
NP-hard Networking Problems

Exact and Approximate Algorithms

Dissertation zur Erlangung des Grades
des Doktors der Naturwissenschaften (Dr. rer. nat.)
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

vorgelegt von

Rouven Naujoks

Saarbrücken
2008

Tag des Kolloquiums: 22. Dezember 2008

Dekan der Naturwissenschaftlich-Technischen Fakultät I:
Professor Dr. Joachim Weickert

Berichterstatter:
Professor Dr. Kurt Mehlhorn, Max-Planck-Institut für Informatik, Saarbrücken
Priv.-Doz. Dr. Ernst Althaus, Max-Planck-Institut für Informatik, Saarbrücken
Professor Dr. Stefan Funke, Universität Greifswald

Mitglieder des Prüfungsausschusses:
Professor Dr. Joachim Weickert (Vorsitzender)
Professor Dr. Kurt Mehlhorn
Priv.-Doz. Dr. Ernst Althaus
Dr. Stefan Canzar

meiner Großmutter

Acknowledgements

First of all, I would like to thank my supervisor, Ernst Althaus, for his help, his
support and his collaboration. I would also like to thank Ernst Althaus, Stefan Funke
and Kurt Mehlhorn for agreeing to coreferee this thesis and Stefan Funke, Sören Laue
and Zvi Lotker for the cooperation in various results of this thesis.

Special thanks go to my family and to all my friends.

5

Zusammenfassung

In verschiedenen wissenschaftlichen Disziplinen, wie der Biologie, der Lingustik und
dem Entwurf kabelloser Kommunikationsnetzwerke, wird man mit der Konstruktion
von Verbindungsnetzwerken über einer gegebenen Menge von Objekten konfrontiert.
Diese Netzwerke sollen bestimmte Eigenschaften erfüllen und gleichzeitig eine gegebe-
ne Kostenfunktion minimieren. In dieser Arbeit werden NP-schwere Netzwerkproble-
me dieser Art behandelt. Die Arbeit untergliedert sich in zwei Teile. Im ersten Teil
beschäftigen wir uns hauptsächlich mit dem sogenannten Steinerbaumproblem in der
Hamming-Metrik. Die Berechnung solcher Bäume hat sich als eines der Hauptwerkzeu-
ge in der Rekonstruktion abstammungsgeschichtlicher Beziehungen zwischen Spezien
herausgestellt. Wir geben einen neuen, exakten Algorithmus, welcher der Branch-and-
Bound-Methode von Hendy und Penny deutlich überlegen ist. Diese galt in den letzten
25 Jahren als die schnellste Methode zur Berechnung solcher Bäume. Des Weiteren
stellen wir ein erweitertes Modell vor, welches die Fälle behandelt, in denen die abstam-
mungsgeschichtlichen Beziehungen bestmöglich durch eine nicht baumartige Struktur
beschrieben wird. Im zweiten Teil beschäftigen wir uns mit verschiedenen Problemen,
wie sie bei dem Entwurf kabelloser Ad-hoc-Netzwerke auftreten: Unter denjenigen Kom-
munikationsstrukturen, die bestimmte Kommunikationsarten zulassen, versucht man
diejenige zu finden, welche die Stromaufnahme des Netzwerkes minimiert. Wir zeigen,
wie für diese Probleme approximative Lösungen gefunden werden können.

Abstract

An important class of problems that occur in different fields of research such as bi-
ology, linguistics or in the design of wireless communication networks, deal with the
problem of finding an interconnection of a given set of objects. Additionaly, these net-
works should satisfy certain properties and minimize a certain cost function. In this
thesis, we discuss such NP-hard networking problems in two parts. First, we mainly
deal with the so-called Steiner minimum tree problem in Hamming metric. The com-
putation of such trees has become a key tool for the reconstruction of the ancestral
relationships of species. We give a new exact algorithm that clearly outperforms the
branch and bound based method of Hendy and Penny which has been considered to be
the fastest for the last 25 years. Further, we propose an extended model to cope with
the case in which the ancestral relationships are best described by a non-tree struc-
ture. Finally, we deal with several problems occurring in the design of wireless ad-hoc
networks: While minimizing the total power consumption of a wireless communication
network, one wants to establish a messaging structure such that certain communication
tasks can be performed. We show how approximate solutions can be found for these
problems.

Contents

1 The Steiner Minimum Tree in Hamming Metric Problem 11

1.1 Our Contribution . 12

1.2 Related Work . 13

1.3 Preliminaries . 15

1.3.1 Fitch’s Algorithm . 23

1.4 Pruning Algorithm . 24

1.5 Pruning Tests . 26

1.5.1 Edge Replacement Tests . 26

1.5.2 Topology Replacement Tests . 41

1.5.3 Preprocessing Techniques . 47

1.5.4 Implementation Issues . 48

Cascading Pruning Tests . 48

Amortized Fitch Range Costs . 48

Topology Replacement Tests . 49

1.6 Lower Bounds . 49

1.6.1 Lower Bounds by Minors . 49

1.6.2 Lower Bounds by Dimension Partitioning 50

One-Dimensional Steiner Minimum Trees 53

Two-Dimensional Steiner Minimum Trees 53

Three-Dimensional Steiner Minimum Trees 54

k-Dimensional Steiner Minimum Trees 57

1.6.3 Implementation Issues . 58

Cascading Lower Bounds . 58

Maximum Weight Matchings . 58

Computing the Subproblems . 59

Computing MST Lower Bounds 60

Inner Preprocessing . 61

1.7 Experiments . 61

1.7.1 Running Times . 61

1.7.2 Lower Bounds . 63

1.7.3 Preprocessing . 63

1.8 Conclusion . 63

1.9 An Extension to Recombination Networks 72

6

Contents 7

1.9.1 Model . 72
1.9.2 Related Work . 73
1.9.3 The Algorithm . 74

Preliminaries . 74
Evaluation of a Recombination Network 74
Enumeration Process . 75
Pruning the Search Space . 77
Recombination Phase . 78

1.9.4 Experiments . 79
Fixed Recombination Scenarios 79
Results . 80

1.9.5 Conclusion . 81

2 Problems in Wireless Network Design 83
2.1 Introduction . 83
2.2 Preliminaries . 84
2.3 The k-Station Network/k-Disk Coverage Problem 87

2.3.1 Our Contribution . 87
2.3.2 Related Work . 88
2.3.3 A Small Coreset For k-Disk Cover 88
2.3.4 Algorithms . 91

Discrete Version . 91
Non-Discrete Version . 91

2.3.5 k-Disk Cover With Few Outliers 92
2.4 The k-Hop Multicast Problem . 93

2.4.1 Our Contribution . 94
2.4.2 Related Work . 94
2.4.3 Preliminaries . 95
2.4.4 A Small Coreset For k-hop Multicast 95
2.4.5 Solution Via a Naive Algorithm 97

2.5 The k-Set Broadcast Problem . 97
2.5.1 Our Contribution . 98
2.5.2 Related Work . 99
2.5.3 Preliminaries . 100
2.5.4 Algorithms . 100

A Naive, Brute-Force Algorithm 100
Small Coreset of the Network Topology 101
Faster O(1)-Approximations . 102

2.6 TSP Under Squared Euclidean Distance 105
2.6.1 Our Contribution . 106
2.6.2 Related Work . 106
2.6.3 Why Euclidean TSP Does Not Work 106
2.6.4 A 6-Approximation Algorithm 107

2.7 Conclusion . 108

Bibliography 109

List of Figures

1.1 Three points A, B and C and the corresponding Torricelli point P 11
1.2 The first two levels of the recursion tree of Hendy and Penny’s algorithm. 14
1.3 A concatenation of two rooted topologies. 20
1.4 An example of Fitch’s algorithm on one character terminals. 23
1.5 An example of the propagated Fitch range function on one character

terminals. 29
1.6 An example of the restricted Fitch algorithm on one character terminals. 32
1.7 An example of the non-optimality of the ‖ · ‖m bound. 37
1.8 An example of the MST-substitute property. 45
1.9 An example demonstrating the performance of the MST-substitute test. 46
1.10 An example of the modified counting sort algorithm. 59
1.11 Proof illustration for Lemma 1.11. 61
1.12 The input trees A and B for the Seq-Gen data. 64
1.13 The three different cases occurring in the lower bound pruning step. . . 77
1.14 Pruning by minors. 79

2.1 Points, a range assignment and the induced communication graph. . . . 85
2.2 Covering input points by 3 discs. 87
2.3 Covering input points by 3, ignoring 3 outliers. 92
2.4 A 4-hop multicast communication graph. 94
2.5 A 4 sender broadcast communication graph. 99
2.6 Proof illustration for the constant factor approximation algorithm. . . . 104
2.7 An optimal energy-minimal tour for points on a line 106
2.8 Tree T and its child trees T1, T2, . . . , Tk 106

8

List of Tables

1.1 The effect of the preprocessing methods. 65
1.2 A running time comparison - generated data. 66
1.3 A running time comparison - real life data. 67
1.4 A lower bound comparison. 70
1.5 The comparison of Recco and Recomb. 81
1.6 The reliability of Recomb and maximum parsimony I. 81
1.7 The reliability of Recomb and maximum parsimony II. 81

9

10

Chapter 1
The Steiner Minimum Tree in Hamming

Metric Problem

The Steiner minimum tree problem has a long history starting in the middle of the 17th
century. Pierre de Fermat (1601-1665) stated the following problem: Given three points
A, B and C in the Euclidean plane, find a fourth point P such that the sum of the
lengths of the line segments PA, PB,PC is minimized. The problem was approached
from different points of view by Vincenzo Viviani (1622-1703) and Evangelista Torricelli
(1608-1647) - to who’s honor the point P is also referred to as the Torricelli-point P
(see Figure 1.1). In this context, Bonaventura Cavalieri (1598-1647) should not remain
unmentioned as it was he who found an easy way to construct P by the circumcircles
of the isosceles triangles attached to PA, PB and PC.

A

B

C

P

Figure 1.1: Three points A, B and C and the corresponding Torricelli point P .

The generalized Fermat problem reads as follows: Given a set N of points in the

11

12 Our Contribution

Euclidean plane, find a set S of additional points and line segments with endpoints
in N or in S, such that for all pairs of points in N there is a path of line segments
connecting them, while minimizing the sum of the lengths of the line segments. In
mathematics, it is sometimes quite unclear why things like theorems or problems are
named as they are. It is not different in the case of the Fermat problem which today
is referred to as the Steiner problem even though Jakob Steiner (1796-1863) did not
contribute much to the problem as Schreiber notes in [Sch86].

The problem can be generalized to the Steiner tree problem in graphs: Given a
weighted graph G = (S ∪ N, E, w) with nonnegative edge weights where the nodes are
partitioned into the set of terminal nodes N and the set of Steiner nodes S, find a tree
of minimal total length spanning the nodes in N . The core of this problem lies in its
restriction to instances in which the edge cost function w satisfies the triangle inequality,
called the metric Steiner tree problem in graphs, as there is an approximation factor
preserving reduction from the unconstrained version of the problem to the metric one
(see [Vaz03]).

Unfortunately, most variants of the Steiner tree problem are known to be NP-hard.
In fact, one of them was among the 21 problems for which Richard Karp showed in
his seminal work in 1972 [Kar72] NP-completeness. While most of these variants do
not even admit a polynomial time approximation scheme, constant factor approxi-
mation algorithms for the Steiner tree problem in graphs are known (see for exam-
ple [Meh88], [GR00]).

In recent years, a lot of work has been invested in the development of algorithms that
solve the Steiner tree problem exactly, without guaranteeing polynomial running times
but rather exhibiting good performance in practice. Most of these algorithms focus on
special settings, as does the approach of Warme, Winter and Zachariasen [WWZ00] for
computing exact solutions for the problem in the Euclidean plane or another approach
by Zachariasen [Zac99] for solving the rectilinear Steiner minimum tree problem in the
plane. An algorithm for solving instances for the Steiner tree in graphs problem was
given by Plozin [Pol03].

The version we consider in this thesis is the Steiner tree problem in Hamming met-
ric where the metric space consists of strings over some alphabet Σ. The Hamming
metric between two strings is simply the number of character-wise differences of the
strings. Like the other versions mentioned above, this problem is also known to be
NP-hard [FG82]. Computing such trees is well studied and has applications in several
fields of science such as computational linguistics and computational biology. In both
fields, the strings represent sets of characteristics of given objects of which one wants
to reconstruct an ancestral relationship. For evaluating the implementation of the al-
gorithm that we will present in this thesis, we focus on the biological context in which
the strings represent, for example, parts of the genome of a species. In this context
the problem is also known as the maximum parsimony problem and the trees under
consideration are called phylogenetic trees.

1.1 Our Contribution

Among all methods for computing Steiner minimum trees optimally, algorithms using
variations of a branch and bound method found by Hendy and Penny [HP82] have been

Related Work 13

the fastest for more than 25 years. We will describe a new pruning based approach
which is superior to previous methods, discuss its implementation and demonstrate, by
means of artificial and real-world biological data sets, its performance compared to free
and commercial software tools. Part of this work was published in [AN06].

1.2 Related Work

We now discuss related work in more detail. As mentioned before, Warme et al. have
shown in [WWZ00] how one can compute solutions for the Steiner tree problem in the
Euclidean plane. Since our algorithm conceptually uses some ideas of their approach,
let us now outline their algorithm. For a Steiner tree T , we call the maximal subtrees,
whose internal vertices are Steiner points, the full components of T . We can subdivide
the computation of a Steiner tree into two phases. First, a superset X of the set of
the full components of T is computed. Afterwards, the minimum cost subset of X
yielding a tree is determined. The second part is typically solved by an integer linear
programming approach. One can observe that in the case of the Euclidean plane, the
size of the full components is very small (typically less than 10, even in instances with
10.000 terminals). Although there are instances where the algorithm will create an
exponential number of candidate full components, experiments indicate a number of
full components in random instances that is roughly linear. Unfortunately, in Hamming
metric, a Steiner minimum tree consists typically of only a small number of – if not
only one – full components. Since the efficiency of their approach heavily depends
on partitioning the instance into many small full components, one cannot apply this
technique to our problem setting. But as we will explain later, our algorithm will also
use this two phase technique of first constructing a set of small trees and then combining
these small trees into full trees.

In graphs, the most successful algorithm for solving the Steiner minimum tree prob-
lem is based, among other techniques, on successfully pruning parts of the graph, that
is, discarding graphs that contain substructures that lead to provable non-optimal trees.
All known techniques are described in the PhD thesis of Polzin [Pol03]. We will adopt
some ideas of these pruning techniques in this work.

There are many papers on computational methods for solving the maximum parsi-
mony problem. As mentioned before, almost all papers describing exact methods for
solving the maximum parsimony problem, describe variants of the branch and bound
algorithm of Hendy and Penny [HP82] (for example [Fel04, Swo03, KTND07]). For an
extensive list of the available software, see [WEBa].

Before we start explaining Hendy and Penny’s algorithm, note that without loss
of generality, one can assume that in an optimal Steiner tree all inner nodes have
degree 3 and that the leaves of the tree are exactly the points to be spanned (justified
by Theorem 1.1). If not mentioned otherwise, we will assume that the trees under
consideration satisfy this property. The algorithm starts with a tree T with 3 terminals
as leaves. Now it recursively increases the tree by removing each edge e = {u, v} in T ,
by adding a Steiner point p and by connecting u, v and a so far not spanned terminal
w to p (see Figure 1.2). If the cost of the current tree T plus a lower bound for adding
the remaining points to it is larger than the best known Steiner tree, we backtrack the
recursion, knowing that any tree constructed by increasing the current one has a cost

14 Related Work

T

Figure 1.2: The first two levels of the recursion tree of Hendy and Penny’s algorithm.
The green boxes indicate spanned points, the black discs Steiner points.
Red edges represent newly inserted edges.

strictly larger than the cost of an optimal one.

The probably main disadvantage of this approach lies in the bad quality of the lower
bounds that one can compute. Note that in each step of the algorithm, a new terminal
is inserted at an arbitrary position. Thus, intuitively speaking, we have no structure
that we could exploit in finding good lower bounds.

But how can one determine the cost of such a tree? The cost of a tree, which is
defined as the sum of the cost of its edges, depends on how we label the Steiner nodes,
that is, on the strings that we assign to them. Fitch has shown in [Fit71] that one can
label the inner nodes of a given tree optimally in time O(n · d · |Σ|), where d denotes
the length of the strings, such that the cost of the tree is minimized. We will see in
section 1.3 how Fitch’s algorithm works.

Holland et al. [HHPM05] attempt to prove the optimality of parsimony trees by
computing tight lower bounds that hopefully match upper bounds. The authors use
so-called one and two-column discrepancy bounds (see Section 1.6) for subproblems
with the aim of combining these bounds to a lower bound for the complete problem
instance by a simple relaxation of an integer linear program, as defined in Section 1.6.

Beside the maximum parsimony problem, the second prominent way of reconstructing
a phylogenetic tree is the maximum likelihood tree (which is not part of this thesis)
where the assumption is made that the characters are pairwise independent and that
the branching follows a Markov process. The optimal tree is the most likely tree under
this process. Even though both methods are currently used by biologists, there is no
clear answer to the question of which method provides a more “realistic” reconstruction
of a phylogeny. We refer to [Ste05] for a more detailed discussion of this problem.

Preliminaries 15

1.3 Preliminaries

First we fix some notation: Let s ∈ Σd be a string of length d over the alphabet Σ.
We denote by si the i-th character of the string. We also say that a string s ∈ Σd is a
point in the space Σd.

Given two functions µ1 : X1 → Y and µ2 : X2 → Y where X1 ∩ X2 = ∅, we define

µ1 ⊙ µ2 : X1 ∪ X2 → Y ; v 7→
{

µ1(v) if u ∈ X1

µ2(v) if u ∈ X2

For a set X we define Pn(X) := {Y ⊆ X | |Y | = n} to be the set of all subsets of X of
cardinality n. Furthermore, we write P(X) := {Y ⊆ X} for the power set of X, that
is, the set of all subsets of X.

Given a function µ : X → Y and a set X ⊆ X, we define the image of µ on X to be

ImX (µ) := { µ(x) | x ∈ X }

For ImX(µ) we also write Im(µ).

Given a function µ : X → Y and a set X ⊆ X, we define the restriction of µ on X to
be the function µ|X : X → Y ; u 7→ µ(u).

Given a function µ : X → Y d. For i ∈ {1, . . . , d} we define

µi : X → Y ; x 7→ µ(x)i

For a multiset M we denote by mA(x) the multiplicity of x in A.

Given a rooted tree T = (V, E), we denote by root(T) the root of T . If the last edge
on the unique path from root(T) to a node x is (y, x) then parent(x) := y is the parent
of x, and x is a child of y. If two nodes x and y are children of the same node, x is
called a sibling of y. A node with no children is a leaf. We denote by leaves(T) the set
of leaves of T . A non-leaf node is an internal node. For a node v ∈ V , any node u on
the unique path from root(T) to v is called an ancestor of v. If u is an ancestor of v
then we call v a successor of u. For the set of ancestors of a node u we write anc(u)
and for the set of successors of u, succ(u).

Given a graph G = (V, E), we denote by u Ã v a path in G from a node u ∈ V to a
node v ∈ V .

Given two graphs G1 = (V1, E1) and G2 = (V2, E2) then we define

(G1 ∪ G2) := (V1 ∪ V2, E1 ∪ E2)

Definition 1.1 (Hamming distance) Given two strings s1, s2 ∈ Σd, the value

‖s1, s2‖ := |{ i ∈ {1, . . . , d} | s1
i 6= s2

i }|

is called the Hamming distance of the strings s1 and s2.

16 Preliminaries

Lemma 1.1 (Hamming metric) (Σd, ‖ · ‖) is a metric space.

Proof: Let x, y, z ∈ Σd. Obviously ‖x, y‖ = ‖y, x‖. Note that ‖x, y‖ =
∑d

i=1 ‖xi, yi‖.
Since ‖xi, yi‖ ≥ 0 we have on the one hand

‖x, y‖ = 0 ⇔ ∀i ∈ {1, . . . , d} : ‖xi, yi‖ = 0 ⇔ x = y

On the other hand we can show by a simple case distinction that ∀i ∈ {1, . . . , d} :
‖xi, zi‖ ≤ ‖xi, yi‖ + ‖yi, zi‖ which directly implies ‖x, z‖ ≤ ‖x, y‖ + ‖y, z‖. ¤

Definition 1.2 (topology) For our purpose, a topology is a pair T = ((V, E), µ)
where (V, E) is an undirected tree and µ is a function µ : T ′ → Σd for a set T ′ ⊆ V .
We say that T is fully labeled if T ′ = V , otherwise we call T partially labeled.

Definition 1.3 (span/size of a topology) Given a topology T = ((V, E), µ), we call
span(T) := Im(µ) the span of T and |span(T)| the size of T .

Definition 1.4 (subtopology) Given two topologies T = ((V, E), µ : T → Σd) and
S = ((Vs, Es), µs : Ts → Σd). We call S a subtopology of T if there exists a injective
function σ : Vs → V such that

• ∀ {u, v} ∈ Es : {σ(u), σ(v)} ∈ E

• ∀ u ∈ Ts : µ(u) = µ(σ(u))

We call such a function σ a subtopology mapping.

Note that in the above definition (Vs, Es) must be connected, since S is a topology.

Definition 1.5 (cost of a fully labeled topology) Given a fully labeled topology T =
((V, E), µ), we associate with E the edge cost function

cost : E → R≥0; {u, v} 7→ ‖µ(u), µ(v)‖

The cost of T is defined as cost(T) :=
∑

e∈E cost(e).

Definition 1.6 (cost of a partially labeled topology) Let T = ((V, E), µ : T ′ →
Σd) be a partially labeled topology, then cost(T) is defined as

min
µ : V \T ′→Σd

cost
(
((V, E), µ ⊙ µ)

)

We call

argmin
µ : V \T ′→Σd

cost
(
((V, E), µ ⊙ µ)

)

a complemental labeling of T and the function µ ⊙ µ a complemented labeling of T .

Given a topology T = ((V, E), µT). For a labeling µ : V ′ → Σd with V ′ ⊆ V we
denote by cost[µ](T) the cost of the topology ((V, E), µ).

Preliminaries 17

Definition 1.7 (Steiner tree in Hamming metric) Given a set T = {t1, t2, . . . , tn}
⊆ Σd of terminals, a Steiner tree in Hamming metric ST over T is a fully labeled topol-
ogy ((Z ∪ S, E), µ) with Z = {z1, z2, . . . , zn} and µ(zi) = ti for i ∈ {1, . . . , n}. We call
Z the set of terminal nodes and S the set of Steiner nodes of ST .

Given a Steiner tree in Hamming metric ST , we denote by snodes(ST) the set of
Steiner nodes of ST .

Definition 1.8 (Steiner minimum tree in Hamming metric) Given a set T ⊆
Σd, a Steiner minimum tree in Hamming metric over T (or short: SMT(T)), is a
Steiner tree in Hamming metric over T of minimal cost.

The task of finding such a tree is called the Steiner minimum tree in Hamming metric
problem.

Definition 1.9 (column of a problem instance) Given an instance of the Steiner
minimum tree in Hamming metric problem T ⊆ Σd, we call the multiset

Ci(T) := {ti | t ∈ T}

the i-th column of T .

Definition 1.10 (optimal topology) Suppose we are given an instance T ⊆ Σd of
the Steiner minimum tree problem in Hamming metric. We call a topology T with
T ⊆ span(T) optimal with respect to T if cost(T) equals the cost of a Steiner minimum
tree over T .

Definition 1.11 (partial/full topology) Given an instance of the Steiner tree prob-
lem with the terminal set T ⊆ Σd. A topology T is called partial with respect to T if
span(T) ⊆ T and full with respect to T if span(T) = T .

Definition 1.12 (tree in standard form) Given a tree T = (V, E) and a set V ′ ⊆
V . We say that T is in standard form with respect to V ′ if

1. ∀ v ∈ V ′ : deg(v) = 1

2. ∀ v ∈ V \ V ′ : deg(v) = 3

The following theorem allows us to consider only Steiner trees in standard form for
the remainder of this chapter.

Theorem 1.1 (structural lemma) Given a set T = {t1, t2, . . . , tn} ⊆ Σd. Then
there is a Steiner minimum tree ST = ((V, E), µ) over T with terminal nodes Z such
that (V, E) is in standard form with respect to Z.

Proof: Suppose we are given a Steiner minimum tree ST ′. We will transform ST ′ into
a Steiner tree ST satisfying both conditions without increasing the cost of the tree in
the following two steps:

18 Preliminaries

• First consider a node v ∈ Z that violates constraint 1. Since (V, E) is connected,
deg(v) > 1. The idea is to add a new Steiner node sv, to remove the edges
({ui, v})i∈{1,...,deg(v)} incident to v and to add the edges ({ui, sv})i=1.. deg(v) and
e := {v, sv}. Furthermore we set µ(sv) := µ(v). Note that for each added edge
an edge with the same cost was removed and that cost(e) = 0. Thus we have now
deg(v) = 1 without increasing the cost of the topology. Furthermore note that
ST is still a valid Steiner tree.

v

v

sv

⇒

e

We repeat this procedure until for all v ∈ Z we have deg(v) = 1.

• Consider now a Steiner node s violating constraint 2. Assume for now that
k := deg(s) > 3. We add another Steiner node s′ with µ(s′) := µ(s). Let s1, . . . , sk

be the adjacent nodes of s. We now remove the edges ({s, si})i=1..k−2. Then we
add the edges {s′, si}i=1..k−2 and the edge e = {s, s′}. Note that cost(e) = 0 and
that for each other added edge there was an edge that has been removed before
with the same cost. Thus we do not increase the cost of the tree by performing
this operation but now we have deg(s) = 3 and deg(s′) < deg(s).

sk

⇒s1

s2

sk−1
s

sk

s1

sk−2

sk−1

s
′s

Now let deg(s) = 2. Then we can simply remove s and reconnect the two adjacent
nodes via a new edge e. Since ‖ · ‖ is a metric (see lemma 1.1), we do not increase
the cost of the tree by doing so. If deg(s) = 1, s and its incident edge can be
deleted without violating the validity of the Steiner tree. Repeatedly applying
the second case, all Steiner nodes have degree 3.

¤

Definition 1.13 (range/range point) We call a subset of P(Σ) a range and r ∈
P(Σ)d a range point. For a point p and a range point r we write

p ∈ r if pi ∈ ri ∀ i ∈ {1, . . . , d}

Preliminaries 19

Sometimes we will slightly abuse the notation by considering a point p ∈ Σd as a
range point by implicitly converting p into ({p1}, {p2}, . . . , {pd}) ∈ P(Σ)d and vice
versa.

We use the following notation: ‖x, y‖min denotes the minimal distance between two
range points x and y, that is

‖x, y‖min := min{ ‖px, py‖ | px ∈ x, py ∈ y }

Similarly, we define

‖x, y‖max := max{ ‖px, py‖ | px ∈ x, py ∈ y }

Note that ‖x, y‖min respectively ‖x, y‖max can be computed using O(d) basic set oper-
ations since

‖x, y‖min = { i ∈ {1, . . . , d} | xi ∩ yi = ∅ }
respectively

‖x, y‖max = { i ∈ {1, . . . , d} | ¬(xi = yi ∧ |xi| = |yi| = 1) }

which can be seen as follows: the case ‖x, y‖min is trivially true, so let us consider the
last equality. Let ‖xi, yi‖max = 1, then (without loss of generality) ∃ a ∈ xi : a /∈ yi.
Now assume that xi = yi ∧ |xi| = |yi| = 1 holds. Thus both xi = yi = {b} for some
element b. But this is a contradiction to the fact that there is an a ∈ xi : a /∈ yi.
Now let us assume that ¬(xi = yi ∧ |xi| = |yi| = 1) holds, which is equivalent to
xi 6= yi ∨ |xi| = 1 ∨ |yi| = 1. If xi 6= yi then clearly there must be an element in one of
the sets that is not contained in the other and thus ‖xi, yi‖ = 1. Let without loss of
generality |xi| 6= 1. Since |xi| > 0, xi contains at least two distinct elements, let us say
b1 and b2. Thus for any element c ∈ yi either b1 6= c or b2 6= c. Thus ‖xi, yi‖ = 1

Definition 1.14 (rooted topology) A topology T = ((V, E), µ) with a specific root
node root(T) ∈ V is called a rooted topology. We also write for T : ((V, E), µ, root(T)).

Definition 1.15 (induced rooted topology) Given a topology ((V, E), µ) and an
edge er = {u, v} ∈ E, the rooted topology ((V ∪ {r}, E′), µ) with r /∈ V ,

E′ = E ∪ {{r, u}, {r, v}} \ {er}

and with root r is called the rooted topology induced by er.

In the next section it will be necessary to undo the operation of inducing a rooted
topology for a certain type of rooted topologies. For this purpose we define

Definition 1.16 (de-rooted topology) Given a rooted topology T = ((V, E), µ : T ′ →
Σd, r) with deg(r) = 2 and r /∈ T ′. We denote by T the unrooted topology

((V \ {r}, E \ {{r, c2}, {r, c1}}) ∪ {{c1, c2}}), µ)

where c1 and c2 are the two adjacent nodes of r.

20 Preliminaries

Ti Tj

r

ri rj

Figure 1.3: A concatenation of two rooted topologies Ti and Tj with roots ri and rj .
The green edges indicate added edges.

