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1. Introduction

The end of the 20th century marks the hundredth anniversary of the creation
of measure and integration by Borel and Lebesgue. The new concepts proved
to be so powerful and flexible that they soon turned into kind of foundation
of mathematical analysis of the 20th century. On the surface the main reason
was a small number of fundamental theorems, like the limit theorems of Beppo
Levi, Fatou, and Lebesgue, and the Fubini-Tonelli theorem. Their perception
and widespread application went so fast that Carathéodory in the introduction
to his famous treatise [1918] declared the revolution due to Lebesgue to be
complete in its main lines.

But the actual course of events over the 20th century was quite different.
Mathematical analysis, like the whole of mathematics, went through a contin-
uous chain of vivid abstractions. For the most time measure and integration
were at the forefront, because each new abstraction required its proper class
of measures, in order that those powerful theorems could be put into action.
Thus it became clearer than before that the heart of the matter is to produce
the adequate measures and integrals. This is always a nontrivial and often
a hard problem, as it had been in the hour of birth with Lebesgue measure
on the real line. Thus the emphasis shifted in direction to the fundamentals.
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This means to disclose the true basic concepts in measure and integration, and
then to develop the true basic procedures in order to construct their members.
As a rule such procedures amount to produce true measures from more prim-
itive data as they occur in nature, like elementary contents and elementary
integrals.

The resultant situation at the end of the 20th century, viewed from the most
respected textbooks, is opposite to a coherent one. One finds several theories
of measure and integration which at times do not even share the most basic
concepts. The main issues in favour of schism were on the one hand abstract
versus topological conceptions, and on the other hand predominance of mea-
sures versus that of integrals. There were times of vehement confrontation,
above all after the Intégration of Bourbaki [1952][1956][1969], which combined
essential successes with bizarre extreme positions like the denial of independent
existence to measures.

In this situation one of course started to express the desire for a unified and
autonomous theory of measure and integration, but also to insist that this aim
requires to restructure the abstract theory with the eyes on the topological
theory. The traditional abstract theory on the basis of the procedures named
after Carathéodory and Daniell-Stone showed certain clear deficiencies. The
topological theory added a multitude of further aspects and concepts, which
at times resulted in almost painful technical complications, but after all the
two aspects of prime rank could be distilled. These are on the one hand up-
ward and downward continuity of set functions and functionals, and besides σ
(:=sequential) also τ (:=nonsequential) continuity (based on directed systems
instead of monotone sequences), and on the other hand outer and inner regu-
larity of set functions and functionals, defined as representations from above
and below, in case of set functions as a rule from open supersets and compact
subsets.

The task to unite the above two aspects with the usual concepts of tradi-
tional abstract theory turned out to be a delicate and expensive one, which
shook and shakes the foundations of the edifice and took much time. On
the one hand sequential continuity occurs in most abstract contexts under the
unfortunate headline of countable additivity, that means degraded to an an-
nex of simple additivity. This kind of view has caused much misfortune in the
whole area, above all its subdivision into separate theories of additive and non-
additive set functions, and has to be abandoned once and for all. On the other
hand regularity is passed over in silence in traditional abstract theory, much in
contrast to the obvious fact that both the Carathéodory and the Daniell-Stone
procedures (plus its nonsequential counterpart due to Bourbaki) are of outer
type and produce outer regular outcomes. But in topological theory the final
word is a clear hint that inner regularity is far more important than outer one,
in virtue of the predominant position of compactness in topology and expressed
in the notion of Radon measures. At last both nonsequential continuity and
regularity are as a rule related to lattices of subsets (Lebesgue measure on the
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real line is upward τ continuous on the lattice of open sets and downward τ
continuous on the lattice of compact sets, but not far beyond). Thus these as-
pects enforce that lattices of subsets become much more important than they
are in traditional abstract theory. This adds to the fact that as a rule primi-
tive set functions in nature come on set systems which are at most as rich as
lattices.

The deliberate attempts at unification started around 1970. A decisive pre-
lude was the short paper of Kisyński [1968], which produced the final class
of Borel-Radon measures on Hausdorff topological spaces via inner regularity.
In no time then Topsøe [1970a][1970b] realized that this procedure opens the
road to unification. However, these articles and the subsequent Pollard-Topsøe
[1975] and Topsøe [1976][1978] did not yet present a full systematization. They
appeared less coherent than the traditional abstract theory and thus did not
find access to the textbooks, except to Fremlin [1974] and Berg-Christensen-
Ressel [1984]. There were related but less distinctive ideas and results in
Kelley-Srinivasan [1971] and Kelley-Nayak-Srinivasan [1973], and in Ridder
[1971][1973].

The monumental treatise of Fremlin [2000], now under work for several years,
has the aim to present an exhaustive description of measure and integration
in both the abstract and topological theories. But the main accent is not
to strive for new concepts and procedures in the interest of their unification,
which is the expressed intention in the work of the present author. Even so it
is plain that there are overlaps in spirit, in particular in the emphasis on inner
procedures. It is also plain that certain theorems are in Fremlin [2000] in more
comprehensive technical versions than in the work of the present author.

The present text wants to outline the attempt at unified systematization in
measure and integration developed in the author’s book [1997] (cited as MI)
and in a series of subsequent papers. In contrast to all work mentioned above it
is based on a framework of new concepts and new tools. The basic concepts are
the outer and inner • premeasures and their outer and inner • extensions. Here
• = ⋆στ mark three parallel theories, where ⋆ stands for finite, σ for sequential
or countable, and τ for nonsequential or arbitrary. These concepts express in
definitive terms the ideas which come from the work of Topsøe. Then quite
some time later and due to the present author came the basic tools, first of
all the outer and inner • envelopes for the relevant set functions. Their task
is to unfold the basic concepts. The concepts and tools for set functions will
then obtain their precise counterparts for functionals. The overall model is
that of the traditional abstract development of measure and integration. The
new development is not more complicated than the old one, but much more
powerful and comprehensive. In particular it is for the first time ever that
abstract measure and integration contain their topological counterpart as an
explicit specialization.

We terminate the introduction with a short look back to the initiation of
the aforementioned new basic tools. The reader is asked to concede that we
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postpone some obvious definitions to the main text. We start with the classical
theorem on the existence of measure extensions.

Theorem. Let ϕ : S → [0,∞] be a content on a ring S of subsets in a
nonvoid set X. Then ϕ can be extended to a measure α : A → [0,∞] on a σ
algebra A in X iff it is upward σ continuous.

This theorem does not meet the actual needs in several respects. First
of all the initial domain S should be a lattice instead of a ring. Then the
fundamental aspects from topological measure theory, on the one hand upward
and downward τ continuity and on the other hand outer and inner regularity,
have to be incorporated into the extension procedure. For these aims also the
usual proof due to Carathéodory [1914] does not help as it stands.

We recall that this proof is based on two remarkable formations. On the
one hand one defines for a set function ϕ : S → [0,∞] with ϕ(∅) = 0 on a set
system S with ∅ ∈ S the so-called outer measure ϕ◦ : P(X) → [0,∞] to be

ϕ◦(A) = inf{
∞

Σ
l=1

ϕ(Sl) : (Sl)l in S with
∞

∪
l=1

Sl ⊃ A},

with the usual convention inf ∅ := ∞. Thus ϕ◦ is isotone with ϕ◦(∅) = 0.
On the other hand one defines for a set function Θ : P(X) → [0,∞] with
Θ(∅) = 0 the so-called Carathodory class

C(Θ) := {A ⊂ X : Θ(M) = Θ(M ∩ A′) + Θ(M ∩ A) ∀M ⊂ X},

the members of which are called measurable Θ. One verifies that Θ|C(Θ) is
a content on the algebra C(Θ). Then to prove the nontrivial direction of the
theorem one verifies that ϕ◦|C(ϕ◦) is a measure on the σ algebra C(ϕ◦) and an
extension of ϕ.

We shall see that the formation C(·) is so well chosen that it will remain
of constant use for the present purposes. In contrast, the specific form ϕ◦

of the outer measure must be blamed for much of the deficiencies around
the extension theorem. First of all it seems that with ϕ◦ it is not possible
to extend its present proof beyond the frame of rings. In fact, this is not
possible for the class of lattices S such that the differences B \ A of pairs
A ⊂ B in S are countable unions of members of S, a class which includes the
lattice of compact subsets of R

n, and on which the theorem will be seen to
persist. Moreover ϕ◦ is of an obvious sequential type, but it is mysterious how
a nonsequential counterpart could look. Also ϕ◦ is of an obvious outer regular
type, but once more it is mysterious how an inner regular counterpart could
look. After this the suspicion comes up that the additive character built into
the definition of ϕ◦ is not only responsible for all these flaws, but is also the
site for the veneration of that unfortunate spirit of countable additivity which
we insisted should be abandoned.

The situation turned around with an innocent step which the present author
took in an analysis course [1969/70], thus at the same time with Kisyński [1968]
and Topsøe [1970a][1970b]: He observed that the old proof of the extension
theorem carries over verbatim from rings to that particular class of lattices
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described above (of course with an adequate notion of content), provided that
instead of ϕ◦ one uses the formation ϕσ : P(X) → [0,∞], defined for an
isotone set function ϕ : S → [0,∞] with ϕ(∅) = 0 on a set system S with
∅ ∈ S to be

ϕσ(A) = inf{ lim
l→∞

ϕ(Sl) : (Sl)l in S with Sl ↑ some subset ⊃ A}.

Thus ϕσ is isotone with ϕσ(∅) = 0 as well. The formations ϕ◦ and ϕσ are of
course close relatives, and are in fact identical for contents on rings, but can be
quite different beyond (like infinite series are equivalent to infinite sequences
under the condition that one can form differences).

Much later then the author realized that the formation ϕσ is superior to the
former ϕ◦ in the other relevant aspects as well. Thus ϕσ has an obvious inner
counterpart ϕσ : P(X) → [0,∞], defined via antitone set sequences instead of
isotone ones [1985]. Moreover the two sequential formations ϕσ and ϕσ have
obvious nonsequential counterparts ϕτ and ϕτ , defined in terms of upward and
downward directed set systems. To all these one has to add the well-known
finite outer and inner envelopes ϕ⋆ and ϕ⋆. Thus we end up with the outer
envelopes ϕ• : P(X) → [0,∞] and the inner envelopes ϕ• : P(X) → [0,∞] for
• = ⋆στ , all defined for an isotone set function ϕ : S → [0,∞] with ϕ(∅) = 0
on a set system S with ∅ ∈ S. The entire collection appeared for the first
time in the author’s paper [1992b].

2. The Fundamentals for Set Functions

We adopt the usual notions and notations for set systems and set functions.
The present section collects from MI the relevant new ones and their first
properties. Moreover we want to demonstrate that the new tools are able to
contribute to the unification of the additive and non-additive theories. As an
illumination we insert an extended version of the capacitability theorem due
to Choquet.

Set Systems

Let X be a nonvoid set. For a nonvoid set system S in X we define S⋆ ⊂
Sσ ⊂ Sτ to consist of the unions of its nonvoid finite/countable/arbitrary
subsystems, and S⋆ ⊂ Sσ ⊂ Sτ to consist of the respective intersections.
Thus in the shorthand notation • = ⋆στ we define S•/S• to consist of the
unions/intersections of the nonvoid • subsystems of S. We note that S is a
lattice iff S⋆ = S⋆ = S, and that in this case the S• and S• are lattices as
well.

A nonvoid set system M in X is called upward/downward directed iff for each
pair A,B ∈ M there exists an M ∈ M such that A,B⊂M/A,B⊃M . We write
M ↑ E/M ↓ E when M is upward/downward directed with union/intersection
E ⊂ X, and M ↑⊃ E/M ↓⊂ E when M is upward/downward directed
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with union ⊃ E/intersection ⊂ E. We note that a nonvoid finite M is up-
ward/downward directed iff the union/intersection of its members is a member
of M.

2.1 Lemma (MI 4.6 and 6.6). Let S be a lattice in X.

Out) For each M ⊂ S• nonvoid • with M ↑ A there exists an N ⊂ S
nonvoid • with N ↑ A such that each N ∈ N is contained in some M ∈ M.

Inn) For each M ⊂ S• nonvoid • with M ↓ A there exists an N ⊂ S
nonvoid • with N ↓ A such that each N ∈ N contains some M ∈ M.

• Continuous and Regular Set Functions

Let S be a nonvoid set system in X. A set function ϕ : S → R is called
isotone iff ϕ(A) ≦ ϕ(B) for all A ⊂ B in S. For the remainder of the subsection
we assume an isotone set function ϕ : S → R.

One defines the set function ϕ to be upward/downward σ continuous iff
ϕ(Sl) ↑ ϕ(A)/ϕ(Sl) ↓ ϕ(A) for all sequences (Sl)l in S with Sl ↑ / ↓ A ∈ S.
One verifies at once that this is true iff sup / inf

M∈M

ϕ(M) = ϕ(A) for all nonvoid

countable M ⊂ S with M ↑ / ↓ A ∈ S. Thus one defines for • = ⋆στ the
set function ϕ to be upward/downward • continuous iff sup / inf

M∈M

ϕ(M) = ϕ(A)

for all M ⊂ S nonvoid • with M ↑ / ↓ A ∈ S. In case • = ⋆ this is always
true. An important variant is almost upward/downward • continuous, defined
to mean that sup / inf

M∈M

ϕ(M) = ϕ(A) is restricted to those M ⊂ S which have

ϕ(M) > −∞/ϕ(M) < ∞ ∀M ∈ M. One also defines these properties at an
individual A ∈ S and at a nonvoid subsystem of S.

Next let M ⊂ S be a nonvoid subsystem. The set function ϕ is called outer
regular M (or from M) iff

ϕ(A) = inf{ϕ(M) : M ∈ M with M ⊃ A} for all A ∈ S,

and inner regular M (or from M) iff

ϕ(A) = sup{ϕ(M) : M ∈ M with M ⊂ A} for all A ∈ S,

with the usual conventions inf ∅ := ∞ and sup ∅ := −∞. One also defines
these properties at an individual A ∈ S and at a nonvoid subsystem of S.

The • Envelopes

Let ϕ : S → R be an isotone set function on a nonvoid set system S in X.
We define for • = ⋆στ the outer • envelopes ϕ• : P(X) → R and the inner •
envelopes ϕ• : P(X) → R for ϕ to be

ϕ•(A) = inf{ sup
M∈M

ϕ(M) : M ⊂ S nonvoid • with M ↑⊃A},

ϕ•(A) = sup{ inf
M∈M

ϕ(M) : M ⊂ S nonvoid • with M ↓⊂A}.
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One obtains at once in case • = σ the reformulations

ϕσ(A) = inf{ lim
l→∞

ϕ(Sl) : (Sl)l in S with Sl ↑⊃A},

ϕσ(A) = sup{ lim
l→∞

ϕ(Sl) : (Sl)l in S with Sl ↓⊂A},

as considered in the introduction, and in case • = ⋆ the familiar reformulations

ϕ⋆(A) = inf{ϕ(M) : M ∈ S with M ⊃ A},

ϕ⋆(A) = sup{ϕ(M) : M ∈ S with M ⊂ A}.

