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Abstract

We consider local minimizers u: Q@ — RY, Q a domain in R?, of
the variational integral [, f(Vu)dz with integrand f of upper (lower)
growth rate ¢ (s). We show using a lemma due to Frehse and Seregin
that v has Holder continuous first derivatives provided that g < 2s.

Regularity of vector-valued local minimizers of anisotropic variational
integrals has been investigated by many authors in recent years, we refer
to [AF2|, [PS], [BF1], [BF2] and the references quoted therein, where it is
shown that under slightly varying technical conditions on the energy density
partial Cb%-regularity holds provided that the upper and lower growth rate
do not differ too much. With the exception of the very special case of
integrands just depending on the modulus of the gradient (see, for instance,
[FM] or [Bi]) it seems to be an open problem if at least in two dimensions
singular points can be excluded. In this short note we want to give a positive
answer under quite general structure conditions.

To be precise, consider a bounded Lipschitz domain Q in R? and let
f: RN —[0,00) denote a function of class C? such that

s—

2 Y < DPF(X)(Y,Y) < A0+ X)) V]2

(1) AA+[XF)

holds for all X, Y € R?V with positive constants A\, A. Here s and ¢ are fixed
exponents such that 1 < s < ¢ < co. jFrom (1) it follows that f is strictly
convex, moreover, (1) implies the growth estimate (see [AF1] in case s < 2
or ¢ < 2; for s > 2 the statement is immediate)

(2) alXP-b < f(X) < A(|X|"+1) VX eRY
for suitable constants a, b, A > 0.

Definition 1. A function u from the local Sobolev space W/, (4 RY) is

termed a local minimizer of the variational integral Jiw] = [, f(Vw)dz if
and only if
(a) f(Vu)dz < oo forallQY €Q

Q/



and

(b) /smu_v)f(vu)‘“” <[ o

spt (u—v)

for all ve W}

s,loc

(G RY) such that spt (u —v) € .

This definition is very natural since for boundary data uy € W} (€; RY) such
that Jug] < oo the problem

J — min in ue+ W} (Q;RY)
admits a unique solution. We have the following result:

THEOREM 1. Let f satisfy condition (1), let u denote a local minimizer
and assume that in addition to 1 < s < q we have

(3) q < 2s.

Then u € CY*(;RY) for any exponent 0 < a < 1.

As a model, our result applies to the variational integral

/ (|81u|2 + (1+ |82u|2)%) dz,
0

if we choose ¢ in the intervall [2,4). It would be interesting to know if
condition (3) is optimal.
Another example covered by Theorem 1 is given by

/ ((1 + |Vu\2)% + |82u|2) dx
Q

for some ¢ € (0, 1].

The Proof of Theorem 1 is organized in several steps combining tech-
niques of [BF1] with arguments due to Frehse and Seregin [FrS] which also
turned out to be useful in the context of [FuS1], [FuS2]. In what follows we
always assume that the hypotheses of Theorem 1 are satisfied.

Step 1. Approximation

W.l.o.g. we may assume that the disc Bog = Bog(0) is compactly contained
in Q. Following [BF1], Section 2, we replace u by its mollification u, (with €
being small) and let



f(2) = f(2)+66) (1+12P)%, ZeRN,
1
1+ e 1+ || V|75

BsR)

Moreover, we denote by v, the unique solution of the problem

fe(Vw)dr — min in u.+ Wofql (Bag; RY).

Bagr

As in [BF1], Lemma 2.1, we have
(4) v, — u in W}(Byg; RY);
(5) 5(6)/ (1+Vo.P)ide — o

Brr

(6) fiey(Vve)de — f(Vu)dzx ase — 0.
Bsgr Bsgr

Note, that (4) is not explicitly stated in [BF1], only the weak convergence in
the space W} (Byg; RY) is established, but by using inequality (2), the claim
is immediate. A complete proof is also given in [BF2|, Lemma 2.1, since at
this stage the choice r = ¢ is admissible in [BF2]. Up to now we did not
use condition (3). The bound on ¢ is necessary if we want to quote [BF1],
Lemma 3.4, with the choice uy = 2 — s. Then we get

(7) 3t>q: ||VU6||Lt(Br) < C(T’R) <

for any radius r < 2R with constant ¢ independent of €. In particular, u is
in the space W}, (Bzgr; RY). It should be noted that Lemma 3.4 of [BF1]
actually gives (7) for any finite number ¢, see also Remark IIL. 3.7 of [Bi].

