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ABSTRACT. In this note we consider a parabolic obstacle problem with zero constraint. The exact represen-
tation of the global solutions (i.e., solutions in the entire half-space {(z,t) € R**! : 1 > 0} ) is established.
Based on this representation we characterize the behaviour of the free boundary near contact points.

§0. INTRODUCTION

Our objective in this paper is to find the exact representation for all possible solutions to the parabolic
obstacle problem in the half-space {z; > 0} with zero Dirichlet condition on the boundary of the half-
space. It is also assumed that near the infinity solutions could have quadratic growth with respect to
the space variables and linear growth in time. Such a global analysis is essential in studying the local
properties of a free boundary.

The idea to use information about global solutions in conjunction with blow-up technique for studying
the local properties of surfaces has its origin in investigations of minimal surfaces in the seventies. For
free boundary problems such an approach has been used in the papers [Cal-Ca2], [CKS] and [SUJ. It
should be noted that the development of techniques based on global analysis has made it possible to give
a complete description of the regularity properties of the free boundary for the elliptic problem without
”sign-restriction” on the solution.

For parabolic equations the simplest obstacle problem can be formulated as the following variational
inequality:

let D be a domain in R*, Q =Dx]0,T7,

K={weH(Q): w>0ae inQ, w=¢ond 9},

where ¢ be a nonnegative function defined on the parabolic boundary &' Q of the cylinder Q. It is required
to find a function v € K such that

/D(‘?tu(w —u)dx + /D DuD(w — u)dz + /D(w —u)dx >0

a.e. in t €]0, T, and for all w € K.
It is known that a solution u of the problem, formulated above, satisfies (in the sense of distributions)
the equation
Ay — Oiu = x in Q,

where 2 = {(z,t) € Q: u(z,t) > 0}.

The regularity of the free boundary for this problem has been investigated earlier only in the special
case of the Stefan problem ([Cal]), where boundary conditions guarantee the additional information
Ou > 0. The results of the present paper enable us to avoid any assumptions on the time-derivative of
solutions.

In studying global solutions we replace D by the half-space {z; > 0} and assume that a solution u is
defined for all ¢ €] — 00, +00[ and satisfies the boundary condition u|;,=o = 0.

Once classifying global solutions we can apply it, in Section 3, to analyse the local behaviour of the
free boundary near the fix one. The interior counterpart of this problem is under investigation in [CPS].

Notations and definitions.
Throughout the paper we will use the following notations:
2 = (z,t) are points in R**! | where z = (z1,2') = (z1,%2,...,2,) € R* and t € R!;
R = {(z,t) € R**! : 21 > a}, where a € R;
Ri+1 — RSL'H,
R = {(z,t) e R**! 12y < 0}
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O, = {(z,t) e R* : 3y = a};

II = Tlp;

e1,---,ep is the standard basis in R";

X5 denotes the characteristic function of the set 2 (2 Cc R*+1);
vy = max{v,0}; v_ =max{—v,0};

B,.(z°) is the open ball in R* with center z° and radius ;

B, = B,(0);

B} =B, NRYH;
Qr(2°,t%) = B,(2°)x]t° — r2,°[ denotes the open cylinder in R*+1;
Qr = Q+(0,0);
QF (2°,1°) = Q,(a°,1°) NRYH.
If Q = Rt N Q,(2,1°) then Q = {(z,%0) : &1 > a, |z — 2°| < r} is the top of Q and &'Q is it’s
parabolic boundary, i.e. the topological boundary minus the top of the cylinder.
D; denotes the differential operator with respect to z;; 0y = %;
D = (D,,D") = (D1, Ds,...,D,) denotes the spatial gradient;
D, denotes the operator of differentiation along the direction » € R”, i.e., |v| = 1 and

n
D,u= E Diu-v;
i=1

H = A — 9, is the heat operator;
| - ||p,2 denotes the norm in L,(£2), 1 < p < oo.
W21(£2) is the anisotropic Sobolev space with the norm

lullwz1 oy = 10ctllp, 0 + ID(Du)llp,02 + [[ullp,e-

For a nonnegative C1 N C?- function u defined in R?*! UTI, we introduce the sets

A(u) = {(z,t) € R\ UL, : u(x,t) = |Du(z,t)| = 0} ;
2(u) = {(a: t) € R"+1 cu(z,t) >0} = R\ A(u);
I'(u) =02(u) N A( ) is the free boundary;

I'(u) N 11, is the set of contact points.