The envelopes ϕ• and ϕ• are isotone, and fulfil ϕ⋆ ≧ ϕσ ≧ ϕτ and ϕ⋆ ≦ ϕσ ≦

ϕτ . We note some further basic properties.

2.2 Properties (MI 4.1.4) and 6.3.4), 4.5 and 6.5). Assume that S is a
lattice.

1.Out) ϕ• is outer regular S•. 1.Inn) ϕ• is inner regular S•.

2.Out) ϕ⋆|S = ϕ; and for A ∈ S one has ϕ•(A) = ϕ(A) ⇔ ϕ is upward •
continuous at A. 2.Inn) ϕ⋆|S = ϕ; and for A ∈ S one has ϕ•(A) = ϕ(A) ⇔ ϕ
is downward • continuous at A.

3.Out) If ϕ is upward • continuous then ϕ•|S• = ϕ⋆|S
•, and this is upward •

continuous as well. 3.Inn) If ϕ is downward • continuous then ϕ•|S• = ϕ⋆|S•,
and this is downward • continuous as well.

4.Out) If ϕ is upward • continuous and {A ∈ S• : ϕ•(A) < ∞} ⊂ S then
ϕ• = ϕ⋆. 4.Inn) If ϕ is downward • continuous and {A ∈ S• : ϕ•(A) >
−∞} ⊂ S then ϕ• = ϕ⋆.

In conclusion we want to mention another kind of envelopes for ϕ, but
above all in order to note that they are inferior to the above ones (see the next
subsection). These formations are ϕ(•) := (ϕ⋆|S

•)⋆ and ϕ(•) := (ϕ⋆|S•)⋆.

2.3 Properties (MI 6.10 and 6.11). Assume that S is a lattice.

1.Out) ϕ(•) = ϕ⋆ on S•, and hence ϕ(•)|S = ϕ. 1.Inn) ϕ(•) = ϕ⋆ on S•,
and hence ϕ(•)|S = ϕ.

2.Out) ϕ⋆ ≧ ϕ(•) ≧ ϕ•; and ϕ(•) = ϕ• ⇔ ϕ is upward • continuous. 2.Inn)
ϕ⋆ ≦ ϕ(•) ≦ ϕ•; and ϕ(•) = ϕ• ⇔ ϕ is downward • continuous.

The Capacitability Theorem

We first recall the Suslin sets. Let N
∞ := ∪

n∈N

N
n consist of all finite sequences

of natural numbers, while as usual N
N consists of all infinite sequences of

natural numbers. The basic procedure in a nonvoid set X is to form for each
family (A(λ))λ∈N∞ of subsets the so-called kernel

A = ∪
α∈NN

∩
n∈N

A
(

(α(1), · · · , α(n))
)

.

Then for a nonvoid set system S in X one defines S# to consist of the kernels
A of all families (A(λ))λ∈N∞ in S. The members of S# are the Suslin sets for
S. As a rule the set system S# is of enormous size, expressed in the formulas
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Sσ,Sσ ⊂ S# and S## = S#. Thus S# is stable under countable unions
and intersections. It can be a problem that S# need not be stable under
complement formation; but at least one notes that A := {A ⊂ X : A,A′ ∈
S#} ⊂ S# is a σ algebra.

After this we consider an isotone set function Φ : P(X) → R which is
upward σ continuous. If S is a lattice in X then Φ is called a Choquet capacity
for S iff moreover Φ|Sσ is downward σ continuous; after 2.1.Inn) it suffices to
require that Φ(Sl) ↓ Φ(A) for all sequences (Sl)l in S with Sl ↓ A ∈ Sσ. Then
the famous capacitability theorem due to Choquet reads as follows.

2.4 Theorem. Let Φ : P(X) → R be a Choquet capacity for the lattice S in
X. Then Φ(A) ≦ (Φ|Sσ)⋆(A) and hence Φ(A) = (Φ|Sσ)⋆(A) for all A ∈ S#,
that is Φ is inner regular Sσ at S#.

It turned out that the idea of proof in Choquet [1959] can be transferred to
the new inner σ envelope. This leads to the result which follows.

2.5 Theorem (MI 10.5). Let Φ : P(X) → R be isotone and upward σ
continuous. If S is a lattice in X then Φ(A) ≦ (Φ|S)σ(A) for all A ∈ S#.

The two results are connected via the next remark in case • = σ. It combines
2.1.Inn) and 2.3.2.Inn) with routine manipulations.

2.6 Remark. Let Φ : P(X) → R be isotone, and S be a lattice in X. Then
(Φ|S•)⋆ ≦ (Φ|S)(•) ≦ (Φ|S)•; and (Φ|S•)⋆ = (Φ|S)(•) = (Φ|S)• iff Φ|S• is
downward • continuous.

It follows that the new theorem 2.5 contains the familiar Choquet theorem
2.4, and is in fact a drastic extension because it assumes no connection between
Φ and S.

We want to note that the new theorem 2.5 becomes false when instead of
(Φ|S)σ one takes its variant (Φ|S)(σ), and a fortiori when one takes (Φ|Sσ)⋆.
This fact underlines the privileged position of the new envelopes.

2.7 Example. Let X = R and S = Cl(X), and let E ⊂ X consist of
the irrational numbers. Define Φ : P(X) → {0, 1} to be Φ(A) = 0 when
A is contained in some Sσ subset of E, and Φ(A) = 1 otherwise. Thus
Φ is isotone and upward σ continuous. We claim that E ∈ S# and has
Φ(E) = 1 and (Φ|Sσ)⋆(E) = (Φ|S)(σ)(E) = 0. 1) We have S ∈ S ⇒ S ′ ∈
Op(X) ⊂ Sσ ⊂ S#. Thus S ⊂ A := {A ⊂ X : A,A′ ∈ S#} and hence
Bor(X) ⊂ A ⊂ S#. In particular E ∈ S#. 2) The Baire category theorem
implies that E 6∈ Sσ, because E ′ is countable. Thus Φ(E) = 1. 3) We have
(Φ|S)(σ)(E) = ((Φ|S)⋆|Sσ)⋆(E) = (Φ|S)⋆(E) = 0. ¤

Modular Set Functions

Let S be a lattice in X. A set function ϕ : S → [0,∞] is called modular iff

ϕ(A ∪ B) + ϕ(A ∩ B) = ϕ(A) + ϕ(B) for all A,B ∈ S,
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and sub/supermodular iff

ϕ(A ∪ B) + ϕ(A ∩ B) ≦/≧ ϕ(A) + ϕ(B) for all A,B ∈ S.

We place these notions behind the capacitability theorem, in order to empha-
size the non-additive character of that theorem.

We recall that on a ring S one defines ϕ : S → [0,∞] to be a content iff
ϕ 6≡ ∞ and ϕ(A∪B) = ϕ(A)+ϕ(B) for disjoint A,B ∈ S. It is equivalent to
require that ϕ be isotone with ϕ(∅) = 0 and modular. It is a little problem
how to extend this notion to a lattice S with ∅ ∈ S. While the present
author tends to vote for the latter option, it must be noted that there are
other choices in the literature. Thus Halmos [1950] section 53 requires ϕ to be
isotone with ϕ(∅) = 0, and to fulfil ϕ(A∪B) ≦ ϕ(A) + ϕ(B) for all A,B ∈ S
with ϕ(A∪B) = ϕ(A) + ϕ(B) for disjoint A,B ∈ S. Here is an example: Let
X be a set with at least three elements, and fix c ∈ X. Let S consist of ∅

and of the finite subsets S ⊂ X with c ∈ S. Then define ϕ : S → [0,∞[ to be

ϕ(S) =
√

card(S). One verifies that ϕ has the last two properties but is not
modular.

We conclude with some further basic properties. We note that the assump-
tions are more restrictive than in 2.2. Part 0) is a useful recapitulation.

2.8 Properties (MI 4.1.5) and 6.3.5), 4.7 and 6.7). Let ϕ : S → [0,∞] be
an isotone set function with ϕ(∅) = 0 on a lattice S with ∅ ∈ S.

0.Out) ϕ• : P(X) → [0,∞] with ϕ•(∅) = 0. 0.Inn) ϕ• : P(X) → [0,∞];
and ϕ•(∅) = 0 ⇔ ϕ is downward • continuous at ∅.

1.Out) ϕ is submodular ⇒ ϕ• is submodular. 1.Inn) ϕ is supermodular ⇒ ϕ•

is supermodular.

2.Out) If ϕ is submodular then ϕσ and ϕτ are upward σ continuous. 2.Inn)
If ϕ is supermodular then ϕσ and ϕτ are almost downward σ continuous.

Part 2) in its actual form comes as a surprise, because there are no assump-
tions of equal kind on ϕ itself. We note that the proof of 2.Out) will be simpler
than in MI 4.7 when conducted as in the identical situation for functionals in
[1998b] 3.4.Out).

3. The Outer and Inner • Extension Theorems

The outer and inner theories will be parallel in all essentials, except those
typical little peculiarities which must be expected from the traditional context.
For historical reasons the outer version looks more familiar, but the inner
version appears to be the superior one at quite some important places. The
development will be almost uniform in • = ⋆στ .

The Outer Situation

Let ϕ : S → [0,∞] be an isotone set function with ϕ(∅) = 0 on a lattice S
with ∅ ∈ S in a nonvoid set X. We define an outer • extension of ϕ to be a
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content α : A → [0,∞] on a ring A which is an extension of ϕ, and moreover
fulfils S ⊂ S• ⊂ A with the properties that

α|S• is upward • continuous, and
α is outer regular S•.

One concludes at once that in this case ϕ is modular and upward • continuous,
and that α = ϕ•|A. In fact, α and ϕ• are equal on S by 2.2.2.Out), they are
both upward • continuous on S• by assumption and 2.2.3.Out) and hence
coincide on S•, and they are both outer regular S• at A by assumption and
2.2.1.Out) and hence coincide on A.

After this we define ϕ to be an outer • premeasure iff it admits outer •
extensions. The immediate problems are then to characterize the outer • pre-
measures, and for an outer • premeasure to describe all its outer • extensions.
Both questions will be answered with the outer • extension theorem which
follows.

We have to insert two notations. For nonvoid set systems P and Q in X we
define the transporter P⊤Q := {A ⊂ X : P ∈ P ⇒ A ∩ P ∈ Q}. And for a
nonvoid set system M we put M⊥ := {M ′ : M ∈ M}.

3.1 Outer • Extension Theorem (MI 5.11 with 5.1 and 5.4). Assume
that ϕ : S → [0,∞] is an isotone set function with ϕ(∅) = 0 on a lattice S
with ∅ ∈ S. Then the following are equivalent.

1) ϕ is an outer • premeasure.

2) ϕ is submodular and upward • continuous; and ϕ(B) ≧ ϕ(A)+ϕ•(B \A)
for all A ⊂ B in S. Furthermore

(•) ϕ•(A) = sup{ϕ•(A ∩ S) : S ∈ [ϕ < ∞]} for all A ∈ [ϕ• < ∞].

3) ϕ is submodular and upward • continuous; and ϕ•(B) ≧ ϕ(A)+ϕ•(B\A)
for all A ⊂ B with A ∈ S and B ∈ S•.

In this case ϕ•|C(ϕ•) is an outer • extension of ϕ, and all outer • extensions
of ϕ are restrictions of ϕ•|C(ϕ•). For • = στ it is a measure on the σ algebra
C(ϕ•).

Moreover [ϕ<∞]⊤C(ϕ•) ⊂ C(ϕ•); in particular [ϕ<∞]⊤S• ⊂ C(ϕ•).

We add at once that condition (•) is superfluous for • = ⋆σ, because in case
• = ⋆ it is obvious and in case • = σ it follows from 2.8.2.Out) when ϕ is
submodular. But in case • = τ it cannot be dispensed with (MI 4.11).

The prominent rôle of ϕ•|C(ϕ•) as the unique maximal outer • extension
of ϕ (and the same fact in the inner situation) emphasize the fundamental
nature of the Carathéodory formation C(·), a nature which has been doubted
in the literature at several places. In this connection we note that in the
traditional abstract context the respective fact is false: The Carathéodory
extension ϕ◦|C(ϕ◦) of an upper σ continuous content ϕ : S → [0,∞] on a ring
S need not be a maximal measure extension of ϕ.

3.2 Addendum. i) If ϕ is upward τ continuous then ϕτ |S⊤Sτ is upward
τ continuous (this is obvious because 2.2.1.Out) implies that the A ∈ S⊤Sτ
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with ϕτ (A) < ∞ are in Sτ ). ii) ([1998a] 1.6) If ϕ is an outer τ premeasure
then ϕτ |(S⊤Sτ )⊥ is almost downward τ continuous.

3.3 Specialization. Assume that S is a ring. Then one has in 3.1 the
equivalent condition

3) ϕ is modular and upward • continuous. The case • = σ contains the
traditional measure extension theorem.

In fact, the condition is necessary. So assume that it is fulfilled, and fix
A ⊂ B with A ∈ S and B ∈ S•. Then B \ A ∈ S• since S is a ring. For
S ∈ S with S ⊂ B \ A we have ϕ•(B) ≧ ϕ(A ∪ S) = ϕ(A) + ϕ(S). It follows
that ϕ•(B) ≧ ϕ(A) + ϕ•(B \ A), and thus the previous condition 3). ¤

3.4 Example. We conclude with the simplest possible example. Let S
consist of the finite subsets of a nonvoid set X, and let ϕ : S → [0,∞[ be
ϕ = 0. After 3.3 ϕ is an outer • premeasure for all • = ⋆στ . For A ⊂ X we
have

ϕ⋆(A) = 0 when A is finite, and = ∞ otherwise;
ϕσ(A) = 0 when A is countable, and = ∞ otherwise;
ϕτ (A) = 0 for all A.

Each time the whole ϕ• is an outer • extension of ϕ, and hence is the unique
maximal outer • extension on C(ϕ•) = P(X).

The Inner Situation

For the inner counterpart one has to be aware from the traditional context
that measures as a rule are not downward σ continuous but almost downward
σ continuous. It turned out that the adequate conclusion is to start the inner
development from set functions with finite values, at least for • = στ .

Thus let ϕ : S → [0,∞[ be an isotone set function with ϕ(∅) = 0 on a
lattice S with ∅ ∈ S. We define an inner • extension of ϕ to be a content
α : A → [0,∞] on a ring A which is an extension of ϕ, and moreover fulfils
S ⊂ S• ⊂ A with the properties that

α|S• is downward • continuous (note that α|S• < ∞), and
α is inner regular S•.

As before one concludes that in this case ϕ is modular and downward • con-
tinuous, and that α = ϕ•|A. Next we define ϕ to be an inner • premeasure iff
it admits inner • extensions. We are faced with the immediate problems and
shall obtain the basic answers as before.