Definition 1.17 (concatenation of rooted topologies) Given two rooted topolo-
gies T1 = ((V1, E1), µ1 : T1 → Σd, r1) and T2 = ((V2, E2), µ2 : T2 → Σd, r2) with
T1 ∩ T2 = ∅. The concatenation T1 · T2 of these topologies is a rooted topology

((V, E), µ1 ⊙ µ2, r)

with

V = V1 ∪ V2 ∪ { r },
E = E1 ∪ E2 ∪ {{r, r1}, {r, r2}},

(see Figure 1.3).

Theorem 1.2 (tree dissection) Given a tree T = (V, E) with |V | ≥ 4 such that
(V, E) is in standard form with respect to its leaves. Then there exists an inner node
v ∈ V such that removing the node and its incident edges from T decomposes T in 3
connected components such that none of them spans more than ⌊l/2⌋ leaves of T , where
l := |leaves(T)|

Proof: Given an inner node u ∈ V (note that such a node must exist because |V | ≥
3). Removing u from V and its adjacent edges from E decomposes T into the three
connected components Cu

1 = (V1, E1), Cu
2 = (V2, E2) and Cu

3 = (V3, E3). Without loss
of generality let |V1| ≥ |V2| ≥ |V3|. If |V1| < ⌊l/2⌋ the claim holds trivially – so let us
assume otherwise. Consider now the inner node v ∈ V1 with {u, v} ∈ E. Note that if
such a node does not exist the component Cu

1 would consist of just one leaf. Since Cu
1

was the biggest of these components, all other components would also contain just one
leaf. Thus the claim would trivially hold. If such a node v exists, removing v and its
incident edges from T again decomposes T into the three connected components Cv

1 ,
Cv

2 and Cv
3 as shown in the following figure.

Preliminaries 21

u

C
u
2

C
u
3

v

C
v
1

C
v
2

C
u
1

C
v
3

We know that span(Cv
3) = span(Cu

2) ∪ span(Cu
3) and thus |span(Cv

3)| < ⌊l/2⌋ since
|span(Cu

1)| > ⌊l/2⌋. Let without loss of generality Cv
1 be the largest of the three

components (Cv
i). Since v was an inner node span(Cv

1) (span(Cu
1). Now let us recall

what we have: u and v induced partitions of the leaves of T into

(Ls
1, L

b
1)1 := (span(Cu

2) ∪ span(Cu
3), span(Cu

1))

and into

(Ls
2, L

b
2)2 := (span(Cv

2) ∪ span(Cv
3), span(Cv

1))

with |Ls
1| < ⌊l/2⌋, |Ls

2| < ⌊l/2⌋ and Lb
2 (Lb

1. Repeating the procedure until a node is
found for which the claim holds, yields a sequence (Ls

i , L
b
i)i∈N with |Ls

i | < ⌊l/2⌋ and
Lb

i (Lb
j for i > j. Since |Lb

i | is monotonically decreasing, the sequence is finite, thus
proving the existence of a node u so that the claim holds. ¤

Definition 1.18 (topology dissection) Given a topology

T = ((V, E), µ : T ′ → Σd)

and a node u ∈ V , removing u from the tree B := (V, E) decomposes B into deg(u) many
connected components Bi := (Vi, Ei). We also say, removing u from T decomposes T
into deg(u) many components (Ti)i∈{1,...,deg(u)}, namely

Ti = (Bi, µi : T ′
i → Σd) with µi : T ′

i ∩ V → Σd; u 7→ µ(u)

A well known property of an optimal Steiner tree is described by the so called
bottleneck-Steiner-distances. Let us now recapitulate two important results in Lemma
1.2 and in Theorem 1.3.

Definition 1.19 (bottleneck-Steiner-distances) Given a set T ⊂ Σd of terminals
and an arbitrary minimum spanning tree M = (T, EM) over T . The bottleneck-Steiner-
distance function (short: bnsd-function) is given by

bnsd: T × T → N;

(u, v) 7→
{

max{ ‖e‖ | e ∈ EM is in the path u Ã v in M }, if u 6= v
0, if u = v

22 Preliminaries

In the above definition we have chosen an arbitrary minimum spanning tree for the
definition of the bottleneck-Steiner-distance function. We will now show that the bnsd-
function is independent of the choice of M .

Lemma 1.2 The bottleneck-Steiner-distance function is independent of the choice of
the minimum spanning tree.

Proof: Given two minimum spanning trees M1 = (T, E1
M) and M2 = (T, E2

M) and the
corresponding bottleneck-Steiner-distance functions bnsd1 : T ×T → N and bnsd2 : T ×
T → N. Assume that the functions are not equal, that is there exist u, v ∈ T such
that without loss of generality bnsd1(u, v) > bnsd2(u, v). Let e ∈ E1

M be the edge on
the path u Ã v in M1 with highest cost. Removing e from E1

M decomposes M1 into
two connected components C1 and C2. Now consider the path p := u Ã v in M2.
Let {u′, v′} ∈ p be an edge with u′ ∈ C1 and v′ ∈ C2. Note that such an edge must
exist, since u 6= v. Adding {u′, v′} to E1

M reconnects C1 and C2 again but at a lower
cost since bnsd1(u, v) > bnsd2(u, v), thus showing that the new tree is shorter than M2

which is a contradiction to the assumption that M2 was a minimum spanning tree. ¤

Definition 1.20 Given a set T = { t1, t2, . . . , tn } ⊂ Σd, we call a topology T =
((V, E), µ : T ′ → Σd) with T ′ = { t′1, t

′
2, . . . , t

′
n } and µ(t′i) = ti for all i ∈ {1, . . . , n} a

topology over T .

Theorem 1.3 (bottleneck-Steiner-distance) Let T ⊂ Σd be a set of terminals, let
ST = ((V, E), µ) be a Steiner minimum tree over T with terminal nodes Z and let
(V, E) be in standard form with respect to Z. For an edge e ∈ E let Ce

1 and Ce
2 denote

the two connected components in which ST is decomposed when removing e from ST .
Then

∀e ∈ E : ∀u ∈ leaves(Ce
1),∀v ∈ leaves(Ce

2) : ‖e‖ ≤ bnsd(µ(u), µ(v))

Proof: Let M = (Z, EM) be a minimum spanning tree over Z with edge costs
‖µ(u), µ(v)‖ for {u, v} ∈ EM . Assume that there is an edge e ∈ E violating the
claim. Thus there exist nodes u ∈ leaves(Ce

1) and v ∈ leaves(Ce
2) such that ‖e‖ >

bnsd(µ(u), µ(v)). Consider now the path u Ã v in M . Since u ∈ Ce
1 and v ∈ Ce

2 there
must be an edge (t1, t2) with t1 ∈ leaves(Ce

1) and t2 ∈ leaves(Ce
2). Now consider the

Steiner tree ST ′ = ((V, E \ {e} ∪ {{t1, t2}}), µ). We have

cost ST ′ =
∑

e∈E\{e}∪{{t1,t2}}
‖e‖

=
∑

e∈E

‖e‖ − ‖e‖ + ‖{t1, t2}‖

def. of bnsd
≤ cost(ST) − ‖e‖ + bnsd(µ(u), µ(v))

by assumption
< cost(ST)

which shows that ST was not a Steiner minimum tree thus proving the theorem. ¤

In the following we will only consider Steiner trees in standard form as stated in
Theorem 1.1 unless stated otherwise.

Preliminaries 23

A C

E

A EA B

A,B A,C

A

A,E

E

A,E

A C

E

A EA B

A A

A

E

E

A

∪ ∪∪

∩∩

∪

Figure 1.4: An example of Fitch’s algorithm on one character terminals (blue charac-
ters). The left topology shows the ranges of the inner nodes after the first
phase of the algorithm, the right one the state after the second phase when
choosing the character A for the root range.

1.3.1 Fitch’s Algorithm

Given a topology T = ((V, E), µT : T ′ → Σd) over T = { t1, t2, . . . , tn } ⊂ Σd, how can
one find a complemental labeling µ : V \ T ′ → Σd for T ? As already mentioned in the
introduction, Fitch has shown in [Fit71] how this can be done in O(n ·d · |Σ|) time. We
now sketch Fitch’s algorithm (see Figure 1.4 for an example):

Definition 1.21 (Fitch range function) Given a rooted topology

T = ((V, E), µT : T ′ → Σd, r)

over the terminal set T , we define the Fitch range function µF [T] : V → P(Σ)d of T
as follows: if u ∈ T ′, we set µF [T](u) := µT (u) – otherwise we set

µF [T](u) :=

{
µF [T](u1)i ∪ µF [T](u2)i, if µF [T](u1)i ∩ µF [T](u2)i = ∅
µF [T](u1)i ∩ µF [T](u2)i, if µF [T](u1)i ∩ µF [T](u2)i 6= ∅

for all i ∈ {1, . . . , d} where u1 and u2 are the children of u.

The algorithm starts by picking an arbitrary edge e ∈ E and constructs the rooted
topology Tr = (((V ∪ {r}, E), µT : T ′ → Σd, r) induced by e. Subsequently, the algo-
rithm works in two phases:

• In the first phase the Fitch range function µF [Tr] is computed recursively in a
bottom up manner starting from the leaves of Tr.

• In the second phase a complemented labeling µ for Tr is constructed recursively
starting at the root node r. Let u be the current node in this traversal. We
distinguish between two cases: if u = r or µ(parent(u))i /∈ µF [Tr](u)i we set
µ(u)i := xi for an arbitrary xi ∈ µF [Tr](u)i. If u 6= r and µ(parent(u))i ∈
µF [Tr](u)i we set µ(u)i := µ(parent(u))i. If u is not a leaf we recurse on the child
nodes of u.

The main insight here is the following: Let – without loss of generality – all strings
have length one and instead of range points we only consider ranges to simplify the

24 Pruning Algorithm

discussion. Consider now an inner node u ∈ V ∪{r}. There must be an optimal Steiner
tree in which the labeling of u is chosen in such a way that the cost of its subtrees T1

and T2 is optimal. To see this assume otherwise. Then the cost for T1 and for T2 is at
least by 1 larger than the cost for optimal subtrees. On the other hand, choosing u in
an way such that the cost of the edge incident to its parent is minimized saves at most
a cost of 1. Let µF [Tr](u1) and µF [Tr](u2) be the ranges of the two children nodes u1

and u2 of u. If µF [Tr](u1) ∩ µF [Tr](u2) 6= ∅, we can select any letter of this intersec-
tion to construct a tree whose cost is the sum of the costs of the two subtrees. Hence
µF [Tr](u) becomes µF [Tr](u1)∩ µF [Tr](u2) in this case. If µF [Tr](u1)∩ µF [Tr](u2) = ∅,
the children of u will definitely have different letters. Hence the minimal cost subtree
will be attained by one element in µF [Tr](u1) ∪ µF [Tr](u2) and with a cost one more
than the sum of the cost of the subtrees.

The running time of Fitch’s algorithm is obviously bounded by O(n ·d · |Σ|) since only
a constant number of tree traversal is carried out and in each node of these traversals
O(d) basic set operations on sets of size O(Σ) are performed.

Definition 1.22 (instantiation of the Fitch range function) Given a rooted topol-
ogy T = ((V, E), µ, r) over some terminal set T , then we call a complemented labeling
µ : V → Σd obtained by the second phase of Fitch’s algorithm, an instantiation of
µF [T]. We denote by L(T) the set of all instantiations of µF [T].

1.4 Pruning Algorithm

In the following we assume that we are given an instance T = {t1, t2, . . . , tn} ⊆ Σd

of n strings of length d over the alphabet Σ of the Steiner minimum tree problem in
Hamming metric. We will call a topology partial or full always with respect to the
terminal set T . Furthermore we call a topology T optimal if it is optimal with respect
to T . We also assume that n > 3 to avoid technical difficulties - note that for n ≤ 3
the problem is trivial to solve.

The pruning algorithm we propose is conceptually quite simple: We start with the
set X of all pairwise disjoint partial topologies spanning exactly one terminal in T ,
namely

X := {
(

({vi}, ∅), µ : {vi} → {ti}; vi 7→ ti, vi

)
| i ∈ {1, . . . , n} }

Then we consecutively construct larger partial rooted topologies by combining smaller
topologies contained in X and add them to X. When all full topologies are constructed
we evaluate their cost using Fitch’s algorithm and determine among them the one with
smallest cost.

For the enumeration process we use Theorem 1.1 and Theorem 1.2 to cut down the
search space considerably: Let ST = ((V, E), µ) be a Steiner minimum tree ST , then
Theorem 1.1 allows us to assume without loss of generality that ST is given in stan-
dard form. Theorem 1.2 states that there must be a Steiner node (note that the Steiner
nodes are exactly the inner nodes of ST , since (V, E) is in standard form) u ∈ V such

Pruning Algorithm 25

that removing u from ST decomposes ST into three connected components C1, C2 and
C3 with size(Ci) ≤ ⌊n/2⌋ for i ∈ {1, . . . , 3}. Now consider the rooted topology STr

induced from ST by some edge {u, v} incident with u – let without loss of generality
v ∈ C1. Note that STr is still optimal. Then STr = (C1 ·C2) ·C3, that is for ST there is
an induced rooted topology STr that is composed (using the concatenation operation)
by 3 rooted topologies of size not bigger than ⌊n/2⌋. Since ST was an arbitrary Steiner
minimum tree in standard form this result is true for all such trees. This results justifies
the following modifications, yielding a two phase enumeration algorithm:

Again, the first Phase of the algorithm starts with the set X of rooted partial topolo-
gies spanning exactly one terminal as defined above. Then all partial topologies of size
i are constructed by concatenating all partial rooted topologies Tk, Tl ∈ X with

• size(Tk) + size(Tl) = i and

• span(Tk) ∩ span(Tl) = ∅

and added to X. We continue until all partial topologies up to a size of ⌊n/2⌋ are
constructed. In the second phase, for all triples (T1, T2, T3) ∈ P3(X) with span(T1) ∪
span(T2) ∪ span(T3) = T and size(T1) + size(T2) + size(T3) = n the full topologies
(T1 · T2) · T3 are constructed and evaluated using Fitch’s algorithm. Then, one with
minimal cost is reported.

To cut down the search space even more, in the first phase of the algorithm, before
adding the topology T := Tk · Tl to X we run several pruning tests as described in the
next section. The idea of these pruning tests is to proof that T cannot be a subtopology
of an optimal topology. If it is so, we can clearly discard T from X.

Algorithm 1 pruning algorithm

X := {(({vi}, ∅), µ : {vi} → {ti}; vi 7→ ti, vi) | i ∈ {1, . . . , n}}
for i = 2 . . . ⌊n/2⌋ do

for all Tk, Tl ∈ X do
if span(Tk) ∩ span(Tl) = ∅ and

size(Tk) + size(Tl) = i then
if ¬ prunable(Tk · Tl) then

X = X ∪ {Tk · Tl}
end if

end if
end for

end for
for all {T1, T2, T3} ∈ P3(X) do

if (span(Ti))i∈{1,...,3} are pairwise disjoint then
construct T := (T1 · T2) · T3

determine cost(T) using Fitch’s algorithm
end if

end for

26 Pruning Tests

For constructing the set FT of full topologies we sort the non-pruned partial topolo-
gies lexicographically: First we sort them by the spanned terminals and then by increas-
ing cost. This allows a fast construction of FT , and guarantees that all full topologies
in FT are counted exactly once. As stated before, a full topology is assembled by
three partial topologies. Now assume that you have already built the topology T1 · T2

using T1, T2 ∈ X. Then we have to concatenate T1 · T2 with all T3 ∈ X such that
span(T1 · T2 · T3) = T . Therefore, we perform a binary search on the sorted list for the
first topology T3 such that span(T3) = T \ span(T1 · T2). Then we iterate over this list
creating the full topology for each element until either a topology does not span the
correct terminals anymore or |T1 · T2|+ |T3| is greater than an upper bound on the cost
of an optimal solution, like the length of the minimal full topology found so far or a
bound computed by a heuristic.

1.5 Pruning Tests

As mentioned in the previous section, before adding a newly created topology T =
((VT , ET), µT) to the set X we test if T can be a subtopology of a Steiner minimum
tree ST = ((V, E), µ). In this section we will derive several tests of that kind. Recall
that we only consider Steiner trees in standard form as stated in Theorem 1.1.

We will use the following observation that helps to simplify many of the subsequent
proofs. Consider a fully labeled topology T = ((V, E), µ). Due to the properties of the
Hamming metric, the cost of T is given by

cost(T) =
∑

{u,v}∈E

‖µ(u), µ(v)‖

=
∑

{u,v}∈E

d∑

i=1

‖µ(u)i, µ(v)i‖

=
d∑

i=1

∑

{u,v}∈E

‖µ(u)i, µ(v)i‖

=
d∑

i=1

cost[µi](T)

That is, when determining the cost of a fixed topology we can consider the characters
of the associated strings over Σd independently.

1.5.1 Edge Replacement Tests

The idea of the pruning tests that we will derive in this section is a generalization of the
bottleneck Steiner test that we have seen before in Theorem 1.3. Let ST = ((V, E), µ)
be a Steiner tree. Removing edges from ST , decomposes the tree in several connected
components. If we are able to reconnect these components such that we get a cheaper
network over the terminal nodes of ST than ST is, we know that ST was not optimal.

Pruning Tests 27

Essentially, this is what is done in Theorem 1.3 for one edge e ∈ E: if ‖e‖ exceeds the
corresponding bottleneck Steiner distance we know that removing e from ST splits the
tree into two connected components that can be reconnected in a cheaper way along a
minimum spanning tree over the terminals of ST . The problem is that for our purposes
this method is not applicable for two reasons: The first one is that we are given only
partial information about the Steiner tree in form of a subtopology T , that is we have
to make statements that are true for all full topologies with these partial topologies
as subtopologies. The second problem is, that we are not given a Steiner tree explic-
itly in the sense that we only know a subtopology over some subset of the terminals.
Therefore, we have to argue about all possible lengths that e can have for all Steiner
trees with T as a subtopology. The basic idea is now the following: removing e from
a Steiner tree ST := (T · R) decomposes into two connected components C1 and C2.
Now we try to find a complemented labeling µ for ST such that cost[µ](e) is bigger
than the distance of some pair (c1, c2) ∈ C1 × C2. If so, we know that ST cannot be a
Steiner minimum tree. Since R is not known in advance in the pruning algorithm we
are only allowed to consider labelings µ that are complemented labelings for any T ·R.

Before we state the main results, let us first proof some technical lemmas and let us
give some definitions that we will need later on.

Lemma 1.3 Given a full topology ST = T · C with T ∈ X as constructed in our
algorithm. For any two instantiation µ1 and µ2 of the µF [ST] of ST we have:

‖µ1(root(T)), µ1(root(C))‖ = ‖µ2(root(T)), µ2(root(C))‖

Proof: Recall that for all i ∈ {1, . . . , d}
µF (root(ST))i

=

{
µF (root(T))i ∪ µF (root(C))i if µF (root(T))i ∩ µF (root(C))i = ∅ (I)
µF (root(T))i ∩ µF (root(C))i if µF (root(T))i ∩ µF (root(C))i 6= ∅ (II)

Now we have for i ∈ {1, . . . , d} :

‖µ1(root(T))i, µ1(root(C))i‖ = 1 ⇔ ‖µ2(root(T))i, µ2(root(C))i‖ = 1

which can be seen as follows. In case of (I) both distances must be 1 since any el-
ement from µF (root(ST))i propagated down is contained either in µF (root(T))i or
in µF (root(C))i. In case of (II) both distances must be 0 since any element in
µF (root(ST))i is contained in µF (root(T))i as well as in µF (root(C))i. This completes
the proof. ¤

In the next lemma we proof that if you consider a rooted topology T , the Fitch
range function value µF [T](root(T)) is maximal, that is for any other way of labeling
the root(T) than given in µF [T](root(T)), the resulting cost of T cannot be minimal,
no matter how we label the other nodes in T .

Lemma 1.4 Given a rooted topology T = ((VT , ET), µT , r) over T . Then there is no
complemented labeling µ such that

µ(r) /∈ µF [T](r)

28 Pruning Tests

Proof: Assume there exists such a complemented labeling µ with µ(r) /∈ µF [T](r).
We proof the claim by induction. If T has exactly 1 node in the base case, the claim
is trivially true. We restrict – without loss generality – the following discussion to the
i-th components of the points. For the inductive step consider T = T1 · T2. According
to Fitch’s algorithm we distinguish between the following two cases:

• µF [T](r)i = µF [T1](root(T1))i ∪ µF [T2](root(T2))i:
Since µ(r)i /∈ µF [T](r)i we have:

µ(r)i /∈ µF [T1](root(T1))i and µ(r)i /∈ µF [T2](root(T2))i (I)

We have

cost[µi](T) =
∑

j∈{1,2}
(‖µi(root(Tj)), µi(r)‖ + cost[µi](Tj)

≥ 2 +
∑

j∈{1,2}
costi(Tj)

= 1 + costi(T) > costi(T)

Here, the first inequality holds since for all j ∈ {1, 2} either ‖µi(root(Tj)), µi(r)‖ =
1 or cost[µi](Tj) > costi(Tj) following from the induction hypothesis and the fact
that (I) holds. Thus, µ cannot be a complemented labeling for T .

• µF [T](r)i = µF [T1](root(T1))i ∩ µF [T2](root(T2))i:
Since µ(r)i /∈ µF [T](r)i we know that for at least one j ∈ {1, 2}:

µ(r) /∈ µF [T](root(Tj))

In this case we have

cost[µi](T) =
∑

j∈{1,2}
(‖µi(root(Tj)), µi(r)‖ + cost[µi](Tj))

≥ 1 +
∑

j∈{1,2}
costi(Tj)

= 1 + costi(T) > costi(T)

Let without loss of generality µ(r) /∈ µF [T](root(T1)). Then the first inequality
holds because either ‖µi(root(T1)), µi(r)‖ = 1 or cost[µi](T1) > costi(T1). There-
fore, µ cannot be a complemented labeling for T .

Thus µ cannot be a complemented labeling for T . ¤

Note that the second phase of Fitch’s algorithm can be generalized. Instead of choos-
ing an arbitrary element in a range that we propagate down, we choose the complete
range for propagation and obtain the so called propagated Fitch ranges. These ranges
have useful properties of which we will make use in the following.

Definition 1.23 (propagated Fitch range function) Given a rooted topology T =
((V, E), µ, r) over some terminal set T and Fitch ranges associated with its nodes.
Similar to the second phase of Fitch’s algorithm we define the propagated Fitch range

Pruning Tests 29

A

A,B C,D

A,B,C,D

D

∪ ∪

∪

∩

D

C DB A

A,B D

D

D

D

C DB

Figure 1.5: An example of the propagated Fitch range function on one character ter-
minals (blue characters). The left topology shows the Fitch range function
µF , the right one the propagated Fitch range function µp

F .

function µp
F [T] : V → P(Σ)d as follows: We traverse T recursively starting from r.

Consider now the current node u. If u has a parent uf we set

µp
F [T](u)i :=

{
µF [T](u)i ∩ µp

F [T](uf)i , if µF [T](u)i ∩ µF [T](uf)i 6= ∅
µF [T](u)i , if µF [T](u)i ∩ µF [T](uf)i = ∅

for all i ∈ {1, . . . , d}. Then, if u is not a leaf we recurse on its children (see figure 1.5
for an example).

In the next lemma and the corresponding corollary we will answer the following
question. If you are given a topology T over some set of points S and another point p
which you want to connect to a Steiner minimum tree with topology T , how can you
do this in a cheap way? The obvious answer is to find a complemented labeling for T
such that the distance between any node in T and p is minimized. We show in the
following how the concept of the propagated Fitch range function can be used to do so
for a large set of possible complemented labelings.

Lemma 1.5 Consider a rooted topology T = ((VT , ET), µT , r) over T , some node p ∈
VT , and some point s ∈ µp

F [T](p). Then there is an instantiation µ of µF [T] such that

µ(p) = s

Proof: Consider the unique path r Ã p = (r = p0, p1, p2, . . . , pm = p) in T . We prove
the claim by induction over the length l of the path r Ã p in (VT , ET). Let l = 1 for
the induction base, that is r = p. In this case µp

F [T](p) = µF [T](p). Thus, according
to Fitch’s algorithm we can choose µ(p) = s. Now let l > 1 in the inductive step. Let
p′ be the father node of p. We can distinguish between the following two cases:

• If si ∈ µp
F [T](p′)i by the induction hypothesis there is an instantiation µ ∈ L(T)

such that µ(p′)i = si. Let T ′ be the subtopology of T rooted at p. Since si ∈
µp

F [T](p)i we also have that si ∈ µF [T](p)i and thus si ∈ µF [T ′](p)i. Thus,
according to Fitch’s algorithm we can choose µ(p)i = si, still allowing an optimal
labeling of T ′. Therefore, there is an optimal labeling for T with µ(p)i = si.

• Now let us – without loss of generality – restrict our discussion to the i-th compo-
nent of the range points such that si /∈ µp

F [T](p′)i. For some xi ∈ µp
F [T](p′)i we

30 Pruning Tests

set µ(p′)i = xi. We know that xi /∈ µF [T](p)i for the following reason: according
to the definition of the propagated Fitch range function we have the following
two cases:

1. µp
F [T](p)i = µF [T](p)i ∩ µp

F [T](p′)i

2. µp
F [T](p)i = µF [T](p)i

Since si ∈ µp
F [T](p)i we also have: si ∈ µF [T](p)i which excludes the first of these

two cases since si /∈ µp
F [T](p′)i by assumption. Thus the second case holds which

means that µp
F [T](p′)i ∩ µF [T](p)i = ∅. Since xi ∈ µp

F [T](p′)i, xi /∈ µF [T](p)i

which allows us to choose an arbitrary element in µF [T](p)i namely si. Therefore,
there is an optimal labeling for T with µ(p)i = si.

Which completes the proof. ¤

Let us now extend Lemma 1.5 to labelings that cannot be constructed using Fitch’s
algorithm:

Corollary 1.1 Given a non-rooted topology T = ((VT , ET), µT) over T and p ∈ VT ,
then for all x ∈ Σd with

xi ∈
⋃

e∈ET

µp
F [Te](p)i

where Te denotes the topology induced by the edge e, there is a complemented labeling
µ of T such that µ(p) = x.

Proof: Given d complemented labelings (µj)j∈{1,...,d} for T , consider the labeling µ
with µ(u)j := µj(u)j for all u ∈ VT . Then

cost[µ](T) =
d∑

i=1

cost[µi](T)

=
d∑

i=1

cost[(µi)i](T) = cost(T)

where the last equality follows from the following fact: consider two complemented
labelings µ′ and µ′′ for T . Then for any j ∈ {1, . . . , d}, cost[µ′

j](T) = cost[µ′′
j](T) since

otherwise you would be able to find a cheaper labeling than µ′ respectively than µ′′

which would contradict the complementarity of µ′ respectively of µ′′. Since Lemma 1.5
directly implies that for each xi ∈

⋃

e∈ET
µp

F [Te](p)i there is a complemented labeling
µi with xi ∈ µi(p)i the claim follows. ¤

Note that the complemented labeling µ of T in corollary 1.1 does not have to be a
labeling that can be constructed by Fitch’s algorithm but on the other hand for each
instantiation µ′ ∈ L(T) there is such a labeling µ with µ′(p) = µ(p). Thus the corol-
lary usually allows us to construct for the node p much bigger ranges than it would be
possible, if we would only make use of Fitch’s algorithm and Lemma 1.5.

Now let us examine the following question. Given a partial topology T , how can we
decide for an edge e in T if e can be part of an optimal full topology, that is we want

Pruning Tests 31

to find provable properties of T that allow us to draw conclusions on the lengths of e
in instantiations of a full topology T ·R. Therefore, we introduce several modifications
of Fitch’s algorithm that allow us to compute lower bounds on the length of e in a
complemented labeling for T · R.

The first algorithm under consideration is the so called modified Fitch algorithm.
The idea behind this algorithm is the following (assume for a moment that d = 1): if
you consider the edge e = {u, v} with v = parent(u) in a topology T and you want
to find a complemented Fitch labeling µ for T such that the length of e becomes 1
then clearly you have to set µ(v)1 6= µ(u)1. But this means that you have to choose
the rest of the labeling in such a way that it is possible to choose for v some µ(v)1 /∈
µF [T](u)1 (considering labelings constructible by Fitch’s algorithm) without violating
the optimality of µ. The idea is now to modify Fitch’s algorithm in such a way that
– whenever it can – it chooses an element not contained in µF [T](u)1. More generally
we define

Definition 1.24 (modified Fitch algorithm) We are given a rooted topology T =
((VT , ET), rT) over T and a family of sets (Aj)j∈{1,...,d} ⊆ P(Σ)d. We modify Fitch’s
algorithm by adding the following rule: if in the second phase of Fitch’s algorithm we
have to choose an arbitrary element from µF [Tr](u)i for the current node u, we first
check if µF [Tr](u)i \ Ai is non-empty. In this case we choose an arbitrary element
from µF [Tr](u)i \ Ai instead of µF [Tr](u)i. We call the algorithm the modified Fitch
algorithm. We denote by LA(T) the set of labelings that can be computed by this
algorithm.