For a point z = (z,t) € £2(u) we define the parabolic distance to the free boundary as follows:
d(z) = dist{z,I'(u) } := sup{r > 0: Q,(2) N I'(u) = 0}.

Let M be a constant, M > 1. We denote by Pt (M, a), the class of ”global nonnegative solutions”
to the variational problem in the entire "half space” R**! with quadratic growth in z and linear growth
in ¢, i.e., solutions in R**! satisfying

lu(z,t)] < M1+ |z]* + [¢]). (1)

More precisely, we say a continuous function u (not identically zero) belongs to the class Pt (M, a) if u
satisfies:

(a) H[u] = xg in R for some open set 2 = 2(u),

(b) w>0in R, |y, =0,

(c) u satisfies inequality (1) in R?*!

and equation in (a) is understood in the sense of distributions. For simplicity of notation, we will write
P} (M) instead of Pt (M,0).

We also define the class Pt (M, —oo) corresponding formally to a = —oo. In this case the whole space
R**1 is considered instead of R?*!, TI, = () and we omit the condition u|y, = 0.

Remark. Let u € PE(M,a), 2° = (2°,4°) € Q(u) and d(z°) < oco. Although points of I'(u) may
occur on the top @ of the cylinder @ = Rt N Qq(;,)(20), any derivatives of u are continuous in
2



up to Q, that is u € C°(Q \ 8'Q). Besides, if d(2°) > ¢ — a, then u is C*°—function on the set
{(z,t) € Qa(zo)—<(20) : 21 > a} for any positive .

We denote by P¥ (M), the class of ”local nonnegative solutions” to the variational problem, i.e.,
we say a continuous function u (not identically zero) belongs to the class P+ (M) if u satisfies:

(") Hlu] = xq in Q;, for some open set 2 = 2(u) C Q}, and u = |[Du| =0 in QF \ 2(u),

b)u=20inQf, u=00onINQ,,

(©) llu(@, )l o,qr <M

and equation in (a’) is understood in the sense of distributions.

Let £ be a domain in R*™ and f € Ly 4,.(€). We say that f is sub-caloric (super-caloric) if

/ F(Bp+8p)dedt 30 (<0)
£

for each nonnegative C'*°-function ¢ with compact support in £.
Finally, we say that f is caloric if it is sub-caloric and super-caloric in £.

Useful facts.
For the readers convenience and for the future references we will recall and explain some general facts.

Fact 1: Let u € Pf(M). Then
|D;Dju(z,t)| + |Opu(z, t)| < C(n)M for all (z,t) € R},

The proof of this is given in [ASU]J.
Similarly, if u € P (M) then

sup  (|D;Dju(z,t)| + |Oru(z, t)]) < C(n)M.
QT/BO‘Q(u)

Observe that hence Du is Holder continuous w.r.t. ¢ with the exponent 1/2.

Fact 2 (Nondegeneracy): Let u € PE(M). Then for all 2° = (2°,#°) € 2(u) we have the estimate

2

su u>ux0,t0 + p
QP(B]) = ( ) 2n +1

Vp > 0.

Proof. The proof of this statement is similar to the proof of [Ca2, Lemma 1]. We sketch some details.

Define
1

2n+1

w(z,t) = u(z,t) —u(2?,t°) — (Jz — 2% = (t = t%)).

Then w is caloric in 2(u) N Q,(2°) and w(z°,t°) = 0. By the maximum principle

sup w = sup w > 0.
2(u)NQ, (2°) 0"(2(u)NQ, (2°))

But w is strictly negative on 82(u), hence the nonnegative supremum is attained at some point (z*,t*)
from the parabolic boundary of the cylinder Q,(2°). In particular
02

* g 2 0t0 _r

This completes the proof. O

Fact 3: Let u € PL(M). Then for any R > 1 the free boundary I'(u) N Qg has (n + 1)—dimensional
Lebesgue measure zero.
3



Proof. This is shown in a very standard way.
Take a point 2° = (2°,#%) € I'(u) and an arbitrary p > 0. Using Fact 2 we obtain another point
2% = (z*,t*) € 8'Q,/2(2°) such that
2
p

w@ ) > g

On the other hand, by Fact 1 we have
lul < C(M)M(ep)*  in Qep(2"),
where € is a small parameter which will be chosen later.
Observe that )
: p 2
f u> —2C(n)M
omf u> g (n)M(ep)
and the right-hand side of the above inequality is strictly positive if
1

