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Abstract

We consider strictly convex energy densities f: RN = R, f(Z) =
9(|Z1),..-,1Zn|) if N > 1, under non-standard growth conditions.
More precisely we assume that for some constants A, A and for all
Z,Y e RN

q—

M1+122) 52 < D2F(2)(YV,Y) < A(L+|212) T Y2

holds with exponents u € R and ¢ > 1. If u denotes a local minimizer
w.r.t. the energy [ f(Vw)dz, then we prove L4*¢-integrability of |Vu|
provided that u is locally bounded and ¢ < 4 — . In particular this
is true in the vectorvalued setting and implies partial C1®-regularity
of u together with the additional assumption ¢ < (2 — p)n/(n — 2).
In the scalar case we derive local C1®-regularity from the condition
q < 4 — i, again if u is locally bounded. Both results substantially
improve what is known up to now (see, for instance, [ELM], [CH],
[BF1], [BF2] and the references quoted therein).

1 Introduction

Given a smooth, strictly convex integrand f: R™™ — R and a bounded
Lipschitz domain 2 C R" we are interested in smoothness properties of local
minimizers of the energy

(1.1) Jw] = /Qf(Vw)da:

in a suitable energy class, where — for N = 1 — we also include obstacle
problems in our considerations.

Given a power growth integrand f, it is well known that we obtain local
C'*_regularity in the scalar case (we just mention the names of DeGiorgi,
Moser, Nash, Ladyzhenskaya, Ural’tseva where of course many others could
be mentioned). With the work of Uhlenbeck ([UH]) this is also seen to be true
for vectorial problems with some additional structure. General vectorvalued
problems only provide partially regular minimizers, i.e. C1®-regularity holds
on an open set of full measure — details and references are found, for instance,

in [Gil].



In recent years variational problems with non-standard growth condi-
tions became more and more popular. Here, on one hand we may assume
that f (together with the corresponding estimates for the second deriva-
tives) is bounded from above and below by different growth rates ¢ > p > 1,
i.e. typical examples are given by anisotropic integrands (see Example 1.2,
i), below). Studies in this direction were forced in particular by Marcellini
starting with [Mal]-[Ma3]. Here the most important tool is to find an ap-
propriate condition relating the exponents p and ¢. In fact, the existence of
irregular solutions was already observed by Giaquinta ([Gi2]) if p and ¢ differ
too much.

As a model case for the second class of non-standard integrands one may
think of f(Z) = |Z|In(1 + |Z]), a function of nearly linear growth which is
studied in the theory of Prandtl-Eyring fluids and of plastic materials with
logarithmic hardening (an exhaustive overview is found in [FS]). Motivated
by this logarithmic example, the consideration of variational problems in
general Orlicz-Sobolev energy classes is continued in the papers [FO], [FM].

Finally, a unified approach to anisotropic energy densities together with
an Orlicz-Sobolev growth condition is given in [BFM] and [BF1] by intro-
ducing the notion of (s, u, q)-growth. Here the variational integrand f is
bounded from below by some Orlicz-Sobolev function F' (which in turn has
at least the growth rate s > 1) and the second derivatives are supposed to
satisfy

12)  A1+|2?) FYP < DH@Y) < AQ+IZP)T P
for all Z, Y € R*, for some positive constants A\, A, for x € R and with the
choice ¢ > 1. Hence, anisotropic power growth is covered by letting 2 — y =
p = s > 1, the logarithmic integrand of above satisfies (1.2) choosing s = 1,
p=1and ¢ = 1+e¢. Given the notion of (s, 4, g)-growth, both smoothness in
the scalar case and partial regularity for NV > 1 are established under the so
called (s, p, g)-condition relating these exponents such that a variety of known
results is included and extended (see also [Bi2] for a detailed discussion).
Note that, from the technical point of view, the (first) restriction on the
exponents enters through an application of Sobolev’s inequality which gives
uniform higher local integrability of the gradients of some regularization.
Studying a similar linear growth situation it turns out in [Bil] that
much better results are obtained if the solution (and its regularization)
is uniformly bounded (this assumption is quite natural for Dirichlet prob-
lems with L*®-traces and admitting some maximum principle). In this case,
Sobolev’s inequality may be replaced by an additional application of the
(non-differentiated) Euler equation. This method enables us to reach (up



to a certain extend) the limit case 4 = 3 and ¢ = 1 in (1.2). Moreover, as
outlined in [Bi2], we do not expect regular solutions if ellipticity is given in
terms of p > 3.

Let us turn our attention back to variational problems with non-standard,
superlinear growth. If we impose an analogous boundedness condition, then,
as a formal correspondence to the results given in [Bil], the relation 1 < ¢ <
4 — p (for anisotropic power growth integrands 1 < ¢ < 2+ p) is expected to
be the best possible one inducing (partially) regular solutions. Note that the
relevance of the restriction ¢ < 2+ p was already discovered in [ELM]: given
a L°-solution u, uniform local higher (up to a certain extend) integrability
of |Vu/ is established in the vectorvalued setting (choosing 2 < p).