For the modified Fitch algorithm the goal was to find a complemented labeling for
a topology T . But in our case T is only a partial topology that is used to build a
full topology T · R for some other partial topology R that we do not know in advance.
To be able to also cope with this case we introduce the restricted Fitch algorithm.
Assuming that we do not know anything about the topology R we have to assume
that the Fitch ranges of the root of R are given in such a way that the resulting lower
bounds on the length of e are as weak as possible. It turns out that this is the case
if the Fitch range is a subset of µF [T](u)1. So we have to change the modified Fitch
algorithm in such a way that it can handle this situation, leading to

Definition 1.25 (restricted Fitch algorithm) We are given a rooted topology T =
((VT , ET), rT) over T , a family of sets (Aj)j∈{1,...,d} ⊆ P(Σ)d and a family of elements

in Σ, namely (bj)j∈{1,...,d} ⊆ Σd. We now alter the modified Fitch algorithm by adding
the following rule: if the current node u is the root node and if bi ∈ µF [T](r)i we
set µ(r)i := bi otherwise we proceed as in the modified Fitch algorithm. We call the
algorithm the restricted Fitch algorithm. We denote by Lb

A(T) the set of labelings that
can be computed by this algorithm (see figure 1.6 for an example).

Let us now prove an important property of the labelings computed by the modified
Fitch algorithm. Lemma 1.6 states that all instantiations created by this algorithm
are essentially the same if considering the length of a given edge and if you choose the
appropriate parameters.

32 Pruning Tests

C DA B

A,B C ,D

A,B,C ,D B,C ,D

B,C ,D A

A,B,C,D

B C

D
B,C

C DA B

A,B C,D

A,B ,C,D B ,C,D

B ,C,D

A,B ,C,D

B C

D
B ,C

C DA B

A,B C ,D

A,B,C ,D B,C ,D

B,C ,D A

A,B,C,D

B C

D
B,C

C DA B

A,B C,D

A,B ,C,D B ,C,D

B ,C,D B

A,B ,C,D

B C

D
B ,C

Figure 1.6: An example of the restricted Fitch algorithm on one character terminals
(blue characters). The letters at the nodes are the Fitch ranges of the
topology. The example shows two possible labelings (bold letters) of the
topology that were computed by the restricted Fitch algorithm. In both
examples we have A1 := {A, B}. In the left topology we have set b1 := B
and in the right one b1 := A.

Lemma 1.6 Given a rooted topology T = ((VT , ET), µT , rT) over T and an edge e =
{u, v} where v is the father of u, we have for all i ∈ {1, . . . , d}: if

∃ µ ∈ LA(T) : ‖µ(u)i, µ(v)i‖ = 1

then
∀ µ ∈ LA(T) : ‖µ(u)i, µ(v)i‖ = 1

where Aj := µF [T](u)j

Proof: Let us assume that the premise holds, that is ∃ µ ∈ LA(T) : ‖µ(u)i, µ(v)i‖ = 1
and let u′ be the sibling of u. Then µF [T](v)i = µF [T](u)i ∪ µF [T](u′)i because
otherwise we would have:

∀ µ ∈ L(T) : µ(v)i ∈ µF [T](u)i ∧ µ(v)i ∈ µF [T](u′)i

⇒ µ(u)i = µ(u′)i = µ(v)i

⇒ ‖µ(u)i, µ(v)i‖ = 0

which would yield a contradiction since LA(T) ⊆ L(T) and therefore,

∀ µ ∈ LA(T) : ‖µ(u)i, µ(v)i‖ = 0

We prove the claim now by induction over the length of the path v Ã r. Assume
that in the base case |v Ã rT | = 1, that is if v = rT . As just argued, µF [T](rT)i =
µF [T](u)i∪µF [T](u′)i. Thus with Ai := µF [T](u)i the modified Fitch algorithm chooses
for rT an arbitrary element from

µF [T](rT)i = µF [T](u)i ∪ µF [T](u′)i \ Ai

= µF [T](u′)i

Thus
∀ µ ∈ LA(T) : ‖µ(u)i, µ(v)i‖ = 1

Pruning Tests 33

Now let us consider the inductive step. Let (v Ã rT) := (v = v1, v2, . . . , vk = rT). We
know by Fitch’s algorithm that their are two possibilities for a node vl ∈ (v1 Ã vk):
either µ(vl+1)i = µ(vl)i or µ(vl+1)i /∈ µF [T](vl)i. We now distinguish two cases: in
the first one let vl+1 ∈ (v1 Ã vk) be the first node on the path for which µ(vl+1)i /∈
µF [T](vl)i, that is µ(vl+1)i 6= µ(vl)i. By induction hypothesis we now know that

∀ µ ∈ LA(T) : ‖µ(vl+1)i, µ(vl)i‖ = 1

Now consider any call of the modified Fitch algorithm when reaching node vl. Note
that for all nodes w on the path v2 Ã vl we have µ(v)i ∈ µF [T](w)i. Thus following
the path down to v1 the algorithm will always choose some element not contained in
µF [T](u)i. Thus any call produces a labeling µ with

‖µ(u)i, µ(v)i‖ = 1

which proves the claim. Now consider the case in which no such vl+1 exists. Then
for all nodes w on the path v2 Ã rT we have µ(v)i ∈ µF [T](w)i. Following the same
argument as just given above the claim also holds in this case which completes the
proof. ¤

The following lemma formulates a criterion such that if a partial topology T satisfies
this criterion then we know that a given edge in T has at least a certain length in a
(not any!) complemented labeling for any topology T · R.

Lemma 1.7 Given a rooted topology T = ((VT , ET), µT , rT) over some T ′ ⊆ T and an
edge e = {u, v} where v is the father of u and a rooted topology R = ((VR, ER), µR, rR)
over T \ T ′, then we have ∀ i ∈ {1, . . . , d} : if

∀ b ∈ Σd with bj ∈ µF [T](u)j ∩ µF [T](rT)j :

∃ µ ∈ Lb
A(T) : ‖µ(u)i, µ(v)i‖ = 1

where Aj := µF [T](u)j, then

∃ µ ∈ L(T · R) : ‖µ(u)i, µ(v)i‖ = 1

Proof: Let us first consider the case

µF [T · R](root(T · R))i = µF [T](rT)i ∪ µF [T](rR)i

Consider any (bj)j∈{1,...,d} and µ ∈ Lb
A(()T) such that ‖µ(u)i, µ(v)i‖ = 1. Then with

µ := µ ⊙ µ′
R ⊙ µr where µ′

R is an arbitrary Fitch labeling in L(R) and where

µr : {root(T · R)} → Σd; u 7→ µ(rT)

we have µ ∈ L(T · R) : ‖µ(u)i, µ(v)i‖ = 1 which can be seen as follows: consider a call
of Fitch’s algorithm on T · R constructing µ. Since

µF [T · R](root(T · R))i = µF [T](rT)i ∪ µF [T](rR)i

we know that µ(rT)i ∈ µF [T · R](root(T · R))i, because µ(rT)i ∈ µF [T](rT)i. By the
definition of Fitch’s algorithm we can choose µ(root(T · R))i := µ(rT)i. Since we have

34 Pruning Tests

assumed that µF [T](rT)i ∩ µF [T](rR)i = ∅ we know that µ(rT)i /∈ µF [R](rR)i thus
we can set µ(x)i := µ′

R(x)i for all x ∈ VR. According to Fitch’s algorithm we now
have to set µ(rT)i := µ(rT)i. But because µ is also contained in L(T) we can also set
µ(x)i := µ(x)i for all other nodes x ∈ VT , completing the first case.
So let us assume now that

µF [T · R](root(T · R))i = µF [T](rT)i ∩ µF [T](rR)i (I)

In the following we will assume for sake of simplicity that d = 1. Recall that we can do
so without loss of generality since we consider a fixed topology T . We distinguish now
between the two cases whether µF [T](rT)i ∩ µF [T](u)i = ∅ or not. Let us first assume
that the intersection is empty. Since (I) holds we also know that

µF [T · R](root(T · R))i ⊆ µF [T](rT)i

and therefore,
µF [T · R](root(T · R))i ∩ µF [T](u)i = ∅

Thus, for any µ ∈ Lb
A(T) we have µ ∈ LA(T). On the other hand Lemma 1.6 implies

that
∀ µ ∈ LA(T) : ‖µ(u)i, µ(v)i‖ = 1

which in turn implies that for any µ′ ∈ LA(T · R) we also have ‖µ′(u)i, µ
′(v)i‖ = 1.

But since
µF [T · R](root(T · R))i ∩ µF [T](u)i = ∅

we also know that µ′ ∈ L(T · R) showing the claim.
Now consider the second case in which

µF [T](rT)i ∩ µF [T](u)i 6= ∅

We again distinguish now between two cases: if µF [T](rT)i ⊆ µF [T](u)i we are in the
same situation as above, since for any µ ∈ Lb

A(T) we also have µ ∈ LA(T) in that case.
So let us assume that µF [T](rT)i contains – but not only – elements from µF [T](u)i.
If µF [T · R](root(T · R))i ⊆ µF [T](u)i we are done by choosing an arbitrary element
for µ(root(T · R))i. Thus µ(rT)i = µ(root(T · R))i ∈ µF [T](u)i and by the premise
follows the claim. The only case left is that µF [root(T · R)]i∩µF [T](u)i = ∅. We prove
this case by contradiction. Assume for this that the claim does not hold, that is

∄ µ ∈ L(T · R) : ‖µ(u)i, µ(v)i‖ = 1

or equivalently
∀ µ ∈ L(T · R) : ‖µ(u)i, µ(v)i‖ = 0

since LA(T · R) ⊆ L(T · R), in particular we have

∀ µ ∈ LA(T · R) : ‖µ(u)i, µ(v)i‖ = 0 (II)

So let us consider now any µ ∈ LA(T · R). We know that µ(root(T · R))i /∈ µF [T](u)i

and thus µ(rT)i /∈ µF [T](u)i. Consider now the path (v Ã rT) = (v = v1, . . . , vk = rT).
Since we have assumed (II), µ(v)i ∈ µF [T](u)i. Now there must exist an vl ∈ (v Ã rT)

Pruning Tests 35

with µ(vl)i 6= µ(v)i since otherwise, the premise of the claim would be violated with
bj := µ(v)i. But this means that µ(vl)i /∈ µF [T](vl−1)i. Since µ ∈ LA(T · R) we know
that µF [T](vl−1)i ⊆ µF [T](u), because otherwise µ(vl−1)i ∈ Ai would not have been
chosen by the algorithm. Let us denote by T ′ the subtopology of T rooted at vl−1.
From the existence of µ follows that

∃ µ′ ∈ LA(T ′) : ‖µ′(u)i, µ′(v)i‖ = 0

Lemma 1.6 implies

∀ µ′ ∈ LA(T ′) : ‖µ′(u)i, µ′(v)i‖ = 0

Now consider any call of the restricted Fitch algorithm constructing µ ∈ Lb
A(T). When

reaching node vl−1 6= rT we know from the existence of µ′ that ‖µ(u)i, µ(v)i‖ = 0
which is a contradiction to the premise of the lemma. Thus the assumption

∄ µ ∈ L(T · R) : ‖µ(u)i, µ(v)i‖ = 1

that we have made must be must be wrong, showing the claim in this last case. This
completes the proof. ¤

Corollary 1.2 Given a rooted topology T = ((VT , ET), µT , rT) over some T ′ ⊆ T and
an edge e = {u, v} where v is the father of u and a rooted topology R = ((VR, ER), µR, rR)
over T \ T ′, then we have ∀ i ∈ {1, . . . , d} : if

∀ b ∈ Σd with bj ∈ µF [T](u)j ∩ µF [T](rT)j ∩
⋃

t∈leaves(R)

µR(t) :

∃ µ ∈ Lb
A(T) : ‖µ(u)i, µ(v)i‖ = 1

where Aj := µF [T](u)j, then

∃ µ ∈ L(T · R) : ‖µ(u)i, µ(v)i‖ = 1

Proof: Follows directly from the proof of Lemma 1.7: in the case

µF [T · R](root(T · R))i = µF [T](rT)i ∪ µF [R](rR)i

exactly the same argumentation stays valid and in the case

µF [T · R](root(T · R))i = µF [T](rT)i ∩ µF [R](rR)i

the claim is also valid since

∄ x ∈ µF [R](rR)i : x /∈
⋃

t∈leaves(R)

µR(t)

¤

But what is the complexity of checking whether the premise in Lemma 1.7 is satisfied
for a given i ∈ {1, . . . , d}? Once we have computed the Fitch range function for T using

36 Pruning Tests

O(|VT |) basic set operations, we have to perform the second phase of the restricted Fitch
algorithm for each element

bj ∈ B := µF [T](u)j ∩ µF [T](rT)j ∩
⋃

t∈leaves(R)

µR(t)

Note that we have to perform this second phase just for the path from the root of
the topology to the edge e, but since the depth of the topology can be O(|VT |) this
phase involves O(|VT |) basic set operations. Thus in the worst case the complexity is
given by O(|VT | · |Σ|) basic set operations. But we can easily improve that running
time. The idea for this is as follows: instead of traversing T for each bj separately, we
do it only once, bookkeeping which node labels have to be set to bj in this traversal
just because the algorithm could have chosen µ(rT)i := bj . For doing so we have to
pass down a subset S of B (initially we set S := B) along any path of T in the
second phase of the algorithm. Before the algorithm decides which element to pick it
first checks whether S is empty or not. If it is empty the algorithm proceeds as the
usual, if not S is set to S ∩ µF [T](w)i where w is the child of the current node in the
traversal. If the algorithm reaches node v and the set S is non-empty we have to check
if S ∩ µF [T](u)i is non-empty. If yes, then we know that the premise given in Lemma
1.7 is not satisfied. Let us call this algorithm the set-restricted Fitch algorithm. The
running time is obviously bounded by O(|VT |) basic set operations. We associate with
this algorithm the indicator function

SRF (T , {u, v}, i) : VT × ET × {1, . . . , d} → {0, 1}

which maps to 1 if and only if the set-restricted Fitch algorithm shows that

∀ (bj)j∈{1,...,d} with bj ∈ µF [T](u)j ∩ µF [T](rT)j :

∃ µ ∈ Lb
A(T) : ‖µ(u)i, µ(v)i‖ = 1

where Aj := µF [T](u)j

Note that the function SRF is well defined since Lemma 1.6 implies that in the above
expression

∃ µ ∈ Lb
A(cT) : ‖µ(u)i, µ(v)i‖ = 1

⇒ ∀ µ ∈ Lb
A(cT) : ‖µ(u)i, µ(v)i‖ = 1

Corollary 1.3 Given a rooted topology T = ((VT , ET), µT , rT) over some T ′ ⊆ T and
an edge e = {u, v} where v is the father of u and a rooted topology R = ((VR, ER), µR, rR)
over T \ T ′ and an i ∈ {1, . . . , d}, then

SRF (T , e, i) = 1 ⇒ ∃ µ ∈ L(T · R) : ‖µ(u)i, µ(v)i‖ = 1

Definition 1.26 Let T = ((VT , ET), µT , r) be a rooted topology over T . For an edge
e = {u, v} ∈ ET where v is the father of u we define

‖e‖m := |{ i ∈ {1, . . . , d} | SRF (T , e, i) = 1 }|

Pruning Tests 37

A,B

B

A

A
B

A,B

e

A B

A

B
B

e

B

B

0

0

1

1

0

00

0 1

B

B
0

0

01 B

B
0

0

0

A

Figure 1.7: An example of the non-optimality of ‖·‖m bound. Consider the topologies T
(black edges), R (grey edges) and the edge e := {v, u} where v = parent(u).
Since µF [T](parent(v)) = {A}, for all instantiations µ ∈ L(T) ∪ L(T · R),
cost[µ](e) = 0 and in particular ‖e‖m = 0. But on the other hand the right
figure shows a non-Fitch optimal labeling µ′ for T · R with cost[µ′](e) = 1.

Corollary 1.4 Let T = ((VT , ET), µT) be a rooted topology over T ′ (T , an edge
{u, v} ∈ ET where v is the father of u and let R = ((VR, ER), µR) be a rooted topology
over T \ T ′. Then

∃ µ ∈ L(T · R) : ‖µ(u), µ(v)‖ ≥ ‖u, v‖m

Note that Corollary 1.4 makes a statement only about labelings that can be com-
puted using Fitch’s algorithm. Figure 1.7 shows an example which demonstrates that
there is still room for improvement as there can exist an optimal labeling not contained
in L(T · R) that produces a long edge e even if it is not detected by our approach.

Now that we know how to predict a long/heavy edge in a Steiner minimum tree with
full topology T · R, we can derive properties that tell us when we are allowed to prune
a partial topology as it cannot be part of an optimal one. The idea of Theorem 1.4 and
Theorem 1.5 is as follows. If we decompose a topology T · R by deleting an edge e in
T we test if it is possible to re-connect the resulting connected components by adding
another edge e′. If the cost of e′ is now smaller than the cost of e we that T · R cannot
be optimal and thus T can be pruned. The only difference between the two theorems
is that they consider a different sets of possible edges for the re-connection phase.

Theorem 1.4 (heavy edge property (I)) Let T = ((VT , ET), µT) be a rooted topol-
ogy over T ′ (T , an edge e := {u, v} ∈ ET where v is the father of u and let
R = ((VR, ER), µR) be a rooted topology over T \ T ′. Let Tu = ((VTu , ETu), µTu) be
the subtopology of T rooted at u. Then T · R can not be an optimal topology over T if
the following condition holds:

‖e‖m > min{ ‖p, µ(t)‖min | p ∈ VTu \ {u}, t ∈ leaves(T · R) \ leaves(Tu) }

where µ := µT ⊙ µR and p ∈ P(Σ)d with pi :=
⋃

e∈ET
µp

F [(Tu)e](p)i

Proof: This proof mainly consists of two parts. In the first one we argue that there is
a complemented labeling for the full topology T · R that yields a long edge e. Then we

38 Pruning Tests

show that this allows us to construct a cheaper full topology F showing non-optimality
of T · R.

Let T · R = ((VT ·R, ET ·R), µT ·R). Consider an instantiation µ ∈ L(T · R) with
‖µ(u), µ(v)‖ ≥ ‖e‖m. We know that such an instantiation must exist because of
Corollary 1.4. Then

cost[µ](T · R) =
∑

e′∈ET ·R

cost[µ](e′)

= cost[µ](Tu) + cost[µ](e) +
∑

e′∈ET ·R\ETu\{e}
cost[µ](e′)

= cost(Tu) + cost[µ](e) +
∑

e′∈ET ·R\ETu\{e}
cost[µ](e′)

≥ cost(Tu) + ‖e‖m +
∑

e′∈ET ·R\ETu\{e}
cost[µ](e′)

Let

(p, t) := argmin{ ‖p, µ(t)‖min |
(p ∈ VTu \ {u}, t ∈ leaves(T · R) \ leaves(Tu)) } (I)

and let xp ∈ p be a point that minimizes the term ‖p, µ(t)‖min in (I). Following
Corollary 1.1, there exists a complemented labeling µu for Tu such that

µu(p) = xp

and clearly, ∀ µ∗ ∈ L(T ·R) : µ∗(t) = µ(t) since t is a terminal node. Now consider the
topology

F := ((VT ·R \ {u},
ET ·R \ ETu ∪ ETu

\ {e} ∪ {er := {p, t}}),
µF := µr ⊙ µ|(VT ·R\VTu))

Note that the underlying tree of F is connected and thus F is indeed a topology over
T . The cost of F is given by

cost(F) = cost[µF](Tu) + cost[µF](er) +
∑

e′∈ET ·R\E
Tu

\{e}
cost[µF](e′)

= cost[µr](Tu) + cost[µF](er) +
∑

e′∈ET ·R\E
Tu

\{e}
cost[µ](e′)

= cost(Tu) + cost[µF](er) +
∑

e′∈ET ·R\E
Tu

\{e}
cost[µ](e′)

< cost(Tu) + ‖e‖m +
∑

e′∈ET ·R\E
Tu

\{e}
cost[µ](e′)

≤ cost(T · R)

which implies that the topology T · R can not be an optimal one. ¤

Pruning Tests 39

Note that Theorem 1.4 is a generalization of the bottleneck Steiner distance cri-
terion given in Theorem 1.3 since for each terminal node tu spanned by Tu we have
µp

F [(Tu)e](tu) = µ(tu) and thus

∀ i ∈ {1, . . . , d} : µ(tu)i ∈ pi

what implies that

‖p, µ(t)‖min ≤ ‖µ(tu), µ(t)‖min

for all p ∈ VTu \ {u}, t ∈ leaves(T · R) \ leaves(Tu) and tu ∈ leaves(Tu).

The idea of the following theorem is very similar to the one of Theorem 1.4, but
instead of considering for e′ the edges formed by a node in Tu and a terminal node in
leaves(T · R) \ leaves(Tu), we consider edges consisting of a node in Tu and a (possibly
inner node) in nodes(T) \ nodes(Tu).

Theorem 1.5 (heavy edge property (II)) Let T = ((VT , ET), µT) be a rooted topol-
ogy over T ′ (T , an edge e := {u, v} ∈ ET where v is the father of u and let
R = ((VR, ER), µR) be a rooted topology over T \ T ′. Let Tu = ((VTu , ETu), µTu) be
the subtopology of T rooted at u. Then T · R can not be an optimal topology over T if

‖e‖m > min{ ‖p, y‖∗ | p ∈ VTu \ {u}, y ∈ VT \ VTu }

with

‖p, y‖∗ := |{ i ∈ {1, . . . , d} | µF [T](y)i 6⊆ pi }|

and where µ := µT ⊙ µR and p ∈ P(Σ)d with pi :=
⋃

e∈ET
µp

F [(Tu)e](p)i

Proof: Also this proof essentially consists of two parts. In the first one we argue that
there is a complemented labeling for the full topology T · R that yields a long edge
e. Then we show that this allows us to construct a cheaper full topology F showing
non-optimality of T · R.

Let T · R = ((VT ·R, ET ·R), µT ·R). Consider a µ ∈ L(T · R) with ‖µ(u), µ(v)‖ ≥
‖e‖m. We know that such an instantiation must exist because of Corollary 1.4. Recall
that for all w ∈ VT : µF [T](w) = µF [T · R](w) and thus for all i ∈ {1, . . . , d} :

µF [T](y)i ⊆ pi ⇒ µF [T · R](y)i ⊆ pi

Since µ(y)i ∈ µF [T · R](y)i we know that

µF [T](y)i ⊆ pi ⇒ µ(y)i ∈ pi

Recall that Lemma 1.1 implies that there exists a complemented labeling µu for Tu

such that µu(y)i ∈ pi and thus

µF [T](y)i ⊆ pi ⇒ ‖µ(yi), pi‖min = 0

40 Pruning Tests

But this implies directly that for any µ ∈ L(T · R) there is a complemented labeling
µu for Tu with

‖µu(p), µ(y)‖ ≤ d − |{ i ∈ {1, . . . , d} | µF [T](y)i ⊆ pi }|
= |{ i ∈ {1, . . . , d} | µF [T](y)i 6⊆ pi }|

Now consider the topology

F := ((VT ·R \ {u},
ET ·R \ ETu ∪ ETu

\ {e} ∪ {er := {p, y}}),
µF := µr ⊙ µ|(VT ·R\VTu))

with
(p, y) := argmin{ ‖p, y‖∗ | (p ∈ VTu \ {u}, y ∈ VT \ VTu) }

Then

cost(F) = ‖µu(p), µ(y)‖ + cost[µu](Tu) +
∑

e′∈ET ·R\E
Tu

\{e}
cost[µ](e′)

≤ |{ i ∈ {1, . . . , d} | µF [T](y)i 6⊆ pi }|) +

cost(Tu) +
∑

e′∈ET ·R\E
Tu

\{e}
cost[µ](e′)

< ‖e‖m + cost(Tu) +
∑

e′∈ET ·R\E
Tu

\{e}
+ cost[µ](e′)

≤ cost(T · R)

which implies that the topology T · R can not be an optimal one. ¤

So far we have only examined the edges contained in the partial topology T . But
there is one more edge left whose length can be bounded, namely the edge connecting
T and R.

Theorem 1.6 (heavy root edge property) Let T = ((VT , ET), µT , rT) be a rooted
topology over T ′ (T and let R = ((VR, ER), µR) be a rooted topology over T \T ′. Then
T · R can not be an optimal topology over T if the following condition holds:

|{ i ∈ {1, . . . , d} | µF [T](rT)i ∩
(

⋃

t∈T\T ′

{ti}
)

= ∅ }|

> min{ ‖p, µ(t)‖min | p ∈ VTu \ {u}, t ∈ leaves(T · R) \ leaves(Tu) }

where µ := µT ⊙ µR and p ∈ P(Σ)d with pi :=
⋃

e∈ET
µp

F [(Tu)e](p)i

Proof: The proof is completely analogous to the proof of Theorem 1.4. The only thing
to show is that the left hand side of the inequality in the premise of the theorem is a
lower bound for the edge connecting T and R in T · R. First note that

∀ i ∈ {1, . . . , d} : µF [R](root(R))i ⊆
⋃

t∈T\T ′

{ti}

Pruning Tests 41

Consider now any µ ∈ L(T · R). Then for all i ∈ {1, . . . , d} :

‖µ(root(T · R))i, µ(root(T))i‖ + ‖µ(root(T · R))i, µ(root(R))i‖ = 1

⇔ µF [T · R](root(T · R))i = µF [T](root(T))i ∪ µF [R](root(R))i

⇔ µF [T](root(T))i ∩ µF [R](root(R))i = ∅
⇐ µF [T](root(T))i ∩

⋃

t∈T\T ′

{ti} = ∅

Thus

‖µ(root(T · R)), µ(root(T))‖ + ‖µ(root(T · R)), µ(root(R))‖

≥ |{ i ∈ {1, . . . , d} | µF (root(T))i ∩
(

⋃

t∈T\T ′

{ti}
)

= ∅ }|

completing the proof. ¤

Certainly the pruning conditions given in Theorems 1.4 and 1.5 can even be improved
by several means. One idea uses the observation that after removing the edge e = {u, v}
the subtopology Tu of the given partial topology T can be changed in an arbitrary
way, that is instead of considering Tu, one could try to find an alternative network
interconnecting the terminal nodes of Tu. This could help improving the pruning tests
in two ways. The first one is, that the cost of Tu could be improved and the second one
is that another – possibly more costly – tree interconnecting the leaves of Tu could be
constructed such that the cost of the reconnection is decreased. This is the subject of
the next section.

1.5.2 Topology Replacement Tests

In the previous section we have discussed pruning tests based on a simple ruin-and-
recreate strategy that involved removing single edges and re-establishing the connec-
tivity property of the spanning tree. In this section we will again employ this strategy
but instead of replacing edges we will try to substitute whole (partial) topologies. Since
the efficiency of our implementation also heavily relies on the efficiency with which we
can compute the pruning tests, we will focus on tests that can be computed very fast.

We start with a pruning test that is based on the computation of lower bounds for
Steiner minimum trees over a subset of the terminals. As mentioned in the preamble of
the pruning test section we postpone the question of how to compute such bounds on
the cost a Steiner minimum tree to section 1.6. The basic idea is quite simple: if you
are given a partial topology T spanning a subset T ′ of the terminal set T , then clearly
there cannot be an optimal full topology T · R if

cost(T) + costlb(T \ T ′) > costup(T)

where costlb(T) denotes a lower bound on the cost of a Steiner minimum tree ST over
T and costup(T) denotes an upper bound on the cost of ST . This is due to the fact that
the Steiner tree problem is monotone, that is if you consider only a subset of terminal
points the cost of an optimal solution can only decrease.

42 Pruning Tests

Theorem 1.7 (lower bound test) Let T = ((VT , ET), µT , rT) be a rooted topology
over T ′ (T and let R = ((VR, ER), µR, rR) be a rooted topology over T \ T ′. Then
T · R can not be an optimal topology over T if

cost(T) > costup(T) − costlb(T \ T ′) −

|{ i ∈ {1, . . . , d} | µF (rT)i ∩
(

⋃

t∈T\T ′

{ti}
)

= ∅ }|

Proof: Let µ ∈ L(T · R). Recall that

‖µ(rT), µ(rR)‖ = |{ i ∈ {1, . . . , d} | µ(rT)i 6= µ(rR)i }|

≥ |{ i ∈ {1, . . . , d} | µF (rT)i ∩
(

⋃

t∈T\T ′

{ti}
)

= ∅ }|

since µ(rR)i ∈ µF [R](rR)i ⊆
⋃

t∈T\T ′{ti}. Thus

cost(T · R) = cost(T) + cost(R) + ‖µ(rT), µ(rR)‖
> costup(T) +

[
cost(R) − costlb(T \ T ′)

]
+

‖µ(rT), µ(rR)‖ − |{ i ∈ {1, . . . , d} | µF (rT)i ∩
(

⋃

t∈T\T ′

{ti}
)

= ∅ }|

≥ costup(T) +

‖µ(rT), µ(rR)‖ − |{ i ∈ {1, . . . , d} | µF (rT)i ∩
(

⋃

t∈T\T ′

{ti}
)

= ∅ }|

≥ costup(T)

where the first inequality follows from the premise of the theorem and the second from
the fact that span(R) = T \ T ′ and with it cost(R) ≥ costlb(T \ T ′). But this proves
that T · R is not an optimal topology. ¤

The idea of the next pruning tests is the following. Consider two partial topologies T
and T ′ spanning the same set of terminals. If one of them – let’s say T ′ – is sufficiently
smaller than the other, you can substitute the bigger topology by the smaller one in a
full topology T · R such that the resulting full topology T ′ · R is cheaper than T · R,
showing the non-optimality of T · R. In the following theorem we discuss when it is
possible to replace T by T ′ when connecting T ′ to the root of T .