4,/C(n)M(2n + 1)
Thus, for all 2° = (2°,t°) € I'(u) and all p > 0 the set £2(u) N Q3,/4(2°) contains the subset Qc,(z*) of

proportional volume. So I'(u) does not contain density points, i.e. the free boundary has zero Lebesgue
measure. [

Fact 4: Assume that we extend u € PL (M) across the plane II to the whole space R**! by the odd
reflection, i.e., by setting it as —u(—x1, T2, ..., 2, t) for (z,t) € R*™" and preserve the notation u for the
extended function. Suppose also that z° = (z°,1°) € IR:“LH N I'(u) and, for a sequence r,, /* oo, define
u(rmz + 2%, r2,t +1°)

2
Tm

U (z,t) =

Then u,, converges (for a subsequence) in W;,’ztc (R*+1) with any ¢ < oo to a limit function ue.
Proof. According to Fact 1, it is sufficient to show

DiDjuy = DiDjus a.e. in ]RT‘I.

Let a point z = (z,t) € 2(ux). Then uy and u,, (for all sufficiently large m) are positive in B,(z),
where B,(z) stands for the open ball in R"*! with center (z,t) and radius p. Therefore H [tz — tuoo] =0
in B,(z) and, by general parabolic theory, D;Dju,, converges to D;Djus, uniformly in B;,,(2).

If 2 is an interior point of A(uy,) then, by Fact 2, z also belongs to interior of A(u,,) for all sufficiently
large m, and in this case we also have the same convergence. Together with Fact 3 it completes the
proof. O

Main results.
The prime goal of this paper is to show the following results, each of them separately formulated later
as theorems.

e If u € PE(M) and I'(u) # 0 then u is t-independent and one-space dimensional, i.e.,
((z1 —a)4)?
2 b
e For u € P;f(M) a free boundary I'(u) touches the fix boundary tangentially with respect to the
space directions in the neighbourhoods of contact points.

u(z,t) = for some a>0.

Plan of the paper.

This paper is organized as follows. Section 1 is the heart of the paper. It deals with the one-space
dimensional global solutions and characterizes them geometrically in Theorem I. Analysis of this case is
somewhat simpler and it is carried out in detail, in favour of a more clear exposition.

Geometric classification of global solutions, in the general case n > 2, is considered in Section 2. This
result is formulated in Theorem II which follows by dimensional reduction based on the monotonicity
formula (Lemma 2.1) due to L. A. Caffarelli and C. Kenig.

Finally, in Section 3 we analyze the behaviour of the free boundary near contact points with the fix
boundary (Theorem IIT), using the characterization of global solutions obtained in Theorem IL.
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§1. GEOMETRIC CLASSIFICATION OF GLOBAL SOLUTIONS
IN THE ONE-SPACE DIMENSIONAL CASE (n = 1)

Lemma 1.1. Let n = 1, u be a continuous function in {(z,t) : x > 0,t < to} satisfying condition (1)
and the equations
Hul=1 in R n{t<t°},

u=0 on MN{t<t}.

Then

.Z'2

u(z,t) = > + ax in R n{t<t} (2)

with a > 0.

Proof. We define v as
2

u(x,t)—%, it 23>0, t<t°
v(z,t) = 2
—u(—m,t)+7, if z<0,t<t.

Then
v=0 on TIN{t<t%}. (3)

In addition, v is caloric in R? N{t < t°}, and it has quadratic growth with respect to z and linear growth
with respect to t. Moreover, the estimates on derivatives of solutions to the heat equation (see Theorem 9,
Section 2.3 [E]) guarantee that Liouville’s theorem (see Lemma 2.1 [ASU]) holds true for caloric functions
defined in the half-space {t < t°} only.
So, by Liouville’s theorem v is a polynomial of degree two, i.e., there exist constants a;, a, ag such
that
v(z,t) = a1x? + 2a1t + ax + ag.

Obviously, condition (3) implies a1 = ag = 0 and the function v takes the form
v(z,t) = ax. 4)

Using (4) and the definition of v we get (2). O

Lemma 1.2. Let n =1, uw € PX(M). Then the following hold:
(i) -1<0u<0;
(11) Dyu > 0,’
(iii) if 2° > 0 and (2°,1°) € A(u), then the whole infinite rectangle {(z,t) : 0 < z < 2°,t° < t} lies in
Au).