However, the two theories are somewhat distinct in two points. On the one
hand the trouble with condition (•) in the outer situation does not occur in the
inner one. On the other hand the inner situation involves the two conditions

ϕ downward • continuous, equivalent to ϕ•|S = ϕ, and
ϕ downward • continuous at ∅, equivalent to ϕ•(∅) = 0,

which turn out to be quite different. As a rule it is much easier to confirm the
second condition. In fact, there is a frequent case where the second condition is
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obvious while the first one need not even be fulfilled: A lattice S with ∅ ∈ S
is called • compact iff each M ⊂ S nonvoid • with M ↓ ∅ has ∅ ∈ M, a
notion of an obvious topological flavour. In this case of course all set functions
ϕ under consideration are downward • continuous at ∅.

Thus for the inner • extension theorem there is vital interest in an equivalent
statement which contains the second condition above instead of the first one.
To this end we form certain satellites of the inner • envelopes ϕ• of ϕ: For
B ∈ S we define ϕB

•
: P(X) → [0,∞[ to be

ϕB
•
(A) = sup{ inf

M∈M

ϕ(M) : M ⊂ S nonvoid • with M ↓⊂A

and M ⊂ B for all M ∈ M}.

These satellites are isotone and fulfil sup
B∈S

ϕB
•

= ϕ•; moreover ϕ⋆(A) ≦ ϕ(•)(A)

≦ ϕB
•
(A) when A ⊂ B. After this we can formulate the inner main theorem.

3.5 Inner • Extension Theorem (MI 6.31 with 6.18 and 6.21). Assume
that ϕ : S → [0,∞[ is an isotone set function with ϕ(∅) = 0 on a lattice S
with ∅ ∈ S. Then the following are equivalent.

1) ϕ is an inner • premeasure.

2) ϕ is supermodular and downward • continuous; and ϕ(B) ≦ ϕ(A) +
ϕ•(B \ A) for all A ⊂ B in S.

3) ϕ is supermodular and downward • continuous at ∅; and ϕ(B) ≦ ϕ(A)+
ϕB
•
(B \ A) for all A ⊂ B in S.

In this case ϕ•|C(ϕ•) is an inner • extension of ϕ, and all inner • extensions
of ϕ are restrictions of ϕ•|C(ϕ•). For • = στ it is a measure on the σ algebra
C(ϕ•).

Moreover S⊤C(ϕ•) ⊂ C(ϕ•); in particular S⊤S• ⊂ C(ϕ•).

We add at once that in 2) one cannot substitute downward • continuous at
∅ for downward • continuous (MI 6.36).

3.6 Addendum (MI 6.27 and 6.28). i) If ϕ is supermodular and downward
τ continuous then ϕτ |S⊤Sτ is almost downward τ continuous. ii) If ϕ is an
inner τ premeasure then ϕτ |(S⊤Sτ )⊥ is upward τ continuous.

3.7 Specialization. Assume that S is a ring. Then one has in 3.5 the
equivalent condition

3) ϕ is modular and downward • continuous at ∅.

In fact, the condition is necessary. So assume that it is fulfilled, and fix
A ⊂ B in S. From B \ A ∈ S then ϕ(B \ A) ≦ ϕB

•
(B \ A) and hence

ϕ(B) = ϕ(A)+ϕ(B \A) ≦ ϕ(A)+ϕB
•
(B \A), and thus the previous condition

3). ¤

Some Further Remarks

We start with a note on the comparison with other authors. There is a
detailed account in the bibliographical annex of MI section 7. We have said
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that the • envelopes ϕ• and ϕ• for • = στ do not appear elsewhere. In these
cases • = στ one often works with ϕ⋆ and ϕ⋆ instead. Thus one formulates in
the outer • context 3.1 condition 2) with ϕ⋆ instead of ϕ• (this time but for
• = σ and hence without (•)), and in the inner • context 3.5 conditions 2)3)
with ϕ⋆ instead of ϕ• and its satellites. It is plain that these modifications are
then sufficient conditions for the respective 1), but they cease to be equivalent
conditions (MI 5.12 and 6.32). This also applies to Fremlin [2000] section 413.

It will become clear that to abstain from the new • = στ envelopes in favour
of the old • = ⋆ ones could have severe consequences. In fact, it would mean
to loose the adequate access to some of the most pronounced achievements of
the present development, like the true classical measure extension theorem 4.1
below, and the basic results on the formation of products and representation
of functionals in sections 6 and 7.

We continue with a few complements to the previous subsections. The first
point is a useful note on outer and inner • premeasures. It has a routine proof.

3.8 Remark. Let S be a lattice with ∅ ∈ S.

Out) The outer • premeasures ϕ : S → [0,∞] and the outer • premeasures
ψ : S• → [0,∞] are in one-to-one correspondence via ψ = ϕ•|S• and ϕ = ψ|S.
Moreover then ϕ• = ψ• = ψ⋆.

Inn) The inner • premeasures ϕ : S → [0,∞[ and the inner • premeasures
ψ : S• → [0,∞[ are in one-to-one correspondence via ψ = ϕ•|S• and ϕ = ψ|S.
Moreover then ϕ• = ψ• = ψ⋆.

3.9 Remark. Let S be a lattice with ∅ ∈ S.

Out) Let ϕ : S → [0,∞] be an outer • premeasure with Φ = ϕ•|C(ϕ•). Then
Φ⋆ = ϕ•.

Inn) Let ϕ : S → [0,∞[ be an inner • premeasure with Φ = ϕ•|C(ϕ•). Then
Φ⋆ = ϕ•.

In fact, we have for example in the outer case Φ⋆ = Φ = ϕ• on C(ϕ•), and
both sides are outer regular C(ϕ•). ¤

The last point is a remarkable connection between the outer and inner •
extension theories for • = ⋆σ; the case • = τ is not realistic here. We note
that there will be another and more important such connection in 4.6 below.

3.10 Theorem (MI 7.5). Let S be a lattice with ∅ ∈ S. Assume that
ϕ : S → [0,∞[ is an outer and inner • premeasure, where • = ⋆σ. Then
C(ϕ•) = C(ϕ•) =: C. Moreover ϕ•(A) = ϕ•(A) for all A ∈ C which are
contained in some member of S•.

We conclude with a brief account of the framework built in MI in order to
prove the outer and inner • extension theorems. It looks more comprehensive
than needed, but we shall soon see the reason. The basic idea is the use of
isotone set functions with values in R, thus as it seems of an odd kind of set
functions.
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We need some preparations. On R one has the usual order ≦ and the two
extended additions +̇ and +. which are associative and commutative with ∞
+̇ (−∞) = ∞ and ∞ +. (−∞) = −∞. On the domain side one has to refrain
from the usual rôle of ∅. Thus one can retain lattices, of course without to
require that they contain ∅, but one has to abandon rings in favour of so-called
ovals, defined to be stable under A,B,C 7→ (A ∩ C ′) ∪ (B ∩ C). One defines
a +̇/+. content to be an isotone set function α : A → R on an oval A which
is modular under +̇/+. and attains at least one finite value. Then a basic tool
is the bijection P(X) → P(X) which maps M 7→ M ′. It carries lattices into
lattices, ovals into ovals, also algebras into algebras, but not rings into rings.
We form the transposed operation which maps a set function ϕ : M → R to
the set function ϕ⊥ : M⊥ → R, defined to be ϕ⊥(M) = −ϕ(M ′). It carries
isotone into isotone, sub/supermodular under +̇ into super/submodular under
+. , and hence +̇ contents into +. contents. So far the preparations.

On this basis we form what we call here the odd outer and inner situations.
For the outer situation let ϕ : S →] −∞,∞] be an isotone set function 6≡ ∞
on a lattice S (we do not assume ϕ : S → R since this would lead to serious
technical problems which would outdo all possible profits). We define the odd
outer • extensions of ϕ to be the +̇ contents which extend ϕ and otherwise have
the same properties as before, and then as before define ϕ to be an odd outer •
premeasure iff it admits odd outer • extensions. Then one proves for this odd
outer situation the appropriate version of the outer • extension theorem (MI
5.5 with 5.1 and 5.4). The unique point of no routine is to find the adequate
extension of the Carathodory formation C(·).

For the inner situation one assumes ϕ : S → [−∞,∞[ isotone 6≡ −∞ on a
lattice S, and defines the inner counterparts of the odd concepts above. One
observes that the upside-down transformation discussed above maps the set
functions ϕ : S →] − ∞,∞] for the outer situation onto the set functions
ϕ⊥ : S⊥ → [−∞,∞[ for the inner situation, moreover the odd outer • exten-
sions of ϕ onto the odd inner • extensions of ϕ⊥, and hence the odd outer •
premeasures ϕ on S onto the odd inner • premeasures ϕ⊥ on S⊥. It is not
hard to pursue the upside-down transformation to the point that the odd outer
• extension theorem passes into an odd inner • extension theorem of the same
shape (MI 6.22 with 6.18 and 6.21). There is but one little problem with the
notion of transporter, because it does not behave well under the upside-down
transformation. Thus no effort ab ovo is required. The two theorems are of
complete similitude, and it can be said that they are equal.

After this we return to the context of the present article. It is plain that the
present outer and inner • extension theorems 3.1 and 3.5 are not of complete
similitude, and that there is no immediate explanation. But after the above
excursion we see that the present outer and inner • premeasures ϕ are those
among the odd ones which live on lattices S with ∅ ∈ S and fulfil ϕ(∅) = 0.
This explains first of all that the present inner situation requires ϕ < ∞.
Also the other deviations receive the simple explanation that they have been
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produced under the involved cut-off. In particular condition (•) in 3.1, when
formulated within the odd outer • theorem and then transferred to the odd
inner • theorem, attains a form which makes it disappear after that cut-off.

What remains is the question why we did not retain the more comprehensive
framework of MI. The simple answer is that the basic notions in that part of
MI do not seem to fit (maybe not yet) the actual concepts in mathematical
analysis and its applications. So this point must be left to the future.

4. Consequences and Applications

We present a few consequences and applications of the outer and inner •
extension theorems which can be done without the Choquet integral, to be
introduced in the next section. They are all of prime importance. We include
some of their proofs from the previous results, in order to show how simple
these proofs are.

The Specialization to Rings Extended

The present result extends the specialization 3.3 from rings to the more
realistic class of lattices referred to in the introduction.

4.1 Theorem (MI 7.12). Let S be a lattice with ∅ ∈ S such that B\A ∈ Sσ

for all A ⊂ B in S. Assume that ϕ : S → [0,∞] is isotone with ϕ(∅) = 0,
and modular and upward σ continuous. Then

1) ϕ is an outer σ premeasure.

2) If ϕ < ∞ then ϕ is an inner σ premeasure.

Proof. 1) Fix A ⊂ B in S, and let (Sl)l be a sequence in S with Sl ↑ B \A.
Then ϕ(A) + ϕ(Sl) = ϕ(A ∪ Sl) ↑ ϕ(B) and hence ϕ(A) + ϕσ(B \ A) ≦

ϕ(A)+ lim
l→∞

ϕ(Sl) = ϕ(B). The result follows from 3.1. 2) In the same situation

we have ϕ(B) = ϕ(A) + lim
l→∞

ϕ(Sl) ≦ ϕ(A) + ϕ⋆(B \ A) ≦ ϕ(A) + ϕσ(B \ A).

Moreover we know from 1) that ϕσ|C(ϕσ) is a measure which extends ϕ, so
that ϕ < ∞ is downward σ continuous. The result follows from 3.5. ¤

The above theorem is much more useful than the former specializations 3.3
and 3.7, and a fortiori than the classical measure extension theorem.

4.2 Examples. i) The result leads with little effort to the Lebesgue measure
on X = R

n. Let S consist of the finite unions of compact intervals, and
let ϕ : S → [0,∞[ be the elementary content. It is obvious that S fulfils
the assumption, and it is simple via compactness to see that ϕ is upward σ
continuous. Then it suffices to note that Sσ contains the open subsets and Sσ

consists of the compact subsets of R
n.

ii) Let X be a topological space, and let CCl(X) := {[f ≧ 0] : f ∈ C(X, R)}
denote the lattice of its so-called zero subsets. It is obvious that S = CCl(X)
fulfils the assumption. Thus the theorem permits to extend certain elementary
contents on CCl(X) to certain Baire measures on X (MI 8.6).
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Despite its power the basic idea of the theorem does not appear in the
literature, as far as the author is aware, and the two examples either, except
in MI and his related work. The explanation is that the decisive implication
4.1.1) requires the outer σ envelope ϕσ and is not accessible via ϕ⋆ (MI 5.12),
and that ϕσ does not appear elsewhere.

Radon Premeasures

The present subsection deals with the site where the actual • extension
theories came into existence. We fix a Hausdorff topological space X and
consider the lattice S = Comp(X) of its compact subsets. For the sequel it is
decisive that S at the same time fulfils S = S• and is • compact in the sense
of the last section, for all • = ⋆στ .

In fact, let ϕ : S → [0,∞[ be isotone with ϕ(∅) = 0 and supermodular. By
the definitions the first of the above properties shows that

i) ϕ inner • premeasure ⇔ ϕ inner ⋆ premeasure and downward • continuous,

while by 3.5.3) the second of the properties implies that

ii) ϕ inner • premeasure ⇔ ϕ(B) ≦ ϕ(A) + ϕB
•
(B \ A) for all A ⊂ B in S.

Therefore to be an inner • premeasure, called • for short, obeys the implications

⋆ ⇐ σ ⇐ τ in view of i), and ⋆ ⇒ σ ⇒ τ in view of ii),

and hence is in fact independent of • = ⋆στ . Thus combined with 2.2.4.Inn)
we obtain the result which follows.

4.3 Theorem. For an isotone set function ϕ : S → [0,∞[ with ϕ(∅) = 0
on S = Comp(X) the following are equivalent.

1•) (for the individual • = ⋆στ) ϕ is an inner • premeasure.

2) ϕ is supermodular; and ϕ(B) ≦ ϕ(A) + ϕ⋆(B \ A) for all A ⊂ B in S.

In this case ϕ is of course downward τcontinuous. Moreover ϕ⋆ = ϕσ = ϕτ .
These set functions will be called the Radon premeasures on X.

The above theorem 4.3 is the initial result of Kisyński [1968], when one
adds an obvious observation on the domain of the maximal inner • extension
Φ = ϕ•|C(ϕ•) of ϕ: From the last statement in 3.5 we see that Cl(X) ⊂
S⊤S ⊂ C(ϕ•) and hence Bor(X) = Aσ(Cl(X)) ⊂ C(ϕ•), so that Φ comprises
a Borel measure on X. Thus the Radon premeasures on X are in one-to-one
correspondence with their inner • extensions to Bor(X), that is to those mea-
sures α : Bor(X) → [0,∞] which have α|Comp(X) < ∞ and are inner regular
Comp(X). Moreover one obtains S⊤Bor(X) ⊂ S⊤C(ϕ•) ⊂ C(ϕ•), so that
the maximal domain also contains the class LocBor(X) := Comp(X)⊤Bor(X)
of the local Borel subsets of X. In contrast to Bor(X) this class can be writ-
ten LocBor(X) = Comp(X)⊤Aσ(Comp(X)) in terms of S = Comp(X) (MI
1.20).