Nevertheless, the full strength of the above stated correspondence could
not be established in the paper [BF2] on anisotropic variational integrals with
convex hull property: instead of 1 < ¢ < 2+ p (plus some natural condition
improving higher integrability to partial regularity) the exponents have to be
related via 1 < ¢ < p+2/3. This is caused by an essential difference to the
linear growth situation: in [Bil] we benefit from the growth rate 1 = ¢ of the
main quantity Vf(Z) : Z under consideration. Given an anisotropic power
growth integrand, we just have the lower bound p < ¢ of this quantity.

As a consequence, the techniques again have to be changed such that
we do not have to rely on the quantity Vf(Z) : Z. This leads to the study
of Choe’s article [CH], where bounded solutions w.r.t. anisotropic integrands
f(Z) =g(|Z|?) (an assumption both for N > 1 and the scalar situation) are
handled up to 1 < ¢ < p+ 1. As a third approach, his results depend on
a partial integration combined with a Caccioppoli-type inequality (of course
this type of inequality also enters the two other techniques mentioned above).

In our paper we are interested in the question whether Choe’s Ansatz
can be improved. Following the above listed references ([FM], [BFM], [BF1],
[BF2], [Bil]) we introduce a regularization satisfying a Caccioppoli-type in-
equality which is slightly different from the one given in [CH|. This enables
us to refine Choe’s reasoning in various directions with surprisingly strong
results. Roughly speaking we otain

THEOREM. Assume that f admits some mazimum principle and consider
a local minimizer u of the energy J given in (1.1). If u is of class L5, and
if (1.2) is supposed, then

i) in the vectorvalued setting local L'-integrability of Vu follows whenever
l<g<t<d—p(l<g<t<2+p);

ii) in the scalar case (here we may also consider obstacle problems) the
same condition ensures full reqularity of the solution.



REMARK 1.1 i) The higher integrability stated in i) is the starting
point to prove the Corollary 2.4 on partial reqularity.

ii) It is well known that vectorvalued problems with the additional struc-
ture f(Z) = g(|Z|?) can be handled more or less in the same way as
scalar problems. The slight changes which are needed in our setting are
outlined, for instance, in [FM], [Bi2].

iii) In contrast to [BFM] and [BF1] the growth rate s of the variational
integrand is not specified. We just have the bounds induced by (1.2).

iv) In terms of anisotropic integrands with (p,q)-growth the above asser-
tions are established in [BFM] and [BF1] whenever

n+2

n

qg < p
These results do not rely on L*-bounds for the solution. Hence, at the

first glance one may wonder about the case

n+2
2+p < p .
n

However, p = n is the point of bifurcation, hence, by Sobolev’s embed-
ding theorem, boundedness becomes no restriction at all.

v) On account of the few counterexamples we do not dare to state a con-
jecture on sharpness. Nevertheless, the above remark and the detailed
discussion of admissible exponents given in [Bi2] at least shows our
results to be reasonable and consistent.

EXAMPLES 1.2

i) As a first example let us have a look at the anisotropic energy density

P
2

F72) = 0+1Z0% + (14172, Z=(%,...,7%,) R,
with exponents 2 < p < q. This structure is imposed in [AF] to ob-
tain partial reqularity under a rather weak condition relating p and q
(see [BF2] for a detailed comparison with the reults of [PS], [BF1] and
[BF2]). In the scalar situation, ¢ < p(n + 2)/n gives regular solutions
(see [Mal], [Ma2], [BFM]), a relation which can be improved by some
additional assumptions (see [UUJ).



ii) If we do not have the above decomposition, for instance (2 <p < q)

12) = [1+12°2+ (0 +12) ", Z2=(2,...,2) RV,

or if the energy density is completely anisotropic in the sense that
n
a;
f(z) = Z@'(Zi); ¢i=(1+1Z)*, Z eRY,
i=1

with exponents q; > 2, then the results of [AF] do not apply any more
and, with the notation introduced in (1.2), partial regularity follows if
g < pn/(n—2) and g < q := max{p+ 2/3;p(n + 2)/n} (see [BF2]).
In the following we will improve p+ 2/3 to p+ 2. If N = 1, then the
condition q¢ < p(n+2)/n will be replaced by ¢ < max{2+p,p(n+2)/n}
(compare Remark 1.1, iv)).

iii) Let us finally discuss an example which is the most interesting one
from our point of view. Consider the scalar case N = 1 and let Z =
(Z1,7Z,) € RE x R for some 1 < k < n. Moreover, suppose we are
given exponents 1 < p < q < 2 and

F2) = 0+1ZP)° + 1+ 2P0,

In this subquadratic situation (by elementary calculations) the estimate
p—2
A1+[ZP) T [YP < D*f(Z)(Y,Y) < AlYP

is the best possible one. As a consequence, no reqularity results are
available up to now if p is close to 1 — even if (¢ — p) becomes very
small. Hence, with the trivial inequality 2 < p + 2, our theorem really
covers a new class of variational integrals.