Theorem 1.8 (root substitutable topologies) Let T = ((VT , ET), µT , rT) be a
rooted topology over T ′ (T and let R = ((VR, ER), µR, rR) be a rooted topology over
T \ T ′. Then T · R can not be an optimal topology over T if there exists a topology
T ′ = ((VT ′ , ET ′), µT ′ , rT ′) with span(T) = span(T ′) such that

cost(T) > cost(T ′) + ‖µF [T](rT), µF [T ′](rT ′)‖(

where ‖x, y‖ 6⊆ := { i ∈ {1, . . . , d} | xi 6⊆ yi }.

Pruning Tests 43

Proof: Let µ ∈ L(T · R) and µ′ ∈ L(T ′) such that

∀ i ∈ {1, . . . , d} with µF [T](rT)i ⊆ µF [T ′](rT ′)i : µ′(rT ′)i = µ(rT)i

Note that such a labeling µ′ must exist because by the definition of Fitch’s algorithm
we have µ(rT)i ∈ µF [T](rT)i. Thus, if µF [T](rT)i ⊆ µF [T ′](rT ′)i then also µ(rT)i ∈
µF [T ′](rT ′)i, that is there exists a µ′ ∈ L(T ′) : µ′(rT ′)i = µ(rT)i. Now consider the full
topology

F := ((VR ∪ VT ′ ∪ {rT },
ET ′ ∪ ER ∪ {{rT ′ , rT }, {rT , rR}}),
µF := µ′ ⊙ µ|(VR∪{rT }))

Then

cost(F) = cost(T ′) + cost(R) + ‖µ(rT), µ′(rT ′)‖ + ‖µ(rT), µ(rR)‖
< cost(T) + cost(R) + ‖µ(rT), µ(rR)‖ +

‖µ(rT), µ′(rT ′)‖ − ‖µF [T](rT), µF [T ′](rT ′)‖ 6⊆
≤ cost(T) + cost(R) + ‖µ(rT), µ(rR)‖
= cost(T · R)

where the second inequality follows from the way in which we have chosen µ′:

‖µF [T](rT), µF [T ′](rT ′)‖6⊆
= { i ∈ {1, . . . , d} | µF [T](rT)i |6⊆ µF [T ′](rT ′)i }
= d − { i ∈ {1, . . . , d} | µF [T](rT)i |⊆ µF [T ′](rT ′)i }
≥ d − { i ∈ {1, . . . , d} | µ(rT)i = µ′(rT ′) }
= ‖µ(rT), µ′(rT ′)‖

But this contradicts the optimality of T · R. ¤

While the idea in the last theorem was to connect T ′ to R over the root node of T , in
the next theorem we discuss the possibility to connect T ′ and R via an edge reaching
from a node in T to a terminal in R.

Theorem 1.9 (substitutable topologies) Let T = ((VT , ET), µT , rT) be a rooted
topology over T ′ (T and let R = ((VR, ER), µR, rR) be a rooted topology over T \ T ′.
Then T · R can not be an optimal topology over T if there exists a topology T ′ =
((VT ′ , ET ′), µT ′) with span(T) = span(T ′) such that

cost(T) > cost(T ′) +

min{ ‖p, µR(t)‖min | p ∈ VT ′ , t ∈ leaves(R) } −

|{ i ∈ {1, . . . , d} | µF [T](rT)i ∩
(

⋃

t∈T\T ′

{ti}
)

= ∅ }|

where µ := µT ⊙ µR and p ∈ P(Σ)d with pi :=
⋃

e∈ET
µp

F [(T ′)e](p)i

44 Pruning Tests

Proof: Let

(p, t) := argmin{ ‖p, µR(t)‖min | (p ∈ VT ′ , t ∈ leaves(R)) } (I)

and let xp ∈ p be a point that minimizes the term ‖p, µR(t)‖min in (I). Following
Corollary 1.1, there exists a complemented labeling µ′ for T ′ such that

µ′(p) = xp

and clearly, ∀ µ∗ ∈ L(R) : µ∗(t) = µR(t) since t is a terminal node. Consider now the
topology

F := ((VT ′ ∪ VR,

ET ′ ∪ ER ∪ {er := {p, t}}),
µF := µ′ ⊙ µ′

R)

where µ′
R ∈ L(R). Then

cost(F) = cost(T ′) + cost(R) + cost(er)

= cost(T ′) + cost(R) + ‖µ′(p), µR(t)‖
< cost(T) + cost(R) +

|{ i ∈ {1, . . . , d} | µF [T](rT)i ∩
(

⋃

t∈T\T ′

{ti}
)

= ∅ }|

≤ cost(T) + cost(R) + ‖µ(rT), µ(rR)‖
= cost(T · R)

for a µ ∈ L(T · R). Note that this is a contradiction to the optimality of the full
topology T · R. ¤

The idea of the following pruning test is a kind of a generalization of the edge
replacement tests that we have seen in the previous section. Instead of replacing a
single edge of T we remove all edges and try to re-connect the terminal nodes in T
in a cheap way. The difference between the former approaches and this one is now
the following. In the former theorems we have tried to find a network re-connecting
these terminals disregarding the fact that we have some knowledge about the terminals
spanned by R, namely that they are already connected. Thus, when trying to connect
the terminal nodes of T again we can make use of R as a mean of taking shortcuts.
The idea is now to determine a minimum spanning tree over the terminal nodes of T
and a new node M that represents the minimal distance of a point in leaves(T) and a
terminal in R (see Figure 1.8 for an example in Euclidean space).

Theorem 1.10 (MST-substitute) Let T = ((VT , ET), µT , rT) be a rooted topology
over T ′ (T and let R = ((VR, ER), µR, rR) be a rooted topology over T \ T ′. Consider
the complete weighted graph G = (V, E, w) with

V := leaves(T) ∪ {M}

Pruning Tests 45

M

u

v

m1

m2

Figure 1.8: An example of the MST-substitute property in the Euclidean plane. The
green points represent the terminals spanned by a (not known) partial topol-
ogy R. The blue points correspond to the terminals spanned by the partial
topology T . If you want to connect the nodes u and v, instead of adding
the expensive edge {u, v}, you can use the network of R as a shortcut (red
path) and add the cheaper edges {u, m1} and {v, m2}.

for some M /∈ leaves(T) and

∀ u, v ∈ leaves(T) : w({u, v}) := ‖µT (u), µT (v)‖ and

w({u, M}) := min
m∈leaves(R)

{ ‖µT (u), µT (m)‖ }

Then T · R can not be an optimal topology over T if

cost(T) > |MST(G)| − |{ i ∈ {1, . . . , d} | µF [T](rT)i ∩
(

⋃

t∈T\T ′

{ti}
)

= ∅ }|

where |MST(G)| is the size of a minimum weight spanning tree over G.

Proof: The proof is straightforward. Let MST(G) = (VM , EM), consider now the
topology

F := ((VR ∪ leaves(T),

ER ∪ E′),

µF := µR ⊙ µT |leaves(T)

where

E′ = { {u, v} ∈ EM | u /∈ R ∧ v /∈ R } ∪
{ {u, m} ∈ EM | {u, M} ∈ EM ∧ m = argmin

m∈leaves(R)
{ ‖µT (u), µT (m)‖ } }

Clearly, by definition of the minimum spanning tree F is connected and thus a topology.

46 Pruning Tests

u

v

m1

m2

e

Figure 1.9: An example demonstrating the performance of the MST-substitute test.

The cost of F is then

cost(F) = cost(R) + |MST (G)|
< cost(R) + cost(T) +

|{ i ∈ {1, . . . , d} | µF [T](rT)i ∩
(

⋃

t∈T\T ′

{ti}
)

= ∅ }|

≤ cost(T · R)

thus showing that T · R cannot be optimal. ¤

Interestingly Polzin describes a similar pruning test in his thesis [Pol03]. Following
his approach we would compare the cost of T with the the cost of a minimum spanning
tree over leaves(T) with respect to the bottleneck Steiner distances of T . Let us first
argue that our approach is not inferior to his. Recall that the cost of an edge e in a
minimum spanning tree never exceeds the minimal cost of an edge in the cut induced by
e. Consider now an edge e = {x, y} ∈ E in the minimum spanning tree as constructed
by our approach. Let us denote by (X, Y) ⊆ V × V the partition of the node set of G
induced by e. Let us assume without loss of generality that M ∈ Y . Let us simplify
the discussion by setting

‖x, y‖ := ‖(µT ⊙ µR)(x), (µT ⊙ µR)(y)‖

for x, y ∈ VR ∪ VT . Then

‖x, y‖ = min
xj∈X,yj∈Y ∪{M}

‖xj , yj‖

Furthermore let e = {x, y\{M}} be the corresponding edge in the cut (X, Y) contained
in the minimum spanning tree of Polzin’s approach. We have

‖x, y‖ = min
xj∈X,yj∈Y

{bnsd(xj , yj)}

= min
xj∈X,yj∈Y

{ max
(x′,y′)∈(xjÃyj)

{‖x′, y′‖}}

Consider now the xi ∈ X, yi ∈ Y and x′ ∈ leaves(T · R), y′ ∈ leaves(T · R) attaining
the value ‖x, y‖ in this expression. Let ek = (xk, yk) ∈ (xj Ã yj) be the first edge
leaving X, that is ek is the first edge on the path xj Ã yj such that yk /∈ X. If

Pruning Tests 47

yk ∈ Y , ‖x, y‖ ≤ ‖xk, yk‖ since ‖x, y‖ ≤ minxj∈X,yj∈Y ‖xj , yj‖. If yk /∈ Y , we know
that yk ∈ leaves(R), but again ‖x, y‖ ≤ ‖xk, yk‖ since

‖x, y‖ ≤ min
xj∈X

‖xj , M‖

= min
xj∈X,z∈leaves(R)

‖xj , z‖

Since bnsd(xj , yj) ≥ ‖ej‖ we have in particular that ‖x, y‖ ≤ ‖x, y‖. But our approach
is not only at least as good as the bottleneck Steiner distance approach, we are actually
even better. Consider the example in the Euclidean space drawn in Figure 1.9. The
bottleneck Steiner distance of the nodes u and v is obviously given by |e|. But on
the other hand, the size of the minimum spanning tree that we construct is given by
|{u, m1}| + |{v, m2}| < |e|.

1.5.3 Preprocessing Techniques

So far we have described properties that can show the non-optimality of a given partial
topology. In this section, we discuss methods to shrink the search space in advance
before starting our pruning based algorithm.

In [NK00] the authors describe a preprocessing technique for decreasing the length of
the input strings respectively for decreasing the dimension d of a problem instance. A
column Ci is called parsimony informative if there are at least two elements in Ci, each
appearing at least twice. If a column Ci is not parsimony informative, an optimal topol-
ogy for the instance excluding the i-th components of the strings in T is also optimal
for the complete instance T . This leads to the following preprocessing method: first,
for each parsimony non-informative column Ci remove the i-th element from the input
sequences in T . After this step it is possible that two sequences have become identical,
thus in the second step we check for duplicate sequences and delete them (i.e., we keep
exactly one of them). Note, that after removing sequences from T it can happen that
columns have become parsimony non-informative that have been informative before.
Thus we start again with the first step until we cannot find anymore a non-informative
column.

Another preprocessing method that we propose is justified by the following theorem.
The main insight here is that if we can show for some terminal t that the distance of
t to some other terminal is never bigger than the distance to any constructible Steiner
point then we can first construct a Steiner minimum tree for T \ {t} and then connect
t to the closest terminal.

Theorem 1.11 Given an instance of the Steiner minimum tree problem T ⊆ Σd, if

∃ t ∈ T : min
t′∈T\{t}

{ ‖t, t′‖ } ≤ ‖t, r‖min

where ri :=
⋃

f∈T\{t}{fi}, then with t′ := argmint′∈T\{t}{ ‖t, t′‖ }

S := ((VR ∪ {vt}, ER ∪ {vt′ , vt}, µR ⊙ µ′)

48 Pruning Tests

is a Steiner minimum tree over T if SR := ((VR, ER), µR) is a Steiner minimum tree
over T \ {t} and where µ′ : {vt} → Σd; vt 7→ t′ and vt′ ∈ VR : µR(vt′) = t′.

Proof: Since SR is a Steiner minimum tree, the underlying tree is connected and
therefore, S is connected too. So we know that S is a topology. The next step is to
show that S is optimal. Given an arbitrary Steiner minimum tree X = ((VX , EX), µX)
over T , following Lemma 1.4 we have

∀ v ∈ VX : µX(v) ∈
⋃

f∈T

{fi}

Since mint′∈T\{t}{ ‖t, t′‖ } ≤ ‖t, r‖min we can transform X into another Steiner
minimum tree X ′ = (VX′ , EX′), µX′) such that there is an edge {vt′ , vt} ∈ EX′ with
µX′(vt′) = t′ and µX′(vt) = t, which completes the proof. ¤

Again, Theorem 1.11 allows us to reduce the number of input sequences which could
lead to parsimony non-informative columns. Thus, one has to apply both preprocessing
steps in a cyclic fashion until no further input reduction is possible.

1.5.4 Implementation Issues

Let us make some remarks on the implementation concerning the pruning tests of this
section. Comments on the implementation of the lower bound tests can be found in
the next section 1.6.

Cascading Pruning Tests

The main theorems of this section are very powerful in the sense that they cover a lot of
possible pruning tests. For example – as stated already above – Theorem 1.4 includes
the bottleneck Steiner distance test. Instead of checking whether a partial topology
T satisfies one of these constraints, we extract some easier to compute but less strict
pruning conditions from these theorems. If we can find that T is prunable by such a
fast test, we do not have to apply the more costly tests. For example before we test
the bottleneck Steiner distance condition we check if the edge under consideration is
bigger as the so called global bottleneck Steiner distance which is simply the biggest of
all bnsds. This test is very simple as this value is independent of T and therefore does
not have to computed separately for each partial topology.

Amortized Fitch Range Costs

If you consider a partial topology T = (VT , ET) and you want to apply for example
Theorem 1.4 or 1.5 you have to compute the Fitch range function values for all nodes
in T and for all possible ways of rooting T . Note that this can be done in time linear
in the size of T in the following way.

For each node u in T we store three range points ri, each representing the Fitch
range function value for node u when considering the topology (T){u,vi} induced by the
edge {u, vi} where vi is an adjacent node of u. Note that for computing such a Fitch
range function value ri one has to compute the corresponding ri of two child nodes
of u, that is we recurse these child nodes and stop if we have already computed the

Lower Bounds 49

values ri before or if we reach a leaf – in which case the ri are exactly the labels of the
leaves. Since for each node each ri is computed exactly once, the total running time
for computing all ri is linear in the number of nodes.

Topology Replacement Tests

For the Theorems 1.8 and 1.9 we store for a small set of promising candidates pointers
to them in a hash table whose keys are fingerprints of the leaves that are spanned by the
topology. This enables us to find in constant time topologies that we have encountered
before and against we test the current partial topology.

1.6 Lower Bounds

As we have promised in Section 1.5.2 we will now show how one can efficiently compute
lower bounds on the cost of a Steiner minimum tree over some T ⊆ Σd.

First, let us simplify some notation from previous sections. In section 1.3 we have
defined a Steiner tree over T to be a fully labeled topology over T . The purpose of
this was to define Steiner trees as special cases of topologies. In this section this is
not necessary anymore, since we do not use the concept of a topology anymore. Thus,
when we talk about a Steiner tree in the following we mean:

Definition 1.27 (Steiner tree) Given a set T ⊆ Σd of terminals, a Steiner tree ST
over T is a tree ST = (T ∪ S, E) spanning T for some subset S ⊆ Σd, called the set of
steiner nodes.

Note that there is a bijective mapping from this definition of a Steiner tree to the
definition given in section 1.3, that is both definitions are equivalent, that is all defini-
tions and notations concerning Steiner trees given in 1.3 transfer directly to the above
definition.

This sections is organized in two parts. In the first part we derive simple lower
bounds by the fact that the Steiner minimum tree problem is monotone. In the second
part we derive lower bounds by decomposing problem instances into smaller instances.
The main idea is to compute lower bounds for these subproblems and then to combine
them to obtain a lower bound for the original problem instance.

1.6.1 Lower Bounds by Minors

The key insight for obtaining lower bounds in this section is the fact that the Steiner
minimum tree problem is monotone, that is

Theorem 1.12 Given a problem instance T ⊆ Σd. Then for all T ′ ⊆ T we have

cost(SMT(T ′)) ≤ cost(SMT(T))

Proof: Follows directly by the fact that any Steiner minimum tree over T is also a
spanning tree over T ′. ¤

Since problem instances of very small size are easy to compute by simple exhaustive
search, the idea is to determine a small subset T ′ of T such that cost(SMT(T ′)) is

50 Lower Bounds

large. Because |T | is usually fairly small (as we will see in the experimental section)
it is even possible to determine such a set T ′ by trying out all possible small subsets
of T . If we choose sizes for T ′ that are too large for doing so we propose the following
heuristic that turned out to perform very good in practice: choose a pair of terminals
with largest distance, then consecutively add one point after the other that maximizes
the distance to all other so far added points until you desired size for T ′.

Even though this way of obtaining lower bounds seems to be very naive, it is a
very fast way. Note that each lower bound pruning test that succeeds in discarding a
topology using these bounds saves us from determining the more sophisticated lower
bounds of the next section that waste much more running time.

1.6.2 Lower Bounds by Dimension Partitioning

As mentioned in the introduction of this section the idea of computing lower bounds in
this part is to decompose a problem instance into smaller problems and to derive for
these subproblems lower bounds. Before we start diving into the problem we have to
state some definition and fix some notation:

Let us first define the kind of subproblems that we consider. Given a problem instance
T ⊆ Σd of the Steiner minimum tree problem, for some P ⊆ N we define

ST (P) := { t ∈ Σ|P | | ∃ t ∈ T : ∀ j ∈ {1, . . . , |P |} : tij = tj

where P = { i1, i2, . . . , i|P | } and i1 ≤ i2 ≤ · · · ≤ i|P | }

that is, ST (P) is the set of sub-sequences of the ones in T defined by the indices given
in P . Furthermore let us extend some definition that we have given before in 1.3.

Definition 1.28 Let T = (T ∪ S, E) be a Steiner tree over T ⊆ Σd. Then for some
P ⊆ {1, . . . , d} we define

costP (T) =
∑

{u,v}∈E

(
∑

i∈P

‖ui, vi‖
)

that is, costP (T) denotes the cost of T only considering these elements of the points
in T whose positions are contained in P .

The justification for decomposing the problem into such subproblems is given by the
following two theorems (see also [HHPM05]).

Theorem 1.13 (partitioning theorem) Assume, you are given a partitioning

(Pi)i∈{1,...,k} ∈ P({1, . . . , d})k

of the set {1, . . . , d} then

∑

i∈{1,...,k}
costlb(ST (Pi)) ≤ cost(SMT(T))

Lower Bounds 51

Proof: Let T = (V, E) b a Steiner minimum tree over T . Then

cost(T) =
∑

e∈E

cost(e) =
∑

{u,v}∈E

∑

i∈{1,...,d}
‖ui, vi‖

=
∑

j∈{1,...,k}




∑

{u,v}∈E

∑

i∈Pj

‖ui, vi‖





≥
∑

j∈{1,...,k}
cost(ST (Pi))

≥
∑

j∈{1,...,k}
costlb(ST (Pi))

¤

But how can we generalize Theorem 1.13 to the case in which we have lower bounds
for overlapping indices? The answer lies in the formulation of an integer linear program:

Theorem 1.14 (ILP lower bounds) Suppose you are given subsets

(Cj)j∈{1,...,k} ∈ P({1, . . . , d})k

Let x ∈ Nd be a solution of the following integer linear program:

minimize

d∑

i=1

xi

s.t. :
∑

i∈Cj

xi ≥ costlb(ST (Cj)) for all j ∈ {1, . . . , k}

x ∈ Nd

Then
∑d

i=1 xi is a lower bound on the cost of a Steiner minimum tree over T .

Proof: The proof is straightforward. Consider an arbitrary Steiner tree T with xi :=
costi(T). Since any Steiner tree T must satisfy the constraints of the ILP the claim is
true. ¤

But how can we solve the integer linear program given in Theorem 1.14? Unfortu-
nately it is NP-hard to find an exact solution, since vertex cover is a special case of this
ILP by considering xi ∈ {0, 1} as the decision variables describing if node i is contained
in the cover or not and the by considering Ci as the two dimensional subsets of the
node set denoting the edges. On the other hand the LP-relaxation of this ILP also
yields a lower bounds since any optimal solution for the relaxed ILP is not bigger than
an optimal solution for the ILP.

When restricting the discussion to the case in which |Cj | ≤ 2 for all j ∈ {1, . . . , k},
instead of using a linear programming solver we can determine this lower bound combi-
natorially. We first observe that in this case the above ILP is equivalent to the following
ILP

52 Lower Bounds

minimize

d∑

i=1

xi

s.t. : xi + xj ≥ costlb(ST ({i, j})) ∀ i, j ∈ {1, . . . , d}, i 6= j

xi ≥ costlb(ST ({i}) ∀ i ∈ {1, . . . , d}
x ∈ Nd

which can be seen as follows. For any subset S ⊆ {1, . . . , d} of cardinality at most 2
that is not contained in (Ci)i∈{1,...,k} we can set costlb(ST (S)) := 0 yielding constraints
that are also valid for the original ILP since x ≥ 0. By subtracting from each variable
xi its lower bound costlb(ST ({i}) we obtain the equivalent ILP

minimize
d∑

i=1

yi

s.t. : yi + yj ≥ lij ∀ i, j ∈ {1, . . . , d}, i 6= j

y ∈ Nd

where lij := costlb(ST ({i, j})) − costlb(ST ({i}) − costlb(ST (j}).

In the next step we construct the dual of the relaxed ILP

maximize
∑

i,j∈{1,...,d}
i6=j

lij · zij

s.t. :
∑

j∈{1,...,d}
j 6=i

zij ≤ 1 ∀ i ∈ {1, . . . , d}

zij ≥ 0

But this linear program can be solved very efficiently since it can be translated into
a maximum weight bipartite matching problem in a certain graph:

Consider the complete bipartite graph G with vertex sets {u1, . . . , ud} and {v1, . . . vd}.
We define the weight w of an edge (ui, vj) as w((ui, vj)) := lij . We show that the optimal
objective value of the dual linear program is exactly half the weight of the maximum
weight matching in G: For any matching M , we can construct a solution of the LP with
a cost of w(M)/2 by setting zij := |{(ui, vj), (uj , vi)} ∩M |/2. On the other hand, let z
be an LP solution and let x(ui,vj) = x(vi,uj) = zij . It is easy to see that x is contained
in the matching polytope of the bipartite graph. Thus there is a matching of weight at
least w(x) which is twice the value of z.

Another advantage of considering the dual linear program is that any feasible solu-
tion is by duality theory automatically a lower bound on the cost of a Steiner minimum
tree. We will explain later how we exploit this in our implementation. In this context
note that the lower bound 1

(d−1)

∑

1≤i<j≤d lij proposed in [HHPM05] is not better than

Lower Bounds 53

this LP bound as xij = 1/(d−1) is a feasible solution of the dual LP with this objective
value.

Now that we know how to combine lower bounds for these subproblems to a lower
bound for the whole problem we have not answered the question how to obtain lower
bounds for these low dimensional problems. This is what we will do next.

One-Dimensional Steiner Minimum Trees

A well known and very easy to see property of one-dimensional Steiner minimum trees
is given by

Theorem 1.15 (discrepancy bound) If d = 1 then the cost of a Steiner minimum
tree over T is given by |T | − 1.

Proof: We will show later in Theorem 1.17 that cost(SMT(T)) ≥ |T | − 1. So what
is left to show is that also cost(SMT(T)) ≤ |T | − 1. But this is trivially true since
any minimum spanning tree over T is also a Steiner tree over T with an empty set of
Steiner nodes. Since any spanning tree over T has exactly |T | − 1 edges all of which
have a length of exactly 1, the cost of such a minimum spanning tree is exactly |T |− 1.
Thus, in total we have that cost(SMT(T)) = |T | − 1. ¤

Using the partitioning Theorem 1.13, we can construct the so called single column
discrepancy lower bound for the entire problem by simply adding up the discrepancy
bounds for all (ST ({i}))i∈{1,...,d}. Note that this bound is usually not optimal even for
very small problem instances like

T = { (A, A), (A, B), (B, A), (A, B) }

where the optimal cost is 3 while the single column discrepancy yields a bound of 2.

Two-Dimensional Steiner Minimum Trees

In this subsection we will show that the Steiner minimum tree problem in two dimen-
sions is exactly solvable in polynomial time. We do this by showing that a minimum
spanning tree over the terminal set T is a Steiner minimum tree over T with an empty
set of Steiner nodes.

Theorem 1.16 (MST bound) If d = 2 then the cost of a Steiner minimum tree over
T is given by cost(MST(T)).

Proof: Let T = MST(T ∪ S) be an SMT with the minimal number of Steiner points
S. Note that we make no assumptions on the length of the edges or on the degree of
the Steiner points. If such a Steiner tree is not unique, we choose one that minimizes
∑

s∈S deg(s).
We want to show S = ∅. Assume otherwise that S is non-empty and let s be a

Steiner point in S. If the degree of s is smaller than two we can simply remove s and
its incident edges. So let us assume that the degree of s is at least two. If the degree
of s equals to two, we can remove s from S and connect the two points adjacent to

54 Lower Bounds

obtain a tree of at most the same cost as T with fewer Steiner points – recall that the
cost function is a metric. Similarly, we can show that we are able to remove s if one of
the edges incident to s has length 0.

Now assume that deg(s) ≥ 3. If the length of an edge {u, s} incident to s is 2, that
is maximal, we can remove this edge from T and obtain two connected components,
both containing at least one terminal - otherwise the component itself containing ter-
minal nodes would be a smaller Steiner tree. We connect u to a terminal in the other
component and get a Steiner tree of the same length as T where the total degree of the
Steiner points is smaller.

Thus we can assume that all edges incident to s have length 1. We partition the set
of nodes adjacent to s into two sets S1, S2, where the ith element of the points in Si is
the ith element of s. Removing all edges incident to s and connecting the vertices in
S1 and S2 with edges of length 1 gives two connected components. The total cost for
doing so is the cost of T minus 2. Connecting two terminals in the two components
gives a Steiner tree of the same cost as T whose number of Steiner points is smaller.
Thus, S = ∅, which completes the proof. ¤

Three-Dimensional Steiner Minimum Trees

In this subsection we will show lower bounds for the case in which the dimension of the
Steiner minimum tree problem is given by 3.

The following lemma states that if we have components of points with pairwise
distance not bigger than three, then we can simply compute Steiner minimum trees for
these components and connect them via a minimum spanning tree to obtain a Steiner
minimum tree over T .

Lemma 1.8 Let d = 3 and let C1, . . . Ck be the connected components of the graph
G = (T, E) with

E = { {u, v} ∈ T × T | ‖u, v‖ ≤ 2 }
Furthermore, let ci be an arbitrary representative of the component Ci. Then

k⋃

i=1

SMT (Ck) ∪ MST (
k⋃

i=1

{ci})

is a Steiner minimum tree over T .

Proof: Given an Steiner minimum tree, we call its maximal subtrees whose inner
nodes are Steiner nodes, its full components. Consider a Steiner minimum tree S with
a maximal number of full components. Note that it is sufficient to show that this tree
has no full component spanning terminals contained in different connected components
in (Ci)i∈{1,...,k}. Assume otherwise and let t be a full component containing terminals
from different connected components. The idea is now to show that we can find another
Steiner tree spanning the same terminal as t which is not more costly but consists
of more than one full component. Consider for this the topology Tt = ((V, E), µt)
corresponding to t. Using the same method as used in Theorem 1.1 we modify Tt in
such a way that for all Steiner nodes s ∈ V we have that deg(s) = 3. Note that after
this modification T is in standard form since t was a full component and therefore, for

Lower Bounds 55

all leaves l in Tt, deg(l) = 1. It is easy to see that Tt = (T1 · T2) · T3 = (T1 · T3) · T2 for
topologies Ti with:

∃ i, j ∈ {1, . . . , k}, i 6= j : span(T1) ⊆ Ci and span(T2) ⊆ Cj

Let us define r1 := root(T1), r2 := root(T2), r3 := root(T3), r12 := root(T1 · T2),
r13 := root(T1 · T3) and

i := |{ i ∈ {0, 1, 2} | µF [T1 · T2](r)i ∩ µF [T3](root(T3))i 6= ∅ }|
If i > 0 we assume in the following discussion that without loss of generality in the
definition of i the ranges with smallest indices are not disjoint. We know that for all
i ∈ {0, 1, 2} :

µF [T1](r1)i ∩ µF [T2](r2)i = ∅
since the pairwise distance of elements in span(T1) and in span(T2) is 3. Thus

µF [T1 · T2](r12)i = µF [T1](r1)i ∪ µF [T2](r2)i

Then we distinguish between the four cases

• i = 0 : consider the topology (T1 · T2) · T3. There is a µ ∈ L((T1 · T2) · T3) such that
‖µ(r1), µ(r)‖ = 3. But then we can simply remove this edge {r1, r} from Tt and
reconnect the resulting components via an arbitrary edge between two terminals
in these components without increasing the cost, thus increasing the number of
full components.