In the literature one sometimes restricts oneself to locally finite Radon pre-
measures ϕ : S → [0,∞[, defined to mean that each S ∈ S is contained in some
open T ∈ Op(X) with Φ(T ) < ∞. One reason is perhaps that the concept
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started in the frame of locally compact Hausdorff spaces X, where of course
all Radon premeasures are locally finite. There was no restriction to local
finiteness in Kisyński [1968], in contrast to Bourbaki [1952][1956][1969]. The
restriction was first removed from the systematic context in Berg-Christensen-
Ressel [1984]. We want to present a simple example of a Radon premeasure
which is not locally finite.

4.4 Example. 1) We equip X = N∪{∞} with a Hausdorff topology which
is non-discrete but such that all compact subsets of X are finite [1993]: The
system Op(X) consists i) of all U ⊂ N, and ii) of all those U ⊂ X with
∞ ∈ U such that U ′ ⊂ N is small in the sense that Σ

n∈U ′

1/n < ∞. Thus it is

a non-discrete Hausdorff topology on X. Then if K ⊂ X is infinite we take
an infinite subset E ⊂ K ∩ N such that Σ

n∈E
1/n < ∞, and find that E ′ and

the {x} ∀x ∈ E form an open cover of K which has no finite subcover. 2)
Now define ϕ : S = Comp(X) → [0,∞[ to be ϕ(S) = card(S ∩ N). Then ϕ is
a Radon premeasure on X. It has ϕ•(A) = card(A ∩ N) for all A ⊂ X, and
therefore C(ϕ•) = P(X). It is of course not locally finite.

The Radon premeasures on X can also be characterized as the isotone set
functions ϕ : S → [0,∞[ with ϕ(∅) = 0 on S = Comp(X) which are modular
and downward τ continuous (MI 9.6). The relevant ideas are due to Choquet
[1953/54] section 26.6 and Bourbaki [1969] section 3.1. See also [2000b] 3.3.

We conclude with the notion of support. Let ϕ : S → [0,∞[ be an inner τ
premeasure on a lattice S with ∅ ∈ S in a nonvoid set X. Since (S⊤Sτ )⊥
is stable under unions, and since after 3.6.ii) the restriction Φ|(S⊤Sτ )⊥ of
Φ = ϕτ |C(ϕτ ) is upward τ continuous, the union V of all U ∈ (S⊤Sτ )⊥ with
Φ(U) = 0 is of the same kind. We define V ′ ∈ S⊤Sτ to be the support of ϕ,
denoted supp(ϕ).

In case of a Radon premeasure ϕ : S = Comp(X) → [0,∞[ on a Hausdorff
topological space X one of course wants to compare supp(ϕ) with the usual
closed support Supp(Φ) of Φ = ϕ•|C(ϕ•). Supp(Φ) is defined to be the comple-
ment W ′ ∈ Cl(X) of the unique maximal W ∈ Op(X) with Φ(W ) = 0. One

proves that Supp(Φ) = supp(ϕ) (MI 9.19). We shall see that supp(ϕ) need
not be closed.

4.5 Example. In example 4.4 we have S⊤S = P(X) and hence (S⊤S)⊥ =
P(X). Therefore supp(ϕ) = N. But Supp(Φ) = X, because U = ∅ is the
unique open subset of X with Φ(U) = 0. Thus in this example supp(ϕ) seems
to be the better choice.

Complemental Couples of • Premeasures

Outer and inner • premeasures and their maximal outer and inner • ex-
tensions seem, after the cut-off at ∅ described at the end of the last section,
to conduct their independent lives. More and more the emphasis moves to
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the inner situation, and one could think that there is no immanent connec-
tion between the outer and inner situations. Yet there exists a fundamental
connection of this kind, at least under certain natural and frequent additional
assumptions, as the present subsection will reveal. It comprises several previ-
ous ideas and results. Also there will be further evidence of the predominance
of the inner situation.

We define a couple of lattices S and T with ∅ in a nonvoid set X to be •
complemental iff T ⊂ (S⊤S•)⊥ and S ⊂ (T⊤T•)⊥. The relevant examples
are as follows. 1) The pair S = Cl(X) and T = Op(X) in a topological space
X, and the pair S = Comp(X) and T = Op(X) when X is Hausdorff. 2)
An arbitrary S with T = (S⊤S•)⊥, and an arbitrary T with S = (T⊤T•)⊥.
Thus for example in a Hausdorff space X the lattice S = Comp(X) can have
the companions T = Op(X) and T = (S⊤S•)⊥, and example 4.4 shows that
the two can be different.

Next assume that S and T form a • complemental couple. We define an
inner • premeasure ϕ : S → [0,∞[ to be • tame for S and T iff Φ = ϕ•|C(ϕ•)
is outer regular T• at S (and hence at S•); note that T• ⊂ (S⊤S•)⊥ ⊂ C(ϕ•).
Equivalent is the much simpler condition that each S ∈ S (and hence each
S ∈ S•) be contained in some T ∈ T• with Φ(T ) < ∞ ([1998a] 4.3); in this
case ϕ could be named • locally finite for S and T. Likewise one defines an
outer • premeasure ψ : T → [0,∞] to be • tame for S and T iff Ψ = ψ•|C(ψ•)
has Ψ|S < ∞ (and hence Ψ|S• < ∞) and is inner regular S• at T (and hence
at T•); as above note that S• ⊂ (T⊤T•)⊥ ⊂ C(ψ•). After this the promised
fundamental connection reads as follows.

4.6 Theorem ([1998a] 4.6). Assume that the lattices S and T form a •
complemental couple. Then

the inner • premeasures ϕ : S → [0,∞[ which are • tame for S and T, and
the outer • premeasures ψ : T → [0,∞] which are • tame for S and T

are in one-to-one correspondence via each of the two maps

ϕ 7→ ψ := Φ|T for Φ = ϕ•|C(ϕ•), and
ψ 7→ ϕ := Ψ|S for Ψ = ψ•|C(ψ•),

which are inverse to each other. Under this correspondence we have C(ϕ•) =
C(ψ•) =: C and Φ ≦ Ψ, and Φ = Ψ on S• and T• and [Ψ < ∞]. Moreover
ϕ• ≦ ψ•.

We define a couple of an inner • premeasure ϕ : S → [0,∞[ and an outer
• premeasure ψ : T → [0,∞] to be • complemental iff S and T form a •
complemental couple, and ϕ and ψ are • tame for S and T and correspond to
each other as described in 4.6 above.

4.7 Example. The situation S = Comp(X) and T = Op(X) in a Hausdorff
space X is due to Schwartz [1973]. A Radon premeasure ϕ : S → [0,∞[ is •
tame for S and T iff it is locally finite in the former sense (Schwartz considers
but these locally finite ones). Therefore the class of the outer • premeasures
ψ : T → [0,∞] which are • tame for S and T must be independent of • = ⋆στ
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too. Schwartz views these entities in form of their inner and outer • extensions
to Bor(X). Thus he writes that

the measures α : Bor(X) → [0,∞] with α|S < ∞ which are
inner regular S and locally finite, and

the measures β : Bor(X) → [0,∞] with β|S < ∞ which are
inner regular S at T and outer regular T

are in one-to-one correspondence. Under this correspondence one has α ≦ β,
and α = β on S and T and [β < ∞]. It is nontrivial to note that α 6= β can
happen even for locally compact X. The simplest example known to the author
is due to Dowker ([1998a] 4.8); we note that it is related to example 6.6 below.
In the textbooks one meets, in most cases restricted to locally compact spaces,
sometimes both the locally finite Borel-Radon measures α : Bor(X) → [0,∞]
and their companions β : Bor(X) → [0,∞], for example in Bauer [1990],
but the older textbooks are often confined to the latter companions alone, for
example Rudin [1966] and Cohn [1980].

In conclusion we want to reformulate the last assertion in 4.6 on the two
maximal • extensions Φ and Ψ. To this end we recall a certain difference
formation from [1999a] section 1: For a couple of contents α, β : A → [0,∞]
on an algebra A one defines β \ α : A → [0,∞] to be

(β \ α)(A) = sup{β(K) − α(K) : K ∈ A with K ⊂ A and α(K) < ∞}.

Then β \α is a content which in case α ≦ β fulfils α+(β \α) = β. It is upward
• continuous whenever β is, and has important further properties.

4.8 Proposition. Assume that ϕ : S → [0,∞[ and ψ : T → [0,∞] form
a • complemental couple with maximal • extensions Φ = ϕ•|C and Ψ = ψ•|C.
Thus the difference δ = Ψ \ Φ : C → [0,∞] is a content, and for • = στ a
measure, which fulfils Φ + δ = Ψ. This δ attains but the values 0 and ∞.

In fact, this can be read from the definition of δ. The assertion speaks for
itself, in that the most inferior contents and measures are certainly those which
attain but the values 0 and ∞.

Quasi-Radon Measures

The class of quasi-Radon measures was introduced in Fremlin [1974] and
pursued further in Fremlin [2000], in order to profit from the favourable prop-
erties of Radon measures beyond the frame of compactness. We shall see that
this amounts to a certain move into the present inner τ situation.

The definition is quite technical. Let X be a topological space with U =
Op(X), that is a nonvoid set equipped with a lattice U of subsets with ∅, X ∈ U
which is stable under unions. A measure α : A → [0,∞] on a σ algebra
A ⊃ Bor(X) is called quasi-Radon iff

i) α is complete: if M ⊂ N ∈ A with α(N) = 0 then M ∈ A;
ii) α is saturated: [α < ∞]⊤A ⊂ A;
iii) α|U is upward τ continuous;
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iv) α is inner regular Cl(X);
v) α is effectively locally finite: for each A ∈ A with α(A) > 0 there exists a

U ∈ U ∩ [α < ∞] such that α(A ∩ U) > 0; one notes that it is equivalent to
require: α is inner regular {A ∈ A : A ⊂ some U ∈ U ∩ [α < ∞]}.

It follows that the union of iv)v) means that α is inner regular {S ∈ Cl(X) :
S ⊂ some U ∈ U ∩ [α < ∞]}. After this definition our result of comparison
will look somewhat simpler.

4.9 Theorem. Let X be a topological space with U = Op(X). Then a
measure α : A → [0,∞] on a σ algebra A ⊃ Bor(X) is quasi-Radon iff there
exist a lattice S with ∅ ∈ S in X such that S and U are τ complemental (which
means that S ⊂ Cl(X) ⊂ S⊤Sτ ), and an inner τ premeasure ϕ : S → [0,∞[
which is τ tame for S and U, such that α = ϕτ |C(ϕτ ) = Φ. In this case

S := {S ∈ Cl(X) : S ⊂ some U ∈ U ∩ [α < ∞]}

and ϕ := α|S are as required.

The proof is a routine application of what we have presented so far and of
the later result 8.6.

At this point we want to note that part of the structure expressed in the
notion of quasi-Radonness, to wit the involvement of τ complemental lattices
and of τ tameness, that is after all of local finiteness, is not needed for certain
fundamental applications of the notion in Fremlin [2000]. The most impor-
tant cases in point are the formation of products and the representation of
functionals, both to be discussed in later sections, but to some extent also the
existence of decompositions. The rôle of local finiteness reminds one of its
older rôle in the notion of Radonness. But in that case one could simply delete
local finiteness from the definition, which does not seem so in the present case.
In plain words: It is the present concept of inner τ premeasures and their inner
τ extensions which does the essential.

Decompositions

Let α : A → [0,∞] be a measure on a σ algebra A. We define a decomposition
for α to be a nonvoid and pairwise disjoint subsystem M ⊂ A of members M
with 0 < α(M) < ∞ such that

1) M⊤A ⊂ A; and
2) α(A) = Σ

M∈M

α(A ∩ M) for all A ∈ [α < ∞].

Condition 1) implies that the union H := ∪
M∈M

M is in A. Condition 2) is often

required for all A ∈ A, which follows from our version when α is semifinite,
that is inner regular [α < ∞]. The reason for the present weaker condition is
that the unavoidable finiteness assumption on α which ensures the existence
of a decomposition becomes of course weaker, but also better adapted to our
conception. In concrete terms, the assumptions in Fremlin [2000] 414I are
the above i)ii)iii)v) for quasi-Radonness, while in the theorem below we shall
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weaken condition v) from A to [α < ∞]. The difference is considerable, as it
can be seen in the example of Dowker ([1998a] 4.8) invoked in 4.7 above.

We need one more notion, which is related to the concept of support (MI
9.23): Let U ⊂ A be a lattice with ∅ ∈ U. Then F ∈ A is called full for U iff
0 < α(F ) < ∞, and for each U ∈ U one has α(F ∩ U) = 0 ⇒ F ∩ U = ∅.
Define F(α,U) to consist of all these F ∈ A. After this the present theorem
reads as follows. The proof is conventional.

4.10 Theorem. Let the measure α : A → [0,∞] on the σ algebra A be
complete and saturated, and let U ⊂ A be a lattice with ∅ ∈ U and stable
under unions such that α|U is upward τ continuous. Assume that α is inner
regular {A ∈ A : A ⊂ some U ∈ U ∩ [α < ∞]} at [α < ∞].

1) If M ⊂ F(α,U) is a maximal pairwise disjoint nonvoid subsystem, then
M is a decomposition for α.

2) Let K ⊂ [α < ∞] be a lattice with ∅ ∈ K and U ⊂ (K⊤K)⊥ such that α
is inner regular K at [α < ∞]. Then each A ∈ [0 < α < ∞] contains some
K ∈ K ∩ F(α,U). Thus if M ⊂ K ∩ F(α,U) is a maximal pairwise disjoint
nonvoid subsystem, then M is a decomposition for α.

The value of this theorem lies in its specializations to the present inner and
outer τ situations. The inner one reaches well beyond local finiteness (MI
13.39), while the outer one carries no restriction at all.

4.11 Inner Consequence (MI 9.24). Let ϕ : S → [0,∞[ be an inner τ
premeasure with Φ = ϕτ |C(ϕτ ). Assume for U = (S⊤Sτ )⊥ that Φ is inner
regular {A ∈ C(ϕτ ) : A ⊂ some U ∈ U ∩ [Φ < ∞]} at S (and hence at
{D ∈ C(ϕτ ) : D ⊂ some S ∈ S} ⊃ Sτ and hence at C(ϕτ )).

1) If M ⊂ F(Φ,U) is a maximal pairwise disjoint nonvoid subsystem, then
M is a decomposition for Φ (note that Φ is semifinite).

2) Each A ∈ [0 < Φ < ∞] contains some K ∈ Sτ ∩ F(Φ,U). Thus if
M ⊂ Sτ ∩ F(Φ,U) is a maximal pairwise disjoint nonvoid subsystem, then M
is a decomposition for Φ.

4.12 Outer Consequence. Let ψ : T → [0,∞] be an outer τ premeasure
with Ψ = ψτ |C(ψτ ). Put U = Tτ (and note condition (τ) in 3.1).