Step 2. The starting inequality

Consider a disc By, (z9) C Bog and let n € C}(Ba (1)) denote a cut-off
function such that n = 1 on B,(z), 0 <7 <1, and |V < £ If Agg is the
difference quotient of a function ¢ in direction e, s = 1, 2, then it was shown
in [BF1], inequality (3.2), that

&) /nQAh (Df-(Vv.)) : VAR d
= =2 [ 0AW(DL(T0)) + (V0© Au(v. ~ Qo)) da

3



is valid for any @Q € R?Y. Moreover, the calculations in [BF1], proof of
Lemma 3.1, show that we may pass to the limit A~ — 0 with the result that
(8) turns into (summation over s = 1,2)

©) /772D2f€(V1)5)(85V1)5, 0sVv,) dx
< =2 / n D’ f.(Vv.) (0, V., Vi ® Os[v. — Qx)) dx.

Next observe

‘DQfg(VUg) (a.;vvg, Vn ® 0s[ve — Qx]) ‘

< (D2 £.(V0.) (8, VL, aswg)) E

-

2

(D2 fe(Ve) (Vi © Os[ve — Qu], Vi ® Bs[v. — Qx]))

and write

i, = (D,(V0)(0.90.,0,7v,)) .

which by Lemma 3.1 of [BF1] is a function of class L7,
get (Tr(.’L'()) = B27- (CC()) — Br(.Z'()))

/ Hdz < cr~! / H.A/[D?.(V0))] V. — Q| da
Br(wO) TT(SUO) 1

2
cr! / H?dx
TT(‘TO)
3

(/ |D2.(Ve.)| V. —Q\de) |
Tr(zo0)

(From (1) and the definition of f. we deduce

(Bz2g)- (From (9) we

IA

(10)

|D?f.(Vv.)||[Vve — Q7 < ¢e(1+6()) (1+ |V1),5|2)%|W5 - Q.

Let us introduce the field W (€) = (1+ |¢2)*5° €, € € RV . Moreover, assume
from now on that ¢ > 2. Then, from [Gi], p. 151, we infer

(11) 1+ )€ - QP < ¢ W) -W(Q)P

and this is exactly the place where ¢ > 2 is needed. For ¢ < 2 the left-
hand side of (11) has to be replaced by (see [CFM] Lemma 2.1) (1 + |£]* +

4



\Q|2)%|§ — @Q|* making the next calculations impossible. Now, using (11)
and returning to (10), we arrive at

/ H?dx < er™? / HZ?dx
BT(JA'O) Tr(l‘o)

( / W) W Q) dx)

with ¢ independent of r, zy and ¢ (note that §(¢) < 1 for ¢ sufficiently small).
Since W is a diffeomorphism of R*V, we may choose @ in such a way that

D=

(12)

=

W(Q) = ][ W (V) da
)

T, (zo

which enables us to estimate the second integral on the right-hand side of
(12) with the help of Sobolev-Poincaré’s inequality, thus

%
(13) / H?dz < crt / H?dx /
Br("EO) Tr(wO) Tr(fIJO)

Note that the weak differentiability of W (Vv,) is established in [GM] or [CA],
references are given in Lemma 2.2, b), of [BF1]. Finally, we observe

V(W (Ve.))| de.

V(W) < ¢ (1+ Vo) |V,
= c(1+|Ve) T V20| (1 + Ve 2) T
< c(1+ |VU5|2)%|V21)€\ (1+ |Vv€|2)%
on account of ¢ < 2s, and we may use inequality (1) to get
(1+ |Vv5\2)¥|v2vg| < cH..

Letting h. = (1 + |Vv5|2)%, (13) implies

1
2
(14) / H*dr < cr! / HZdx / H_h, dx
B (o) Tr(z0) T (o)

being valid for any disc Ba.(zg) C Bag.

5



REMARK 1. The above mequalzty x needs a technical comment. Let us

write We := W(Vu,) = het V.. From Proposition 3.2 in [BF1] we infer
he € Wiloc(BQR) together with

Vhe = 5 |Vo| (1+|Vo.P) 7 V| Ve,

Since n = 2 and h, > 1, we see

q—=
he® € Wy1oo(Bar) for any t < 2,

and v; € W3 ,.(Bag; RY) implies Vv, € L,

loc

Observing also he € L}, (Bagr), p < 00, we clearly have W, € Wf}loc
together with

(Baog; R?N) for any finite p.
(BQR;RQN)

0aW. = 0a(h® ) Vi +he® 0.V

=th " 0uh. V. + he3 0,V

Using the formula for 0,h. we have proved .