Our paper is organized as follows: the precise setting together with
a statement of the main results is given in the next section. In Section
3 we introduce a suitable regularization and proof some Caccioppoli-type
inequalities. The vectorvalued case is handled in Section 4, whereas scalar
obstacle problems are studied in Section 5.

2 Assumptions and main results

Starting with the vectorvalued setting we suppose the variational integrand
f to satisty



ASSUMPTION 2.1 The energy density f: R*™Y — R is a function of class
C?*(R"N) and its second derivative is estimated for all Z, Y € R*N wvia

q—

1) AQ+1ZD)EYE < DF@YY) < AL+[Z) T IV,

Here \, A denote some positive constants and the exponents € R, ¢ > 1
are related by

(2.2) g < 4—p.
Moreover, the representation formula
(2.3) f2) = g(124),...,1Za|), Z=(Z,...,2,) eR™,

1s supposed to be valid for some function g which is increasing w.r.t. each
argument. Let us finally assume that there is some N-function F: [0,00) —
[0,00) having the Aqo-property (see, e.g. [Ad] for details) such that

(2.4) aF(Z))=c < f(Z) foral ZeRY™W
and for some positive numbers ¢y, cs.

REMARK 2.2 i) Condition (2.4) gives ezistence and uniqueness results
for Dirichlet problems in Orlicz-Sobolev spaces Wi (; R™Y) (see [FOJ).
For the consideration of local minimizers it is sufficient to suppose that
F is a continuous function of superlinear growth (see [BFM]).

ii) If p < 1, then ellipticity is good enough to improve (2.4) to the power
growth estimate (with suitable constants ¢y, co)

c|ZF*—cy < f(Z) forall ZeR™W.

In fact, we may assume w.l.o.q. that f > 0 and combine convexity of
f, in particular

[(2) =z [(Z/2)+V[f(Z]2): Z]2,
with the inequality

Vf(Z2):Z = /01 D*f(02)(Z,Z)d0 -V f(0): Z.

iii) The structure (2.8) can be replaced by any condition ensuring an ap-
propriate mazimum principle (compare [DLM]). We prefer the above
formulation which in particular is is a natural approach to anisotropic
variational problems. Moreover, note that (2.3) even gives the convex
hull property for local minimizers of (1.1). This is proved in [BF2].
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iv) Note that (2.2) — in complete accordance with [Bil] — implies

no< 3.

v) It should be kept in mind that anisotropic power growth examples as
discussed in the introduction satisfy (2.2) whenever

qg < 2+0p.

vi) Following Remark 1.1, i), the results extend to the case

2
qg < max{4—,u,(2—,u)n+ }

Our first theorem addresses the general vectorvalued setting

THEOREM 2.3 Let f be given as above and denote by u € W, (Q;RY)
a local minimizer of (1.1), i.e.

(2.5) /ﬁf(Vu)dx < oo forany QEQ,

(2.6) /Spt s f(Vu)dzx < / f(Vv)dz

spt (u—v)

(RN, spt (u—v) € Q. Ifu is of class L (Q;RY), then

loc

1
for any v € Wi

for any g < s <4 — p and for any Q € Q there is a positive number ¢ such
that

loc

/A\Vu|sd:v < ¢ < o0.
o)

Given Theorem 2.3 we obtain the following corollary on partial regularity.

To this purpose we follow the blow-up arguments of [BF1] which remain

unchanged once a Caccioppoli-type inequality and higher local integrability

of the gradient are verified. Some more details are outlined in [BF2|, here

we just note (see Remark 3.1) that the way of regularizing the problem is

irrelevant since these ingredients are formulated in terms of the solution w.
The restriction

n
qg < (2—/1)—2 if n>3
is due to the properties of some auxiliary functions %, as introduced in
[BF1] (compare [FO]). Since our boundedness condition does not improve
the Caccioppoli-type inequality, which in turn is the basis of the discussion
of v,,, we can not expect to get rid of this assumption.

7



COROLLARY 2.4 The hypotheses of Theorem 2.3 together with the con-
dition

qg < min{4—u,(2—u) n } if n>3
n—2
yield an open set Qo C Q of full measure, |Q — Qo| = 0, such that u €

C2(Qo; RY) for any 0 < a < 1.

Let us now turn our attention to scalar obstacle problems, where the general
hypothesis under consideration is slightly different.

ASSUMPTION 2.5 In the scalar case N = 1 we suppose that the en-
ergy density f: R* — R s a strictly convez function of class C*(R") with

properties (2.2) and (2.4), where (2.1) is just assumed to be true whenever
|Z| > 1.

REMARK 2.6 Clearly the setting is much more general in comparison to
the one considered in [CHJ: we do not suppose f(Z) = g(|Z|*) and we just
assume (2.2). As a formal difference, Choe studies energy densities admitting
some kind of degeneracy as |Z| — 0. This behaviour of the second derivative
is covered by the Assumption 2.5 since the validity of (2.1) is not supposed
in the case |Z| < 1. We already like to remark that this causes no additional
technical difficulties since in any way we have to rely on a cut off function
in order to study obstacle problems.