• i = 1 : consider the topology (T1 · T2) · T3. We have

µF [T1 · T2](r)0 ∩ µF [T3](r3)0 6= ∅
thus there is a terminal t3 ∈ span(T3) such that (t3)0 ∈ µF [T1 · T2](r)0. Thus
– without loss of generality – there exists t1 ∈ span(T1) : (t3)0 = (t1)0, imply-
ing that ‖t3, t1‖ ≤ 2. On the other hand there exists a µ ∈ L((T1 · T2) · T3)
with ‖µ(r), µ(r1)‖ = 2. Again, removing (r, r1) and adding (t3, t1) increases the
number of full components without increasing the cost.

• i = 2 : now consider the topology (T1 · T3) · T2. We have

µF [T1 · T2](r)0 ∩ µF [T3](r3)0 6= ∅ and

µF [T1 · T2](r)1 ∩ µF [T3](r3)1 6= ∅
Consider now node r1. If

µF [T1](r1)0 ∩ µF [T3](r3)0 6= ∅ and

µF [T1](r1)1 ∩ µF [T3](r3)1 6= ∅
then there exists a µ ∈ L((T1 · T3) · T2) such that ‖µ(r), µ(r2)‖ = 3 and we have
the same case as in i = 0 with r2. Thus let us assume that

µF [T1](r1)0 ∩ µF [T3](r3)0 6= ∅ and

µF [T1](r1)1 ∩ µF [T3](r3)1 = ∅
then there exists a µ ∈ L((T1 ·T3) ·T2) such that ‖r, r1‖ ≥ 2 and we have the same
case as in i = 1.

56 Lower Bounds

• i = 3 : again we consider the topology (T1 · T3) · T2. As in the preceding case we
again consider node r1 and distinguish between the number of positions i for that

µF [T1](r1)i ∩ µF [T3](r3)i 6= ∅

. Following the pigeon hole principle one of the above cases always holds for r1

or for r2.

which completes the proof. ¤

Lemma 1.9 Let d = 3 and let C1, . . . Ck be the connected components of the graph
G = (T, E) with

E = { (u, v) ∈ T × T | ‖uv‖ ≤ 1 }

then

cost(SMT (T)) ≥ |T | − 1 + ⌈(k − 1)/2⌉

Proof: First, note that it is sufficient to show that

cost(SMT (T)) ≥ |T | − 1 + (k − 1)/2

since the cost of any Steiner minimum tree is integral.

For a Steiner minimum tree T , let Ki be the number of connected components
induced by Ci, i.e., the number of components of the graph with vertex set Ci, where
u, v ∈ Ci are connected by an edge, if there is an edge in T between these two vertices.

Let T be a Steiner minimum tree whose edges have length exactly one and such that
∑k

i=1 Ki is minimal.

We first prove that Ki = 1 for each 1 ≤ i ≤ k. Assume otherwise and let u, v ∈ Ci

not be connected in the subgraph induced by Ci. Remove an edge st from T on the
path from u to v, such that either s or t is a Steiner point or s and t are from different
components (they must exist as u and v are not connected within Ci) and add the
edge (u, v) (which has cost 1). The new tree has the same cost as T , the number of
components induced by Ci decreases by one and the number of components induced
by other Cj remains the same. This is a contradiction to the choice of T .

Let F ′ be the full components of T and let F be the non-trivial full components, i.e.,
the full components having at least one Steiner point. Notice that each full component
f ∈ F ′ is a Steiner minimum tree of the terminals it spans.

Note that the distance between two terminals in span(f) is at least two. We first
show that if SMT (f) ≥ 3(|span(f)| − 1)/2, for all full components f ∈ F of T , then
cost(T) ≥ |T | − 1 + (k − 1)/2.

The number of trivial full components is |T |−k as the trivial full components connect
all terminals in the same component. Further,

∑

f∈F |span(f)| = k + |F | − 1 as a full

Lower Bounds 57

component of t terminals connects t − 1 components. Hence,

cost(T) =
∑

f∈F ′

cost(f)

= |T | − k +
∑

f∈F

cost(f)

≥ |T | − k +
∑

f∈F

(3(t(F) − 1)/2)

≥ |T | − k + 3(k − 1)/2 + 3(|F | − 1)/2

≥ |T | − 1 + (k − 1)/2

Now consider a full component f and assume its cost is less than 3(|span(f)| − 1)/2.
We consider the smallest counterexample, i.e., let T ′ be a set of strings of length 3 with
pairwise distance at least two whose Steiner minimum tree is a full component such
that its cost is smaller than 3(|T ′| − 1)/2. Further, assume |T ′| is minimal. Note that
a Steiner minimum tree for any strict subset of R (T ′ has cost at least 3(|R| − 1)/2,
no matter whether the Steiner minimum tree is a full component or not (as any full
component of the Steiner minimum tree of R has less than |T ′| terminals).

We assume again that all edges of T ′ have length exactly one. For |T ′| = 1 there is
nothing to show. Otherwise T ′ contains a Steiner point s (as all edges have length one
and the distance between terminals is at least two). Let Ni, 1 ≤ i ≤ 3, be the set of
points adjacent to s whose ith letter differs from the ith letter of s (recall that every
point adjacent to s differs from s in exactly one column). Reconnect the sets Ni (by
an MST over Ni) with |Ni| − 1 edges of length 1 and let Ti be the terminals reachable
from Ni. Note that Ti are Steiner trees spanning fewer terminals than T ′ (they are not
necessarily full components). If two of the Ni are empty, one Ti contains all terminals
and we have constructed a Steiner tree shorter than T ′. If one Ni is empty, say N3, we
have

cost(T ′) = cost(T1) + cost(T2) + 2

≥ 3 · (|T1| − 1)/2 + 3(|T2| − 1)/2 + 2 ≥ 3(|T | − 1)/2

If no Ni is empty, we have

cost(T ′) = cost(T1) + cost(T2) + cost(T3) + 3

≥ 3 · (|T1| − 1)/2 + 3 · (|T2| − 1)/2 + 3(|T3| − 1)/2 + 3

≥ 3 · (|T | − 1)/2

which completes the proof. ¤

k-Dimensional Steiner Minimum Trees

We have seen that it is possible to derive lower bounds for a k-dimensional problem
instance I by considering lower bounds for subproblems of I. But there is also a direct
way of doing so which is just a generalization of Theorem 1.15. Despite the fact that
the bounds obtained by applying this theorem are usually very weak, we will provide
it for sake of completeness:

58 Lower Bounds

Theorem 1.17 |T | − 1 is a lower bound on the cost of a Steiner minimum tree over
T .

Proof: Let T = (T ∪ S, E) be a Steiner minimum tree over T with Steiner nodes S
such that

∑

s∈S deg(s) is minimal. Clearly, there cannot be an edge {u, s} ∈ E with
s ∈ S such that ‖u, s‖ = 0. For seeing this, assume otherwise. Then one could obtain
another Steiner minimum tree T ′ = (T ∪ S′, E′) by contracting the edge {u, s} so that
∑

s∈S′ deg(s) =
∑

s∈S deg(s)− 2 which contradicts the minimality assumption that we
have made for T . Since T is a tree spanning the points in T ∪ S, it contains at least
|T ∪ S| − 1 edges – which can easily be seen by a simple induction over the number of
edges. In particular, this means that T has at least |T | − 1 edges. But all edges in this
tree must have a length of at least 1, because either an edge has two elements in T as
endpoints, which have to be unequal or one of the endpoints is in S – recall that we
have just shown that in this case the edge cannot have a length of 0. Thus, |T | − 1 is
a lower bound on the cost of T . ¤

Note that this bound sometimes improves the single columns discrepancy bound. For
example consider again the set

T = { (A, A), (A, B), (B, A), (A, B) }

Then the sum of the discrepancy bounds is 2 but Theorem 1.17 implies a bound of 3.

1.6.3 Implementation Issues

At this point let us make some remarks on the implementation concerning the compu-
tation of the lower bounds.

Cascading Lower Bounds

We have discussed several ways of computing lower bounds. The purpose of providing
different methods for determining lower bounds is that they provide a tradeoff between
running time and the quality of the computed bound: usually the better the bounds are
the more costly it was to calculate them. Thus, we use a cascaded pruning scheme in
which we start with low cost lower bounds for proving the non-optimality of a topology
and only if this test fails we compute tighter lower bounds at a hight computational
cost.

Since a computed lower bound only depends on the terminals that are spanned by
a topology we store known lower bounds in a hash table so that we do not have to
compute the same lower bounds over and over again.

Maximum Weight Matchings

For solving the dual linear program given in the discussion of Theorem 1.14 we have
proposed to compute a lower bound by solving a maximum weight matching. We
have carefully compared several implementations for performing this computation, like
exact algorithms from the LEDA library [MN99] but also the approximation algorithms
and heuristics discussed in the extensive work of Maue and Sanders in [MS07]. One
big drawback of their implementations was that they all worked on dynamic graphs,

Lower Bounds 59

2

6 4 1 3 4 1 43

2 3 1
2 368

3

1 368

3

1 268

6 43

1 258

6

43

1 257

6 1 43

0 257

6 13 43

0 236

6 13 4 14

2 3 4 5 6 7 81

2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81

2 3 4 5 6 7 812 3 4 5 6 7 812 3 4 5 6 7 81

2 3 4 5 61

2 3 4 5 61

2 3 4 5 61 2 3 4 5 61 2 3 4 5 61

2 3 4 5 61 2 3 4 5 61 2 3 4 5 61

S

A
A

A

B

A

B

A

B

A

B

A

B

A

B

prefix sums

Figure 1.10: An example of the modified counting sort algorithm. The elements in the
input sequence S are ordered in such a way that in the output sequence B
all identical elements of S are in consecutive positions (see text for further
details).

thus putting a large constant to the running times. Therefore, it turned out that our
implementation is fastest using a very simple, greedy heuristic on a static graph that
we built at the start of our program.

Computing the Subproblems

How fast can we extract a subproblem ST (C) out of T for some C ⊆ {1, . . . , d} with
|C| = k? The difficulty in computing the set ST (C) lies in identifying the duplicate
sequences in the sequence S of subsequences of T induced by the index set C. The ob-
vious way of doing so is to sort the sequences in S lexicographically using an algorithm
like radix sort which runs in O(|C| · |T |+ |C| · |Σ|) time (see [CLR90]) or a comparison
sort algorithm with a running time of O(log(|T |) · |T | · |C|). But we can do even better
by exploiting the fact that sorting the subsequences is a much stronger demand than
just finding the duplicate sequences and obtain a running time of O(|T | · |C|) which is
clearly optimal since this running time is needed to just can the input.

To achieve this running time we introduce a new algorithm (see Figure 1.10) which
is a variation of the well known counting sort algorithm (see [CLR90]): suppose we are
given a sequence S of input strings of length 1, we start by allocating an uninitialized
array A of size |Σ| in constant time. Then we scan through S in O(|T | · |C|) time to
set the entries in A corresponding to the elements contained in S to 0. In a second
sweep over S we store in A the multiplicities of the occurring elements in A. The next
step is the main difference between classical counting sort and our algorithm. In the
counting sort algorithm you calculate the prefix-sums in A by scanning the array A

60 Lower Bounds

from the smallest index to the highest. In our approach, we do this by scanning the
set S once more and determine the prefix-sums according to the order in which the
elements appear in S. Then we proceed as usual to construct the output array. Note
that we never scan over the array A, but only a constant time over the input sequence
S. That is, the total running time for this procedure is in O(|T |). Even though the
resulting strings are not in particular order, all identical sequences are now consecutive,
yielding the following result:

Lemma 1.10 The set ST (C) can be computed in O(|T | · |C|) time.

Proof: The idea is to generalize the algorithm given above for finding duplicate se-
quences in one dimensional strings to strings of length |C| by using the radix sort
algorithm (see [CLR90]). For each i ∈ C we execute the modified counting sort algo-
rithm on the ith elements of S. Since the modified counting sort algorithm is stable,
the sequences in S are ordered in such a way that identical sequences are in consecutive
positions, so that we can identify and eliminate duplicate sequences in S in time O(|T |).
Thus in total the running time for computing ST (C) is given by O(|C| · |T |). ¤

Computing MST Lower Bounds

One of the most important questions concerning the running time of our algorithm is the
question how to compute the cost of a Steiner minimum tree in two dimension efficiently.
In Theorem 1.16 we have shown that this is equivalent of computing the cost of a
minimum spanning tree over the two dimensional problem instance. Since we have to
compute O(d2) such MSTs to obtain one lower bound for setting up the linear program
in the lower bound computation via the ILP formulation, it cannot be overrated to
speed up this calculation as much as possible. Exploiting the special structure of the
problem we can improve the running times achieved by standard algorithms like the
ones of Prim and Kruskal by far.

Lemma 1.11 Given some subset C ⊆ {1, . . . , d} with |C| = 2. Then

cost(MST(ST (C)))

can be computed in O(|T |) time.

Proof: Since ST (C) is a set of two-dimensional strings we know that all pairwise
distances of elements in this set are either 1 or 2. Consider now the graph G =
(ST (C), E) with E := { (u, v) | ‖u, v‖ ≤ 1 } and let (ci)i∈{1,...,l} be the connected
components of G. Then

cost(MST(ST (C))) = 2 · (l − 1) +
l∑

i=1

(|ci| − 1)

= c + |ST (C)| − 2

That is, to compute the size of the minimum spanning tree it is sufficient to know
how many connected components the graph G has. The idea of the algorithm is now to
determine this number in two steps (see Figure 1.11 for an example). In the first one we

Experiments 61

BB

AC

BA

AA

CD

BC

DD

EE

BB

AC

BA

AA

CD

BC

DD

EE

1

1

2

2

3

4

5

BB

AC

BA

AA

CD

BC

DD

EE

2

2

1

1

1

3

4

5

1

2

34

5sort sort

input find connected components

1

Figure 1.11: Proof illustration for Lemma 1.11.

use the counting sort variant of the preceding section to sort the sequences in ST (C)
according to the first element, that is we obtain a partitioning of the elements such
that each part contains elements with the same first element which in turn means that
the pairwise distances between them is exactly 1 - recall that there are no duplicate
sequences. For each sequence we store in which part of the partition it was contained.
In the second step we sort the sequences – again using counting sort – according to
their second element. Again we obtain a partition of the sequences. If now in one part
there are sequences of different parts in the first partition we know that the sequences
in these parts must belong to the same connect component. That is, we can compute
the number of connected components of G by determining the number of connected
components in the graph G′ that has a node for each part in the first partition and an
edge (u, v) if there are two consecutive sequences in a part of the second partition which
belong two different parts in the first partition. Since G′ has not more than |T | nodes
and not more than |T | edges this can be done by a simple depth-first search in time
O(|T |) time. Since each counting sort can be computed in time linear in |T | following
Lemma 1.10, the total running time is bounded by O(|T |). ¤

Inner Preprocessing

Note that whenever we want to compute a lower bound for a subproblem ST (C) we
can apply the preprocessing methods that we have discussed earlier on this set, before
we actually compute the lower bounds.

1.7 Experiments

1.7.1 Running Times

We compare the C++ implementation of our pruning algorithm with two famous phy-
logeny programs from the public domain, MEGA in version 4 (see [KTND07]) and
PHYLIP in version 3.68 (see [Fel04]), and the commercial program PAUP in version
4.0 (see [Swo03]). These programs represent very fast implementations of variations

62 Experiments

and extensions of Hendy/Penny’s branch and bound method. While PHYLIP is prob-
ably the most cited phylogeny package, MEGA and PAUP can be considered to be the
fastest available programs for computing the maximum parsimony problem. As global
upper bounds we use a heuristic as implemented in the PHYLIP package that can be
computed within a few seconds.

Since the choice of the test data is very crucial for the results, we decided not to
create random instances by our own. Instead we use real life test data and generated
data sets from a public source. All tests have been performed on a 1.6 GHz Pentium
M machine equipped with 2 GByte of RAM.

• real life data: As real life data we use genetic sequences of RNA viruses dis-
cussed in [CGH03]. Since these data sets vary much in size and complexity, they
reflect a wide spectrum of different difficulty levels in computing a maximum par-
simony tree. Since our implementation does not support unknown or partially
known nucleotides at the moment, we only use data sets that do not contain such
nucleotides. Table 1.3 shows a comparison of the running times of these problems
using our pruning approach, MEGA, PHYLIP and PAUP to solve them. The
given running times are the CPU-times in seconds consumed by the solvers and
include also the time needed to read and parse the data files. The lower part
of the table lists the problems that could not be solved by any of the programs
within 24 hours.

• generated data: The results of the real life data show clearly the superiority of
the pruning approach, especially when the problems become more complex. To
examine this behavior we created several instances with the tool Seq-Gen [RG97]
that simulates the evolution of nucleotide or amino acid sequences along a phy-
logeny for a given evolution model. The instances that we created have been
built on two trees (see figure 1.7.3) with 24 leaves that were chosen randomly
from a huge set of trees created by Vincent Ranwez [RG01]. We tested different
evolutionary models. As the relative running times didn’t depend much on the
model, we resign to give details. . In Table 1.2 we compare the running times of
MEGA, PAUP and our algorithm. The numbers in the data set names describe
branch length scaling factors that can be seen as a measure for the evolutionary
distance between the species. With |Tpp| we denote the number of terminals after
the initial preprocessing steps described in section 1.5. The columns spts and
spts(%) give the absolute number of survived partial topologies and the percent-
age of all possible partial topologies of sizes at most ⌊|Tpp|/2⌋. Furthermore, we
list the optimal solutions opt together with 2-column lower bounds lbmst using
exact matchings and the lower bounds lbHolland using Holland-et.al.’s technique.

As a result one can see that our approach clearly outperforms the approach of Hendy
and Penny in practice as soon as the sequences in the data sets become more and
more uncorrelated. In our opinion this is due to the fact that the performance of the
Hendy/Penny-approach relies only on one simple lower bound based pruning test, while
our approach makes use of additional structural informations. As an example for the
strength of our tests, consider the strong lower bound results that even outperform
existing lower bound techniques that could not have been used in the Hendy/Penny-
approach.

Conclusion 63

1.7.2 Lower Bounds

As stated in section 1.6 we have improved the lower bounding technique by [HHPM05].
To show how strong this improvement is in practice we have compared our lower bound-
ing method with the one of Holland-et.al. on the real life data set. Tables 1.2 and 1.4
show clearly that we can significantly lower the gap between the optimal values and
the lower bounds. In several cases it was even possible to close this gap completely.
Note that we have used only the lower bounds based on subproblems of dimension 2.
Even better results would have been possible using our lower bounds for 3-dimensional
subproblems, but involving a significant increase in the running time - even though
feasible.

1.7.3 Preprocessing

As described in section 1.5 we use two preprocessing techniques. The first one is
a straightforward generalization of the concept of parsimony informative sites. The
second one is the so called singleton separation method. Both have been discussed in
the pruning section. In table 1.1 we show for some instances of the real world examples
how both preprocessing techniques and their combination can significantly decrease the
input size.

1.8 Conclusion

We have presented a new approach for solving the maximum parsimony problem ex-
actly. It outperforms all previous methods, especially when the sequences in the data
sets become more and more uncorrelated. As we have shown in the experimental sec-
tion, this closes a gap since the Hendy/Penny approach can only work efficiently when
the evolutionary distances between the sequences are small.

Still we see various ways of improving the algorithm. Clearly, the algorithm can be
improved by finding further properties that exclude partial topologies from being part
of an Steiner minimum tree that can be tested efficiently or by finding new ways of
preprocessing the data.

One major key for the efficiency of our approach is the computation of tight lower
bounds . These bounds cannot be used in the old approach as their applicability
heavily depends on the fact that the terminals not spanned by the current topology are
all connected to the root of the topology.

64 Conclusion

tre
e
 B

tre
e
 A

F
igu

re
1.12:

T
h
e

in
p
u
t

trees
A

an
d

B
for

th
e

S
eq

-G
en

d
ata.

Conclusion 65

Survived Sequences
Family Species Gene Seq. IPI SSP IPI/SSP

Bunyaviridae Akabane virus NP 26 14 25 14
Oropouche virus NP 28 23 28 23
Puumala virus G2 27 20 27 17
Tomato spotted wilt
virus

N 16 14 16 13

Paramyxoviridae Avian pneumovirus M 21 15 21 15
P 15 11 14 11
F 14 10 12 9
N 14 5 6 5

Bovine respiratory syn-
cytial virus

G 24 17 24 16

Canine distemper virus H 31 30 30 29
Human respiratory syn-
cytial virus A

N 24 16 24 14

Newcastle disease virus N 27 25 27 24
Rhabdoviridae Infectious hematopoietic

virus
G 19 18 19 17

Vesicular stomatitis In-
diana virus

G 26 17 26 15

Vesicular stomatitis
virus

G 25 23 22 22

Table 1.1: The effect of the preprocessing methods. Here “IPI” stands for the iter-
ated parsimony informative test and “SSP” for singleton separation, both
described in the pruning section.

66 Conclusion

R
u
n
n
in

g
T

im
es

(s)
T
ree

D
ata

S
et

|T|
|T

p
p |

op
t

lb
m

st
lb

H
o
lla

n
d

sp
ts

sp
ts(%

)
p
ru

n
in

g
M

E
G

A
P
A

U
P

A
S
eq

-G
en

50
24

23
885

885
852

46
5·10 −

1
4

0.32
0.51

0.19
S
eq

-G
en

100
24

23
1585

1580
1465

67
1.4·10 −

1
3

1.48
4.21

6.98
S
eq

-G
en

150
24

24
2188

2143
1948

691
7.5·10 −

1
3

10.30
717.40

1379.05
S
eq

-G
en

200
24

24
2560

2473
2257

2703
2.9·10 −

1
2

38.64
10813.80

25663.81
S
eq

-G
en

250
24

24
2894

2750
2512

11165
2.9·10 −

1
3

309.65
−

−
S
eq

-G
en

300
24

24
3124

2921
2672

57536
1.5·10 −

1
2

4341.93
−

−

B
S
eq

-G
en

50
24

24
936

934
887

80
2.1·10 −

1
5

1.41
1.44

1.48
S
eq

-G
en

100
24

24
1682

1673
1542

141
3.6·10 −

1
5

4.52
92.37

106.98
S
eq

-G
en

150
24

24
2282

2238
2025

1071
2.8·10 −

1
4

38.61
11829.37

17313.34
S
eq

-G
en

200
24

24
2692

2582
2329

7552
1.9·10 −

1
3

378.74
−

−
S
eq

-G
en

250
24

24
3124

2939
2660

41985
1.1·10 −

1
2

4956.58
−

−

T
ab

le
1.2:

A
ru

n
n
in

g
tim

e
c
o
m

p
a
riso

n
-

g
e
n
e
ra

te
d

d
a
ta

:
“-”:

in
terru

p
ted

after
6

h
ou

rs
of

com
p
u
tation

.

Conclusion 67

Table 1.3: A running time comparison - real life data: Entries with a “−” sign
mark an interrupted call of the corresponding program. We interrupted a
program when it consumed more than 2 GByte of RAM or when its running
time exceeded a certain threshold that depends on the complexity of the
instance: −1: terminated after 6 hours of computation and a progress of
less than 3% (stated by the program); −2: process allocated more than 2
GByte of RAM after 1.5 hours of computation; −3: process was terminated
after 3 hours of computation: −4: process was interrupted after 24 hours of
computation.

Running Times (s)
Family/Species Gene Seq. pruning MEGA PAUP phylip

Bornaviridae
Borna disease virus G 17 0.02 0.80 0.09 37.75

M 19 0.01 2.03 0.12 142.68
NP 17 0.03 1.03 0.07 463.45

Bunyaviridae
Akabane virus NP 26 0.02 911.43 54.60 −3

Cache Valley Virus G 14 0.18 1.36 0.11 64.56
Crimean-Congo hem-
orrhagic fever virus

G 11 1.06 0.70 0.13 0.28

Dobrava virus N 23 2.43 4.03 0.22 357.51
Hantaan virus G1 15 0.38 0.76 0.08 1.92

N 20 1.05 0.78 0.15 294.09
Oropouche virus NP 28 19.43 11256.00 84.55 −3

Puumala virus G1 14 1.75 0.87 0.15 10.92
G2 27 3.34 242.38 3.49 1066.42

Rift Valley Fever
Virus

G2 19 0.08 0.79 0.10 299.51

Tomato spotted wilt
virus

N 16 0.01 0.67 0.05 24.07

NSS 10 0.01 0.88 0.04 0.11
Orthomyxoviridae

Influenza B virus HA 21 0.02 1.13 0.09 21.47
M 26 0.2 13.56 0.79 −3

NA 23 0.84 21.03 0.79 −4

68 Conclusion

Running Times (s)
Family/Species Gene Sequ. pruning MEGA PAUP phylip

NP 28 2.53 10.15 0.24 −4

PA 19 0.10 0.64 0.11 109.18
Influenza C virus CM2 20 0.01 0.69 0.06 56.62

NP 28 0.18 13.67 0.53 −1

Paramyxoviridae
Avian pneumovirus M 21 0.02 16442.00 19.74 2038.71

P 15 0.01 1.21 0.05 34.31
F 14 0.01 4.29 0.36 72.31
N 14 < 0.01 50.83 2.69 34.28

Bovine respiratory
syncytial virus

G 24 0.06 0.81 0.07 640.78

Canine distemper
virus

H 31 588.83 −1 15949.47 −1

Human parainfluenza
virus 3

HN 13 0.03 0.72 0.05 10.33

Human respiratory
syncytial virus A

N 24 0.11 2.63 0.18 −3

Human respiratory
syncytial virus

F 22 0.45 1.32 0.3 1082.48

Measles virus F 22 0.32 28.94 0.71 −3

HA 20 0.05 0.77 0.09 205.36
L 27 2.55 13.06 0.93 −3

Mumps virus F 29 20.89 26932.52 0.05 −4

L 11 0.01 0.7 0.15 0.11
Newcastle disease
virus

M 32 20531.41 −4 −4 −4

N 27 155.11 −1 −4 −1

Rhabdoviridae
Infectious hematopoi-
etic virus

G 19 0.06 0.86 0.07 145.38

Vesicular stomatitis
Indiana virus

G 26 0.44 −2 −4 −2

Vesicular stomatitis
virus

G 25 0.88 1.0 0.14 4877.56

Viral hemorrhagic
septicaemia virus

G 15 0.03 0.33 0.07 91.16

Conclusion 69

Running Times (s)
Family/Species Gene Sequ. pruning MEGA PAUP phylip

N 10 < 0.01 0.29 0.04 0.13
Unclassified

Rice stripe Virus JN 11 < 0.01 0.66 0.02 0.40

Arenaviridae
Junin virus NP 45 − − − −
Lassa virus NP 59 − − − −

Bunyaviridae
Puumala virus NP 48 − − − −

Paramyxoviridae
Measles virus N 135 − − − −
Newcastle disease
virus

P 28 − − −

70 Conclusion

Table 1.4: A lower bound comparison of the technique by Hollan et al. and
the minimum spanning tree based technique on the real life data
set

Lower Bounds Lower Bounds (%)
Family/Species Gene opt MST Holland MST Holland

Bornaviridae
Borna disease virus G 434 426 398 98.16 91.71

M 90 87 81 96.67 90.00
NP 289 274 253 94.81 87.54

Bunyaviridae
Akabane virus NP 94 92 81 97.87 86.17
Cache Valley Virus G 409 385 351 94.13 85.82
Crimean-Congo hemor-
rhagic fever virus

G 2018 2017 1827 99.95 90.53

Dobrava virus N 250 225 188 90.00 75.20
Hantaan virus G1 1089 1055 915 96.88 84.02

N 809 704 592 87.02 73.18
Oropouche virus NP 127 111 97 87.40 76.38
Puumala virus G1 1773 1584 1322 89.34 74.56

G2 661 556 465 84.11 70.35
Rift Valley Fever Virus G2 112 104 91 92.86 81.25
Tomato spotted wilt virus N 85 84 79 98.82 92.94

NSS 168 167 159 99.40 94.64
Orthomyxoviridae

Influenza B virus HA 247 247 232 100.00 93.93
M 125 121 107 96.80 85.60
NA 364 347 298 95.33 81.87
NP 332 318 279 95.78 84.04
PA 350 350 321 100.00 91.71

Influenza C virus CM2 66 65 61 98.48 92.42
NP 96 92 77 95.83 80.21

Paramyxoviridae
Avian pneumovirus M 83 81 74 97.59 89.16

P 109 108 103 99.08 94.50
F 106 106 102 100.00 96.22
N 57 57 56 100.00 98.25

Bovine respiratory syncy-
tial virus

G 232 228 204 98.28 87.93

Conclusion 71

Lower Bounds Lower Bounds (%)
Family/Species Gene opt MST Holland MST Holland

Canine distemper virus H 769 693 598 90.12 77.76
Human parainfluenza
virus 3

HN 222 217 194 97.75 87.39

Human respiratory syncy-
tial virus A

N 496 492 442 99.19 89.11

Human respiratory syncy-
tial virus

F 455 430 388 94.51 85.27

Measles virus F 261 254 231 97.32 88.51
HA 278 275 256 98.92 92.09
L 675 660 614 97.77 90.96

Mumps virus F 433 403 343 93.07 79.22
L 517 517 515 100.00 99.61

Newcastle disease virus M 882 720 609 81.63 69.05
N 1017 792 657 77.88 64.60

Rhabdoviridae
Infectious hematopoietic
virus

G 171 166 151 97.08 88.30

Vesicular stomatitis Indi-
ana virus

G 471 466 428 98.94 90.87

Vesicular stomatitis virus G 671 656 577 97.76 85.99
Viral hemorrhagic septi-
caemia virus

G 198 190 170 95.96 85.85

N 213 211 201 99.06 94.37
Unclassified

Rice stripe Virus JN 64 64 63 100.00 98.44

72 An Extension to Recombination Networks

1.9 An Extension to Recombination Networks

As we have seen in before, a fundamental class of problems in Computational Biology
deals with the reconstruction of phylogenetic trees. In order to build such a tree we
compare specific features of the species under the natural assumption that species with
similar features are closely related. In modern phylogeny these features are defined by
DNA or protein sequences.

