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� Introduction

There are several algorithms known deciding the word problem of general
context�free languages in time O�n��� The algorithm of Younger �You��� is
very simple and it solves the problem in timeO�n��� but it takes no advantage
of special cases� Kasami in �KT�	� describes an algorithm� which decides this
problem for unambiguous context�free grammars in time O�n� logn�� Early
�Ear�
� developed an algorithm which decides the general word problem in
time O�n�� but does it for unambiguous grammars in time O�n�� and for
a wide class of grammars as LR�k� grammars �Knu��� in time O�n�� His
algorithm takes no advantage of grammars in a normal form� The proofs are
hard to read� We present here a simple algorithm with the same runtime
e�ciency as Early
s algorithm�

� Notations and De�nitions

Let V� T be �nite alphabets� V � T � �� S � V and P � �V � V ��� �V � T �
a c� f� production system in Chomsky normal form �Ch�NF�� We assume
that the grammar G �� �V� T� P� S� does not contain super�uous variables�
That means for each x � V we �nd u�� u�� u � T � such that x �� u and
s �� u�xu� holds�

We de�ne linear forms with variables from V and coe�cients from the boo�
lean algebra B � These are mappings

� � V �� B

and we write B hV i �� f� j � � V �� B g� We use the equivalent notation

� ��
X

v�V

��v� 	 v

We de�ne the sum and a product in B hV i � As usual we put

�� � ���v� �� ��v� � ��v� for v � V�

The product x 
 y for x� y � V gives all possible reductions of xy relative to
P � More formally we de�ne

x 
 y ��
X

z�V

��z� 	 z �� ���z� � ��� �z� xy� � P�

Now we put

� 
 � ��
X

x�y�V

��x� 	 ��y� 	 �x 
 y��
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we use in this de�nition for � � B and � � B hV i the operation �� 	���v� � � 	
��v� for v � V� The product �
� is not associative� �B hV i��� 
� is distributive�
We use furthermore the notation

P���t� �
X

z�V

�t
z 	 z� �

t
z � ��� �z� t� � P�

If the operation �
� is associative then for u � t� 	 � � � 	 tn and ��u� ��
P���t�� 
 � � � 
 P���tn� we have

u � L�G��� ��u��s� � ��

In this case �B hV i� 
� is a �nite monoid and P�� � T � �� �B �V �� 
� is a
homomorphism and therefore L�G� is regular�

� The Graph ��G� u�

We assign to the grammar G and u � T � an oriented graph � � �K�E�� K
is the set of vertices and E the set of edges and n �� juj the length of u�

K � f�v� i� 	� j v � V� � 	 i 
 ng

� f�v� i� �� j v � V� � 
 i 	 n � �g

E � f��v� i� ��� �v� j� 	�� j V �� ti 	 � � � 	 tj��� � 
 i 	 j 
 n � �g

Obviously it holds

u � L�G��� ��s� �� ��� �s� n� 	�� � E�

The graph � is closed under the following operation� Let be i 	 j 	 m

�x� i� ��
s��� �x� j� 	��

�y� j� ��
s��� �y�m� 	�

edges of � and

� �� x 
 y�

If ��z� � �� then the edge

�z� i� ��
s��� �z�m� 	�
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is in �� We write in this case s� �� s� 
 s�� in general there may be several
edges s�� in the relation s�� �� s� 
 s��

This closure property corresponds to

x �� ti 	 � � � 	 tj���

y �� tj 	 � � � 	 tm��

and

z �� xy�

Therefore we have z �� t� 	 � � � 	 tm�� and from this follows by de�nition of
�� that s� is in E�

Lemma �� If there are two di�erent operations producing the same edge s��
then G is ambiguous�

Proof �� Let s�� s� and s��� s
�

� two pairs of edges from � producing under the
explained operation the edge s�� then we have the two di�erent derivations

z �� xy� x �� u�� y �� u�� u� � u� 	 u�
z �� x�y�� x� �� u��� y� �� u��� u� � u�� 	 u