Now the precise formulation of our second main result reads as

THEOREM 2.7 Let the energy density f be given according to Assumption
2.5 and suppose we are given a function v of class Wolo,loc(Q)' Moreover, let
u € W11,zoc(Q): u > 1 almost everywhere, denote a local minimizer of the
energy (1.1) in the sense of (2.5), (2.6), where the comparison functions are

supposed to respect the obstacle as well. If u is of class L§S.(Q2), then we have:

i) u is of class Wy, ,.(€2).

ii) If (2.1) holds for any Z € R™ then u is of class CY*(Q) if so is the
obstacle.

REMARK 2.8 Ifwe consider degenerate energy densities with (p, q)-growth,
then local Lipschitz continuity is improved to Clll;g—regularity following [BFM]
(compare [MUZ]). Here an additional hypothesis is needed to control the kind
of degeneration of D*f.



3 Regularization and Caccioppoli-type inequal-
ities

I. Vectorvalued problems. Given Assumption 2.1 we denote by (u)¢ the
e-mollification of the local minimizer v under consideration through a family
of smooth mollifiers, we fix B := Bg(zo) € Q and assume that B C {z € Q :
dist(z, 02) > ¢} for any small € > 0 as above. Moreover, fix some exponent
t > max{2, ¢} and let for any § € (0,1)

[VIES

fs(Z) == [(Z)+6(1+]|2%)*.

Then we define us (= u§) as the unique solution of the Dirichlet problem
(Ps) Jslw,B] := / fs(Vw)dz — min, w € (u)ip+ W/} (B;RY).
B

REMARK 3.1 In [BF1] the reqularization was done w.r.t. t = q. On one
hand, this choice gives some difficulties concerning starting integrability of
the reqularization. On the other hand, once a Caccioppoli-type inequality is
established, it is not necessary to care about additional 6-terms in the case
t=gq.

The technique outlined below relies on the condition t > max{2,q}: the
discussion of asymptotic reqular integrands (compare [CE] or [GM], Theorem
5.1) includes the vectorial case and yields

(3.1) Us € W 1oe(B;RY) N W3 1, (B;RY)

If 6 = §(¢) is chosen sufficiently small, then we obtain using Jensen’s inequal-
ity (compare [MS], [FM], [BFM], [BF1], [BF2| for detailed arguments)

(3.2) /Bf(vué(s))dx = /Bf‘s(e)(v%(f))dx < /Bfa(s)(V(U)E)dx
< /Bf(vu)dx—i-O(e).

Hence, (3.2) gives together with assumptions (2.3), (2.4), DeGiorgi’s lower
semicontinuity theorem and strict convexity

LEMMA 3.2 With the above notation we have
i) ||u5(5)||W}(B;RN) < const < 00;

i) use) — u in W (B;RY) and almost everywhere as e — 0;

9



iii) suplus(e)] < sup |u| < oo;
B Br+e(0)

iv) (5(8)/ (1+ |Vu(5(5)\2)t/2 dez — 0 ase — 0;
B
V) / [(Vuse)) doe — / f(Vu)dz ase — 0;
B B

vi) /B foio (Vuse)) dz — /B F(Vu) de.

Keeping Lemma 3.2 in mind we abbreviate § = §(¢) in the following. Then

the first Caccioppoli-type inequality reads as (again compare, for instance,
[FM], [BFM], [BF1], [BF2])

LEMMA 3.3 Suppose we are given Assumption 2.1 in the vectorvalued set-
ting. Then there is a real number ¢ > 0, independent of 0, such that for any
neCe(B),0<n<1,

/ D? f5(Vusg) (04, Vus, 0y Vus) n* dx
B
< c/ |D? f5(Vus) || Vus|* |Vn|* dz .
B

Note that we always take the sum w.r.t. repeated Greek indices vy =1,...,n
and w.r.t. repeated Latin indicesi=1,..., N.

Proof. Following the above references the proof is standard: on account of
(3.1) we may differentiate the Euler equation and take ¢ = n?0,u; as test-
function. ]

II. Scalar obstacle problems. In the setting of Assumption 2.5 and with
the notation introduced above we now regularize w.r.t. ¢ = q.

REMARK 3.4 (compare Remark 3.1) If t = q, then it is much easier to
handle the iteration arguments and the succeeding DeGiorgi-type reasoning
— the paper [BFM] also benefits from this choice.

Note that the problem of starting integrability disappears in the scalar
case (see Lemma 3.6 below).

If (1)¢ denotes the e-mollification of the obstacle, then u; denotes the unique
solution of problem

(Pgw)a) Jslw, B] = /f(;(Vw)dx — min, wek.,
B

10



where K. = {w € (u)fp+ T/;/;(B) : (¥)F <w ae}

REMARK 3.5 In the situation at hand Lemma 3.2 remains unchanged.