1) If M ⊂ F(Ψ,U) is a maximal pairwise disjoint nonvoid subsystem, then
M is a decomposition for Ψ.

2) Each A ∈ [0 < Ψ < ∞] contains some K ∈ F(Ψ,U).

One of the most important applications of decompositions is to the Radon-
Nikodým theorem. We regret that for the time being we have to refrain from
this topic.

5. The Fundamentals for Functionals

The basic notions and notations for function systems and functionals corre-
spond more or less to those for set systems and set functions. Beside them we
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introduce the Choquet integral for nonnegative functions, and in that connec-
tion present a fundamental theorem on sub/supermodular functionals.

Function Systems

Let X be a nonvoid set. We consider nonvoid sets E ⊂ [0,∞]X of nonnega-
tive functions on X, in most cases with 0 ∈ E. The important properties to be
imposed on E are to be stable under multiplication by positive real numbers,
called positive-homogeneous, to be stable under pointwise addition, the combi-
nation of the two, called cone, and to be stable under pointwise maximum and
minimum formations ∨ and ∧, called lattice for short. Moreover E is called
Stonean iff f ∈ E ⇒ f ∧ t, (f − t)+ ∈ E for 0 < t < ∞; in this connection note
that f = f ∧ t + (f − t)+.

We define E⋆ ⊂ Eσ ⊂ Eτ and E⋆ ⊂ Eσ ⊂ Eτ to consist of the pointwise
suprema and infima of the nonvoid finite/countable/arbitrary subsets of E.
Thus E is a lattice iff E⋆ = E⋆ = E, and in this case the E• and E• are
lattices as well.

A nonvoid subset M ⊂ [0,∞]X is called upward/downward directed iff for
each pair u, v ∈ M there exists a w ∈ M such that u, v ≦ w/u, v ≧ w. We write
M ↑ f/M ↓ f and M ↑≧ f/M ↓≦ f in the same sense as before. We note that
a nonvoid finite M is upward/downward directed iff the supremum/infimum
of its members is a member of M .

5.1 Lemma ([1998b] 3.1.6)). Let E be a lattice.

Out) For each M ⊂ E• nonvoid • with M ↑ f there exists an N ⊂ E
nonvoid • with N ↑ f such that each v ∈ N is ≦ some u ∈ M .

Inn) For each M ⊂ E• nonvoid • with M ↓ f there exists an N ⊂ E nonvoid
• with N ↓ f such that each v ∈ N is ≧ some u ∈ M .

Additive and Modular Functionals

Let E ⊂ [0,∞]X be nonvoid, and I : E → [0,∞] be a nonnegative functional
on E. I is called isotone iff I(u) ≦ I(v) for all u ≦ v in E. If 0 ∈ E then
in most cases one requires I(0) = 0. If E is positive-homogeneous then I is
called positive-homogeneous iff I(cf) = cI(f) for all f ∈ E and 0 < c < ∞. I
is called

additive iff I(u + v) = I(u) + I(v), and
sub/superadditive iff I(u + v) ≦/≧ I(u) + I(v),

both times for all u, v ∈ E such that u + v ∈ E; note that E is not assumed
to be stable under addition. If E is a lattice then I is called

modular iff I(u ∨ v) + I(u ∧ v) = I(u) + I(v), and
sub/supermodular iff I(u ∨ v) + I(u ∧ v) ≦/≧ I(u) + I(v),

both times for all u, v ∈ E. If E is Stonean then I is called Stonean iff

I(f) = I(f ∧ t) + I((f − t)+) for all f ∈ E and 0 < t < ∞,
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and an isotone I is called truncable iff

I(f) = sup{I
(

(f − a)+ ∧ (b − a)
)

: 0 < a < b < ∞} for all f ∈ E.

In this connection we recall the relevant basic estimation.

5.2 Lemma (MI 11.6). For f : X → R and real numbers a = t(0) < t(1) <
· · · < t(r) = b we have

r

Σ
l=1

(t(l) − t(l − 1))χ[f>t(l)] ≦
r

Σ
l=1

(t(l) − t(l − 1))χ[f≧t(l)]

≦ (f − a)+ ∧ (b − a) ≦
r

Σ
l=1

(t(l) − t(l − 1))χ[f>t(l−1)] ≦
r

Σ
l=1

(t(l) − t(l − 1))χ[f≧t(l−1)].

The next theorem is a basic result. The idea that a result of this kind
could be true is due to Choquet [1953/54] 54.1, but his proof was confined
to a certain special case with finite X. Then the specialization which will be
needed for the Choquet integral was an independent result of Topsøe [1978]
and Bassanezi-Greco [1984]. The full assertion is due to the author [1998b]
1.1 and [2001b]. It is required in the proofs of the representation theorems 7.3
and 7.6 below.

5.3 Theorem. Let E ⊂ [0,∞]X be positive-homogeneous with 0 ∈ E, and
I : E → [0,∞] be positive-homogeneous with I(0) = 0. Assume that E is a
Stonean lattice, and that I is isotone and truncable. Then

I sub/supermodular =⇒ I sub/superadditive.

At last we anticipate for I : E → [0,∞] isotone under the assumption 0 ∈ E
and I(0) = 0 the finite envelopes I⋆, I⋆ : [0,∞]X → [0,∞], defined to be

I⋆(f) = inf{I(u) : u ∈ E with u ≧ f},

I⋆(f) = sup{I(u) : u ∈ E with u ≦ f},

which will be needed for the Choquet integral which comes next. I⋆ and I⋆

are isotone with I⋆ ≦ I⋆ and I⋆|E = I⋆|E = I.

The Choquet Integral

We fix a lattice S of subsets with ∅ ∈ S in X, and an isotone set function ϕ :
S → [0,∞] with ϕ(∅) = 0. We shall define after an idea of Choquet [1953/54]
section 48 an integral

∫

−fdϕ ∈ [0,∞] for appropriate functions f ∈ [0,∞]X ,
which is such that in case of a measure ϕ on a σ algebra S the formation

∫

−fdϕ
is defined for all f ∈ [0,∞]X measurable S and is the usual integral

∫

fdϕ.
Our procedure will be somewhat different from that of Greco [1982] and will
feature two admissible function classes; they are in perfect accord with our two
situations, the outer and the inner ones.

We define LM(S)/UM(S) to consist of the functions f ∈ [0,∞]X such
that [f > t]/[f ≧ t] ∈ S for all 0 < t < ∞; these functions will be called
lower/upper measurable S.
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5.4 Properties (MI 11.1 and 11.4). 1) LM(S) and UM(S) are positive-
homogeneous with 0 ∈ LM(S), UM(S).

2.Out) If S = Sσ then LM(S) is stable under addition. 2.Inn) If S = Sσ

then UM(S) is stable under addition.

3) LM(S) and UM(S) are Stonean lattices.

4.Out) If S = Sσ then UM(S) ⊂ LM(S). 4.Inn) If S = Sσ then LM(S) ⊂
UM(S). Thus if S = Sσ = Sσ then LM(S) = UM(S) =: M(S).

5) For a function f : X → [0,∞[ with a finite number of values the following
are equivalent. i) f ∈ LM(S). ii) f ∈ UM(S). iii) There exist A(1), · · · , A(r)

∈ S and real t1, · · · , tr > 0 such that f =
r

Σ
l=1

tlχA(l). iv) The same as iii) with

A(1) ⊃ · · · ⊃ A(r). We define S(S) to consist of these functions; note that
S(S) is stable under addition.

After this we define the Choquet integral to be

∫

−fdϕ :=

→∞
∫

0←

ϕ([f > t])dt for f ∈ LM(S),

∫

−fdϕ :=

→∞
∫

0←

ϕ([f ≧ t])dt for f ∈ UM(S),

both times as an improper Riemann integral of a monotone function ≧ 0. It is
a simple verification that in case f ∈ LM(S)∩UM(S) the two second members
are equal (MI 11.7). Thus for A ∈ S we have χA ∈ LM(S) ∩ UM(S) with
∫

−χAdϕ = ϕ(A). In the subsequent properties we write I : I(f) =
∫

−fdϕ for
f ∈ LM(S)/UM(S) whenever adequate.

5.5 Properties (MI 11.8 and [1998b] 2.9). i) In case of a measure ϕ on a
σ algebra S one has

∫

−fdϕ =
∫

fdϕ for all f ∈ M(S).

ii) For f ∈ S(S) and for the representations 5.4.5.iv) one has
∫

−fdϕ =
r

Σ
l=1

tlϕ(A(l)).

1) I is isotone and positive-homogeneous with I(0) = 0.

2) I is Stonean and truncable.

3) I is sub/supermodular ⇔ ϕ is sub/supermodular.

4) I|S(S) is sub/superadditive ⇒ ϕ is sub/supermodular.

Assertion i) is in all textbooks, but often as a consequence of the Fubini
theorem and hence restricted to σ finite measures. ii) requires a bit of work.
1)3) are clear, and 2)4) are pleasant verifications, with 4) based on ii). Now
3)4) combine with theorem 5.3 to furnish the basic fact which follows (note
that 5.3 is only needed for I Stonean).
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5.6 Theorem. For both LM(S) and UM(S) the following are equiva-
lent. i) I is sub/superadditive. ii) I|S(S) is sub/superadditive. iii) I is
sub/supermodular. iv) ϕ is sub/supermodular.

The present context calls for a hint at another approach to an additive
Choquet integral: To find those pairs u, v ∈ LM(S)/UM(S) for which the
Choquet integral becomes additive for all isotone ϕ : S → [0,∞] with ϕ(∅) =
0. The codeword is comonotonic; see for example Denneberg [1994].

We conclude the subsection with the first and simplest of our theorems on
integral representations of functionals. It is a version of the representation
theorem in terms of the Choquet integral due to Greco [1982].

5.7 Theorem ([1998b] 2.10). Let S be a lattice with ∅ ∈ S, and E ⊂
LM(S)/UM(S) be positive-homogeneous with 0 ∈ E and Stonean. Assume
that I : E → [0,∞] is isotone with I(0) = 0. Then there exists an isotone
ϕ : S → [0,∞] with ϕ(∅) = 0 which represents I, that is which fulfils I(f) =
∫

−fdϕ for all f ∈ E, iff I is Stonean and truncable. In this case an isotone
ϕ : S → [0,∞] with ϕ(∅) = 0 represents I iff

I⋆(χS) ≦ ϕ(S) ≦ I⋆(χS) for all S ∈ S.

• Continuous and Regular Functionals

Assume that I : E → [0,∞] is an isotone functional on a nonvoid E ⊂
[0,∞]X . I is called upward/downward • continuous iff sup / inf

u∈M

I(u) = I(f)

for all M ⊂ E nonvoid • with M ↑ / ↓ f ∈ E. As before this is always true
in case • = ⋆, and can be formulated in terms of sequences in case • = σ.
Likewise as before an important variant is almost downward • continuous,
defined to mean that inf

u∈M
I(u) = I(f) is restricted to those M ⊂ E which have

I(u) < ∞ ∀u ∈ M . One also defines these properties at an individual f ∈ E
and at a nonvoid subset of E.

Next let M ⊂ E be a nonvoid subset. The functional I is called outer regular
M (or from M) iff

I(f) = inf{I(u) : u ∈ M with u ≧ f} for all f ∈ E,

and inner regular M (or from M) iff

I(f) = sup{I(u) : u ∈ M with u ≦ f} for all f ∈ E.

One also defines these properties at an individual f ∈ E and at a nonvoid
subset of E.

It turns out that the Choquet integral enjoys these properties to the reason-
able extent. 5.8 below is a wide extension of the Beppo Levi theorem.

5.8 Theorem (MI 11.18 and 11.17). Let S be a lattice with ∅ ∈ S in X,
and ϕ : S → [0,∞] be isotone with ϕ(∅) = 0. Denote I : I(f) =

∫

−fdϕ on
LM(S)/UM(S).
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Out) ϕ is upward • continuous ⇔ I is upward • continuous on LM(S).

Inn) ϕ is almost downward • continuous ⇔ I is almost downward • contin-
uous on UM(S).

5.9 Theorem. Let S be a lattice with ∅ ∈ S in X, and Φ : P(X) → [0,∞]
be isotone with Φ(∅) = 0. Denote I : I(f) =

∫

−fdΦ for f ∈ [0,∞]X .

Out) If Φ is outer regular S then I is outer regular S(S) at {f ∈ [0,∞]X :
f bounded and Φ([f > 0]) < ∞}.

Inn) If Φ is inner regular S then I is inner regular S(S).

The • Envelopes

Assume that I : E → [0,∞] is an isotone functional with I(0) = 0 on an
E ⊂ [0,∞]X with 0 ∈ E. As before we define for • = ⋆στ the outer • envelopes
I• : [0,∞]X → [0,∞] and the inner • envelopes I• : [0,∞]X → [0,∞] for I to
be

I•(f) = inf{sup
u∈M

I(u) : M ⊂ E nonvoid • with M ↑≧f},

I•(f) = sup{ inf
u∈M

I(u) : M ⊂ E nonvoid • with M ↓≦f}.

In case • = ⋆ we return to the former envelopes, and in case • = σ the
definition can be reformulated in terms of sequences as before. The envelopes
I• and I• are isotone, and fulfil I⋆ ≧ Iσ ≧ Iτ and I⋆ ≦ Iσ ≦ Iτ . We note some
further basic properties.

5.10 Properties ([1998b] 3.3-3.5). Assume that E is a lattice.

1) I is positive-homogeneous ⇒ I• and I• are positive-homogeneous.

2) Assume that E is stable under addition. 2.Out) I is subadditive ⇒ I• is
subadditive. 2.Inn) I is superadditive ⇒ I• is superadditive.

3.Out) I is submodular ⇒ I• is submodular. 3.Inn) I is supermodular ⇒ I•
is supermodular.

4.Out) I• is outer regular E•. 4.Inn) I• is inner regular E•.

5.Out) For f ∈ E one has I•(f) = I(f) ⇔ I is upward • continuous at f .
5.Inn) For f ∈ E one has I•(f) = I(f) ⇔ I is downward • continuous at f .

6.Out) If I is upward • continuous then I•|E• = I⋆|E
•, and this is upward •

continuous as well. 6.Inn) If I is downward • continuous then I•|E• = I⋆|E•,
and this is downward • continuous as well.

7.Out) If I is upward • continuous and {f ∈ E• : I•(f) < ∞} ⊂ E then
I• = I⋆. 7.Inn) If I is downward • continuous and E• = E then I• = I⋆.

8.Out) If I is submodular then Iσ and Iτ are upward σ continuous. 8.Inn)
If I is supermodular then Iσ and Iτ are almost downward σ continuous.
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6. The Formation of Products

The present approach leads to a new method for the formation of products in
measure and integration, which for the first time unites the traditional abstract
and topological product theories. The decisive point is that one performs the
explicit product formation on the level of • premeasures and not on that of full
measures. The main theorem then presents our final outcome as an adequate
• extension in the inner situation, but as a rule not in the outer one. We shall
restrict ourselves to the case of two factors.