Step 3. Application of the Frehse-Seregin lemma

Inequality (14) exactly corresponds to the hypotheses of Lemma 4.1 in [FrS],
and we get: for any p > 1 and for any compact subdomain w of Byg there is
a constant K = K (w, p) such that

(15) / H?dr < K|lnr|™P
BT(ZUO)

is true for any disc B.(79) € w. Note that K also depends on ||H.||z> (.
and ||Ac||w; () but on account of [BF1], Lemma 3.1 (in combination with (5),
(6) and (7)) and Proposition 3.5 with the choice p =2 — s these quantities
stay bounded uniformly w.r.t. . Let G, = (1 4 |V0.|?)"7T Vo,. Recalling
he € Wy ,.(Bar) we see that

s—2 1_2
s
&

(1+|VU6|2)¥ = hgs = h

belongs to the same function space. v, is an element of WZ,,,(Bzg; RY) (see
[BF1], Lemma 2.2, b), (i)), thus G. € WY ,.(Bag; R*"), and for the derivative



s—

7| V2, so

we get (see also Proposition 3.2 in [BF1]) |[VG.| < ¢(1 + |V, |?)
that |VG.|*> < cH?. Therefore (15) implies

(16) / VG.2dz < K|ln |,
BT(CEO)

and if we choose p > 2 in (16), then the version of the Dirichlet-growth
theorem given in [Fr|, p.287, implies continuity of G, on w with modulus
of continuity independent of €. In [BF1], Proposition 3.5, (iii), we showed
Vv, — Vu almost everywhere on Byg, therefore G = (1 + |Vu|?)* T Vu is
a continuous function. Since & — (1 + |€[2)*3°€ is a homeomorphism (note
that this field is proportional to the gradient of the strictly convex potential
(1+ |§\2)¥), we finally get continuity of Vu. Thus, the criterion for regular
points stated in Lemma 4.1 of [BF1] (which works in case n = 2 just under
the condition (3)) is satisfied everywhere which proves the claim of Theorem

1 in case g > 2.

Let us now look at the case that (1) is valid with exponents 1 < s < g <
2. But then (1) also holds for the new choice ¢ = 2, i.e. we have

A1+ XP)TIYP < DPAX)(Y,Y) < AJYP

and we may repeat all our calculations with g replaced by the exponent 2.
Since 2 < 2s, the appriopriate version of condition (3) holds which gives the
result. U

REMARK 2. We like to remark that it is not necessary to refer to partial

reqularity theory, a direct proof based on inequality (14) can be obtained as
in [FrS], Theorem 2.4.

During our calculations condition (3) is needed to have uniform bounds
for the quantities ||H.[|r2¢,) and |[|he ||y () on subdomains w compactly con-
tained in the disc Byg(0), which means that the constant K in inequality
(15) and (16) does not depend on €. Let us now look at the example

(17) F€) = [l In(1+[g]) + |6, &= (&,&) € R*Y.
Letting ¢(&) = [£|In(1 + [£]) we find

1
1+ [¢]

1
P < D’g(€)nm) < QWW’,




hence
_1
(18)  A(A+1E) 2> < D*f(&)(m,m) < Anl* for all £,n e R*

which means that formally (1) holds with s = 1, ¢ = 2 and suitable positive
constants A, A. In contrast to Definition 1 local minimizers should now
be located in the Orlicz-Sobolev space Wy, RY), A(t) = tIn(1 + t),
compare, e.g. [Ad], and using the notation from [BF1] we see from (18) that
fis of “(s, pu,q)-type” with s = u =1, ¢ = 2. But the “(s, y, ¢)-condition”
from [BF1] is violated in our example so that no information concerning the
regularity of local minimizers (i.e. local higher integrability or C%*-regularity
of the gradient) can be deduced from [BF1]. Since we now are in the limit
case of (3) and also of the (s, u, ¢)-condition from [BF1], it is reasonable to
impose further conditions on the data which might be sufficient for proving
regularity. One natural possibility is to look at a boundary value problem
with sufficiently regular boundary data.

THEOREM 2. Suppose that ug € W2(;RY) and let u € ug+ Vifj(Q; RY)
denote the unique solution of

Jw] = /f(Vw) dr — min in uy+ VT@(Q;RN)
Q

with f defined in (17). Then u is a continuously differentiable function.