Moreover, on account of a.e. convergence, the limit u is seen to respect the
obstacle .

The study of obstacle problems needs an additional linearization. This pro-
cedure is well known, a detailed proof of the following lemma is given in
[BFM] together with a list of further references.

LEMMA 3.6 If we consider the setting as introduced in Assumption 2.5,
then ug is of class W2(B) for any t < oo and

Vf(vu5) € th,loc(B) :

Moreover, the equation

(3.3) / Vf(Vus) - Veodr = / pgdz
B B
is valid for any ¢ € C5(B), where

9 = Ywenius=(v)} ( —div [Vf(v(¢)6)]) :
Given Lemma 3.6 we end up with

LEMMA 3.7 Suppose Assumption 2.5 to be true and fir L > 1 such that
for any € as above

L > 14+ [[V(®) | Zeo(m) -
i) If B, := {x € B: I'y:=1+|Vus|* > 5}, 3¢ > 1, then there is a

constant ¢, independent of 0, such that for any » > L, for any real
number s > 0 and for any n € C(B), 0 <n <1,

D? f5(Vug) (0, Vug, 0, Vus) Tin? dx
B,

< c/ |D? f5(Vus) | Tt V| dz.
B,.

ii) Recall that T's := 1+ |Vus|? and denote for 0 <r < R

Alk,r) = As(k,r) = {z€By(x0): s>k}, k>1+1L.

11



Then there is a real number ¢ > 0, independent of 6, such that for any
n € C§°(B,(x0)), 0 <n <1 and for any § € (0,1)

/ Fé_% \VTs|?n? dx
Alk,r)

< c / D?f5(Vug)(Vn, Vn) (Ts — k) dx .
A(k,r)
Proof. ad i). This time we shortly sketch the proof following the idea of
[BFM], Lemma 2.3: fix > > L and let for all t € R
(3.4)  h(t) = min {max[t —1,0],1}, h(t) = h.(t) = h(x7't),
ie. h(t) = 0if t < > and h(t) = 1 if t > 25c. Again integrability is good

enough (see Lemma 3.6) to differentiate the Euler equation (3.3) with the
result

/ D? f5(Vus) (aqu(;, V (7 8yus h(Ts) rg)) dx
B

= —/987(77287U5h(F5)F§) dz .
B

On the set of coincidence we have almost everywhere Vus = V()¢ (see
[GT], Lemma 7.7, p. 152) hence the auxiliary function A(T's) vanishes on
account of sz > L. This, together with

/ D? f5(Vus) (0yus 0, Vus, VIs) ' (Ts)Tin’ dz > 0,

B

s / DQfJ(VU(f) (ayué 0y Vus, VF(S) Fg_l h(Ts) 772 de > 0
B

(which follows from A’ > 0 and 20,us0,Vus; = V') yields

/ D? f5(Vug) (0, Vus, 0, Vus) h(Ts) Tin? dx
B
< - / D2 £5(Vus) (8, Vg, V) 0y us h(Ts) T3 da
B

Finally Young’s inequality proves the claim after absorbing terms.

ad ii). Following the reasoning of [Bil]|, Lemma 3.2, ii), we now have
to include the obstacle condition. If we are given £ > 1 + L then we choose
¢ = n?0,yus max [F(; —k, 0}, n as above. Again Lemma 3.6 shows the validity

12



of the Euler equation (3.3) and its differentiated version. As before the right-
hand side vanishes since k is large enough, thus

/ DQf(s(Vu(s) (87Vu5, 87Vu,5) (F5 — k) 772 dx

A(k,r)

(3.5) + / D? f5(Vus) (8, Vug, VT's) Oyusn” da
A(k,r)

= -2 / D?f5(Vuys) (87Vu5, Vn) n0yus (U's — k) dx .
A(k,r)

Here the non-negative first integral on the left-hand side is neglected, the
second one satisfies:

/ D2f5(VU5) (87VU5, VPJ) 87u5 772 dx
A(k,r)

(3.6) 1

_ ! / D2f5(Vug) (VTs, V) da:
2 Jagm

The right-hand side of (3.5) is estimated from above via

ce / D?f5(Vus) (VLs, VL) n* dx
(37) A(k,’l’)

+ee ! /( | D?f5(Vus)(Vn, Vn) (Ts — k) dx,
A(k,r

where we made use of Young’s inequality for € > 0 sufficiently small. Absorb-
ing terms the lemma is proved by (3.5) — (3.7) and the ellipticity condition
(2.1), which can be applied on account of £ > 1 + L. [ |

4 Proof of Theorem 2.3

Recalling Lemma 3.2 we obviously have established our first main result once
uniform local higher integrability of the regularization is proved in the sense
of

THEOREM 4.1 Consider the vectorvalued setting and assume that [ sat-
isfies Assumption 2.1. Then for any ¢ < s < 4 — p and for any ball B,(xo),
r < R, there is a constant ¢ just depending on the data, supg|(u)|, r and s,
such that