Proof. The proof of the first part follows using a contradictory argument. Suppose

sup Gyu =m > 0.
2(u)

Then there exists a sequence 27 = (z7,#7) € £2(u) such that

lim dyu(z’,t?) = m. (5)

j—oo
It should be noted that d; = d(27) < oo, for all sufficiently large j, otherwise, Lemma 1.1 gives

which contradicts (5). Now we extend u to R? as an odd function of z, and we preserve the notation u
for the extended function. We also define

u(djz + 7, d3t + t7)

7

uj(z,t) =



By Fact 1, the derivatives D;ju; and Oqu; are uniformly bounded on R? while the functions u; are
bounded on each compact subset of R?. Hence u; converges (for a subsequence) to a function ug and
Diuj — Djug uniformly on compact subsets of R*. By the parabolic theory the convergence of u; is
actually stronger, in particular, J;u; also converges to Oyup uniformly on @);_. for an arbitrary small
e > 0.

Consider now the restriction ug on Rg with

i
b= lim — <0
Obviously uo is a global solution in R? and
2(uo) O {Ry NQ1}. (6)

Observe that the function v = Qyug is caloric in 2(ug),

v=0 on IiNn{-1<t<0} if b> -1, (7)
while o
v(0,0) = lim Ou;(0,0) = lim Ou(z?,¢’) = m. (8)
j—oo j—oo

It follows from (7) and (8) that (0,0) ¢ II,, i.e. b < 0. Besides, for all (z,t) € 2(ug) we have
v(z,t) < m.

Thus v takes a local maximum at the origin which does not lie on the parabolic boundary of RZ N Q1.
But then v being caloric it is identically equal to m in R? N @1, i.e. b < —1. Moreover,

v(z,t) =m >0 in £, 9)

where 2 D @1 is a connected component of the set £2(ug).
According to our definitions of d; there exists a point (z*,t*) on

0'Qr={lz] =1,-1<t<0}U{|z| <1,t = —1},

such that ug and Djug vanish at (z*,t*). o
Integration now gives ug(z,t) = mt + F(z) in (2, for some C! function F satisfying

F'(z*) =0, F(z*) +mt* =0,
F'(z)=m+1 in @,
where the latter follows from (6) and (9).
Further, if |z*| = 1, t* > —1, then elementary integrations for F' imply

F(z) = ——(z — 2*)? — mt*, (10)

and we obtain the exact representation for the limit function ug

m+1

5 (x —z*)2 + m(t —t*) in 2D Q. (11)

UO(xat) =
Otherwise, if {(z,t) : |z| = 1,—1 <t < 0} C 2(up), we deduce from (9) that
uo(z™,t) = m(t+ 1) for —1<t<0,

and arrive at (10)-(11) again.



Observe that ug = [Dyug| = 0 on RZ N d42. But it follows from (11) that (z*,¢*) is the only point of
20 where both ug and Dyug vanish. Besides, representation (11) gives b = —oo. Hence we can conclude
that (29 is the whole space R2.

So, representation (11) takes place in the whole R? which guarantees that ug takes negative values on
the set {t <t — ";—;1(:1: - x*)z} But the latter contradicts the non-negativity of ug and, consequently,

6tu S 0 in f2.

NeX( we Supp()se
at —_ P 0 < #
H(lf) u m m 1

and repeat the above argument, with m replaced by —m, to obtain the estimate from below for Oyu.
Unfortunately for m = 1 the limit function ug can take the form wyg = (—t); > 0 and we have no
contradiction. So our argument works only for m # 1.

The proof of statement (i) is completed.

The second statement of the lemma is now an easy consequence of the inequalities
Divu>0 on II,

where the latter follows from statement (i) of the lemma and the equation for u.
For the final part of the lemma we consider some point (z°,¢°) in A(u) assuming that 2° > 0. According
to statement (ii) of the lemma it follows that

u(z,t°) =0  on the segment [0, 2°].