The Traditional Product Theories

We fix nonvoid sets X and Y . For nonvoid set systems S in X and T in
Y we define the product set system S × T := {S × T : S ∈ S and T ∈ T} in
X × Y .

The abstract main theorem asserts that for measures α : A → [0,∞] and
β : B → [0,∞] on σ algebras A in X and B in Y there exists at least one
measure π : A ⊗ B → [0,∞] on the product σ algebra A ⊗ B := Aσ(A × B)
in X × Y such that π(A × B) = α(A)β(B) for all A ∈ A and B ∈ B, with
the usual convention 0∞ := 0. Uniqueness of the product measure cannot be
claimed but on the subring of those E ∈ A ⊗ B which are contained in some
member of [α < ∞]σ × [β < ∞]σ. Thus most textbooks develop the entire
context restricted to σ finite measures. It seems hopeless to strive for a more
comprehensive uniqueness assertion in the traditional abstract frame, that is
without that the concept of regularity enters the scene.

The turn to the topological context leads into another world. In this world
the fundamental theorem asserts that for Borel-Radon measures α : Bor(X) →
[0,∞] and β : Bor(Y ) → [0,∞] on Hausdorff topological spaces X and Y there
exists a unique Borel-Radon measure π : Bor(X × Y ) → [0,∞] on X × Y such
that π(A×B) = α(A)β(B) for all A ∈ Bor(X) and B ∈ Bor(Y ). The theorem
was first obtained for locally compact X and Y via combination of the Riesz
representation and Stone-Weierstrass theorems, and thus became a showpiece
in the development à la Bourbaki. Since in Bor(X) ⊗ Bor(Y ) ⊂ Bor(X × Y )
one has 6= in most cases, it is beyond reach of the abstract approach as above.

This gap is left wide open in all textbooks in measure and integration known
to the author, except in Fremlin [2000] sections 251 and 417. Here the entire
context is rightly based on inner regularity. But the presentation differs from
ours in that the topological part remains separated from the abstract one, in
that it is under an unneeded local finiteness restriction as mentioned above,
and above all in that it does not flow from an overall concept like the present
• premeasures and • extensions which could break up the notorious discrep-
ancies.
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The New Product Formation

On the product set X × Y we form for E ⊂ X × Y the vertical sections
E(x) := {y ∈ Y : (x, y) ∈ E} ⊂ Y ∀x ∈ X and the vertical projection

Pr(E) := {y ∈ Y : (x, y) ∈ E for some x ∈ X} = ∪
x∈X

E(x) ⊂ Y,

and of course the respective horizontal formations. Next we form for lattices
S in X and T in Y the product lattice R := (S × T)⋆, and note that R is a
ring/an algebra whenever S and T are rings/algebras.

6.1 Remark (MI 20.3). Let S and T be lattices with ∅, and let E ∈ R.
Then 1) E(x) ∈ T for all x ∈ X.

2) Assume that ψ : T → [0,∞] is isotone with ψ(∅) = 0. Then the function
ψ(E(·)) : X → [0,∞] has a finite value set and is in LM(S) ∩ UM(S) (thus
is in S(S) except that it can attain the value ∞).

We come to the explicit product formation for set functions. It is based on
the Choquet integral.

6.2 Proposition (MI 20.4-20.7). Let S and T be lattices with ∅, and let

ϕ : S → [0,∞] be isotone with ϕ(∅) = 0,
ψ : T → [0,∞] be isotone with ψ(∅) = 0.

We define the product set function ϑ = ϕ × ψ : R = (S × T)⋆ → [0,∞] to be

ϑ(E) =

∫

−ψ(E(·))dϕ,

which makes sense in view of 6.1. Then 1) ϑ is isotone with ϑ(∅) = 0.

2) ϑ(S × T ) = ϕ(S)ψ(T ) for all S ∈ S and T ∈ T.

3) ϕ and ψ are finite ⇒ ϑ is finite.

4) ϕ and ψ are modular ⇒ ϑ is modular.

5) If ϕ and ψ are modular then ϑ is the unique isotone and modular set
function R → [0,∞] with 2) (thus the symmetric formation yields the same
result).

6) Let α : A → [0,∞] and β : B → [0,∞] on lattices A ⊃ S and B ⊃ T
be isotone with restrictions α|S = ϕ and β|T = ψ. Then (α × β)|(S × T)⋆ =
ϕ × ψ.

At this point the development splits into the inner and the outer one. We
start with the inner situation which is much more favourable.

6.3 Inner Proposition (MI 21.4-21.7). Let S and T be lattices with ∅,
and let

ϕ : S → [0,∞[ be isotone with ϕ(∅) = 0,
ψ : T → [0,∞[ be isotone with ψ(∅) = 0,

so that ϑ : R → [0,∞[ is isotone with ϑ(∅) = 0. Assume that ϕ and ψ
are downward • continuous. Then 1) ϑ is downward • continuous (the same
implication holds true for downward • continuous at ∅).
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2) For E ∈ R• one has E(x) ∈ T• for all x ∈ X. Moreover the function
ψ•(E(·)) : X → [0,∞[ is in UM(S•), and ϑ•(E) =

∫

−ψ•(E(·))dϕ•.

3) ϑ•(A × B) = ϕ•(A)ψ•(B) for all A ⊂ X and B ⊂ Y .

After this one proves the fundamental theorem which follows.

6.4 Theorem (MI 21.9). Assume that

ϕ : S → [0,∞[ is an inner • premeasure with Φ = ϕ•|C(ϕ•),
ψ : T → [0,∞[ is an inner • premeasure with Ψ = ψ•|C(ψ•).

Then ϑ : R → [0,∞[ is an inner • premeasure, and Θ = ϑ•|C(ϑ•) is an
extension of Φ × Ψ.

It is clear that this is a comprehensive abstract existence and uniqueness
theorem for the formation of products. We emphasize that it contains no
trace of local finiteness.

We continue to convince ourselves that the theorem contains the previous
product theorem for Borel-Radon measures. Let X and Y be topological
spaces. The formula Op(X × Y ) = (Op(X) × Op(Y ))τ is but the definition
of the product topology. By manipulation with complements it follows that
Cl(X × Y ) =

(

(Cl(X) × Cl(Y ))⋆
)

τ
, and when X and Y are Hausdorff one

concludes that

Comp(X × Y ) =
(

(Comp(X) × Comp(Y ))⋆
)

τ
.

Now if ϕ : S = Comp(X) → [0,∞[ and ψ : T = Comp(Y ) → [0,∞[ are
Radon premeasures with Φ = ϕ•|C(ϕ•) and Ψ = ψ•|C(ψ•) then 6.4 asserts that
ϑ = ϕ×ψ : R = (S×T)⋆ → [0,∞[ is an inner τ premeasure, and Θ = ϑτ |C(ϑτ )
is an extension of Φ × Ψ. But we know that Rτ = Comp(X × Y ), and then
3.8.Inn) tells us that ρ := ϑτ |Rτ is an inner τ premeasure and thus a Radon
premeasure on X × Y with ϑτ = ρτ = ρ⋆ and hence with Θ = ρ•|C(ρ•). The
uniqueness assertion is clear.

We turn to the outer situation (which has not been dealt with in MI). There
is a partial counterpart of the inner proposition 6.3.

6.5 Outer Proposition. Let S and T be lattices with ∅, and let

ϕ : S → [0,∞] be isotone with ϕ(∅) = 0,
ψ : T → [0,∞] be isotone with ψ(∅) = 0,

so that ϑ : R → [0,∞] is isotone with ϑ(∅) = 0. Assume that ϕ and ψ are
upward • continuous. Then 1) ϑ is upward • continuous.

2) For E ∈ R• one has E(x) ∈ T• for all x ∈ X. Moreover the function
ψ•(E(·)) : X → [0,∞] is in LM(S•), and ϑ•(E) =

∫

−ψ•(E(·))dϕ•.

3) ϑ•(A × B) = ϕ•(A)ψ•(B) for all A ⊂ X and B ⊂ Y , except when the
latter product is 0∞ or ∞0. In this case the assertion can be false for • = ⋆στ ,
even for ϕ and ψ outer • premeasures and for A ∈ C(ϕ•) and B ∈ C(ψ•).

6.6 Example. Let X be an uncountable set, and S consist of the finite
subsets of X. Then ϕ = card|S is an outer • premeasure with ϕ• = card and
C(ϕ•) = P(X). Let ψ : T → [0,∞] be an outer • premeasure on Y such that
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for some c ∈ Y one has ψ•({c}) = 0 but ψ•(T ) > 0 for all T ∈ T• with c ∈ T .
For example one can take Y = R and ψ : T = Op(Y ) → [0,∞] the restriction
of Lebesgue measure. Then

ϑ•(E) =

∫

−ψ•(E(·))dϕ• = Σ
x∈X

ψ•(E(x)) = ∞ ∀E ∈ R• with E ⊃ X × {c},

and hence ϑ•(X × {c}) = ∞, whereas ϕ•(X)ψ•({c}) = ∞0 = 0.

Even so the outer proposition 6.5 can be used for the formation of products
in a more conventional spirit: Let α : A → [0,∞] and β : B → [0,∞] be
measures on σ algebras A in X and B in Y . Then R = (A × B)⋆ is an
algebra, and ϑ = α × β : R → [0,∞] is isotone with ϑ(∅) = 0, and modular
and upward σ continuous, and hence after 3.3 an outer σ premeasure. Thus
Θ := ϑσ|C(ϑσ) is a measure which of course extends ϑ = α × β. It could be
named the product of α and β in the traditional abstract sense (and is in fact
the primitive product of α and β in the sense of Fremlin [2000] 251C).

In the same spirit the inner proposition 6.3 can be used as well: As above
R = ([α < ∞]×[β < ∞])⋆ is a ring, and ϑ = (α|[α < ∞])×(β|[β < ∞]) : R →
[0,∞[ is isotone with ϑ(∅) = 0, and modular and downward σ continuous, and
hence after 3.7 an inner σ premeasure. Thus Θ = ϑσ|C(ϑσ) is a measure which
extends ϑ = (α|[α < ∞]) × (β|[β < ∞]) (and is in fact the c.l.d. product of α
and β in the sense of Fremlin [2000] 251F).

In conclusion we return to the inner situation, in order to present the sec-
tional representation theorem, that is the nucleus of the Fubini-Tonelli theorem.

6.7 Theorem (MI 21.19). Let ϕ : S → [0,∞[ and ψ : T → [0,∞[ be
inner • premeasures for some • = στ , and ϑ = ϕ × ψ : R = (S × T)⋆ →
[0,∞[. Assume that E ∈ C(ϑ•) has Pr(E) ⊂ Y contained in some member of
[Ψ < ∞]σ. Then E(x) ∈ C(ψ•) for all x ∈ X except on some N ∈ C(ϕ•) with
Φ(N) = 0. Moreover the function ψ•(E(·)) : X → [0,∞] is measurable C(ϕ•),
and Θ(E) =

∫

−ψ•(E(·))dϕ•.

7. Integral Representations of Functionals

The present section is the precise counterpart for functionals of the outer
and inner • extension theories for set functions in section 3. The functionals
of prime rank, which correspond to the former outer and inner • premeasures,
will be the outer and inner • preintegrals. However, in order to define the •
preintegrals one must know what the • premeasures are. Thus the old dispute
about predominance between set functions and functionals will end this time
in favour of the set functions. Moreover the present development is restricted
to • = στ ; in case • = ⋆ it turns out to be different (MI section 17). We start
from the preparations in section 5.
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Outer and Inner Sources of Functionals

Let X be a nonvoid set. We fix a set of functions E ⊂ [0,∞]X which is
positive-homogeneous with 0 ∈ E and a lattice (as before under the pointwise
∨ and ∧). We shall soon be forced to assume that E is Stonean, but in the basic
theorems we want to avoid the assumption that E be stable under addition.
We define

lm(E) := {[f > t] : f ∈ E and 0 < t < ∞},

um(E) := {[f ≧ t] : f ∈ E and 0 < t < ∞},

which are lattices of subsets with ∅ in X (former notations were lm(E) = >(E)
and um(E) = ≧ (E) = T(E)). For a lattice S with ∅ ∈ S in X one reads
from the definitions that

E ⊂ LM(S) ⇔ lm(E) ⊂ S and E ⊂ UM(S) ⇔ um(E) ⊂ S.

Now let I : E → [0,∞] be an isotone functional with I(0) = 0. We define

an outer source of I to be an isotone ϕ : lm(E) → [0,∞] with ϕ(∅) = 0,
an inner source of I to be an isotone ϕ : um(E) → [0,∞] with ϕ(∅) = 0,

such that ϕ represents I : I(f) =
∫

−fdϕ for all f ∈ E. For this purpose
the domains lm(E) and um(E) are the smallest possible ones. Under the
assumption that E is Stonean the Greco representation theorem 5.7 with the
above equivalences asserts that I has outer/inner sources iff it is Stonean
and truncable. In this case a set function ϕ as above on lm(E)/um(E) is an
outer/inner source of I iff

I⋆(χS) ≦ ϕ(S) ≦ I⋆(χS) for all S ∈ lm(E)/um(E).

Moreover we note that I < ∞ implies that I⋆(χ.) < ∞ on lm(E)/um(E).
Therefore in case I < ∞ all outer and inner sources of I must be finite.

We come to the first step toward the representation theorems.

7.1 Outer Theorem ([1998b] 4.1). Assume that E is Stonean. Then an
isotone I : E → [0,∞] with I(0) = 0 has outer sources which are upward •
continuous iff I is Stonean and upward • continuous. Assume that this holds
true, and put ϕ = I⋆(χ.)|lm(E). Then

1) ϕ is the unique outer source of I which is upward • continuous.

2) ϕ• = I•(χ.).

3) ϕ is submodular ⇔ I is submodular.

4) If I is submodular then I•(f) =
∫

−fdϕ• for all f ∈ [0,∞]X .

7.2 Inner Theorem ([1998b] 4.2). Assume that E is Stonean and ⊂
[0,∞[X . Then an isotone I : E → [0,∞[ with I(0) = 0 has inner sources
which are downward • continuous iff I is Stonean and downward • continu-
ous. Assume that this holds true, and put ϕ = I⋆(χ.)|um(E). Then

1) ϕ is the unique inner source of I which is downward • continuous.

2) ϕ• = I•(χ.).



32 HEINZ KÖNIG

3) ϕ is supermodular ⇔ I is supermodular.

4) If I is supermodular then I•(f) =
∫

−fdϕ• for all f ∈ [0,∞]X .

The Outer Situation

Let E ⊂ [0,∞]X be positive-homogeneous with 0 ∈ E and a Stonean lattice.
An isotone I : E → [0,∞] with I(0) = 0 is called an outer • preintegral
iff it has an outer source which is an outer • premeasure. After 7.1 then
ϕ = I⋆(χ.)|lm(E) is the unique such one. One proves the counterpart of the
former outer • extension theorem which follows.