But there are situations in which trees do not reflect the biological reality. Under
certain conditions evolutionary events can occur that cause horizontal transfer of ge-
netic data. Ancestral relationships that evolve when these recombination events have
occurred are best described by a network rather than by a simple tree. There has been
active research in automatically computing these phylogenetic networks from sequence
data, see e.g. [JNST07, JNST05, NJZMC05, Hei93, GEL03, HK05, WZZ01, KG98]. In
Section 1.9.2, we discuss in detail existing approaches and relate our work to them. For
more information on the reconstruction of phylogenetic networks, we refer to [MKL06,
PCH02]. For a list of available tools see [WEBb] or [WEBc].

In this section we again assume that we are given a set T of aligned sequences, that is
a set of sequences of length d. Our aim is to construct an optimal ancestral relationship
for a given number of recombination events under a generalization of the maximum par-
simony criterion.It slightly differs from those in [JNST07, JNST05, NJZMC05, Hei93,
GEL03]. We recommend to use our method when recombination events are assumed
to happen rarely. Part of this work was published in [AN08].

To test our model that we will describe in more detail in the following, we give in
Section 3 an exact algorithm that computes the optimal phylogenetic network with
one recombination and show in Section 1.9.4 that the algorithm computes the correct
phylogenetic network even for sequences with (still reasonable) long evolutionary dis-
tances. Our experiments show that we can compute the correct phylogenetic network
for almost the same data sets where the maximum parsimony criterion is able to recon-
struct the correct phylogenetic tree when it is given the subsequences that correspond
to a specific tree in the evolution.

1.9.1 Model

In contrast to phylogenetic trees as considered in the previous chapter we allow a few
nodes to have indegree two. We refer to these nodes as recombination nodes. In order
to have a valid ancestral relationship, we require the network to be acyclic and we
assume that the network is rooted. In these terms we are equivalent to the networks
under consideration in [JNST07, Hei93, GEL03]. We call such a network over T with
exactly k recombination nodes a k-recombination network for T .

The goal is now to find among all possible k-recombination networks for T a network
of smallest cost. The difference between our model and the other models considered
in the literature is how we evaluate a given network, that is how we determine its
cost. For defining this cost, we extend the parsimony criterion by defining a cost
for recombination events. Again, we assume that leaves of the network are exactly
the terminal sequences in T . We want to find sequences for the inner nodes that
minimize the cost of the k-recombination topology. In our case the cost function is
easiest described by charging the cost to the nodes instead of charging them to the

An Extension to Recombination Networks 73

edges what we did in the maximum parsimony problem. The cost of the root node is
0. The cost of a non-recombination node u equals to the Hamming distance of u and
its father node. On the other hand, the cost of a recombination node u is now defined
as

min
p∈{0,1}d

(
d∑

i=1

(pi‖ui, t
1
i ‖ + (1 − pi)‖ui, t

2
i ‖) + α · |{1 ≤ i < d | pi 6= pi+1}|

)

where α is some non-negative constant and t1 and t2 are two ancestors of u. Intuitively
speaking, the recombinant sequence can have the genetic code of either of its ancestors,
paying a certain cost for switching between the two ancestor. This cost reflects the
fact that recombination does not happen by randomly choosing genetic code from the
two sequences, but it is assumed that there are only a few jumps, where the source
for the recombinant sequence changes. Note, that same definition of the cost for a
recombination node was used by Maydt and Lengauer in [ML06], where the authors
try to explain a given sequence by recombinations of other input sequences. Since
the cost of a non-recombination node is exactly the cost of the in-going edge in the
maximum parsimony model, we sometimes refer to the cost of an edge if it is clear that
the corresponding node is a non-recombination node. The cost of a k-recombination
network is then just the sum of the costs of its nodes.

In Section 1.9.3, we show that the cost of a 1-recombination topology as well as
sequences for the inner nodes can be computed quite efficiently. As computing the tree
with maximum parsimony is already NP-hard, computing the optimal k-recombination
topology is NP-hard for all k, as choosing some big α will lead to the fact that the cost
of the recombination node equals the Hamming distance to one of its ancestors.

1.9.2 Related Work

There are many tools for detecting recombination events in sequence data. Posada et
al. [PCH02] divide these tools into five classes: similarity methods, distance methods,
phylogenetic methods, compatibility methods and substitution distribution methods.
Most methods only try to detect the existence of a recombination event. Moreover it is
frequently required that the recombinant sequence is contained in the data set. The only
exceptions are phylogenetic methods. Most of these methods detect a recombination
by inferring different phylogenetic trees in different parts of the data, that is, they
analyze the data by a sliding window approach obtaining different trees and by trying
to combine these trees to a prediction. A list of available tools can be found at [WEBb].

Posada et al. [PCH02] conclude that most methods have trouble detecting rare re-
combination events, especially when sequence divergence is low, that is exactly the case
where our algorithm is aimed for.

Huson and Kloepper [HK05], Wang et al. [WZZ01], Gusfield et al. [GEL03] and
Kececioglu and Gusfield [KG98] use an extension of the maximum parsimony criterion
originally proposed by Hein [Hei93]. The essential difference is that they allow only one
jump when constructing a sequence from its two ancestors. Our algorithm can easily be
adopted to find the optimal phylogenetic network in this model. Their algorithm does
not compute an optimal phylogenetic network in our sense, but it explains the data
under a minimal number of recombinations under the infinite state assumption, that
is, it is assumed that no back-exchange of genetic code occurred. As back-exchange

74 An Extension to Recombination Networks

is assumed to happen in real evolution, their algorithm typically overestimates the
number of recombination events.

The extension of the maximum parsimony criterion proposed by Jin and others in
[JNST07, JNST05, NJZMC05] basically corresponds our model with α = 0. As shown
in our experiments in Section 1.9.4, the prediction of the topology is much less accurate
for this model. Furthermore, their algorithm does not compute an optimal phylogenetic
network and only works if the starting tree is contained in the phylogenetic network. As
observed by Ruths and Nakhleh [RN05], phylogenetic tree algorithms fail to reconstruct
data when recombination has occurred. Thus, it is unclear how to obtain a phylogenetic
tree to start with.

1.9.3 The Algorithm

As noted before the k-Recombination Phylogeny Network (k-RPN) problem is NP-
hard. Thus, unless P = NP , there is no polynomial time algorithm for solving it
exactly. As in the case of the Steiner minimum tree problem, the k-RPN problem can
be solved for small input instances by enumerating the set of possible solutions and
by determining among them the one which minimizes the total network length. In our
algorithm we focus on the case where k = 1. We call the subtree of the recombination
network rooted at the recombination node the recombinant.

Preliminaries

As we have done in the previous chapter we can use Theorem 1.1 to assume without
loss of generality that an optimal Steiner minimum tree is given in standard form with
respect to T . Furthermore, we refer to Section 1.3 for the definitions and basic theorem
that we will use in the following.

Evaluation of a Recombination Network

Let us first explain how one can compute an optimal sequence for the recombination
node. Let t1 and t2 be the sequences of the ancestors of the recombination node r, the
question is equivalent of finding a vector p ∈ {0, 1} such that

p = argmin
p′∈{0,1}d

(
d∑

i=1

(p′i‖ui, t
1
i ‖ + (1 − p′i)‖ui, t

2
i ‖) + α · |{1 ≤ i < d | p′i 6= p′i+1}|

)

But this can be done in O(d) time by the simple dynamic program given in Algorithm
2 whose correctness can easily be seen by a simple induction over i ∈ {1, . . . , d}. We call
this operation the ⋄-operator. Once we have computed such a p we can also compute
in time O(d) the above expression to obtain the cost of the recombination node.

Note that it is trivial to extend this algorithm to range points by just replacing the
equality checks for the elements in the sequences by checking whether the elements are
non-disjoint. That is, given three range points instead of sequences one can compute
in O(d) time the minimal cost of the recombination node over all sequences contained
in the range points.

An Extension to Recombination Networks 75

Enumeration Process

The key observation for the enumeration process is now that any 1-recombination
network is composed of two binary trees. Formally, if we are given a 1-recombination
network T = (VT , ET) over T then there are two trees R and and T ′ such that

VT = VT ′ ∪ VR ∪ {r1, r2}
ET = ET ′ ∪ ER \

{{u1, v1}, {u2, v2}} ∪
{{u1, r1}, {v1, r1}, {u2, r2}, {v2, r2}} ∪
{{root(R), r1}, {root(R), r2}

for two edges {u1, v1} and {u1, v1} in ET ′ . R then corresponds to the recombinant
and root(R) to the recombination node. Let us write T = △e1,e2(T ′,R). Hence one
can reduce the enumeration of recombination networks to the enumeration of binary
trees.

As we did before, instead of enumerating all binary trees we enumerate topologies
over some subsets of T . Let us extend the definition of a topology given in Section 1.3
for this by replacing the constraint that the underlying graph is a tree by the constraint
that the the underlying graph is connected. The function △e1,e2(·, ·) transfers from trees
to topologies in the obvious way.

Doing so, we have to discuss how we can find labelings for the inner nodes of a
network composed of two topologies in a way such that the resulting 1-recombination
network has minimal cost. The crucial observation therefor is the following.

Let T = (VT , ET) be an optimal 1-recombination network with T = △e1,e2(T ′,R)
for e1, e2 ∈ ET and with T ′ = (VT ′ , ET ′). Then,

cost(T) =
∑

v∈VT

cost(v)

=
∑

v∈VT \root(R)

cost(v) + cost(root(R))

=
∑

v∈VT \root(R)

∑

i∈p1

costi(v) +
∑

v∈VT \root(R)

∑

i∈p2

costi(v) + cost(root(R))

=
∑

v∈VT \root(R)

∑

i∈p1

costi(v) +
∑

i∈p1

‖ri, (r1)i‖ +

∑

v∈VT \root(R)

∑

i∈p2

costi(v) +
∑

i∈p2

‖ri, (r2)i‖ + α · j

=
∑

{u,v}∈ET \{{r,r1},{r,r2}}

∑

i∈p1

‖ui, vi‖ +
∑

i∈p1

‖ri, (r1)i‖ +

∑

{u,v}∈ET \{{r,r1},{r,r2}}

∑

i∈p2

‖ui, vi‖ +
∑

i∈p2

‖ri, (r2)i‖ + α · j

=
∑

e∈ET \{{r,r2}}
costp1(e) +

∑

e∈ET \{{r,r1}}
costp2(e) + α · j

76 An Extension to Recombination Networks

where (p1, p2) is the partitioning of {1, . . . , d} obtained by the ⋄-operator for the
recombination node root(R) and where

j = |{ i ∈ {1, . . . , d} | i and i + 1 are contained in different pi }|

Thus we can simply consider the two rooted topologies T1 = (VT , ET \ {r, r1}) and
T2 = (VT , ET \ {r, r2}). We re-root each Ti such that the node ri becomes the root.
Note that Lemma 1.4 implies that for all j ∈ {1, . . . , d}, the µF [Ti](ri)l are maximal.
Then we use the ⋄-operator to determine an optimal labeling for root(R). This way we
obtain an optimal labeling for T .

The enumeration process itself works now in almost the same way as it does for the
Steiner minimum tree problem discussed earlier (see Algorithm 3). We start with the
set X consisting only of the topologies of size 1 namely the terminals itself. We then
inductively construct all topologies of size k by combining the ones out of X of size less
than k. We do this until all topologies of size |T | − 1 are built. In section 1.9.3 we will
see why it is sufficient to enumerate only topologies up to a size of |N | − 1.

Cutting down the search space works now as follows: In each step when a topology
T was built, we run several pruning tests to decide whether an optimal solution for the
problem can contain T as a subtopology without violating optimality. In the following
subsection we will discuss these tests.

Algorithm 2 ⋄-operator: ⋄(t1, t2, u)

OPT ′ := 0; OPT ′′ := 0
p′, p′′ ∈ {0, 1}d

for i = 1 . . . d do
tent′ := 0; tent′′ := 0
if t1i = ui then

tent′ = min(OPT ′, OPT ′′ + α); p′i = 1
else

tent′ = min(OPT ′, OPT ′′ + α) + 1; p′i = 0
end if
if t2i = ui then

tent′′ = min(OPT ′ + α, OPT ′′); p′′i = 1
else

tent′′ = min(OPT ′ + α, OPT ′′) + 1; p′′i = 0
end if
OPT ′ = tent′; OPT ′′ = tent′′

end for

if OPT ′ < OPT ′′ then
return p′

else
return p′′

end if

An Extension to Recombination Networks 77

Algorithm 3 enumeration process

X := T
for i = 2 . . . |T | − 1 do

for all Tk, Tj ∈ X do
if span(Tk) ∩ span(Tl) = ∅ and

|span(Tk)| + |span(Tl)| = i then
if ¬ prunable(Tk · Tl) then

X = X ∪ {Tk · Tl}
end if

end if
end for

end for

S = RS ⊆ R

S

R

S \ R

S

⋄

1. case 3. case2. case

⋄
⋄

R

S
S

Figure 1.13: The three different cases occurring in the lower bound pruning step. The
green edges represent the incoming edges of the ⋄-operator.

Pruning the Search Space

For pruning the search space we use very similar ideas as we have used for the Steiner
minimum tree problem, thus we restrict the discussion to the main ideas behind these
tests. Let us denote by lbSMT(·) a lower bound on the cost of a Steiner minimum tree
as constructed in Section 1.6. Furthermore, we write ubRPN(·) for an upper bound on
the cost of an optimal solution for the 1-recombination network problem.

lower bound test: You are given a topology TS spanning a terminal set S 6= T .
Let S := T \ S. Consider now an optimal solution with recombinant TR spanning the
terminal set R. We have to discuss several cases (see Figure 1.13):

1. S ∩ R = ∅: We can prune TS if cost(TS) + lbSMT(S) − bnsd(S) > ubRPN(T).
Proof: any solution with TS as a subtopology clearly has a cost of at least
cost(TS) + lbSMT(R) + lbSMT(S \ R). Since we do not know R in an optimal
solution we have to lower bound the term lbSMT(R) + lbSMT(S \ R). Clearly
lbSMT(R) + lbSMT(S \ R) ≥ lbSMT(S) − bnsd(S).

2. S (R: TS can be pruned if cost(TS) + lbSMT(S) − bnsd(S) > ubRPN(T).

78 An Extension to Recombination Networks

3. S = R: T can be pruned if cost(TS) + lbSMT(S) > ubRPN(T).

Note that the last cases follow the same arguments as the first case does. Since we
do not know in advance which case occurs in an optimal solution we have to take the
weakest condition

cost(TS) + lbSMT(S) − bnsd(S) > ubRPN(T)

Recombination Phase

The last part of our algorithm is the recombination phase in which we construct the
recombination networks by combining the enumerated topologies:

Algorithm 4 recombination process

for all T ∈ X with: |span(T)| ∈ {3, .., |T | − 1} do
for all R ∈ X with:
|span(T)

⊎
span(R)| = T do

for all edge pairs e1, e2 ∈ T do
build △e1,e2(T ,R) and a labeling via the ⋄-operator

end for
end for

end for

As it turns out, in practice the most time consuming part in the algorithm is this
recombination phase. Thus we propose a second pruning step to speed up this part
significantly. The goal is to reduce the number of ⋄-operator calls since they are the
most costly operations in this phase - recall that usually the dimension is quite large
and the running time of this function grows linearly in the dimension.

lower bound test: Reconsider the lower bound tests for the previous subsection. In
the last case, that is S = R, we have seen that the tree TS can be pruned if

cost(TS) + lbSMT(S) > ubRPN(T)

Note that this condition can be much stronger than the more general condition which
involves the subtraction of the bnsd(·) term which can be as big as the dimension of
the problem. If a topology TR satisfies now this condition we know that TR cannot
be the recombinant of an optimal solution, that is we can skip this call of the for-loop
without calling the ⋄-operator.

minor test: Recall that we want to avoid the computation of the ⋄-operator. Consider
the recombination phase (see Figure 1.14). Let TS be a subtopology of T spanning the
terminal set S. If you want to connect the recombinant R to edges not contained in
TS then the resulting recombination network can clearly not be optimal if

cost(TS) + lbRPN(S) > ubRPN(T)

But how can we compute lbRPN(S)? As in the case of the Steiner minimum tree problem
in Hamming metric the 1-recombination network problem is also monotone. That is,
computing the network for a small subset of S yields a lower bound for lbRPN(S).

An Extension to Recombination Networks 79

S

R

S \ R

S

⋄

Figure 1.14: Pruning by minors.

1.9.4 Experiments

Performing experiments in the context of reconstructing phylogenetic networks with
recombination events is a difficult task since there is always some uncertainty about
whether recombination events actually took place, see [ML06] for references. On the
other hand synthetically created data sets have the advantage that we know exactly
in advance what we expect from our method to return as a phylogenetic network.
Furthermore it is easy to create instances of arbitrary size and complexity. Thus we
decided to test out model on artificial data sets.

In order to obtain data with a known topology, we use NETGEN [MM06] to simu-
late an evolution with exactly one recombination event. NETGEN is an event-driven
simulator that creates phylogenetic networks by extending the birth-death model to
include diploid hybridizations.

Recall that a recombination network with exactly one recombination event can be
interpreted as two phylogenetic trees in different parts of the sequence. We use Seq-
Gen [RG97] to simulate the evolution of gene sequences along the trees of the recom-
bination networks. Seq-Gen is a program that simulates the evolution of nucleotide
or protein sequences along a phylogeny, using common models of the substitution pro-
cess. A range of models of molecular evolution are implemented, including the general
reversible model.

The data for the two trees is then merged by randomly choosing a jump point and
by choosing the data alternately from the two trees.

Fixed Recombination Scenarios

To validate our model we generate in each of the discussed cases 40 phylogenetic net-
works with exactly one recombination. For each network N we simulate with Seq-Gen
gene sequences of length 1000 along N partitioning the root sequence of the recombi-
nant randomly such that the expected size of a consecutive block of characters from
one tree sequence is 250. As the substitution model we choose the “general reversible
process” model (Yang, 1994) for the nucleotide sequences since it is the most general
model that is still consistent with the requirement of being reversible.

To show that our method is capable of handling strongly correlated as well as highly
uncorrelated input data with high accuracy we scale the branch lengths of the tree
obtained by the NETGEN program using the “-s” parameter of Seq-Gen before the

80 An Extension to Recombination Networks

sequences are computed. We show that our model can handle a wide range for this
scaling parameter.

Note that we make no limiting assumptions. All sequences involved in the recombina-
tion event can be still part of our input but they do not have to be there. Furthermore
the size of the recombinant is not limited as well. This is in stark contrast to recombi-
nation detection methods like [ML06] where all fixed recombination scenarios contain
recent recombinations.

To evaluate our approach we reconstruct the phylogenetic network for the input se-
quences and compare the resulting network with the original one using the program
Treedist which is part of the phylip program package (see [WEBa]). Treedist imple-
ments the symmetric difference method (Robinson and Foulds, 1981) to measure tree
distances. Notice that as discussed before we can compare the networks by just com-
paring the two trees that build the network.

Note that this is a much stronger condition than just identifying the recombinant
since it involves the proper reconstruction of the non-recombinant part of the network.
As far as we know there are no tools available that would handle the general case.
Therefore, we compare the reliability of our method with the reliability of the parsimony
method for trees. The goal is to show that on data sets on which our method fails, the
parsimony method for trees would also return false results. To do so we take the data
constructed by Seq-Gen and split it along the two trees T1 and T2 out of which we have
constructed the network. Then we compute for these sets of sequences the maximum
parsimony trees and test via treedist if they represent the topologies T1 and T2.

For instances that still contain the recombinant in and for which the size of the
recombinant is exactly one, we compare our method with the state-of-the-art recom-
bination detection method of Maydt and Lengauer [ML06] Recco that is specialized
for these scenarios. One has to point out that this test is not perfectly fair for any of
the two methods, since both programs are not really optimized to output the correct
recombinant. It is possible that the correct network is constructed internally but the
wrong recombinant is reported. Since we cannot access the internal data structures
of Recco we just compare the answers to the question: is the right recombinant se-
quence reported by the program. Since both implementations suffer from this fact, the
experiments are not biased in the direction of any of these approaches.

Results

Even if it is only a special case in our model our experiments clearly show the superiority
of our approach to the method of Maydt and Lengauer when the sequence divergence
is low (see table 1.5). For small branch lengths we report the correct recombinant more
often than the algorithm of Maydt and Lengauer does. Thus, our method seems to
work very good in the cases that Posada et al. reported to be hard to detect [PCH02],
i.e. in cases where the divergence is low. Note that for these experiments we have
chosen a rather dull parameter value of 2 for α in the ⋄-operator. We are sure that the
results can be better when α is chosen more carefully.

If we consider table 1.6 we can see that the reliability of our method is strongly con-
nected to the reliability of parsimony reconstructions. On one hand if you consider the
resulting implications of non-reliability you can see in table 1.7 that almost indepen-
dently of the branch length scaling factor the unreliability of our method is induced by

An Extension to Recombination Networks 81

s= 0.005 0.01 0.05 0.1 0.5 1.0 1.5

Recomb 31 24 30 31 33 20 15
Recco 18 17 25 26 30 32 21

Table 1.5: The comparison of Recco and Recomb: the table gives the number
of correctly reported recombinants depending on the branch length scaling
factor s. Note that for each choice of s 40 tests have been conducted.

s= 0.1 0.25 0.5 0.75 1.0 1.25

R∧P ¬P

¬R ¬ (R∧P)

40 0

0 0

37 0

1 2

18 4

11 7

12 1

11 16

5 1

9 25

1 0

5 34

Table 1.6: The reliability of Recomb and maximum parsimony I: the small
tables in the big one represent the relation between correct reconstruction
of the parsimony trees and the correct reconstruction of the recombination
network depending of branch length scaling factor s. Here R∧P means the
correct reconstruction of both structures, ¬ (R∧P) denotes that both recon-
structions failed and ¬R respectively ¬P means that only the reconstruction
of the recombination network respectively the reconstruction of the parsi-
mony trees failed. Note that for each choice of s 40 tests have been con-
ducted.

the unreliability of the parsimony method. On the other hand if the parsimony method
fails our method almost always fails as well. Thus, one can conclude that the reliability
of our reconstruction method almost corresponds to the reliability of the parsimony
method for reconstructing evolutionary trees.

1.9.5 Conclusion

We have presented a new model to compute phylogenetic networks for data, where only
a small number of recombination events are assumed to have taken place. Furthermore,
we have given an exact algorithm for the case of non or exactly one recombination event.
We have shown in our experimental study the high accuracy of our model.

s= 0.1 0.25 0.5 0.75 1.0 1.25

¬R ⇒ ¬P 40 39 29 29 31 35
¬P ⇒ ¬R 40 40 36 39 39 40

Table 1.7: The reliability of Recomb and maximum parsimony II: the table
show how often the given implication holds. Note that for each choice of s
40 tests have been conducted.

82

Chapter 2
Problems in Wireless Network Design

2.1 Introduction

Wireless network technology has gained tremendous importance in recent years. It not
only opens new application areas with the availability of high-bandwidth connections
for mobile devices, but also more and more replaces so far ’wired’ network installations.
While the spatial aspect was already of interest in the wired network world due to cable
costs etc., it has far more influence on the design and operation of wireless networks.
The energy required to transmit information via radio waves is heavily correlated with
the Euclidean distance of sender and receivers. Hence problems in this area are prime
candidates for the use of techniques from computational geometry.

In contrast to wired or cellular networks, ad hoc wireless networks a priori are un-
structured in a sense that they lack a predetermined interconnectivity. An ad hoc
wireless network is built of a set of radio stations S, each of which consists of a receiver
as well as a transmission unit. A radio station v can send a message by setting its
transmission range r(v) and then by starting the transmission process. All other radio
stations at distance at most r(v) from v will be able to receive v’s message (we are
ignoring interference for now). For transmitting a message across a transmission range
r(v), the power consumption of v’s transmission unit is proportional to r(v)α, where
α is the transmission power gradient. In the idealistic setting of empty space, α = 2,
but it may vary from 2 to more than 6 depending on the environment conditions of the
location of the network. Given some transmission range assignment r : S → R≥0 for
all nodes in the network, we can derive the so-called communication graph G := (S, E).
G is a directed graph with vertex set S which has a directed edge (p, q) if and only if
r(p) ≥ |pq|, where |pq| denotes the Euclidean distance between p and q. The cost of
the transmission range assignment r is

cost(r) :=
∑

v∈S

r(v)α

Numerous optimization problems can now be considered by looking for the minimum
cost transmission range assignment r such that the respective communication graph
satisfies some property Π, see [CHP+02] for an overview.

In this work we consider several definitions of Π to solve the following problems:

83

84 Preliminaries

k-Station Network/k-disk Coverage: Given a set S of stations and some con-
stant k, we want to assign non-zero transmission powers to at most k stations (senders)
such that every station in S can receive a signal from at least one sender.

k-hop Multicast: Given a set S of stations, a specific source station s ∈ S, a set
of clients/receivers C ⊆ S \ {s}, and some constant k, we want the communication
network to contain a directed tree rooted at s spanning all nodes in C with depth at
most k. That is, we want to allow a message to be sent from station s to all stations
in C using not more than k hops.

k-set Broadcast: Given a set S of stations, a specific source station s ∈ S and
some constant k, we want the communication network to contain a directed tree with
at most k inner nodes rooted at s and spanning all nodes in S. This means that a
communication network should be set up that uses at most k senders but allows s to
send messages to all other stations.

TSP under squared Euclidean distance: Given a set S of n stations, determine
a permutation p0, p1, . . . pn−1 of the nodes such that the total energy cost of the TSP
tour, i.e.

∑n−1
i=0 |pip(i+1) mod n|α is minimized. The idea is to establish a network such

that a token can collect continuously information from the stations.

All these problems have in common that they are hard to solve in the sense that they
are NP-hard or believed to be NP-hard. Thus, in this chapter we aim for algorithms that
instead of determining exact solutions, compute approximate ones. For this purpose
we also make use of the concept of so-called coresets. That is we show how to identify
for a given problem instance I a small sketch that we solve in behalf of the original
one. Once solved we show that an approximate solution for I can be computed from
the solution of the coreset.

Part of this work was published in [FLN07] and in [FLNL08].

2.2 Preliminaries

Given a set S of n points in the d-dimensional Euclidean space Rd and a small constant
α ∈ R≥0 called the distance power gradient. By |u, v| we denote the Euclidean distance
between points u and v in Rd.

Definition 2.1 (range/power assignment) A range or power assignment r for S
is a function r : S 7→ R≥0.

Definition 2.2 (communication graph) Given a range assignment r for S. We
call the directed graph ICGr = (S, E) with

E = { (u, v) | r(u) ≥ |u, v| }

the communication graph induced by r.

That is, the directed communication graph ICGp = (S, E) induced by a range as-
signment r encodes the connectivity information of the network consisting of nodes in
S, i.e. there is an edge (u, v) ∈ E if and only if the node v can be reached by node u.

We call a range assignment valid if the induced communication graph satisfies the
connectivity property needed by the corresponding problem.

Preliminaries 85

Figure 2.1: Points, a range assignment and the induced communication graph.

Definition 2.3 (cost of a range assignment) Given a range assignment r for S.
We define

cost(r) :=
∑

u∈S

r(u)α

to be the cost of the range assignment r.

In some of the approximation algorithms which we present, we use the concept of a
so-called coreset : Given an input S for a some problem a coreset R of S is a (usually
small) set with the property that R represents S in an approximate way. That is, from
an optimal (or approximate) solution for R we can construct an approximate solution
for S. Note that in the analysis of some of the approximation algorithms we assume
that we can compute the floor function in constant time.

In the following we will show some technical lemmas which we will use in the following
sections.

Lemma 2.1 For nonnegative ri, let
∑k

i=1 rα
i be constant. Then for all δ ≥ 0 the term

∑k
i=1(ri + δ)α

∑k
i=1 rα

i

is maximized if r1 = ri for all i ∈ {2, . . . , k}.