Now, using this equality and the information u > 0, d;u < 0 we will have for any ¢ > t° that u(x,t) = 0
for z € [0,2°]. The latter means that A(u) contains an infinite rectangle {0 < z < 2°} x {t° < ¢} which
is the desired statement (iii). The proof is completed. O

Lemma 1.3. Letn =1, u € PL(M), T(u) NRE =0 and I'(u) NI # 0.
ThenT(u) =11 and u= %

Proof. Consider a point 29 = (0,%°) € I'(u). By Lemma 1.1 we have u(z,t) = ””2—2 as t < t9 that is
I N {t < t°} is contained in I'(u). On the other hand it follows from Lemma 1.2 that

2
u(z,t) < u(z,t%) = % as t3> 10

that is all points of ILN {t > t°} belong to I'(u) as well. O

Let us turn now to the situation where I'(u) N R3. # 0.
Lemma 1.4. Letn =1, u € PE(M) and I'(u) NR% # 0. Then the set of contact points I'(u) NI is
empty.
Proof. Let
t® = inf{¢ : there exists a point(z,t) € I'(u) N R }.

According to statement (iii) of Lemma 1.2, it suffices to prove t® = —oo.
Suppose it fails, i.e. t > —oo. Then the set R N {¢t < t°} lies in 2(u) and for each t* > t° there
exists d(t*) > 0 such that
{(z,t) : 0< 2 <o(t"),t > t"} C Au).

Therefore (0,t°) € I'(u).



This together with Lemma 1.1 gives

2
uz% in R’ N{t<1) (13)

Next, we extend the function u across the plane II by even reflection, i.e., by setting it as u(—=z,t)
for points (z,t) with z < 0. We will use the notation @ for the extended function.
Define now U in R? as
U=-G * XA(E); (14)
where
_ exp(—|z[*/4¢)
= T )

A@) = {(z,t) e R : t > 1°, (|z|,t) € A(u)}.
Then H[U + 4] = 1 almost everywhere in R* N {¢ > t°} and

G(z,t) for t>0 and G(z,t) =0 for t<0. (15)

(U + )0 = =

4 "

The reader should notice that in (16) we have used the representation in (13) and the definition of U.
The uniqueness for Cauchy’s problem now gives

2
U+6:% in RN {t> O}

Hence we have )

U:% in A7) (17)

On the other hand, the function U by definition is negative in R2N{t¢ > t°}. This gives the contradiction
with (17) and completes the proof. O

We proceed to consider the situation I'(u) N RZ # 0.
Lemma 1.5. Let n =1, u € P (M) and for some a > 0 the free boundary T'(u) be defined by

with a nondecreasing function g satisfying the conditions

g(t) > a as t— —ooc. (19)
and
gt )=a+e
for some t* and sufficiently small positive €.
Then ) )
o<@—u(m,t)<% in R (20)

Remark. Under assumptions of Lemma 1.5 the function g is not assumed to be continuous.
Proof. We prove this lemma in four steps. Without loss of generality we can assume a = 0 and t* = 0.
Step 1. We claim that for every § > 0, and R > 1 we have dyu(z,t) — 0, and Dyju(z,t) = 1 uniformly

with respect to = € [, R] as t & —oo.
To prove this, observe that it follows from (12) and the assumptions of this lemma that

u(z,t) < % in R3. (21)
8



Hence we get the inequality

00 2
—/ Opu(z, t)dt < %

which, together with statement (i) of Lemma 1.2, provides an existence of a sequence t; = tx(x) = —o0
such that
Ou(z,ty) >0 as k — oo. (22)

Consider the functions
U (z,t) := u(z,t —m), m=1,2,...

For each z > ¢ and ¢t < 0 it is an increasing bounded sequence, so it has a limit us(z,t) as m — oo.
Moreover, if m is large enough then

Hluy)=1 in {(z,t) :2 >4t <0}

Thus by Harnack’s inequality the convergence of u,, is uniform on compact subsets of {(z,t) : z > §,t <
0}. The same convergence takes place for the derivatives of u.,. In particular, taking (22) into account,
we easily obtain

Ou(r,—00) =0 as &<z < oo.

Combining the latter with the equation H[us] = 1 we get the equality D1juc = 1.

Step 2. There exists a continuous function w defined in {(z,t) : > €;t < 0} which satisfies the following
conditions

2
Hiw] =0, ogwg% in RN {t<0},
62
w= —u on II.. (23)

One can find such a function as a limit as R — oo of solutions wg to the following Dirichlet problem
inQ.r={(z,t):e<z<R,-R<t<0}

Hwg]=0 in Q.r, wgr(et)= [% —u(e,t)|¢r(t) as te€]—R,0],

wr =0 on the last part of 9'Qc g.