The proof is similar to the proof of Theorem 1 but now we work with
a global regularization: for 0 < § < 1 define f5(&) = 2|¢|> + f(£) and let u;
denote the unique solution of

/Qf(;(Vw) dr — min in ug+ I/IC}QI(Q;RN).
We have (see, for instance, [FO))
(19) us 2w in WHQRY)
and, what we need most
(20) us € W2(Q; RY).
For a proof of (20) we quote standard techniques supposing for simplicity

that a part I' of 09 is flat, e.g. T’ C [zo = 0]. If z is a point in T', if n denotes
a function in CJ(Ba(7¢)) and if Ay, is the difference quotient in direction ey,



then A_h(nzAh [us — up]) is admissible in the Euler-Lagrange equation for uy,
and we find

/772|AhVU5|2d$ < (6, ug)

with ¢ not depending on h. Thus 9,0 us, 0,0ous € L*(;RY), and in order
to control G,0us we use the equation (recall that we already know us €
W22,loc(Q; RN))

Affﬁ 0,0sus = 0 ae.on@Q, j=1,... N,
J O
Ag = - - (V’U,g)
g api, Op)

Multiplying
A 0,00u5 = —(AY, + AF)) 810puj — AY,0101uj

with 8282u§ and using the ellipticity of the coefficients we deduce 0y0,us €
L2(;RY). Let

-

2

H5 = (DQf(;(Vu,g)(&Vu(;,aSVu(;)) .

Then we claim
(21) /Hgda: < c(ug) < o0
Q

for a constant ¢(ug) depending also on the boundary data ug but being inde-
pendent of §. Let us sketch the proof of (21) for the special case 2 = B;(0),
the general situation can be reduced to this case by covering 0f) with open

sets U such that U N{Q is star-shaped. Let w := us — ug €W, NWE(By; RY)
and set w = 0 outside of B;. We define for 0 <r < 1

we(z) = w(z/r), |z <1,
thus w,(z) = 0if |z| > r. The differentiated form of the Euler equation for
ugs implies
D2.f6(vu5)(asvudaasvwr) dz = 0,

B
and since by (20) w, — w in W2(By;RY) as r — 1, we find

D?f5(Vus) (85Vu5, 0s[Vus — Vuo]) dr = 0,

B



and (21) follows from Young’s inequality by observing that |D?f5(£)| < c.
As before we let hy = (1 + [Vus|?)*/* and get [, hidz < ¢ < oo as well as
|Vhs|? < cH} so that by (21)
(22) sup ||hs|lwy) < oo

0<o<1

Now, the same calculations leading to (13) (choose ¢ = 2 there) imply

1
2
/ Hgdng/ Hgdx/ V2u;) do
B, (o) r T (z0) Tr (zo)

where again we used the boundedness of D?fs. From (18) it follows that
|V2u5\ S Ch,5 H(;,

thus we get the starting inequality for the Frehse-Seregin lemma:

3
/ H2dy < © / H2 dx / hs Hs dz, Bar(x) € L.
Br(zo) T\ J T, (o) T; (zo)

Let us fix p > 2. Recalling (21) and (22) we deduce

/ Hidr < K|lnr|™ or / \VGs|?dz < K|Inr|™P
Br(m‘o) BT(J:O)

for a constant K independent of 4. Here we have abbreviated
_1
Gs = G(Vug), G(€) = (1+[€f°) "¢, £eRY

(note that |VGs|? < cH? and |Gs|* < ¢y/1+ |Vus|? which means G5 €
Wy (2; R?V)). The variant of the Dirichlet-growth theorem given by Frehse
[Fr] implies uniform continuity of the functions G, more precisely

(23) 0SCB, (2)Gs < K|lnr|*?

for a uniform constant f(~ and all discs B,(xo) C §2 such that zq € Q and
r < 2dist(€2, 02), where Q is some fixed subdomain such that € Q. (K

depends on dist($2, d92) but not on 4.) Let us cover the closure of Q with a
finite number L of discs B,,(z;) such that (see (23))

08Cp, (z)Gs < 1 forall0<d <1, i=1,...,L

10



Then |Gs(z) — G5(z)| < L for z, z € Q and we get from

][GJ ) dz| + ][\Ga §(2)| dz

the bound |Gs(z)] < M < oo forall z € Q, 0 < § < 1. Here we use
SuPgs<1 ||Gsllwi) < oo implying that {5 Gs(2) dz stays bounded. Thus

Gs(z)| <

we may apply Arcela’s theorem to get G; —: G unlformly for a continuous
function G on the closure of Q. Since G is a dlffeomorphlsm of R?N | we have
Vus; = G toGs — G LoG everywhere on 0, and G 1oG is of class C°. But
from Vus; — Vu in L'(€;R?V) it follows that G~' o G = Vu which proves
the claim of Theorem 2. O

REMARK 3. Of course our arguments are valid not only for the particular
ezample (17), we can consider any integrand f > 0 of class C? satisfying (18)
and for which f(§) > mA(|€]) — M with m, M > 0 and some N-function A
s valid.
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