7.3 Outer • Representation Theorem ([1998b] 5.3). For an isotone
functional I : E → [0,∞] with I(0) = 0 the following are equivalent.

1) I is an outer • preintegral.

2) I is submodular and Stonean and upward • continuous; and I(v) ≧ I(u)+
I•(v − u) for all u ≦ v in E with u < ∞. Furthermore

(•) I•(f) = sup{I•(f ∧ u) : u ∈ [I < ∞]} for all f ∈ [I• < ∞].

3) I is submodular and Stonean and upward • continuous; and I•(v) ≧

I(u) + I•(v − u) for all u ≦ v with u ∈ E and v ∈ E• such that u < ∞.

In this case ϕ = I⋆(χ.)|lm(E) is the unique outer source of I which is an
outer • premeasure. It fulfils I•(f) =

∫

−fdϕ• for all f ∈ [0,∞]X .

Moreover E• ⊂ M(C(ϕ•)), that is the members of E• are measurable C(ϕ•).

We add at once that condition (•) is superfluous for • = σ, because it
follows from 5.10.8.Out) when I is submodular. But in case • = τ it cannot
be dispensed with ([1998b] 5.4).

7.4 Addendum ([1998b] 6.1). Assume that I is is an outer • preintegral,
and put Φ = ϕ•|C(ϕ•). For f ∈ [0,∞]X then the following are equivalent.

1) f is integrable with respect to Φ.

2) inf{
∫

−|f − u|dΦ⋆ : u ∈ S([ϕ < ∞])} = 0.

3) inf{
∫

−|f − u|dΦ⋆ : u ∈ E with u < ∞ and I(u) < ∞} = 0.

This addendum extends a fundamental equivalence from the traditional • =
στ representation theories (see section 8 below). We turn to the counterpart
of the specialization 3.3. It deserves particular attention because it comprises
all those traditional • = στ representation theories. The decisive assumption
is of course ii).

7.5 Specialization. Assume that

i) E is stable under addition, and hence a Stonean lattice cone with 0 ∈ E;

ii) v − u ∈ E• for all u ≦ v in E with u < ∞;

and that I : E → [0,∞] is isotone with I(0) = 0 and additive. Then in 7.3 the
equivalent condition 3) reduces to

3) I is upward • continuous.
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In fact, the new condition is necessary. So assume that it is fulfilled. To
be shown is the last part in the previous condition 3). Thus fix u ∈ E and
v ∈ E• with u ≦ v and u < ∞. Then first of all v − u ∈ E•. For h ∈ E
with h ≦ v − u we have I•(v) ≧ I(u + h) = I(u) + I(h). It follows that
I•(v) ≧ I(u) + I⋆(v − u) = I(u) + I•(v − u). ¤

The Inner Situation

As before the inner situation requires finiteness assumptions. Let E ⊂
[0,∞[X be positive-homogeneous with 0 ∈ E and a Stonean lattice. An isotone
I : E → [0,∞[ with I(0) = 0 is called an inner • preintegral iff it has an inner
source which is an inner • premeasure. After 7.2 then ϕ = I⋆(χ.)|um(E) is
the unique such one. As before one proves the counterpart of the former inner
• extension theorem 3.5, and for the same reason as before one needs certain
satellites of the inner • envelopes I• of I: For v ∈ E we define Iv

•
: [0,∞]X →

[0,∞] to be

Iv
•
(f) = sup{ inf

u∈M
I(u) : M ⊂ E nonvoid • with M ↓≦ f

and u ≦ v for all u ∈ M}.

These satellites are isotone and fulfil sup
v∈E

Iv
•

= I•; moreover we have I⋆(f) ≦

Iv
•
(f) when f ≦ v.

7.6 Inner • Representation Theorem ([1998b] 5.8). For an isotone
functional I : E → [0,∞[ with I(0) = 0 the following are equivalent.

1) I is an inner • preintegral.

2) I is supermodular and Stonean and downward • continuous; and I(v) ≦

I(u) + I•(v − u) for all u ≦ v in E.

3) Iis supermodular and Stonean and downward • continuous at 0; and
I(v) ≦ I(u) + Iv

•
(v − u) for all u ≦ v in E.

In this case ϕ = I⋆(χ.)|um(E) is the unique inner source of I which is an
inner • premeasure. It fulfils I•(f) =

∫

−fdϕ• for all f ∈ [0,∞]X .

Moreover E• ⊂ M(C(ϕ•)), that is the members of E• are measurable C(ϕ•).

7.7 Addendum ([1998b] 6.2). Assume that I is an inner • preintegral, and
put Φ = ϕ•|C(ϕ•). For f ∈ [0,∞]X then the following are equivalent.

1) f is integrable with respect to Φ.

2) inf{
∫

−|f − u|dΦ⋆ : u ∈ S(um(E))} = 0.

3) inf{
∫

−|f − u|dΦ⋆ : u ∈ E} = 0.

The subsequent counterpart of the specialization 3.7 comprises the tradi-
tional • = στ representation theories like the above 7.5, but it will be seen to
do better.

7.8 Specialization. Assume that

i) E is stable under addition, and hence a Stonean lattice cone with 0 ∈ E;

ii) v − u ∈ E• for all u ≦ v in E;
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and that I : E → [0,∞[ is isotone and additive (which implies that I(0) = 0).
Then in 7.6 the equivalent condition 3) reduces to

3) I is downward • continuous at 0.

In fact, to be shown is the last part in the previous condition 3). Thus let
u ≦ v in E, and fix M ⊂ E nonvoid • with M ↓ v − u such that h ≦ v for all
h ∈ M . For h ∈ M then v − u ≦ h and hence I(v) ≦ I(u + h) = I(u) + I(h).
It follows that I(v) ≦ I(u) + inf

h∈M
I(h) ≦ I(u) + Iv

•
(v − u). ¤

The General Riesz Representation Theorem

The remainder of the article consists of two applications of the representation
theorems of the present section. We start here with an extension of the Riesz
representation theorem from locally compact to arbitrary Hausdorff topological
spaces. It is based on the full inner • representation theorem 7.6 in the version
• = τ . The second application will be the topic of the final section. It will be
based on the two specializations 7.5 and 7.8.

Let X be a Hausdorff topological space. We define CK(X) ⊂ USCK(X) ⊂
[0,∞[X to consist of the continuous and of the upper semicontinuous functions
f : X → [0,∞[ which vanish outside of certain compact subsets of X. These
functions have compact level sets [f ≧ t] for 0 < t < ∞.

We fix a Stonean lattice cone E ⊂ USCK(X) with 0 ∈ E. Examples are E =
CK(X) and E = USCK(X) themselves. Thus um(E) ⊂ Comp(X), and hence
also (um(E))τ ⊂ Comp(X). We define E to be rich iff (um(E))τ = Comp(X).
Of course E = USCK(X) itself is rich.

7.9 Remark (MI 16.3). E = CK(X) is rich iff X is locally compact.

In fact, if E = CK(X) is rich then for each compact K ⊂ X there are
f ∈ CK(X) and 0 < t < ∞ with K ⊂ [f ≧ t]. Thus K ⊂ [f ≧ t] ⊂ [f > s] ⊂
[f ≧ s] for 0 < s < t, where [f > s] is open and [f ≧ s] is compact. As to the
opposite direction, it is well-known for locally compact X that each compact
K ⊂ X is the intersection of the [f ≧ 1] extended over the f ∈ CK(X) with
χK ≦ f . ¤

We turn to functionals. We start with a fundamental observation.

7.10 Dini Consequence (MI 16.4). If E is rich then all isotone and
positive-homogeneous I : E → [0,∞[ are downward τ continuous at 0.

In fact, let M ⊂ E be nonvoid with M ↓ 0. We can assume that there is
some P ∈ M with u ≦ P ∀u ∈ M . Let K ⊂ X be compact with [P > 0] ⊂ K
and hence with [u > 0] ⊂ K ∀u ∈ M . Then in view of richness let Q ∈ E
be such that K ⊂ [Q ≧ 1]. For u ∈ M then u ≦ (sup u)Q and hence I(u) ≦

(sup u)I(Q), with of course sup u = sup(u|K). Thus the assertion follows from
the Dini theorem. ¤

Now assume that E be rich. An isotone I : E → [0,∞[ with I(0) = 0 is an
inner τ preintegral iff there exists an inner τ premeasure ϕ : um(E) → [0,∞[
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with I(f) =
∫

−fdϕ for all f ∈ E. After 3.8.Inn) and (um(E))τ = Comp(X)
it is equivalent that there exists a Radon premeasure ψ : Comp(X) → [0,∞[
with I(f) =

∫

−fdψ for all f ∈ E. In this case we see from 7.6 and 3.8.Inn) that
both ϕ and ψ are unique: We have ϕ = I⋆(χ.)|um(E) and ψ = ϕτ |Comp(X) =
ϕ⋆|Comp(X) from 2.2.3.Inn). From this one obtains for K ∈ Comp(X) that

ψ(K) = ϕ⋆(K) = inf{ϕ(A) = I⋆(χA) : A ∈ um(E) with A ⊃ K}

= inf{I⋆(χ[u≧1]) : u ∈ E with [u ≧ 1] ⊃ K}

= inf{I(v) : u, v ∈ E with [v ≧ 1] ⊃ [u ≧ 1] ⊃ K}

= inf{I(v) : v ∈ E with v ≧ χK} = I⋆(χK),

so that ψ = I⋆(χ.)|Comp(X). We also recall from 3.8.Inn) that ϕτ = ψτ = ψ⋆.

We combine all this with 7.6 in case • = τ to obtain the Riesz representation
theorem in the comprehensive version which follows.

7.11 Riesz Representation Theorem. Let E ⊂ USCK(X) be a rich
Stonean lattice cone with 0 ∈ E. Then for an isotone and positive-linear
(:=additive and positive-homogeneous) functional I : E → [0,∞[ there exists
a Radon premeasure ψ : Comp(X) → [0,∞[ such that I(f) =

∫

−fdψ for all
f ∈ E iff

(0) I(v) ≦ I(u) + Iv
τ (v − u) for all u ≦ v in E.

In this case ψ = I⋆(χ.)|Comp(X) is the unique such Radon premeasure on X.
It fulfils Iτ (f) =

∫

−fdψτ for all f ∈ [0,∞]X .

Moreover Eτ ⊂ M(C(ψτ )), that is the members of Eτ are measurable C(ψτ ).

7.12 Addendum. Assume in addition that v − u ∈ Eτ for all u ≦ v in E.
Then each isotone and positive-linear functional I : E → [0,∞[ fulfils (0), and
hence fulfils the assertions of the above theorem.

This addendum follows from 7.8. In particular it combines with 7.9 to furnish
the traditional Riesz representation theorem E = CK(X) for locally compact
X. We repeat that the new theorem contains no trace of local finiteness.

In conclusion we note that our inner • = τ representation theorem 7.6 is
capable of a multitude of further Riesz type representation theorems. There
are quite some examples in MI section 16 and in [2000b] section 3.

8. Comparison with the Traditional Daniell-Stone and

Bourbaki Procedures

The final section compares the traditional Daniell-Stone procedure and its
amendment in terms of the so-called essential formation due to Bourbaki with
the present outer and inner • representation theories in section 7, of which this
time the specializations 7.5 and 7.8 are the adequate versions. The comparison
with the essential formation requires some ad hoc work within the present
theories, but the result will be remarkable.
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The Traditional Daniell-Stone Procedure

For this procedure we refer to Pfeffer [1977], Floret [1981], and Leinert [1995].
Let F ⊂ R

X be a Stonean lattice subspace of real-valued functions on a nonvoid
set X, that is a linear subspace which is stable under the pointwise formations
∨ and ∧ and fulfils f ∈ F ⇒ f ∧ t ∈ F for 0 < t < ∞. We fix an isotone
and linear (=:positive linear) functional J : F → R. We assume from the
start that J is • continuous in the obvious sense, once more with • = στ ; note
that upward and downward • continuous amount to the same. This time the
different models for envelope formation amount to the same, because one can
at once pass from series to sequences. Thus one defines the outer • envelopes

J• : R
X
→ R to be

J•(f) = inf{sup
u∈M

J(u) : M ⊂ F nonvoid • with M ↑≧ f}.

It is then common to define J• : R
X

→ R to be J•(f) = −J•(−f), which of
course amounts to

J•(f) = sup{ inf
u∈M

J(u) : M ⊂ F nonvoid • with M ↓≦ f}.

The properties below are all obvious except the last one; for its proof we refer
to the author’s paper [1992a] 5.1.

8.1 Properties. 0) J•|F = J .

1) J• is isotone and positive-homogeneous with J•(0) = 0.

2) J• is subadditive for the addition +̇. Hence J• ≦ J•.

3) For f ∈ R
X

one has the equivalence

inf
u∈F

J•(|f − u|) = 0 ⇐⇒ J•(f) = J•(f) ∈ R.

The basic idea of the Daniell-Stone procedure is to define a function f ∈ R
X

to be • integrable for J iff it satisfies the two equivalent conditions in 8.1.3)
above. We then write J•(f) = J•(f) =: J•(f) ∈ R. The class of these
functions will be denoted •Int(J).

After this one passes to a certain set function. One forms the set systems
m := {A ⊂ X : χA ∈ •Int(J)} and M := m⊤m, the members of which are
called the •integrable and the •measurable subsets for J . Define β : M → [0,∞]
to be β(A) = J•(χA) for A ∈ m and β(A) = ∞ for A ∈ M not in m. The
traditional main theorem then reads as follows.

8.2 Theorem. β : M → [0,∞] is a measure on the σ algebra M. A func-

tion f ∈ R
X

is in •Int(J) iff it is integrable with respect to β. In this case
J•(f) =

∫

fdβ.

In most of the presentations which are based on functionals one is content
with the platform thus achieved, and the above theorem forms their centre
of development for measure and integration in some sense or other. However,
in the topological situation Bourbaki [1967] Préface and Schwartz [1973] p.16
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noted that the functionals J• with their descendants •Int(J) and β be less
adequate than desirable, and in order to overcome this flaw they built another
level on top of the edifice in form of their essential construction.

In fact, the subsequent comparison with the development of the present
article will make clear that these complaints are justified in full. But it will also
become clear that our procedure renders the essential construction superfluous
at all, and this for the simple reason that it is a procedure which runs on both
the outer and the inner road from the start.

Preparations for the Comparison

We collect a few simple facts. Let X be a nonvoid set. 1) The Stonean
lattice subspaces F ⊂ R

X are in one-to-one correspondence with the Stonean
lattice cones E ⊂ [0,∞[X such that 0 ∈ E and v − u ∈ E for all u ≦ v in E,
via each of the two maps

F 7→ E := F ∩ [0,∞[X= {f ∈ F : f ≧ 0} = {f+ = f ∨ 0 : f ∈ F}, and

E 7→ F := E − E,

which are inverse to each other. In fact, the unique nontrivial point is the
relation

(v − u) ∧ t = v − (v − t)+ ∨ u for u, v, t ∈ R with u ≧ 0,

which ensures that the second of these maps is well-defined.