Here (gr(t) is a cut-off function which equals 1 as t € [0, —R + 2] and vanishes for t < —R + 1.

It is clear that 0 < wg < % in Q.,r and that {wgr} is a monotonously increasing sequence.

Step 3. We claim
2

To prove this we consider the function

62
5 in R3 N {t < 0}. (24)

2

o(e,0) = (e, 6 + wlay ) — 5

with the same w as in Step 2. According to Lemma 1.1

(x —¢)?

v(z,t) = 5

+clz—e) in Rn{t<0},

ie.,
2

u(z,t) = % + bz — be — w(x,t)

for some nonnegative constant ¢ and b = ¢ — €.



On the other hand, it follows from Step 1 that u(z, —o0) = ””2—2 Thus one can conclude that b = 0.
So we obtain the desired estimate for u in R2 N {¢t < 0}. The same estimate in {0 < z < £} is evident.

Step 4. We can prove (20) now assuming as above that a = 0. The proof is just the same as in Lemma
1.4 with t° = 0. The only difference is that instead of the exact representation (13) for + < 0 we now
have estimate (24). More precisely, we consider the function

.’1,'2

b= U4

where @ is the same function as in the proof of Lemma 1.4 and U is defined by (14) with
A@) = {(z,t) e R : t >0, (|z|,t) € A(u)}.

Note that v satisfies the equation H[9] = 0 and condition (1) for ¢ > 0. Moreover, inequality (24) gives

us the estimate

62

v < —.
0(z,0) < 5
It follows then from the maximum principle for the Cauchy problem that

2
€
< —
US 5
in the whole space R? N {t > 0}. This, in conjunction with (21) and Step 3, completes the proof of
Lemma 1.5. O

i From Lemmas 1.3-1.5 one can easily deduce the following result.

Theorem I. Ifn =1, u € PX(M) and T(u) # 0 then

. % (25)

for some a > 0.

Proof. According to Lemma 1.3 it is sufficient to consider the case I'(w)NR2 # 0. Suppose representation
(25) fails. Then, according to Lemmas 1.2 and 1.4 there exists a > 0 such that Q(u) lies in the half-space
R? and its boundary I'(u) tends asymptotically to the vertical line {z = a} as t & —oo. In other words,
there exists an increasing function g satisfying (19) and such that I'(u) is given by (18).

Then there exist {5} \¢ 0 and {tx} \y —oo such that g(tx) = a + ;. Now applying Lemma 1.5 we
reach a contradiction. O

§2. GEOMETRIC CLASSIFICATION OF GLOBAL SOLUTIONS IN THE GENERAL CASE (n > 2)

Before discussing the main result of the paper we formulate some tools which would be used throughout
the section. Qur first tool is the following version of the monotonicity formula due to L. A. Caffarelli and
C. Kenig (see [Ca3], [CK]).

Lemma 2.1. Let hy, ha be non-negative, sub-caloric, and continuous functions in R**1 N {t < t°},
satisfying
hl(zo) = hZ(zo) =0, 2= (Z.O’tO)’ 2’ € R",

|Dh;| € Lo(R™ n{t < t°}), i=1,2,
hi(z,t) - ha(z,t) =0 in RN {t <t°).

Suppose also that Dhy and Dhy have at most polynomial growth in z as |z| — oo.
10



Then the following function is monotone in r
é(r) = é(’f‘, hla h'2a zO) =
17

r4 $0_p2

/ \Dhi (2, 8) 2 G — 2,10 — £)dadtx

tO
x/ / | Dha(w, 8)2Gz — 20, £ — t)dadt,
02 n

where G(z,t) is the function defined in (15).
More exactly, either both of the sets

Si(r) = {z € R : hi(z,t° — r?) # 0}, i=1,2,

coincide, up to sets of measure zero, with half-spaces containing z° on their boundary or &'(r) > 0, or
&(1) =0 for T € (0,r].
Proof. The proof of this statement is essentially given in [CK]. For the reader’s convenience and for the
completeness, we provide some detail’s here.

It is sufficient to assume 2° = (0,0) and carry out the proof for the case that all the functions involved
in &(r) are smooth enough, including the support of h;, i = 1,2. Then an approximation procedure will

give the result for the general case.
Let

0
L(r?) = / / \Dhi(w, ) 2G(w, —t)dodt,  for i=1,2.

Differentiating ¢ we obtain

& (r) = 2rd(r) (2 E:Qg + ZE;; - %) (26)

Observe that since H[h?/2] > |Dh;|? we get for p = r?