/ |\Vus|°de < ¢ < o0.
BT(WO)

13



Proof. With s fixed as above it is possible to define
(4.1) g+p—4 < a = s+pu—4 < 0,
where the negative sign of o ensures that

(4.2) o = 2+a—g < 2+

Hence we may choose in addition k£ € N sufficiently large satisfying

a—u . U'

2L < 2% —2.
o-l

Now, given n € C°(B), 0 <n < 1,7 =1 on B.(x), |Vn| < c¢/(R—7r), we
recall the abbreviation I's = 1+ |Vugs|? and (3.1) to justify that us is smooth
enough to perform the following partial integration

1+e58 ok

/\Vu5|2F§+%E772kdx = —/uf;-V[Vuf;FJ n**| dx
B B

Lyage

< c/ (V2u;| T n** dx
B
3ta—p
+c/F5 > 2 V| da
B

Here we already made use of the fact that us is uniformly bounded. If a
positive constant M is fixed, then the left-hand side is immediately estimated

Via
205

o
Vus 2p nkde > ¢ r n** dz
5 s
B BN[|Vus|>M)]

> c/l“?a_;ﬁn%d:c—c(M),
B

therefore the starting inequality reads as

/F?%Hn%dx < ¢ 1+/ |V2u5|1“(15+%&772kdx
B B
3toa—p
(4.3) +/F5 2 772’“_1|V77|d:13}
B

= c{1+I+1}.

At this point we like to emphasize that the choice (4.1) of « gives

oa—p s q
4.4 2 = - > —.
(44) * 2 2 2




Now for € > 0 sufficiently small Young’s inequality yields a bound for IT

I < 8/F§+a_gﬁn2kdx+s_l/ng_a_gﬁfg+a_“n2k_2|vn|2dx
B

(4.5) B
_ -1 _
24555 ok ce 1+95%  ok—2
§6/3F5277dac+m/BF5277 dx .

Note that the first integral on the right-hand side of (4.5) may be absorbed on
the left-hand side of (4.3) whereas the second one remains uniformly bounded
on account of Remark 2.2, ii), the uniform bound (3.2) and o < 0. Hence, the
theorem is proved if an appropriate estimate for [ is found. To this purpose
we derive (again ¢ > 0 is sufficiently small and Young’s inequality is applied)

I < ¢ / F;% (V2us|?n* 2 dy + ¢ / F?a_% 2 dg
(4.6) B B
= el + 8_112 .

Using Lemma 3.2, iv), as well as Lemma 3.3 one obtains

I < / D2f,5 (VUg) (37Vu5, &,Vug) (77k+1)2 dx
B

IA

c/ |D? f5(Vus) | [Vus > n** |V da
B

C a 1
- - F2 2k /1’\2 2k
o i [ i)
< & 1+/F%n2kdx .
- (R_T')Z B b

As the result, (4.6) yields (using (4.4))

(47) I S LZ 1 +/ F?"a_;& 772]6 dr + 6_1/ 1—1?}-&*% ,’72/6—2 dr .
(R—r) B B

Choosing € = £(R —r)? with £ > 0 sufficiently small, the first integral on the
right-hand side of (4.7) may also be absorbed on the left-hand side of (4.3),
hence it remains to bound the second one. Here the negative sign of o and,

IN
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as a consequence, (4.2) and our choice of k& come into the play. For & > 0
sufficiently small we get with a final application of Young’s inequality

&Y (R—1r)2 / F?ai% n** 2 dg
B
< cé—l(R—r)—2{5/rﬁ*Wanda:+5—ﬁ|B|}.
B

Absorbing terms for & = &' £(R — )%, 1 > &' > 0, Theorem 4.1 is proved
implying the validity of Theorem 2.3 as well. |

5 Proof of Theorem 2.7

In the case of scalar obstacle problems higher integrability is improved by an
iteration argument to

THEOREM 5.1 Assume that f satisfies Assumption 2.5 in the case N =
1. Then for any 1 < s < oo and for any ball B,(xy), r < R, there is a
constant ¢ just depending on the data, supg|(u)®|, r and s, such that

/ |\Vus|°dz < ¢ < oo.
BT(J;O)

Proof. We now fix some non-negative number o > 0 and let

B =4-—p—q > 0,

where the positive sign follows from Assumption (2.2). As a consequence,
the counterpart of (4.2) reads as

el el P el (RSN

= 2
o + 5 5

Again we may choose k£ € N sufficiently large such that
2k < 2% —2.
o

Next we have to rely on the auxiliary function A as defined in (3.4). Here we
define h w.r.t. 25¢, 5 > L+1, L given in Lemma 3.7. Once more, the starting

16



inequality is derived performing a partial integration which is admissible on
account of Lemma 3.6