2) Fix F ⊂ R
X and E ⊂ [0,∞[X as in 1). Then the isotone and linear

functionals J : F → R are in one-to-one correspondence with the positive-
linear and hence isotone functionals I : E → [0,∞[, via J 7→ I := J |E. Also
J is • continuous as defined above iff I is upward • continuous /downward •
continuous/downward • continuous at 0 as defined earlier, notions which all
coincide under the present particular form of E. Moreover we claim that in
this case

I• = J•|[0,∞]X and I• = J•|[0,∞]X .

To see the first relation for f ∈ [0,∞]X , note that I•(f) ≧ J•(f) is clear. To
prove I•(f) ≦ J•(f) let M ⊂ F be nonvoid • with M ↑ P ≧ f . For fixed
v ∈ M then {u ∧ v+ : u ∈ M} ⊂ F is nonvoid • with ↑ P ∧ v+ = v+, so that
J(v+) = sup

u∈M

J(u ∧ v+) ≦ sup
u∈M

J(u). Since {v+ : v ∈ M} ⊂ E is nonvoid •

with ↑ P ≧ f , it follows that

I•(f) ≦ sup
v∈M

I(v+) = sup
v∈M

J(v+) ≦ sup
u∈M

J(u),

and hence the assertion. The proof of the second relation is similar, but much
simpler.

Thus we have paved the road which permits to pass from one situation to
the other.
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Return to the • Representation Theorems

After this we return to section 7 for recollection of the specializations 7.5
and 7.8 and an important addendum.

Let E ⊂ [0,∞[X be a Stonean lattice cone such that 0 ∈ E and v − u ∈
E for all u ≦ v in E. Assume that the positive-linear and hence isotone
functional I : E → [0,∞[ is • continuous as above. Thus I is an outer and
inner • preintegral. The set function ψ = I⋆(χ.)|lm(E) is the unique outer •
premeasure on lm(E) such that I(f) =

∫

−fdψ for all f ∈ E. It fulfils

I•(f) =

∫

−fdψ• for all f ∈ [0,∞]X ,

and E• ⊂ M(C(ψ•)). Likewise the set function ϕ = I⋆(χ.)|um(E) is the unique
inner • premeasure on um(E) such that I(f) =

∫

−fdϕ for all f ∈ E. It fulfils

I•(f) =

∫

−fdϕ• for all f ∈ [0,∞]X ,

and E• ⊂ M(C(ϕ•)). The addendum announced above now reads as follows.

8.3 Proposition ([1999b] 5.3). 1) The lattices S := um(E) and T := lm(E)
fulfil T ⊂ (S⊤S)⊥ and S ⊂ (T⊤T)⊥, and hence are • complemental.

2) The • premeasures ϕ : S → [0,∞[ and ψ : T → [0,∞] are • complemen-
tal, that is they are both • tame and fulfil ψ = ϕ•|T and ϕ = ψ•|S.

For the proof of 1) we refer to the cited source, but we include the proof of
2) in an improved version. i) We know from the initial part of section 7 that
I < ∞ implies that ψ < ∞. ii) Each S ∈ S is contained in some T ∈ T. In
fact, one has [f ≧ s] ⊂ [f > t] for f ∈ E and 0 < t < s < ∞. iii) From i)ii)
we see that ψ•|S < ∞. iv) 3.6.ii) implies that ϕ•|T is upward • continuous.
Likewise 3.2.ii) implies that ψ•|S is almost downward • continuous, and hence
downward • continuous in view of iii). v) Now the functions f ∈ E are in
UM(S) and in LM(T). Therefore

I(f) = I•(f) =

∫

−fdψ• =

∫

−fd(ψ•|S),

I(f) = I•(f) =

∫

−fdϕ• =

∫

−fd(ϕ•|T).

Thus ψ•|S is an inner source of I, and since it is downward • continuous by iv)
it follows from 7.2 that ψ•|S = ϕ. Likewise it follows from 7.1 that ϕ•|T = ψ.
vi) The inner • premeasure ϕ is • tame. In fact, for S ∈ S there exists a
T ∈ T with S ⊂ T by ii), and from v)i) we obtain ϕ•(T ) = ψ(T ) < ∞. Now
from 4.6 the assertion follows. ¤

Thus we have from 4.6 and 4.8 the two maximal • extensions Φ = ϕ•|C and
Ψ = ψ•|C on the same C(ϕ•) = C(ψ•) =: C, and the measure δ := Ψ \ Φ on C
which fulfils Φ+ δ = Ψ and attains but the values 0 and ∞. We repeat that in
face of this situation the inner • procedure and its result Φ appear to be more
profound than the outer • procedure and its result Ψ.
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The First Step of Comparison

After this extended recollection we take up the comparison. We fix F ⊂ R
X

and J : F → R and their E := F ∩ [0,∞[X and I := J |E as before. The com-
parison will use the results of the new outer and inner • procedures, whereas
the traditional main theorem 8.2 will not be used but will be reobtained at
once. The fundamental link is the relation

J•(f) = I•(f) =

∫

−fdψ• =

∫

−fdΨ⋆ for f ∈ [0,∞]X ,

where 3.9.Out) has been applied.

8.4 Theorem ([1999b] 5.2). i) A function f ∈ [0,∞]X is in •Int(J) iff it
is integrable with respect to Ψ, that is measurable C with

∫

fdΨ < ∞. In this
case J•(f) =

∫

fdΨ; we have even J•(f) =
∫

−fdΨ⋆ for all f ∈ [0,∞]X . ii)
β = Ψ on M = C.

Proof. i) A function f ∈ [0,∞]X is defined to be in •Int(J) iff inf{J•(|f−u|) :
u ∈ F} = 0, which in view of |f −u+| ≦ |f −u| can be written inf{J•(|f −u|) :
u ∈ E} = 0. After the above fundamental relation combined with 7.4 this
means indeed that f is integrable with respect to Ψ. ii) A subset A ⊂ X is
defined to be in m iff χA ∈ •Int(J), hence by i) iff A ∈ C with Ψ(A) < ∞,
and then β(A) = J•(χA) = Ψ(A). Thus m = [Ψ < ∞]. This implies that
M = m⊤m = [Ψ < ∞]⊤[Ψ < ∞] fulfils C ⊂ M ⊂ [Ψ < ∞]⊤C ⊂ C and hence
M = C. Then after all β = Ψ from its definition. ¤

In view of this theorem the objections which came from Bourbaki [1967]
and Schwartz [1973] can be understood only too well: The traditional Daniell-
Stone procedure does not lead to the most appropriate result Φ, but to the
less appropriate Ψ. For the supporters of that procedure this fact must be a
disappointment, because the equivalence in 8.1.3) seemed to indicate that the
method takes equal care of both outer and inner aspects. But this is not so,
since as we have seen the heart of the procedure is an approximation in the
seminorm J•(| · |) and hence of outer nature.

If for all that one wanted to retain the basic idea of the approach, that is to
form first of all the class of integrable functions with respect to the functional
J itself, before it comes to measures if at all, then it looks mysterious how the
procedure could be modified in order to lead to the result Φ instead of Ψ. In
fact, one would need another seminorm in place of J•(| · |), that is another
sublinear functional in place of J•, so that J• were out of consideration.

But the question found a certain positive answer in Bourbaki [1956] with
the functional [J•] : [0,∞]X → [0,∞], defined to be

[J•](f) = sup{J•(u) : u ∈ [0,∞]X with u ≦ f and J•(u) < ∞},

and called the essential upper integral attached to J•, or rather to J•|[0,∞]X .
One verifies that [J•] is indeed isotone and sublinear. Thus it is reasonable to
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define a function f ∈ R
X

to be essentially • integrable for J iff

inf
u∈F

[J•](|f − u|) = 0.

The class of these functions will be denoted •EssInt(J). As before one then
passes to a certain set function. It is of course the hope and expectation that,
in the terms of the present article, this set function will turn out to be the
above measure Φ.

As before we shall not pursue this development, but rather relate it to the
present outer and inner • procedures with the means of these procedures. This
will require some ad hoc work within these procedures under the headline of an
essential formation, which in our context stands somewhat apart and therefore
will be put into a separate subsection.

The Essential Formation

Let S be a lattice with ∅ ∈ S in X. For ϕ : S → [0,∞] isotone with
ϕ(∅) = 0 and submodular we define the essential satellite ϕ◦ : P(X) → [0,∞]
to be ϕ◦ = (ϕ|[ϕ < ∞])⋆. Note that the assumption submodular implies that
[ϕ < ∞] ⊂ S is a lattice as well.

8.5 Properties ([1998a] 6.1). 1) ϕ◦ ≦ ϕ on S, and ϕ◦ = ϕ on [ϕ < ∞].

2) ϕ◦ is isotone with ϕ◦(∅) = 0, and ϕ◦|S is submodular.

3) ϕ is upward • continuous ⇒ ϕ◦ is upward • continuous.

4) In case S = P(X) we have C(ϕ◦) = C(ϕ).

We see that the essential formation is of a hybrid nature: It is a formation of
inner type, but its formal properties are those of an outer formation. Therefore
it has no central place in our systematic theories. For the actual purpose we
need some further details in the special cases of contents and measures ([1998a]
6.2).

⋆) Let α : A → [0,∞] be a content on an algebra A. We see from 3.3 and
3.7 that α and α|[α < ∞] are outer ⋆ premeasures and α|[α < ∞] is an inner ⋆
premeasure. One verifies that α⋆ = (α|[α < ∞])⋆. Therefore 3.10 implies that
C(α⋆) = C(α◦) =: C ⊃ A.

σ) Let α : A → [0,∞] be a measure on a σ algebra A. We see from 3.3 and
3.7 that α and α|[α < ∞] are outer σ premeasures and α|[α < ∞] is an inner σ
premeasure. One verifies that ασ = (α|[α < ∞])σ is = α⋆ = (α|[α < ∞])⋆, and
that (α|[α < ∞])σ is = (α|[α < ∞])⋆ = α◦. Therefore C ⊃ A is a σ algebra,
and α⋆|C and α◦|C are measures.

At this point we insert a consequence which is needed in order to prove the
above theorem 4.9 on the quasi-Radon measures of Fremlin [1974][2000]. It
has a routine proof.

8.6 Consequence. Let α : A → [0,∞] be a measure on a σ algebra A.
Then α is complete and saturated iff C = A.
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The central result of the subsection is the theorem which follows. It is also
in Fremlin [2000] exercise 213X(g). The result will be used in form of the
specialization 8.8.ii) below.

8.7 Theorem ([1998a] 6.3). Let α : A → [0,∞] be a measure on a σ algebra
A. Then (α⋆)◦ = (α◦|C)⋆.

We turn to the context which will be needed for the present purpose.

8.8 Theorem ([1998a] 6.5). Assume that ϕ : S → [0,∞[ and ψ : T → [0,∞]
form a • complemental couple of • premeasures with Φ = ϕ•|C and Ψ = ψ•|C
on C(ϕ•) = C(ψ•) =: C, once more with • = στ .

i) We have Ψ◦ = Φ◦ = ϕ•. In particular Ψ◦|C = Φ.

ii) From i) and 8.7 we have (Ψ⋆)◦ = (Φ⋆)◦ = Φ⋆.

Proof. i) We look at the restrictions of ϕ• to the members of the chain
S• ⊂ [Ψ < ∞] ⊂ [Φ < ∞] ⊂ P(X), and recall from 4.6 that Ψ = Φ on
[Ψ < ∞]. Then the inner ⋆ envelopes of these restrictions fulfil

ϕ• = (ϕ•|S•)⋆ ≦ (Ψ|[Ψ < ∞])⋆ ≦ (Φ|[Φ < ∞])⋆ ≦ ϕ•.

Thus we have the assertion. ii) then indeed follows from 8.7. ¤

The subsection concludes with the essential formation for functionals. For
T : [0,∞]X → [0,∞] isotone and sublinear we define the essential satellite
T◦ : [0,∞]X → [0,∞] to be T◦ = (T |[T < ∞])⋆.

8.9 Properties ([1998a] 9.2). 1) T◦ ≦ T , and T◦ = T on [T < ∞].

2) T◦ is isotone and sublinear.

3) T is upward • continuous ⇒ T◦ is upward • continuous.

The final result asserts that the two essential formations are related in the
natural manner.

8.10 Proposition ([1998a] 9.3). Let Θ : P(X) → [0,∞] be isotone with
Θ(∅) = 0 and submodular. Define T : [0,∞]X → [0,∞] to be T (f) =

∫

−fdΘ,
so that T is isotone and sublinear. Then T◦(f) =

∫

−fdΘ◦ for all f ∈ [0,∞]X .

The Second Step of Comparison

We fix F ⊂ R
X and J : F → R and their E := F ∩ [0,∞[X and I := J |E

as before. After the last subsection the second step of comparison will be a
matter of a few lines.

8.11 Theorem ([1999b] section 5). A function f ∈ [0,∞]X is in •EssInt(J)
iff it is integrable with respect to Φ, that is measurable C with

∫

fdΦ < ∞. In
this case [J•](f) =

∫

fdΦ; we have even [J•](f) =
∫

−fdΦ⋆ for all f ∈ [0,∞]X .

Proof. From the former fundamental relation J•(f) =
∫

−fdΨ⋆ for f ∈
[0,∞]X and from the definition [J•] = (J•|[0,∞]X)◦ combined with 8.10 we
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obtain [J•](f) =
∫

−fd(Ψ⋆)◦ for f ∈ [0,∞]X . Thus 8.8.ii) furnishes

[J•](f) =

∫

−fdΦ⋆ for f ∈ [0,∞]X .

Now a function f ∈ [0,∞]X is in •EssInt(J) iff inf{[J•](|f − u|) : u ∈ E} = 0,
as before in view of |f − u+| ≦ |f − u| for u ∈ F . According to 7.7 this means
that f is integrable with respect to Φ. ¤

At the end of the section it should be clear that we did not claim too much:
The Bourbaki version of the Daniell-Stone procedure with its two steps

first to form J• in order to obtain the measure Ψ, and
then to form [J•] in order to obtain the measure Φ,

represents an enormous complication and detour when compared with the
outer and inner • representation theories of section 7. The unique treatise after
Bourbaki [1967] and Schwartz [1973] known to the author with full treatment
of the second step is Anger-Portenier [1992]. We have said that as a rule the
treatises on measure and integration which are based on functionals are content
with the traditional first step, even though it ends with the less favourable β =
Ψ. However, Leinert [1995] chapters 4 and 14 proceeds to define Φ := β◦|M
and to develop some of its properties, in particular that Φ = J•(χ.)|M and
that Φ is inner regular S•.

We conclude to recall that the • representation procedures in section 7 are
much more comprehensive than the earlier theories considered in the present
section. In fact, our comparison did not invoke section 7 but on the level of
its specializations 7.5 and 7.8.
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Bassanezi, R.C. and G.H.Greco [1984] Sull’additività dell’integrale. Rend.
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