2
Zi

0 2
h?
K< [ [ HE@0GE-0ddi = [ @ -p)G(a, p)ds,
—p R n
where the last equality follows from integration by parts and the assumptions k;(0,0) = 0.
Also

1) = | IDhi(e, )Gl p)ds.
Therefore

L(p) o o Jan |Dhi(z, —p)"G(z, p)dz

_ 1 Jn IDRily, ~1/2)PG(y, 1/2)dy
P fon 20y, —1/2)G(y, 1/2)dy

where h;(y,7) := hi(v/2py,2pT). Observe that hi(y, —1/2) = hi(z, —p).
Next, we define A\(S;) as

(27)

where B B

S’i = {y eR™: hi(ya _1/2) 7é 0}7
du(y) = G(y,1/2)dy is the Gaussian measure and the infimum has been taken over nonzero functions in
R"™ with compact support in S;. Then it follows from (27) that

Li(p) 1
Li(p) > P (
11

Si)- (28)




Now, combining (26), (28) and taking into account that p = r2, we get

'(r) >

TN

B(r) (MS1) + A(S2) —2). (29)
By results of Beckner-Kenig-Pipher [BKP] (cf. [CK, Corollary 2.4.6]) we have
AS1) +A(S2) —2>0. (30)

It is for this inequality that the hypothesis of disjoint support of the h;’s is needed.

Also, in [CK, Remark 2.4.8] it is shown that equality holds in (30) if and only if S = {yeR":y43 >0}
and S, = {y € R* : y; < 0}, or a rotation of it. This, together with (29) and the observation that
S; = Si(r), proves the lemma. O

Lemma 2.2. Let h be a caloric function in a (not necessarily bounded) domain & in R N {t > t°}.
Suppose moreover that h is continuous in £, and h belongs to the Tikhonov class.
If, in addition, h > 0 on OE then h >0 in &.

The proof of this statement is elementary, but probably not obvious. We sketch some details.

Proof. Suppose £~ = {h < 0} is nonempty, otherwise there is nothing to prove.
Define h as h(x,t) = h(z,t) in £~ and h(z,t) = 0 outside £~ _
Then h is super-caloric in {t > t°}, it belongs to the Tikhonov’s class and h = 0 on {t = t°}. Hence

by the standard maximum principle (see Theorem 2.3 [KL]) h > 0. This is a contradiction. O

Theorem II. Let u € PL(M) and T'(u) # 0. Then

(w1 —a)s)’

u(z,t) = 2

for some a > 0.

Proof. We prove this theorem in three steps.
Step 1. Let v be any spatial direction such that v -e; > 0. Observe that v > 0 implies
D,u>0 on II (31)

We claim that
D,u>0 in R (32)

To prove this, we first extend u across the plane II to the whole space R*t! by the odd reflection and
preserve the notation u for the extended function. Also we define w as

B Dyu(z,t), if (x,t)GRT‘l
w“ﬂ_{wwumn,ﬁ (o,1) € R (39)

By this definition we will have the following properties of w:

(1) w and the derivatives D.w, for e L ey, are continuous across IT \ A(u),
(2) the jump of Dyw on IT \ A(u) equals 2 cos(#,€1) > 0,
(3) H[w] =0 on the set {(z,t) € R* \ II : w(z,t) # 0}.

It is easy to deduce from these facts that w, will be sub-caloric in {(z,t) € R**! : w(z,t) > 0} and
continuously zero outside this set. Therefore it must be sub-caloric in the whole space R**!. Taking into
account definition (33), we see that w_(z,t) = 0 for z; < 0 and it is sub-caloric in R™*! too.