�

��

Now we assume G not containing super�uous variables� Therefore exist the
derivations

s �� 
uzu �� 
uu� 	 u�u � 
uu�� 	 u
�

� 	 u � T ��

So we have more than one derivation of 
uu�u from S� i�e� G is ambiguous�

� The algorithm

We now construct a sequence ������ � � � ��n of subgraphs of � such that ��
depends only on t� and with �n � �� We give an operation which constructs
�i�� from �i and estimate the complexity of this operation�

Let �i �� �Ki� Ei� for i � �� � � � � n and

Ki �� �v� l� 
� � K j � 
 l 
 i� 
 � f	� �gg � f�x� i� �� 	� j x � V g�

Ei �� fs � E j source�s�� sink�s� � Kig�

The construction of �� can be done in time O����
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We assume �i� i 	 n has been constructed�

We add ti�� and f�v� i � �� �� j v � V � fv� i � �� 	� j v � V g to Ki� We in
the �rst step add the following edges of E to Ei�

�v� i� �� �� �� �v� i� �� 	� for v �� ti���

Let ��i the result of this construction�
Now we apply the closure operations

s� 
 s� �� s�

to edges s�� s� from ��i� �i being closed under these operations we have to
begin with the new edges in ��i� We have the following situation

�x� j� ��
s��� �x� i � �� 	�

�y� i� �� ��
s��� �y� i� �� 	��

We built from s� 
 s�

�z� j� ��
s��� �z� i � �� 	��

if �z� xy� � P �

Iterating this construction in the worst case we need O�n�� elementary ope�
rations to construct �i�� from �i� because each edge of ��i we have to consider
only once�

To construct �n by this procedure therefore needs in the worst case O�n��

�operations�

If the grammar is unambiguous we construct each edge only one time� Ope�
rations s� 
 s� which do not produce a new edge we are able to exclude by
only once inspecting the pairs of vertices �x� l� 	�� �y� l� ��� If x 
 y � 	� then
none of the pairs

s��� �x� l� 	�

�y� l� ��
s���

has to be considered� Therefore in this case we need only O�n�� steps because
this is the bound for the number of edges in �� So we proved the

Theorem �� The algorithm de�ned here solves the word problem for c� f�

languages in time O�n��� In the case of unambiguous grammars the running

time of the algorithm is O�n���
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Corollar �� The algorithm solves the word problem in the case of grammars

with m�bound ambiguity in time O�n� 	m��

Proof �� From the m�bound ambiguity it follows that the algorithm draws
each new edge maximal m times�

Now we study the case G is a LR�k� grammar�

LR�k� grammars are characterized by the following property� For uvu� �
L�G� and jvj � k let w�� � � � � wl be the reduced words of u 	 v relative to G�
Then the set of this words has a common pre�x u� where u is a reduced word
of u� such that we can write

w� � � � �� wl � u 	 �v� � � � �� vl�� jvij 
 k for i � �� � � � � l�

This property enables us to compute an upper bound for the number j�ij of
edges in �i�

Obviously we have

j��j 
 m for m �� �V�

We assume �i being constructed� We then get �i�� by the following steps�

�� We compute P���ti���� which produces not more than m new edges�

�� We match the new edges with the existing edges� This leads to new
edges connecting vertices belonging to

�v� � � � �� vl� 	 P
���ti���g

and edges connecting vertices belonging to vti�� with edges belonging
to u�

The number of edges belonging to the �rst class is bound by a constant c
depending on m � �V and k� The number of the edges belonging to the
second class is 	 if ui is pre�x of ui��� It is � if jui��j � juij and it is juij�jui��j
if reductions of the reduced word ui take place� So we have

j�i��j 
 j�ij� C � juij � jui��j� ��

From this we get

j�nj � O�n��

From this follows

Theorem �� The given graph algorithm solves the word problem for LR�k�
grammars G �� �V� T� P� S� and words w � T � with � O�n� 
�operations�

It is obvious that the 
�operations can be performed on a computer in time
only depending on G� This means that it can be done in constant time
relative to jwj�
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