Lyege

/ VusTy 7 h(Ty)n?de = — / udv[vuaré (Ts)2* | da
B B

IN

c/ \V2u5|1“(15+a_?i h(T5)n** dx
B
drome 2%—1
+c [ T h(Ts)n™* = |Vn| dx
B
to [ T W) Vg [V2ug| 72 d
5 6) [V us| |VZus|n™ d .
B
This time it is supposed that 7 < p < p) < R, n € C(By(zp)), n =1

on B,(z9), Vi < ¢(p' — p)'. A lower bound for the left-hand side of this
inequality is given by (compare Section 4)

[ - o).
B

on the right-hand side we observe that h'(Ts) identically vanishes outside the
set [22c < T'5 < 4], i.e. as an immediate consequence

3ta— a—
[ ) Vsl sl < o) [l
B

Bas.

where the definition of B,,, is the same as introduced in Lemma 3.7. Since
it is also obvious that

/ |V2us| F?%E h(Ts) n*dr < / |V2uy F;JFO%H n* dx
B B2x

an analogous estimate holding for the remaining integral, we arrive at

ask a—p
/BFE+ R c{l—i—/B |V2u(5|F(15+ >k dg
P

3ta—p
(5.1) +/ I anl\VMda}}
B2,

= c{1+I1+1}.

Now, given € > 0 sufficiently small, II is handled in the same manner as in
Section 4
-1

c&
(0 = p)?

17

(5.2) I < 5/ F;Jra_?i n** dx + / F};Jra_gﬂ 2 dx
B B



where the first integral can be absorbed on the left-hand side of (5.1). For
the discussion of I we first observe that

atB
I < g/ F62 FJ%‘V2U5‘2772k+2d£C
B

a—B—p
+a—1/ 752 %4y = e+,
B

23¢

Then we have to check that I; can be handled via Lemma 3.7, 1): by definition
it is clear that o + 8 > 0. Moreover, the choice of 3 verifies Assumption
(2.1) on the set B,, (recall that in the situation at hand we only have (2.1)
whenever |Z| > 1), hence one gets

atB
I, < c D?f5(Vus)(9yVus, 8, Vus) Ty ? (77k+1)2dx

BZX

14 ot8
< c/ ‘DQfg(VuJ)|F6+ > |V do
B;.
C atB  aq 2%

For the last inequality we like to recall that the regularization was done
w.r.t. t = ¢. Finally, the choice of g implies

a— a—B—
(53) I < ﬁ/}gr?%n%d:ﬂﬂlérﬁ 22y

If again ¢ = £(p — p)? and if € > 0 is sufficiently small, then we argue exactly
as in Section 4, i.e. the first integral on the right-hand side of (5.3) is absorbed
on the left-hand side of (5.1) whereas

_B_
245t

et —p)? / T 7% da
B

(5.4) - ]
< et —p)? é/FJ > p*de 45 -7 |B|y.
B

Following (5.1)—(5.4), letting € = £’¢(p' —p)?, 1 > &' > 0 and absorbing terms
for a last time we have found a real number ¢ = ¢(3r, o, p' — p,supg |(u)¢]),
independent of §, such that

(5.5) /F?ag#n%daﬁ < c{l—l—/F?a;un%_Zdaﬁ}.
B B

18



To start an iteration of (5.5) let
pm = r+(R-=7r)27", m=0,1,2,...,
as well as
Oy = 2m, le. oy = 24+a,, m=012...,

where for any m as above a, is non-negative, hence admissible in the above
calculations. Then we obtain (5.5) for any m = 0,1,2,..., with the choice

— — — 1
P = Pm+1, P = Pm, & = Qp, 1.€.

AUm+1—H am—p
/ P;L 2 dr < c{1+/ F(15+ 2 dx}.
Bﬂm+1 (zo) Bom (wo)

Iteration completes the proof since oy = 0 gives a uniformly bounded right-
hand side (once more compare Remark 2.2, ii). |

Given Theorem 5.1 one may apply a Moser-type iteration (as done in
[CH]) to obtain uniform local apriori gradient bounds. We pefer DeGiorgi-
type arguments (similar to [Bil]) which seem to be more convenient in the
setting of “bad” ellipticity, moreover, the side condition is easily eliminated.

THEOREM 5.2 Consider a ball Bg,(xy) € B and an energy density as
classified in Assumption 2.5. Then there is a local constant ¢ > 0 such that
for any 6 € (0,1)

||VU'5||L°°(BR0/2,R") S C.
Before proving Theorem 5.2 we have to establish an auxiliary Lemma which
is shown in [Bil], Lemma 6.2, in the case ¢ = 2.

LEMMA 5.3 Suppose 0 < r < 7 < Ry such that Bg,(zo) € B. Then
there is a real number c, independent of r, ¥, Ry, k and 0, satisfying for any
k>1+L (L as above)

/ (F5 — k)ﬁ dx
A(k,r)
C u %ﬁ w %%
S [/ ;7 (U5 — k) dx] [/ ¥ dx] ;
(7 — 7)==t LJ Ak, A(k,#)

where the sets A(k,r) = {x € B.(x¢) : Ts > k} are introduced in Lemma
3.7.