Now we take a point 2° = (2°,¢°) € A(u) with z; > 0. According to Lemma 2.1, for 0 < r < r; with
rj = 00 , we have

0 < B(r,wy,w_,2°) < B(rj,wy,w_,2%) < lim &(rj,wy,w_,2°) =: C,. (34)

7 —+00
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Observe that C), exists by Lemma 2.1 and boundness of Dw.
Notice that according to Fact 4 the scaling

u(rjz + 20,72t + 1)
'U,J(Z', t) — J /r2-7 J
J

converges (for a subsequence) in W;, ’lloc (R**1), ¢ < 0o, to a limit function u., which is odd with respect
to the hyperplane II.
Next we define wy by (33) with u, instead of u and set
20

Dyuj(z,t), if x> _r_l-
wj(z,t) = ’ 40
(Dyuj(z,t)4, if z < _r_l'

J

Then, letting j — oo (see Fact 4) and using (34) we obtain for every s > 0 that

— 1 . 0y — i . . —
C, = Tjh_r)nooq5(srj,w+,w_,z ) - r}l—r>noo ¢(57 (w])-i-: (U)])_,O) -

ie., D(s, (Weo)+, (Woo)—, 0) is constant for all s > 0.
Now we proceed to show that C, could not be positive. Suppose C,, > 0. Then, according to (35) and
Lemma, 2.1 both of the sets

ST(s) = {z € R" : Dyuco(z, —5%) > 0},
S7(s) = {z € R" : Dyuco(z, —5”) < 0},

must be half-spaces R?. However, by (33) we > 0 in R”™'. Then the only possibility for S~(s) to
coincide with a half-space for any s > 0 is the condition ws, < 0 in ]R’frl N {t < 0} which contradicts the
condition us > 0 in RYH.
It thus follows that C, = 0 and consequently by (34) either w; = 0 or w_ = 0 in R}™ N {¢t < t°}.
Since u > 0 in ]Rfrl the second is true.
Thus we have
D,u>0 in RY'N{t <)

Hence by Lemma 2.2, where we take £ = 2(u) N {t > t°}, we get (32).
Step 2. We proceed to show that u, in fact, is one-space dimensional, i.e.
u(z,t) = u(zy,t). (36)

Since D,u = 0 on II for e orthogonal to e;, we may continue D,u as zero across II to R®™!. Next we
denote the extended function by w and repeat the arguments from Step 1. This gives that D.u does not
change sign in RT‘I. Hence by the strong maximum principle either Deu > 0 (or D.u < 0) in connected
components of 2(u) or D.u = 0. If for the all directions e orthogonal to e; we have D.u = 0, then u
depends only on z; and ¢, and we immediately arrive at (36).

So suppose (for the definitness) there exists a point (z*,¢*) such that D.u(z*,t*) > 0 for some
e orthogonal to e;. Then D_.u(z*,t*) < 0 and there exists a > 0 such that D,u(z*,t*) < 0 for
v =ae; — V1 —a?e which contradicts Step 1.

Step 3. Now the one-space dimensional case (Theorem I) applies and finishes the proof. O

13



§3. APPLICATION TO THE BEHAVIOUR OF THE FREE BOUNDARY

The partial regularity of a free boundary near contact points with the fix boundary will now follow
easily by using the characterization of global solutions. Following [SU] we consider first the auxiliary
result.

Lemma 3.1. Given € > 0, there exists p = p. such that if u € P;F(M) and (0,0) € I'(u), then for
(z*,t*) € 02(u) N Q. (0, p2/2) we have

(z*,t") € Q. (0,p2/2) \ K-, (37)

where

K. ={(z,t): 11 >5\/w§ +-- 422 + |t}

Proof. Suppose, towards a contradiction, that the conclusion of the lemma fails. Then for every j € N
there exist u; € P;t (M) and (27,47) € 802(u;) such that r; := \/|z7]? + [t/] — 0 and (37) fails for (27, 7).
Then define u; as
~ 'U/(Tj.fl},’l‘zt)
uj(z,t) = ——1—.

Tj

Observe that for each function %; we have a point (&7,#/) € I'(u;) with |#/|? + [t/| = 1 and

# > /@) + -+ @) +1F] = ey/1- (]).

Now for a subsequence @; and (37,#/) converge to ug and (z°,t°), respectively, where

o £
Ty 22— > 0.
RV
Thus, both (z°,%°) and the origin are on the free boundary I'(ug). Since ug is a global solution this
contradicts Theorem II. O

Theorem III. There exist a universal constant ro = ro(n, M), and a modulus of continuity o (oc(0T) =
0) such that if u € P{"(M) and (0,0) € I'(u) then

092(u) N Qry (0,70/2) C {(2,8) : &1 < ol + V1)) - (2] + V]e])}-

Proof. Consider the modulus of continuity o(p) given by the inverse of the relation ¢ — p. in Lemma
3.1. Let now ro = pye—1}. U
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