Proof: Define χ :=
∑k

i=1 rα
i and (I) :=

∑k
i=1(ri + δ)α. Then ri =

(χ
k

)1/α ∀ i ∈
{2, . . . , k}: Let us first consider the following case: the expression

max
rα
1 +rα

2 =c
(r1 + δ)α + (r2 + δ)α

is maximized when r1 = r2. Since rα
1 + rα

2 = c we have r1 = (c− rα
2)1/α. Thus, we want

to find the maximum of the function

f(r2) := ((c − rα
2)1/α + δ)α + (r2 + δ)α

86 Preliminaries

We have

f ′(r2) = α ·



(r2 + δ)α−1 −
(

r2 ·
(
(c − rα

2)1/α + δ
)

(c − rα)1/α

)α−1




Thus,

f ′(r2) = 0 ⇔ r2 + δ =
r2 ·

(
(c − rα

2)1/α + δ
)

(c − rα)1/α

⇔ r2 + δ = r2 +
r2 · δ

(c − rα)1/α
⇔ r2 = (c/2)1/α

Since r1 = (c − rα
2)1/α = (c/2)1/α we have r1 = r2. Furthermore note that this

is the only maximum of the function f(r2) and that it is indeed a maximum since
f(0) < f((c/2)1/α) and f(c1/α) < f((c/2)1/α). Now let us consider the term (I). Let
us assume otherwise that w.l.o.g. r1 6= r2 and (I) is maximized. We can restate (I) as
follows

(I) =

(

(r1 + δ)α + (r2 + δ)α +

k∑

i=3

(ri + δ′)α

)

Let us now fix the ri for i ∈ {3, . . . , k}. Then (I) is maximal if

max
rα
1 +rα

2 =χ−Pk
i=3 rα

i

(r1 + δ)α + (r2 + δ)α

is maximized. But we have just seen that this is true only if r1 = r2 which is contra-
diction to the assumption that r1 6= r2. ¤

Lemma 2.2 A (1+ǫ)α-approximation scheme implies a (1+ω)-approximation scheme
by setting ǫ := ω

c·α assuming that ω ≤ c for a constant c ≥ 0.

Proof: Using the inequalities

∀ǫ ≥ 0 :
ǫ

ǫ + 1
≤ ln(1 + ǫ) ≤ ǫ

we have

α ln(1 +
ω

c · α) ≤ α ln(1 +
ω

ω + 1
· 1

α
)

≤ α ln(1 + ln(1 + ω)
1

α
)

≤ α · 1

α
ln(1 + ω)

= ln(1 + ω)

Thus,

(1 +
ω

c · α)α ≤ (1 + ω)

¤

The k-Station Network/k-Disk Coverage Problem 87

2.3 The k-Station Network/k-Disk Coverage Problem

In the setting of the k-station network coverage problem we want to identify at most
k senders such that every node u ∈ S can receive a message from at least one of these
senders. The goal is to find such a set of senders and a corresponding range assignment
r such that cost(r) is minimized. Depending on which points we allow for being possible
senders one can distinguish between the discrete case in which the senders have to be
contained in S and the non-discrete case in which the senders can be arbitrarily located
in the Euclidean space. Bilo et al. propose in [BCKK05] to consider this problem as a
geometric problem in which the points in S should be covered by at most k disks:

Definition 2.4 (k-station network coverage problem) Let S be a set of n points
in the d-dimensional Euclidean space. Given a k ∈ N, Find a set of nodes P ⊆ Rd

(P ⊆ S in the discrete case) with |P | = k and a range assignment r for P ∪ S with
ICGp = (P ∪ S, E) such that:

• ∀ u ∈ S \ P : r(u) = 0

• ∀ v ∈ S ∃ u ∈ P : (u, v) ∈ E

• cost(r) is minimal

Figure 2.2: Covering input points by 3 discs.

Note that the first property is actually redundant since it is implied by the fact that
cost(r) is minimal.

2.3.1 Our Contribution

In Section 2.3.3 we show how to find a coreset of size independent of n and polynomial
in k and 1/ǫ for the k−Station Network Coverage/k-Disk cover problem. This enables
us to improve the running time of the (1 + ǫ)-approximation algorithm by Bilo et
al.[BCKK05] from

n((α/ǫ)O(d))

88 The k-Station Network/k-Disk Coverage Problem

to

O



n +

(

k
2d
α

+1

ǫd

)min { 2k+1, (α/ǫ)O(d) }




that is, we obtain a running time that is linear in n. We also present a variant that
allows for the senders to be placed arbitrarily (not only within the given set of points) as
well as a simple algorithm which is able to tolerate few outliers and runs in polynomial
time for constant values of k and a constant number of outliers.

2.3.2 Related Work

As mentioned before the k-Station Network Coverage problem was considered by Bilo
et al. [BCKK05] as a k-disk cover, i.e. covering a set of n points in the plane using
at most k disks such that the sum of the areas of the disks is minimized. They show
that obtaining an exact solution is NP-hard and provide a (1 + ǫ)-approximation to

this problem that runs in time n((α/ǫ)O(d)) based on a plane subdivision and dynamic
programming. Variants of the k-disk cover problem were also discussed in [AAB+06].

2.3.3 A Small Coreset For k-Disk Cover

In this section we describe how to find a coreset of size

O

(

k
2d
α

+1

ǫd

)

,

i.e. of size independent of n and polynomial in k and in 1/ǫ.
For now let us assume that we are given the cost of a λ-approximate solution Sλ

for the point set S. We start by putting a regular d-dimensional grid on S with grid
cell width δ depending on cost(Sλ). For each cell C in the grid we choose an arbitrary
representative point in S ∩C. We denote by R the set of these representatives. We say
that C is active if S ∩ C 6= ∅. Note that the distance between any point in S ∩ C and
the representative point of C is at most

√
d · δ. In the following we write POPT for an

optimal solution for a point set P . Now we obtain a solution ROPT
S by increasing the

disks in an optimal solution ROPT by an additive term
√

d · δ. Since each point in S
has a representative in R with distance at most

√
d · δ, ROPT

S covers S. In the following
we will show that

• the cost of ROPT
S is close to the cost of an optimal solution SOPT to the original

input set S and

• the size of the coreset R is small.

Theorem 2.1 We have in the

non-discrete case: cost(ROPT
S) ≤ (1 + ǫ)α · cost(SOPT)

discrete case: cost(ROPT
S) ≤ (1 + ǫ)2α2 · cost(SOPT)

for δ :=
1√
d
· δ′ where δ′ :=

ǫ

k1/α

(
cost(Sλ)

λ

)1/α

The k-Station Network/k-Disk Coverage Problem 89

Proof: Suppose ROPT is given by k balls (Ci)i∈{1,...,k} with radii (ri)i∈{1,...,k}. Then

cost(ROPT
S)

cost(SOPT)
=

∑k
i=1(ri +

√
d · δ)α

cost(SOPT)
=: (I)

One can easily show that this term is maximized when r1 = ri ∀ i ∈ {2, . . . , k} (see
Lemma 2.1). Thus we have

cost(ROPT
S)

cost(SOPT)
≤ k ·

(

cost(ROPT)1/α

k1/α + ǫ
k1/α

(
cost(Sλ)

λ

)1/α
)α

cost(SOPT)

=

(

cost(ROPT)1/α + ǫ
(

cost(Sλ)
λ

)1/α
)α

cost(SOPT)

≤
(

cost(ROPT)1/α

cost(SOPT)1/α
+ ǫ

)α

=: (II)

Now let us distinguish between the discrete and the non-discrete case:

• In the discrete case (II) ≤ (1 + ǫ) follows from the monotonicity of the problem,
i.e. that for all subsets P ⊆ S : cost(POPT) ≤ cost(SOPT). This can easily be
seen, since each feasible solution for S is also a feasible solution for P .

• In the non-discrete case cost(ROPT) can be bigger than cost(SOPT) - but not
much as we will see: Given an optimal solution SOPT . We transform SOPT into
a feasible solution SOPT

P for R by shifting the ball centers to their corresponding
representative point in R. Since some points can be uncovered now we have to
increase the ball radii by an additional

√
d ·δ. Following exactly the same analysis

as above, in this case cost(SOPT
R) ≤ (1 + ǫ)α · cost(SOPT). Hence cost(ROPT

S) ≤
((1 + ǫ)α + ǫ)α ≤ (1 + ǫ)2α2 · cost(SOPT).

¤

Knowing that the coreset is a good representation of the original input set S we will
show in the following theorem that R is also small and that the size of the coreset is
even smaller in the important case where α = d, that is in the case in which the cost
of a ball is proportional to its volume.

Theorem 2.2 The size of the computed coreset R is bounded by

O

(

k
d
α

+1 · λd/α

ǫd

)

for ǫ ∈ o((k · λ)1/α) (2.1)

O

(
kλ

ǫd

)

for ǫ ∈ o(λ1/d) and α = d (2.2)

Proof: We first prove statement 2.2: Observe that the size of R is exactly given by the
number of cells that contain a point in S. The idea is now to use an optimal solution
SOPT to bound the number of active cells. We can do so because any feasible solution
for S covers all points in S and thus a cell C can only be active if such a solution covers

90 The k-Station Network/k-Disk Coverage Problem

fully or partially C. Thus the number of active cells #cc cannot be bigger than the
volume of such a solution divided by the volume of a grid cell. To ensure that also the
partially covered cells are taken into account we increase the radii by an additional term√

d · δ. Thus consider SOPT given by by k balls (Ci)i∈{1,...,k} with radii (ri)i∈{1,...,k}.
Then

#cc ≤
k∑

i=1

2d ·
(

ri +
√

d · δ
)d

δd
= (2

√
d)d ·

k∑

i=1

(

1 +
ri

δ′

)d

(∗)
≤ (2

√
d)d ·

k∑

i=1

(

1 +
(k · λ)1/α

ǫ
·
(

cost(SOPT)

cost(Sλ)

)1/α
)d

≤ (2
√

d)d · k ·
(

1 +
(k · λ)1/α

ǫ

)d

where inequality (∗) follows from the fact that ri ≤ cost(SOPT)1/α. Let us now make
a case distinction for the possible values of ǫ:

• ǫ ∈ o
(
(k · λ)1/α

)

⇒ #cc ∈ O

(

k
d
α

+1 · λd/α

ǫd

)

• ǫ ∈ Ω
(
(k · λ)1/α

)

⇒ #cc ∈ O (k)

We now prove statement 2.2. Since α = d we have for ǫ ∈ o(λ1/d):

#cc ≤ (2
√

d)d ·
k∑

i=1

(

1 +
ri

δ′

)d

lemma 2.1
≤ (2

√
d)d · k ·

(

1 +
k1/α · λ1/α

k1/α · ǫ ·
(

cost(SOPT)

cost(Sλ)

)1/α
)d

≤ (2
√

d)d · k ·
(

1 +
λ1/d

ǫ

)d

∈ O

(
kλ

ǫd

)

where the second inequality follows from the fact that the first expression is maximized

if ri =
(

cost(SOPT)
k

)1/α
for i = 1..k (see Lemma 2.1). ¤

Note that because any (1+ω)α-approximation algorithm yields a (1+ǫ)-approximation
algorithm by setting ǫ := ω

cα (we assume that ω ≤ c, see Lemma 2.2), doing so increases
our coreset by an another constant factor of (c · α)d, i.e. the size of R does not change
asymptotically. Assuming that ǫ ∈ O(1) is reasonable for an approximation scheme.

The k-Station Network/k-Disk Coverage Problem 91

2.3.4 Algorithms

Still we have to show how to approximate cost(SOPT) for the construction of the
grid. In [TD88] Feder et al. show how to compute deterministically a 2-approximate
solution for the so-called k-center problem in O(n log k) time. Furthermore Har-Peled
shows in [HP04] how to obtain such an approximation in O(n) expected time for k =
O(n1/3/ log n). The k-center problem differs from the k-disk coverage problem just in
the objective function which is given by maxi=1..k rα

i where the discs have radii ri.

Since maxi=1..k rα
i ≥ 1

k · ∑k
i=1 rα

i a 2-approximation for the k-center problem is a 2k-
approximation for the k-disk coverage problem. Using such an approximation the size
of our coreset becomes

O

(

k
2d
α

+1

ǫd

)

Now we will show how to solve the coreset.

Discrete Version

Via Bilo et al.: Note that the discrete version of the k-disc cover problem can be
solved by the approach of Bilo et. al. [BCKK05]. Recall that their algorithm runs

n((α/ǫ)O(d)) time.

Via Exhaustive Search: Alternatively we can find an optimal solution in the following
way. We consider all k-subsets of the points in the coreset R as the possible centers of
the balls. Note that at least one point in R has to lie on the boundary of each ball in
an optimal solution (otherwise you could create a better solution by shrinking a ball).
Thus the number of possible radii for each ball is bounded by n− k. For each solution
we have to check feasibility and to determine the cost which can be done in additional
k · n time. Thus we have in total a running time of

(n − k)k ·
(

n

k

)

· n · k ≤ n2k+1

Hence

Corollary 2.1 The running time of our approximation algorithm in the discrete case
is

O



n +

(

k
2d
α

+1

ǫd

)min { 2k+1, (α/ǫ)O(d) }




Non-Discrete Version

Via Exhaustive Search: Note that on each ball D of an optimal solution there must
be at least three points (or two points in diametrical position) that define D - otherwise
it would be possible to obtain a smaller solution by shrinking D. Thus for obtaining
an optimal solution via exhaustive search it is only necessary to check all k-sets of 3-
respectively 2-subsets of R which yields a running time of O(|R|3k+1). Hence

92 The k-Station Network/k-Disk Coverage Problem

Theorem 2.3 A (1+ǫ)-approximate solution of the non-discrete k-disk coverage prob-
lem can be found in

O



n +

(

k
2d
α

+1

ǫd

)3k+1




2.3.5 k-Disk Cover With Few Outliers

Assume we want to cover not all points by disks but we relax this constraint and allow
a few points not to be covered, i.e. we allow c outliers. This way, the optimal cover
might have a considerably lower power consumption/cost.

Figure 2.3: Covering input points by 3 discs while allowing to not cover 3 outliers (red
points).

Conceptually, we think of a k-disk cover with c outliers as a (k + c)-disk cover with
c disks having radius 0. Doing so we can use the same coreset construction as above
replacing k by k + c. Obviously, the cost of an optimal solution to the (k + c)-disk
cover problem is a lower bound for the k-disk cover with c outliers. Hence, the imposed
grid might be finer than actually needed. Thus, snapping each point to its closest
representative still ensures a (1 + ǫ)-approximation. Constructed as above the coreset
has size

O

(

(k + c)
2d
α

+1

ǫd

)

Again, there are two ways to solve this reduced instance, first by a slightly modified
version of the algorithm proposed by Bilo et al. [BCKK05] and second by exhaustive
search.

We will shortly sketch the algorithm by Bilo et al. [BCKK05] which is based on
a hierarchical subdivision scheme proposed by Erlebach et al. in [EJS01]. Each
subdivision is assigned a level and they together form a hierarchy. All possible balls
are also assigned levels depending on their size. Each ball of a specific level has about
the size of an ǫ-fraction of the size of the cells of the subdivision of same level. Now,
a cell in the subdivision of a fixed level is called relevant if at least one input point
is covered by one ball of the same level. If a relevant cell Z ′ is included in a relevant

The k-Hop Multicast Problem 93

cell Z and no larger cell Z“ exists that would satisfy Z ′ ⊆ Z“ ⊆ Z, then Z ′ is called
a child cell of Z and Z is called the parent of Z ′. This naturally defines a tree. It
can be shown that a relevant cell has at most a constant number of child cells (the
constant only depending on ǫ, α and d). The key ingredient for the algorithm to run in
polynomial time is the fact that there exists a nearly optimal solution where a relevant
cell can be covered by only a constant number of balls of larger radius. The algorithm
then processes all relevant cells of the hierarchical subdivision in a bottom-up way
using dynamic programming. A table is constructed that for a given cell Z, a given
configuration P of balls having higher level than Z (i.e. large balls) and an integer
i ≤ k stores the balls of level at most the level of Z (i.e. small balls) such that all input
points in Z are covered and the total number of balls is at most i. This is done for a
cell Z by looking up the entries of the child cells and iterating over all possible ways to
distribute the i balls among them.

The k-disk cover problem with c outliers exhibits the same structural properties as
the k-disk cover problem without outliers. Especially, the local optimality of the global
optimal solution is preserved. Hence, we can adapt the dynamic programming approach
of the original algorithm. In order for the algorithm to cope with c outliers we store not
only one table for each cell but c+1 such tables. Each such table corresponds to the table
for a cell Z where 0, 1, . . . , c points are not covered. Now, we do not only iterate over all
possible ways to distribute the i balls among its child cells but also all ways to distribute
l ≤ c outliers. This increases the running time to n((α/ǫ)O(d)) · c((α/ǫ)O(d)) = n((α/ǫ)O(d)).
Hence running the algorithm on the coreset yields the following result:

Corollary 2.2 We can compute a minimum k-disk cover with c outliers (1 + ǫ) ap-
proximately in time

O



n +

(

(k + c)
2d
α

+1

ǫd

)(α/ǫ)O(d)


 .

For the exhaustive search approach we consider all assignments of k disks each having
a representative as its center and one lying on its boundary. For each such assignment
we check in time O(kn) whether the number of uncovered points is at most c. We
output the solution with minimal cost.

Corollary 2.3 We can compute a minimum k-disk cover with c outliers (1 + ǫ) ap-
proximately in time

O



n + k

(

(k + c)
2d
α

+1

ǫd

)2k+1


 .

2.4 The k-Hop Multicast Problem

The problem discussed in this section is a constrained broadcast problem in which one
wants to determine an energy efficient way to quickly (i.e. within few transmissions)
disseminate a message to a small set of receivers in a wireless network:

Definition 2.5 (k-hop multicast problem) Given a set S of points (stations) in
Rd, a distinguished source point s ∈ S (sender), and a set C ⊂ S of client points

94 The k-Hop Multicast Problem

(receivers) we want to find a minimal cost range assignment r for S such that the
resulting communication graph contains a tree rooted at s spanning all elements in C
and with depth at most k.

s

Figure 2.4: The communication graph contains a spanning tree such that messages can
be sent from node s to the points in C (red points) within 4 hops.

2.4.1 Our Contribution

As in the previous Section we will solve this problem by first deriving a coreset R of size
independent of |S| =: n and then invoking an exhaustive search algorithm. We assume

both k and |C| =: c to be constants. The resulting coreset will have size of O
(

(kc)2

ǫ2

)

,

that is a size polynomial in 1/ǫ, c and k. For few receivers this is a considerable

improvement over the exponential-sized coreset of size O
((

1
ǫ

)4k
)

that was used in

[FL07] for the k-hop broadcast.

2.4.2 Related Work

The general broadcast problem – assigning powers to stations such that the resulting
communication graph contains a directed spanning tree and the total amount of energy
used is minimized - has a long history. The problem is known to be NP-hard for α > 1
([CCP+01, CHP+02]), and for arbitrary, non-metric distance functions the problem
can also not be approximated better than a log-factor unless P = NP [GK99]. Note
that for α ≤ 1 an optimal solution is always given by a single hop. For the Euclidean
setting in the plane, it is known ([Amb05]) that the minimum spanning tree induces
a range assignment for broadcast which is at most 6 times as costly as the optimal
solution. This bound for a MST-based solution is tight ([CCP+01], [WCLF01]). There
has also been work on restricted broadcast operations more in the spirit of the k-hop
multicast problem that we consider in this section. In [ACI+04] the authors examine
a bounded-hop broadcast operation where the resulting communication graph has to
contain a spanning tree rooted at the source node s of depth at most k. They show
how to compute an optimal k-hop broadcast range assignment for k = 2 in time O(n7).

The k-Hop Multicast Problem 95

For k > 2 they show how to obtain a (1 + ǫ)-approximation in time O(nO(µ)) where

µ = (k2/ǫ)2
k
, that is, their running time is triply exponential in the number of hops

k which shows up in the exponent of n. In recent work [FL07], Funke and Laue show
how to obtain a (1 + ǫ) approximation for the k-hop broadcast problem in time doubly
exponential in k based on a coreset which has size exponential in k, though.

2.4.3 Preliminaries

As stated above we will use again the concept of a coreset. The k-hop multicast problem
differs from the k-disk coverage problem that we have discussed in the previous section
in two important ways: first the multicast problem is not monotone, that is removing
a point from the input set can decrease or increase the objective value and second the
coreset to be constructed will not be a subset of the input set. This makes it necessary
to use the idea of coresets more carefully. We will now provide a definition of a γ-coreset
in the setting of the k-hop multicast problem and we will then show how the existence
of such a coreset leads to the existence of an approximation algorithm.

Definition 2.6 (γ-coreset) Let S be a set of n points. Consider another set R of
points (not necessarily a subset of S). R is called a γ-coreset for (S, s) if

• for any valid range assignment r : S → R≥0 there exists a valid range assignment
r′ : R → R≥0 such that cost(r′) ≤ γ · cost(r)

• for any valid range assignment r′ : R → R≥0 there exists a valid range assignment
r : S → R≥0 such that cost(r) ≤ γ · cost(r′)

Theorem 2.4 Given a γ-coreset R for a S. Then any λ-approximate solution for R
admits a λ · γ2-approximate solution for S.

Proof: Let SOPT be an optimal range assignment for S, let ROPT be an optimal range
assignment for R and let Rλ be a λ-approximate solution for R. Since R is a γ-coreset we
have that for Rλ there exists a solution SR feasible for S with cost(SR) ≤ γ·cost(Rλ) and
for SOPT there exists a solution RS feasible for R such that cost(RS) ≤ γ · cost(SOPT).
Thus

cost(SR) ≤ γ · cost(Rλ)
(∗)
≤ λ · γ · cost(RS)

≤ λ · γ2 · cost(SOPT)

where inequality (∗) holds because RS is feasible for R. ¤

2.4.4 A Small Coreset For k-hop Multicast

We will now construct a (1+ǫ)-coreset for the k-hop multicast problem. In the following
we will discuss the planar case in R2, the approach extends in the obvious way to higher
dimensions. Assume without loss of generality that the maximal distance of a point
p ∈ S from s is exactly 1. We place a regular grid of cell width δ = 1√

2
ǫ

kc1/α on S. The

number of cells in this grid is O(k2c2/α

ǫ2
). Now we assign each point in P to its closest

grid point. Let R be the set of grid points that had at least one point from S snapped

96 The k-Hop Multicast Problem

to it and let C ′ be the set of grid points that have at least one point from C snapped
to it.

It remains to show that R is indeed a coreset. We can transform any given valid range
assignment r for S (with respect to the receiver set C) into a valid range assignment r′

for R (with respect to the set of receivers C ′). We define the range assignment r′ for S
as

r′(p′) = max
p was snapped to p′

r(p) +
√

2δ.

Since each point p is at most 1√
2
δ away from its closest grid point p′ we certainly have

a valid range assignment for R. It is easy to see that the cost of r′ for R is not much
larger than the cost of r for S. We have:

∑

p′∈R

(r′(p′))α =
∑

p∈S

(max
p was snapped to p′

r(p) +
√

2δ)α

≤
∑

p∈S

(max
p was snapped to p′

r(p) +
ǫ

kc1/α
)α

≤
∑

p∈S

(r(p) +
ǫ

kc1/α
)α.

The relative error satisfies

cost(r′)
cost(r)

=

∑

p∈S(r(p) + ǫ
kc1/α)α

∑

p∈S(r(p))α

Let us define χ :=
∑

p∈S(r(p))α. Lemma 2.1 states that the above expression is maxi-

mized if for all p, q ∈ S: rp = rq = (χ
l)

1/α where l = |{rp | p ∈ S, rp > 0|. Thus

cost(r′)
cost(r)

≤
l · ((χ

l)
1/α + ǫ

kc1/α)α

l · (χ
l)

= (1 +
ǫ · l1/α

kc1/α · χ1/α
)α

(∗)
≤ (1 +

ǫ · (kc)1/α

kc1/α · (k · (1
k)α)1/α

)α = (1 + ǫ)α

Where inequality (∗) follows from the following two observations: First l ≤ kc because
each of the c receivers must be reached in at most k hops. Second k · (1/k)α is a lower
bound for χ. For this to be seen consider any receiver cr in C. We are allowed to
use k − 1 intermediate stations for a message to be delivered from s to cr. In a cost
minimal situation these stations lie on the line segment s, cr because the cost function
satisfies the triangle inequality. Furthermore Lemma 2.1 implies that the stations are
distributed at equal distances on s, cr. Thus each of the k sending station contributes
(1/k)α to the cost.

On the other hand we can transform any given valid range assignment r′ for R into
a valid range assignment r for S as follows. We select for each grid point g ∈ R one
representative gS from S that was snapped to it. For the grid point to which the source
s was snapped we select s as the representative. If we define the range assignment r for
S as r(gS) = r′(g)+

√
2δ and r(p) = 0 if p does not belong to the chosen representatives,

then r is a valid range assignment for S because every point is moved by at most δ/
√

2.
Using the same reasoning as above we can show that cost(r) ≤ (1 + ǫ)α cost(r′). In
summary we obtain the following theorem:

The k-Set Broadcast Problem 97

Theorem 2.5 For the k-hop multicast problem with c receivers there exists a coreset

of size O
(

k2c2/α

ǫ2

)

.

2.4.5 Solution Via a Naive Algorithm

As we are not aware of any algorithm to solve the k-hop multicast problem we employ
an exhaustive search strategy, which we can afford since after the coreset computation
we are left with a constant problem size. Essentially we consider every kc-subset of R
as potential set of senders and try out the |R| potential ranges for each of the senders.

Hence, naively there are at most

(
k2c2/α

ǫ2

kc

)

·
(

k2c2/α

ǫ2

)kc
different range assignments

to consider at all. We enumerate all these assignments and for each of them check
whether the range assignment is valid with respect to c′; this can be done in time |R|.
Of all the valid range assignments we return the one of minimal cost. We obtain the
following corollary:

Corollary 2.4 A (1 + ǫ)-approximate solution to the k-hop multicast problem on n
points in the plane can be computed in time

O



n +

(

kc1/α

ǫ

)4kc




But we still can do better. Since we are only interested in a (1 + ǫ)-approximate
solution we do not have to solve the coreset instance exactly. Instead of enumerating
all possible ranges for all kc-subsets of R we only consider the ranges ((1 + ǫ)µ · δ)µ∈N.
Recall that the smallest range that we have to consider is not smaller than the grid
cell width and not bigger than 2 because of the scaling step in the beginning. Thus

there are only O(log1+ǫ
kc1/α

ǫ) ranges that have to be considered. Note that any optimal
solution considering only this set of ranges is at most by a factor of (1 + ǫ) bigger than
an optimal solution considering all possible ranges. This leads to

Corollary 2.5 A (1 + ǫ)-approximate solution to the k-hop multicast problem on n
points in the plane can be computed in time

O



n +

(

(kc1/α)2 log kc1/α

ǫ

ǫ3

)kc




2.5 The k-Set Broadcast Problem

As mentioned in the previous section, broadcasting a message from a given source node
to all other nodes is a fundamental task during the operation of a wireless network.
During a broadcast operation using intermediate nodes to relay messages within the
network might decrease the overall energy consumption since the cost of transmitting
a message grows super-linearly with the distance. On the other hand using too many
intermediate nodes during a broadcast operation increases both latency as well as the
chances that some transmission could not properly received (e.g. due to interference).

98 The k-Set Broadcast Problem

Recall that if the points are located in the Euclidean plane, the minimum spanning
tree (MST) of the point set induces a transmission range assignment which has cost at
most a factor of 6 above the optimal solution [Amb05]. On the other hand, there are
point sets where the MST-based solution is a factor 6 worse than the optimal solution,
so the bound of 6 is tight [WCLF01].

One problem that is particularly prominent for the MST–based solution is the fact
that in the resulting transmission range assignment a very large fraction of the network
nodes are transmitting (i.e. have non-zero transmission range). In the MST-based range
assignment, at least n/6 nodes are actually senders during the broadcast operation
(since the degree of the minimum spanning tree of a set of points in the Euclidean
plane is bounded by 6). This raises several critical issues:

• The more network nodes are transmitting in the process of one broadcast opera-
tion, the more likely it is that some nodes in the network experience interference
due to several nearby nodes transmitting at the same time (unless special pre-
cautions are taken that interference does not occur).

• Every retransmission of a message implies a certain delay which is necessary
to set up the transmission unit etc; that is, the more senders are involved in the
broadcast operation, the higher the latency becomes. This effect is even amplified
by the previous problem if due to interference messages have to be resent.

• Network nodes are not 100% reliable; if for example the probability for a network
node to operate properly is 99.9%, the probability for a network broadcast to fail,
i.e. not all nodes receiving the message, is 1 − 0.999(n/6), which is around 40%
for a network of n = 3000 nodes!

This suggests to look for broadcast operations in the network that use only very
few sending nodes. Of course, this comes at the cost of an increased total power
consumption, but the behavior with respect to these critical issues can be drastically
improved. Formally we consider in this section the following problem:

Definition 2.7 (k-set broadcast problem) Let S be a set of n points in the d-
dimensional Euclidean space. Given a k ∈ N and a specific source node s ∈ S, find a
range assignment r for S with ICGr = (S, E) of minimal cost such that

• ICGr contains a directed tree rooted at s

• |{ p ∈ S | r(p) > 0 }| ≤ k

2.5.1 Our Contribution

As just mentioned we consider another constrained broadcast operation, where a source
node wants to send a message to all other nodes in the network but at most k nodes
are allowed to participate actively, that is transmit the message. Allowing only a small
number k of sending nodes during the broadcast operation has several advantages:

• The k transmissions can be easily scheduled in k different time slots, hence avoid-
ing any interference at all.

