzimating sequence uy' and reqularize w.r.t. these boundary values.
With the obvious changes in notation, it is to verify in this case that (i =1, 2)

/ ag(m) - Viul dr — / o' - Vaugdr as m — 0o,
Q Q

where §(m) is chosen sufficiently small. By assumption (11) we know that |V fi| < A,
and it is sufficient to suppose Vuy € L*(Q;RE) in order to prove the above convergence

for v = 1. In the case i = 2 we recall Remark 7, hence we at least have to assume that
Voug € LY (Q; RV F).

Up to now it is not proved that {us} is a J-minimizing sequence from ug+ W} (€2).
Anyhow, we have the Euler equation of Lemma 3, i), hence

Corollary 2 The limit o fized as above is of class C%*(Q; R™) for any 0 < o < 1.

Proof. With the notation of Corollary 1 we obtain
/ Vf(Vu*)-Veodz =0 forall pe Cy(Q).
Q

Then the standard difference quotient technique shows that we may differentiate the Euler
equation (recall that u* is Lipschitz), hence letting v = 0, u*

/ D?*f(Vu*)(Vv,V)dr =0 for all ¢ € Cy(€).
Q

Since the coefficients aizgzﬂ (Vu*) are uniformly elliptic on Q' € €, Theorem 8.22 of [GT]

proves Hélder continuity of v, and the same is true for o = V f(Vu*). [

6 Proof of Theorem 1

Roughly speaking it remains to derive an appropriate minimax inequality as given in
[SE3] (compare [BF2]) although we do not know o to be a solution of the dual problem.
To this purpose we fix u € M, i.e. we consider a J-minimizing sequence {u,,} in

uo+ Wy, (Q) such that as m — oo

n/(n—1) It
Uy — U, Uy —U.

For the sake of notational simplicity assume now that Q2 = B = B;(0), the general case is
handled by an additional covering argument. Moreover, we still consider o as discussed

12



in Section 5 and let 0, := o(pzx) for 0 < p < 1. Finally, for A € C§°(2;R*) and a real
number ¢, |¢| sufficiently small, we let x, = o, + tA(px). Then X, is admissible to obtain
(recalling the representation formula (15) and the definition of the Lagrangian [(u, x))

Jum] = sup  Uum,; ) 2 (tm, X,) , (24)
€ LooP' (;R™)

and we may write (divo, = 0)

2
Utm, Xp) = t/Qdiv AMpz)(ug — um) dz — Z/in*(xfo) dx + /QXP - Vug dx . (25)
i=1

Passing to the limit p — 1 we immediately obtain the convergence of the first integral
on the right-hand side of (25). Letting x = o + tA, the last integral is seen to converge
with limit [, x - Vug dz. The convergence of the remaining integrals follows from f;(x") €
LY(Q), i = 1, 2 (which is proved in Lemma 3, ii)), together with a standard reasoning
(compare [Al], Lemma 1.16, p. 18).

Next we combine (24), (25) and pass to the limit m — oo with the result

2
inf J[w]Zt/div/\(uo—u)da:—Z/fi*(Xi)dac—i-/X-Vuodx.
; Q i—1 /0 Q

wEuo+ Wi ()

If we additionally observe that (recall Lemma 3, iii))

2
inf  J[w] < Rlo] = / o -Vugdz — Z/ fr(o") dz,
Q i=1 79

H)Eu0+W117p(Q)

then we obtain the variational inequality

2
t/ﬂdiv)\(uo—u)d:v—;/in*(xi)dx—i—/nx.Vuod:cSR[U].

Inserting the definition of x, we finally arrive at

2

_/ t(div A)udz < Z/ (£ (0" + X)) = £7(0")) da .
spt A i=1 Y/sptA

Hence, dividing through ¢ > 0 and passing to the limit ¢ — 0 one gets

2

- / (div\)udz < V(o)) - Ndz,
spt A

i=1 VsptA

i.e., by definition, the first weak derivative of u is given by (Vf(c'), Vf5(c?)). Since o
is of class C%* (see Corollary 2) and since o is a mapping into the open set Im(V f) (this
was proved in Corollary 1) we obtain Holder continuity of the derivatives of u. Moreover,
each v € M satisfies Vv = V f*(0) and uniqueness (up to a constant) of generalized
minimizers is proved as well. |
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Remark 9 Note that in Lemma 3 it is actually proved that (after passing to another
subsequence)

lim Jus] < R[o].

d—0

Moreover, choosing X\ = 0 in the above considerations, we see that

Rlo] < inf Jw] < lim J[us] < R[o],
’UJEUO'FV[;ll,p(Q) 0—0

thus {us} in fact provides a J-minimizing sequence.

Remark 10 We like to finish with the remark that our results are somewhat surprising in
the following sense: since the function fi s merely of linear growth, we expect difficulties
while studying the deformation gradient Vu, whereas the stress tensor usually admits
a clear interpretation as the unique solution of the dual problem. In contrast to this
expection, generalized minimizers are uniquely determined up to a constant, and it is not
clear whether the dual problem does even admit a solution (which is due to the possible
anisotropy of fa). Nevertheless, we have found a dual limit which satisfies the stress-strain
relation and such that R|o| realizes inf J, i.e. in some sense we have found a “local stress
tensor”. If global higher integrability of o holds true, then this terminology coincides with
the usual notion of a dual solution.
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