(5.6)

19



Proof of Lemma 5.3. With the notion wt = max[w, 0], Sobolev’s inequal-
ity yields for n € C§°(B:(z0)), 0 <n <1, n=1 on B, (o), [Vn| < ¢/(F —71),

/ (U5 — k)T dz < / (s — k)] o
A(k,r) B (zo)
¢ / \v[n(rg—k)ﬂ\dx} .
(5.7 R n
< el [ |9in(s-w)|ac]
L J A(k,7)

< ¢ JFIHF].

IA

n—1

The first integral on the right-hand side is handled via (recall 2 — u < q)

- [/ |V77|(F5—k)dx]
A(k,7)

<[, o ] [
A(k,7) Alk,?

_n_
n—1

n

< — c[/ I, (T — k) dx] N [/ pdx} "
(7 = 7)1 LJ ak) A(k,)

thus I{”%l is seen to be bounded from above by the right-hand side of (5.6).
Estimating I, we recall the choice k£ > 1 + L, hence it is possible to refer to
Lemma 3.7, ii), with the result

n

o= [/ n|VP5\d:c] "
Alk,7)
2 21 b 2act 5
n*|VIs|°Ty 2 dx I'}dx
Alk,7) A(k,7)

c[ / D2f5(Vus) (Vn, V) rg—k)"’} ' [ F:?idx] "
Ak,7)

C %n 1 %n—l
(7 — 7)== L ages) Alk,)

and the lemma follows from (5.7). [

VAN

IN
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Proof of Theorem 5.2. Again we have to modify the reasoning of [Bil].
Starting with the left-hand side of (5.6) we fix a real number s > 1 and
observe that Holder’s inequality implies

/ r,® (T;—k)’de = / (D5 — k)72 1,7 (T — k)* 1% da
Alk,r) A(k,r)

< [/ (s — k)™ do|
A(k,r)
x [/ I (ry— k) Catie)is d:v} "
A(k,r)

Theorem 5.1 ensures the existence of a real number ¢ (s,n, Bg,(zo)), inde-
pendent of 4,

s—1

sil(%+2_ﬁ%) 8
c1(s,n, Bgy(xp)) := sup L'y dx < o0,
>0 BRO(.’L‘())

such that
1

(5.8) / F;%z (Ts — k)2 dz < ¢ [/ (Ts — lﬂ:)ﬁ dx]
A(k,r) A(k,r)

In a similar way one obtains

1
t

-2
(5.9) / [?dr < cg(t,,u,BRO(xo))[/ r,” dx} ,
A(k,7) Ak,7)

where ¢ > 1 is a fixed second parameter. Combining (5.6), (5.8) and (5.9) it
is proved that

a—=2 2 C q—2 9 %n—l
/ F(sz (F5 - ]{3) dx S a1 / F52 (FJ - k') dx
Alk,r) (F —r)nT1s LJAGK

-2 %Tl %
(5.10) « [/ ye dm] |
A(k,7)

For Kk > 1+ L and r < 7 as above let

q—2

T(k,7) = /A(k )F52 (F(s—k)de, a(k,r) = /A(’C )F?dx,
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hence (5.10) can be rewritten as

Cc

3
@ |

_n_1
S

n—1

N=
orl—

(5.11) r(k,r) < [T(k, 7)) 77 la(k, 7)]

n 1
8

(F —r)n-1
Given two real numbers h > k > 1+ L we have the immediate estimate
1

a(h, f) S mT(k,TA),
hence together with (5.11)
r(hr) € — [ )] [r(h, )]
T (F—r)es ’ (h— k)n=tst ’
1 1 n 1(q.1
S ‘ n_ 1 n 11 [T(k7/f:)]2n_18(1+t) °
(f — r)m; (h - k)nfl st

Finally s and ¢ are chosen sufficiently close to 1 (depending on n) such that

1 n 1 1
— — 11+ = > 1,
2n—1s [ +t] b
moreover we let
n 11 n 1
= -— > 0, = - > 0.
@ n—1st 7 n—1s

Then Theorem 5.2 is an immediate application of the following well known
lemma (compare, for instance, [ST], Lemma 5.1, p. 219) to the function
7(h,r), where we once more benefit from Theorem 5.1. [

LEMMA 5.4 Assume that o(h,p) is a non-negative real valued function
defined for h > ko and p < Ry. Suppose further that for fixed p the function
s non-increasing in h and that s non-decreasing in p if h is fized. Then

C
e S Gy

with some positive constants C, a, > 1, v, implies for all0 < o < 1

QD(k()—i-d,RO—O'R()) = 0,

[k, R)])”, h>k>ky, p<R< Ry,

where the quantity d is given by

208/ O [y, Ro)]*™

o' R}

d* =

22



Once it is noticed that the data of the obstacle just enter through the con-
stant L, the Proof of Theorem 2.7, i), is an immediate consequence of
Lemma 3.2 and Remark 3.5. Now that i) is established, the second assertion
follows from the well known paper [MUZ] (compare also [FM] for details). H
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