The k-Set Broadcast Problem 99

s

Figure 2.5: The communication graph contains a spanning tree such that messages can
be sent from node s to all other nodes, but only 4 nodes (red points) are
allowed to send.

• The latency is obviously bounded by O(k).

• In the above scenario the probability of a broadcast operation to fail is 1−0.999k,
which e.g. for k = 10 is 1%.

For the case of network nodes embedded in the Euclidean plane we provide a (1 + ǫ)-
approximation algorithm which runs in time linear in n and polynomial in 1/ǫ but with
an exponential dependence on k. As an alternative we therefore also provide an O(1)-
approximation whose running time is linear in n and polynomial in k. The existence of
a (1 + ǫ)-approximation algorithm is in stark contrast to the unconstrained broadcast
problem where even in the Euclidean plane no algorithm with approximation factor
better than 6 is known so far.

2.5.2 Related Work

As stated before, the unconstrained energy minimal broadcast problem is known to
be NP-hard for α > 1 ([CCP+01, CHP+02]). For arbitrary, non-metric distance
functions the problem can also not be approximated better than a log-factor unless
P = NP [GK99]. For the Euclidean setting in the plane, [CCP+01] and [WCLF01]
have shown a lower bound of 6 for the approximation ratio of the MST-based solution.
In a sequence of papers the upper bound for this solution was lowered in several steps
(e.g. [CCP+01, WCLF01, FNKP04]) to finally match its lower bound of 6 (Ambühl,
[Amb05]). While all these papers focused on analytical worst-case bounds for the
algorithm performance, simulation studies e.g. in [CHR+03] show that the actual per-
formance in ”real-world” networks is much better. There has also been work on more

100 The k-Set Broadcast Problem

restricted broadcast operations in the spirit of k-SEMBC. In [ACI+04] the authors con-
sider a bounded-hop broadcast operation where the resulting communication graph has
to contain a spanning tree rooted at the source node s of depth at most h. They show
how to compute an optimal h-hop broadcast range assignment for h = 2 in time O(n7).
For h > 2 they show how to obtain a (1 + ǫ)-approximation in time O(nO(µ)) where

µ = (h2/ǫ)2
h
, that is, their running time is triply exponential in the number of hops h

and this shows up in the exponent of n. In [FL07] Funke and Laue show how to obtain
a (1 + ǫ) approximation for the h-hop broadcast problem in time doubly exponential
in h. Their approach is also based on a coreset of the network, but in contrast to this
work they require a coreset S that has size exponential in h. We note that bounded-
hop broadcasts address the issue of latency since a message will arrive at any network
node after at most h intermediate stations, still the reliability and interference prob-
lems remain as potentially very many network nodes might actively participate in the
broadcast. General surveys of algorithmic range assignment problems can be found in
[CHP+02, WNE00, KKKP00]. Closely related in particular to the O(1)-approximation
algorithm that we will present is the work by Bilò et al. [BCKK05]. They consider the
problem of covering a set of n points in the plane using at most k disks such that the
sum of the areas of the disks is minimized. They provide a (1+ǫ)-approximation to this
problem in time O(nα2/ǫ2). They do not address the problem of enforcing connectivity
which is part of the k-SEMBC problem.

2.5.3 Preliminaries

As mentioned above, the unconstrained broadcast problem is known to be NP-hard
and for non-metric distance functions even not well approximable ([CCP+01, GK99].
Since the unconstrained broadcast problem is a special case of the k-set broadcast
problem with k = n these hardness results carry over to the k-set broadcast problem,
if k is not treated as a constant. If k is regarded a constant, the problem can be solved
in polynomial time as we will see in the following.

2.5.4 Algorithms

A Naive, Brute-Force Algorithm

The k-set broadcast problem can be solved in a brute force manner. Essentially, one
can try out all

(
n

k−1

)
different subsets for the k−1 active senders apart from the source

s. For each of those (and the source node s), one then assigns all possible n− 1 ranges.
In total we have then O(nk−1(n−1)k) = O(n2k) potential power assignments. For each
of those we can check in O(n2) time whether it is a valid k-set broadcast.

That is, overall we have the following corollary:

Corollary 2.6 For n points we can compute the optimal k-set broadcast in time
O(n2k+2)

For most practical applications, we expect k to be a small constant, but unfortunately
not small enough that this naive algorithm can be applied to networks of not too
small size (e.g. several thousand nodes). Thus, in the following section we aim for
approximate solutions to the k-set broadcast problem. This allows for more efficient
algorithms as we will see.

The k-Set Broadcast Problem 101

Small Coreset of the Network Topology

We will now show that we can find a small coreset to the original problem. We assume
that the maximum distance from the source node s to another node is 1.

Lemma 2.3 For any k-SEMBC instance there exists a (1+ǫ)α-coreset of size O
(

k2

ǫ2

)

.

Proof: We place a grid of grid width δ = 1√
2

ǫ
k on the plane. Notice, that the grid has

to cover an area of radius 1 around the source only because the furthest distance from
node s to any other node is 1. Hence its size is O(k2

ǫ2
). Now we assign each point in

S to its closest grid point. Let R be the set of grid points that had at least one point
from S snapped to it.

It remains to show that R is indeed a (1 + ǫ)α-coreset. We can transform any given
valid range assignment r for S into a valid range assignment r′ for R. We define the
range assignment r′ for R as

r′(p′) = max
p was snapped to p′

r(p) +
√

2δ.

Since each point p is at most 1√
2
δ away from its closest grid point p′ we certainly have

a valid range assignment for R. It is easy to see that the cost of r′ for R is not much
larger than the cost of r for S. We have:

∑

p′∈R

(r′(p′))α =
∑

p′∈R

(max
p was snapped to p′

r(p) +
√

2δ)α

≤
∑

p′∈R

(max
p was snapped to p′

r(p) +
ǫ

k
)α

≤
∑

p∈S

(r(p) +
ǫ

k
)α.

The relative error satisfies

cost(r′)
cost(r)

≤
∑

p∈S(r(p) + ǫ
k)α

∑

p∈S(r(p))α
.

Notice, that
∑

p∈S r(p) ≥ 1 and r is positive for at most k points p. Hence, the above

expression is maximized when r(p) = 1
k for all points p that are assigned a positive

value (see Lemma 2.1). Thus

cost(r′)
cost(r)

≤ k · (1
k + ǫ

k)α

k · (1
k)α

= (1 + ǫ)α.

On the other hand we can transform any given valid range assignment r′ for R into
a valid range assignment r for D as follows. We select for each grid point g ∈ R
one representative gS from S that was snapped to it. For the grid point to which
s (the source) was snapped we select s as the representative. If we define the range
assignment r for S as r(gS) = r′(g) +

√
2δ and r(p) = 0 if p does not belong to the

chosen representatives, then r is a valid range assignment for S because every point
is moved by the snapping by at most δ/

√
2. Using the same reasoning as above we

102 The k-Set Broadcast Problem

can show that cost(r) ≤ (1 + ǫ)α cost(r′). Hence, we have shown that R is indeed a
(1 + ǫ)α-coreset. ¤

Once we have solved the k-SEMBC problem for the (1 + ǫ)α-coreset R we can easily
transform the obtained solution to a (1 + ǫ)2α-approximate solution to the original
problem. Let us now concentrate on solving the k-SEMBC problem for the coreset R.
Since we were able to reduce the problem size to a constant independent of n, we can
employ a brute-force strategy to compute an optimal solution for the reduced problem
(R, s).

When looking for an optimal solution for R, it is obvious that for each node only |R|
different ranges have to be considered. Hence, naively there are at most

(
k2

ǫ2

k

)

·
(

k2

ǫ2

)k

different range assignments to consider at all. We enumerate all these assignments and
for each of them we check whether the range assignment is valid; this can be done in
time |R|. Of all the valid range assignments we return the one of minimal cost.

We obtain the following theorem:

Theorem 2.6 A (1 + ǫ)2α-approximate solution to the k-SEMBC problem on n points

in the plane can be computed in time O
(

n +
(

k
ǫ

)4k
)

.

A simple observation allows us to improve the running time slightly. Since eventually
we are only interested in an approximate solution to the problem, we are also happy with
only approximating the optimum solution for the coreset R. Such an approximation for
R can be found more efficiently by not considering all possible at most |R| ranges for
each grid point. Instead we consider as admissible ranges only 0 and ǫ

k ·(1+ǫ)i for i ≥ 0.

That is, the number of different ranges a node can attain is at most 1+log1+ǫ
k
ǫ ≤ 2

ǫ ·log k
ǫ

for ǫ ≤ 1. This comes at a cost of a (1 + ǫ) factor by which each individual assigned
range might exceed the optimum. The running time of the algorithm improves, though,
which leads to our main result in this section:

Theorem 2.7 A (1 + ǫ)3α-approximate solution to the k-SEMBC problem on n points

in the plane can be computed in time O

(

n +

(
k2 log k

ǫ
ǫ3

)k
)

.

Following Lemma 2.2 a (1 + ψ)-approximate solution can be obtained by choosing
ǫ = θ(ψ/α).

Faster O(1)-Approximations

We now show how to compute a constant approximation for the k-set broadcast prob-
lem. The idea is to first cluster the points into k clusters. Then we ensure connectivity
of these point sets by increasing their cluster sizes. As clustering we define the k-disk
cover problem:

Definition 2.8 (k-disk cover problem (k-DCP)) Given a set S of n points in the
Euclidean plane, find a subset C ⊆ S of cardinality at most k and radii rv ≥ 0 associated
with each element v ∈ C such that

∑

v∈C rα
v is minimized and all points in S are covered

by the disks Dv := {x ∈ R2 | |xv| ≤ rv}.

The k-Set Broadcast Problem 103

Given a k-disk cover D := (C, (rv)v∈C) for S with center points C and radii rv, we
associate with D a range assignment rD on S as follows:

∀v ∈ S : rD(v) :=

{

rv if v ∈ C

0 otherwise

By Di we denote a disk in D. Note that the k-DCP with the additional constraint that
the communication graph G(rD) is connected is exactly the k-set broadcast problem.
Thus, the cost of an optimal solution for an instance I of the k-DCP is a lower bound on
I for the k-set broadcast problem. Unfortunately k-DCP is NP-hard (see [BCKK05])
but it admits a PTAS as shown in [BCKK05] by Bilò et al. A direct consequence of
their results is:

Corollary 2.7 There exists an algorithm for the k-DCP that can compute a (1 + ǫ)-

approximate solution in time n(α
ǫ
)d

for a constant d.

By setting ǫ to 1 we obtain a 2-approximation algorithm for the k-DCP that runs
in time nc′α for a constant c′α. Note that their algorithm can easily be modified such
that the source s is the center of one of the disks without changing the approximation
guarantee and without increasing the running time asymptotically.

Our approximation algorithm works as follows: First we compute an approximate
k-disk cover D := (C, (rv)v∈C) over S. Then we determine for the center points in C
an approximate broadcast with range assignment rB by using an MST–based algorithm
(see [Amb05]) that has an approximation guarantee of 6. Now we construct a range
assignment rA for S in the following way:

∀v ∈ S : rA(v) :=

{

max{rv, rB(v)} if v ∈ C

0 otherwise

Note that G(rA) is connected and therefore induces a valid k-set broadcast since only
k stations are sending. We still have to show that we have computed an approximate
solution:

Theorem 2.8 cost(rA) ≤ 36cα · cost(ropt), where ropt is the range assignment of an
optimal k-set broadcast and cα is a constant depending only on α.

Proof: The proof idea is as follows: Assuming knowledge about an optimal range
assignment ropt for the k-set broadcast we transform the range assignment rD into r′D
such that

a) r′D is a valid k-set broadcast

b) the sending nodes in r′D are exactly the center points of D and

c) r′D is a constant factor approximation of ropt.

If we know that such a broadcast r′D exists, we can simply compute an optimal broadcast
rB over the center points of D. Then we know that cost(rB) ≤ cost(r′D) and rB must
also be a constant factor approximation of ropt.

104 The k-Set Broadcast Problem

Di

Bi D
′

iri

r
′

i

c

Figure 2.6: Proof illustration for the constant factor approximation algorithm.

Consider now the communication tree T which is defined as a subtree of G(ropt)

spanning S. The idea of the construction of r′D is to replace the inner nodes of T (i.e.
the sending stations of ropt) by increasing the radii of the disks in C appropriately so
that r′D is a valid range assignment.

We increase the nonzero values of rD in the following way: with each of the inner
nodes Bi of T we associate arbitrarily one disk Di in which Bi is contained. Note that
there must be at least one such disk for each Bi since the disks cover S. We now update
rD in a breath first search manner on T starting from source node s (see Figure 2.6):

Given an inner node Bi of T if all children of Bi in T lie in the associated disk Di

then all of them can be reached from node Ci without increasing ri. The interesting
case is if there are children of Bi that are not contained in Di but contained in a disk
D′

i whose center is not covered so far. Assume that there is exactly one such child c.
We then set the radius of Di to ri + r′i + ropt(Bi). If there is more than one such child,
let c be the one that maximizes r′i so that each child of Bi and the centers of the disks
in which the children of Bi are contained in can be reached by Di. Note that it can
happen that two different inner nodes Bi and Bj are associated with the same disk Dk,
so that Dk is updated more than once in the process. In such a case we update Dk

only if rk is increasing. Now let us assume that for a disk Di the last update involved
disk D′

i then we call disk D′
i the target disk of Di.

By induction G(rD) is connected after these updates. furthermore note that the
sending stations are still exactly the center points of D. Let D∗ ⊆ D be the set of disks
that are updated and let Bi be the node in T in the update step for disk Di ∈ D∗.
Summing over all disks, the total cost of the broadcast is therefore bounded by:

∑

Di∈D\D∗

rα
i

︸ ︷︷ ︸

≤cost(D)≤2 cost(ropt)

+
∑

Di∈D∗

(ri + r′i + ropt(Bi))
α

︸ ︷︷ ︸

(∗∗)

Before we bound the second term, note that a disk appears as a target disk only once
in the process of updating the disk radii since once its center point is covered it is never

TSP Under Squared Euclidean Distance 105

considered as a target disk again. Thus each r′i in the above sum can also appear only
once. Thus,

(∗∗) ≤ cα

[∑

Di∈D∗

rα
i +

∑

Di∈D∗

r′i
α

+
∑

Di∈D∗

ropt(Bi)
α
]

≤ cα

[
2

∑

Di∈D

rα
i

︸ ︷︷ ︸

≤4 cost(ropt)

+
∑

Di∈D

ropt(Bi)
α

︸ ︷︷ ︸

=cost(ropt)

]

≤ 5 · cα · cost(ropt)

where the constant cα can be bounded by 3α−1. Thus there exists a broadcast over the
center points C with total cost upper bounded by

2 cost(ropt) + 5 · cα · cost(ropt)

≤ 6 · cα · cost(ropt)

Since we use a 6-approximate broadcast, the algorithm has an approximation ratio of
36cα. ¤

Theorem 2.9 There exists a constant factor approximation algorithm for the k-set
broadcast problem over n points in the Euclidean plane that runs in O(nc′α).

The theorem can be further improved by using the results of the previous section. By
setting ǫ to 1 we obtain a coreset of size k2. Using Theorem 2.9 we obtain directly a
constant factor approximation algorithm whose running time is only linear in n and
polynomial in k:

Theorem 2.10 There exists a constant factor approximation algorithm for the k-set
broadcast problem over n points in the Euclidean plane that runs in time linear in n
and polynomial in k, i.e. in O(n + k2·c′α).

2.6 TSP Under Squared Euclidean Distance

In this section we consider the problem of finding energy-optimal TSP tours. The
challenge here is that the edge weights induced by the energy costs do not define a
metric anymore; a simple example shows that an optimal solution to the Euclidean TSP
can be a factor Ω(n) off the optimum solution. We present an O(1)-approximation for
the TSP problem with powers α of the Euclidean distance as edge weights. For small α
we improve upon previous work by Andreae [And01] and Bender and Chekuri [BC00].

Definition 2.9 (TSP under squared Euclidean distance) Given a set S of n sta-
tions, determine a permutation p0, p1, . . . pn−1 of the nodes such that

n−1∑

i=0

|pip(i+1) mod n|α

is minimized.

106 TSP Under Squared Euclidean Distance

2.6.1 Our Contribution

We present a constant factor approximation algorithm that improves the result of
Andrea [And01] and Bender and Chekuri [BC00] for small α, i.e. for 2 ≤ α ≤ 2.7.

2.6.2 Related Work

The classical travelling salesperson problem is NP-complete for arbitrary, non-metric
distance functions (see [OM]). However, if the metric satisfies the relaxed triangle
inequality dist(x, y) ≤ τ(dist(x, z) + dist(z, y)) for τ ≥ 1 and every triple of points x, y
and z as in our case, then a 4τ approximation exists [BC00].

2.6.3 Why Euclidean TSP Does Not Work

Figure 2.7: An optimal energy-minimal tour for points on a line

Simply computing an optimal tour for the underlying Euclidean instance does not
work. The cost for such a tour can be a factor Ω(n) off from the optimal solution
for the energy-minimal tour. Consider the example where n points lie on a slightly
bent line and each point having distance 1 to its right and left neighbor. An optimal
Euclidean tour would visit the points in their linear order and the go back to the first
point. Omitting the fact that the line is slightly bent this tour would have a cost of
(n − 1) · 12 + (n − 1)2 = n(n − 1) if the edge weights are squared Euclidean distances.
However, an optimal energy-minimal tour would have a cost of (n − 2) · 22 + 2 · 12 =
4(n− 1) + 2. This tour would first visit every second point on the line and on the way
back all remaining points as in Figure 2.7.

r

r1 r2 rk

p1 p2 pk

T1 T2 Tk

. . .

Figure 2.8: Tree T and its child trees T1, T2, . . . , Tk

TSP Under Squared Euclidean Distance 107

2.6.4 A 6-Approximation Algorithm

In this section we will describe an algorithm which computes a 6-approximation for the
TSP under squared Euclidean distance. Obviously, the cost of a minimum spanning
tree is a lower bound for the optimal value OPT of the tour. Consider a non-trivial
minimum spanning tree T for a graph with node set V and squared Euclidean edge
weights. We denote the cost of such a tree by MST(T). Let r be the root of T and p
be one child of T .

We define two Hamiltonian paths πa(T) and πb(T) as follows. Let πa(T) be a path
starting at r, finishing at p that visits all nodes of T and the cost of this path is at most
6MST(T) − 3‖rp‖2. Let πb(T) be defined in the same way but in opposite direction,
i.e. it starts at p and finishes at r.

Now, if we have such a tour πa(T) for the original vertex set V we can construct
a Hamilton tour by connecting r with p. The cost of this tour is clearly at most
6MST(T)−3‖rp‖2 +‖rp‖2 ≤ 6MST(T) ≤ 6 OPT. It remains to show how to construct
such tours πa and πb. We will do this recursively.

For a tree T of height 1, i.e. a single node r, πa(T) and πb(T) both consist of just
the single node. Conceptually, we identify p with r in this case. Obviously, the cost of
both paths is trivially at most 6MST(T) − 3‖rp‖2.

Now, let T be of height larger than 1 and let T1, . . . , Tk be its children trees. Let r
denote the root of T and ri the root of Ti and pi be a child of Ti as in figure 2.8. Then
we set πa(T) = (r, πb(T1), π

b(T2), . . . , π
b(Tk)).

The cost of the path πa(T) satisfies

cost(πa(T)) = ‖rp1‖2 + cost(πb(T1)) + ‖r1p2‖2 + cost(πb(T2)) +

. . . + ‖rk−1pk‖2 + cost(πb(Tk))

≤ (‖rr1‖ + ‖r1p1‖)2 + cost(πb(T1))

+(‖r1r‖ + ‖rr2‖ + ‖r2p2‖)2 + cost(πb(T2))

...

+(‖rk−1r‖ + ‖rrk‖ + ‖rkpk‖)2 + cost(πb(Tk))

≤ 2‖rr1‖2 + 2‖r1p1‖2 + cost(πb(T1))

+3‖r1r‖2 + 3‖rr2‖2 + 3‖r2p2‖2 + cost(πb(T2))

...

+3‖rk−1r‖2 + 3‖rrk‖2 + 3‖rkpk‖2 + cost(πb(Tk))

Therefore

cost(πa(T)) ≤ 6
k∑

i=1

‖rri‖2 + 3
k∑

i=1

‖ripi‖2 +
k∑

i=1

cost(πb(Ti)) − 3‖rrk‖2

≤ 6
k∑

i=1

‖rri‖2 + 6
k∑

i=1

MST(Ti) − 3‖rrk‖2

= 6MST(T) − 3‖rrk‖2.

108 Conclusion

In the above calculation we used the fact that (
∑n

i=1 ai)
α ≤ nα−1 · ∑n

i=1 aα
i for ai ≥ 0

and α ≥ 1. This follows directly from Jensen’s inequality and the fact that the function
f : x 7→ xα is convex. The path πb(T) is constructed analogously.

In fact, the very same construction and reasoning can be generalized to the following
corollary.

Corollary 2.8 There exists a 2 ·3α−1-approximation algorithm for the TSP if the edge
weights are Euclidean edge weights to the power α.

The metric with Euclidean edge weights to the power α satisfies the relaxed triangle
inequality with τ = 2α−1. A short computation shows that our algorithm improves
previous algorithms [BC00, And01] for small α, i.e. for 2 ≤ α ≤ 2.7.

2.7 Conclusion

We have shown how to solve a variety of problems occurring in the design of wireless
networks. Additionaly we have proposed new network design models like networks
in which broadcast operations can be performed but in which only a few senders are
actually sending. It is our believe that such a design can be of great benefit for the
efficiency of wireless networks. The most important research direction to follow in the
near future is to design simple and distributed algorithms for some of the problems
like the k-SEMBC problem. One possible idea could be to construct distributedly a
low-weight k-disk-cover of the network and then connect the components in some way
such that the overall cost does not increase too much – very much in the spirit of
our O(1)-approximation algorithm. One major drawback of the (1 + ǫ)-approximation
algorithms presented is that it still requires time exponential in the number of senders
k. It is unclear whether this exponential dependence could be removed.

Bibliography

[AAB+06] Helmut Alt, Esther M. Arkin, Hervé Brönnimann, Jeff Erickson, Sándor P.
Fekete, Christian Knauer, Jonathan Lenchner, Joseph S. B. Mitchell, and
Kim Whittlesey. Minimum-cost coverage of point sets by disks. In Pro-
ceedings of the 22nd ACM Symposium on Computational Geometry (SCG),
Sedona, Arizona, USA, pages 449–458. ACM, 2006.

[ACI+04] Christoph Ambühl, Andrea E. F. Clementi, Miriam Di Ianni, Nissan Lev-
Tov, Angelo Monti, David Peleg, Gianluca Rossi, and Riccardo Silvestri.
Efficient algorithms for low-energy bounded-hop broadcast in ad-hoc wire-
less networks. In Proceedings of the 21st Annual Symposium on Theoret-
ical Aspects of Computer Science (STACS), Montpellier, France, Lecture
Notes in Computer Science, pages 418–427. Springer, 2004.

[Amb05] Christoph Ambühl. An optimal bound for the mst algorithm to compute
energy-efficient broadcast trees in wireless networks. In Automata, Lan-
guages and Programming, 32nd International Colloquium (ICALP), Lis-
bon, Portugal, volume 3580 of Lecture Notes in Computer Science, pages
1139–1150. Springer, 2005.

[AN06] Ernst Althaus and Rouven Naujoks. Computing steiner minimal trees in
hamming metric. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), Miami, USA, pages 172–181.
ACM Press, 2006.

[AN08] Ernst Althaus and Rouven Naujoks. Reconstructing phylogenetic networks
with one recombination. In Experimental Algorithms, 7th International
Workshop (WEA), Provincetown, MA, USA, volume 5038 of Lecture Notes
in Computer Science, pages 275–288. Springer, 2008.

[And01] Thomas Andreae. On the traveling salesman problem restricted to inputs
satisfying a relaxed triangle inequality. In Networks, volume 38, pages
59–67. John Wiley & Sons, 2001.

[BC00] Michael A. Bender and Chandra Chekuri. Performance guarantees for the
TSP with a parameterized triangle inequality. In Information Processing

109

110 Bibliography

Letters, volume 73, pages 17–21. Elsevier Science Publishers B.V. (North
Holland), 2000.

[BCKK05] Vittorio Bilò, Ioannis Caragiannis, Christos Kaklamanis, and Panagiotis
Kanellopoulos. Geometric clustering to minimize the sum of cluster sizes.
In Algorithms, 13th Annual European Symposium (ESA), Palma de Mal-
lorca, Spain, volume 3669, pages 460–471. Springer, 2005.

[CCP+01] Andrea E. F. Clementi, Pierluigi Crescenzi, Paolo Penna, Gianluca Rossi,
and Paola Vocca. On the complexity of computing minimum energy con-
sumption broadcast subgraphs. In Proceedings of the 18th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS), Dresden,
Germany, volume 2010 of Lecture Notes in Computer Science, pages 121–
131. Springer, 2001.

[CGH03] E.R. Chare, E.A. Gould, and E.C. Holmes. Phylogenetic analysis reveals
a low rate of homologous recombination in negative-sense rna viruses. In
Journal of General Virology, volume 84, pages 2691–2703, 2003.

[CHP+02] Andrea E.F. Clementi, Gurvan Huiban, Paolo Penna, Gianluca Rossi, and
Yann C. Verhoeven. Some recent theoretical advances and open questions
on energy consumption in ad-hoc wireless networks. In Proc. 3rd Workshop
on Approximation and Randomization Algorithms in Communication Net-
works (ARACNE), pages 23-38., volume 15 of Proceedings in Informatics.
Carleton Scientific, 2002.

[CHR+03] Andrea E. F. Clementi, Gurvan Huiban, Gianluca Rossi, Yann C. Ver-
hoeven, and Paolo Penna. On the approximation ratio of the mst-based
heuristic for the energy-efficient broadcast problem in static ad-hoc radio
networks. In 17th International Parallel and Distributed Processing Sympo-
sium (IPDPS), Los Alamitos, CA, USA, pages 222–222. IEEE Computer
Society, 2003.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. The MIT Press, 1990.

[EJS01] Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time ap-
proximation schemes for geometric graphs. In Proceedings of the 12th
ACM-SIAM Symposium on Discrete Algorithms (SODA), Washington,
DC, USA, pages 671–679. ACM Press, 2001.

[Fel04] J. Felsenstein. PHYLIP (phylogeny inference package) version 3.6, 2004.

[FG82] L.R. Foulds and R.L. Graham. The Steiner problem in phylogeny is NP-
complete. In Advances in Applied Mathematics, volume 3, pages 43–49,
1982.

[Fit71] Walter M. Fitch. Toward defining the course of evolution: minimum
change for a specified tree topology. In Systematic Zoology, volume 20.
Taylor and Francis, Ltd., 1971.

Bibliography 111

[FL07] Stefan Funke and Sören Laue. Bounded-hop energy-efficient broadcast in
low-dimensional metrics via coresets. In 24th Annual Symposium on Theo-
retical Aspects of Computer Science (STACS), Aachen, Germany, volume
4393 of Lecture Notes in Computer Science, pages 272–283. Springer, 2007.

[FLN07] Stefan Funke, Sören Laue, and Rouven Naujoks. Minimum-energy broad-
cast with few senders. In Distributed Computing in Sensor Systems
(DCOSS), Third IEEE International Conference, Santa Fe, NM, USA,
volume 4549 of Lecture Notes in Computer Science, pages 404–416.
Springer, 2007.

[FLNL08] Stefan Funke, Sören Laue, Rouven Naujoks, and Zvi Lotker. Power assign-
ment problems in wireless communication: Covering points by disks, reach-
ing few receivers quickly, and energy-efficient travelling salesman tours. In
Distributed Computing in Sensor Systems (DCOSS), 4th IEEE Interna-
tional Conference, Santorini Island, Greece, volume 5067 of Lecture Notes
in Computer Science, pages 282–295. Springer, 2008.

[FNKP04] Michele Flammini, Alfredo Navarra, Ralf Klasing, and Stéphane Pérennes.
Improved approximation results for the minimum energy broadcasting
problem. In Proceedings of the DIALM-POMC Joint Workshop on Foun-
dations of Mobile Computing, Philadelphia, PA, USA, pages 85–91. ACM,
2004.

[GEL03] Dan Gusfield, Satish Eddhu, and Charles Langley. Efficient reconstruction
of phylogenetic networks with constrained recombination. In Proceedings
of the IEEE Computer Society Conference on Bioinformatics, pages 363–
374. IEEE Computer Society, 2003.

[GK99] Sudipto Guha and Samir Khuller. Improved methods for approximating
node weighted steiner trees and connected dominating sets. In Information
and Computation, volume 150, pages 57–74, 1999.

[GR00] A. Zelikovsky G. Robins. Improved steiner tree approximation in graphs.
In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), San Francisco, CA, USA, pages 770–779. ACM
Press, 2000.

[Hei93] Jotun Hein. A heuristic method to reconstruct the history of sequences
subject to recombination. J. Mol. Evol., 36, 1993.

[HHPM05] B. R. Holland, K. T. Huber, D. Penny, and V. Moulton. The minmax
squeeze: Guaranteeing a minimal tree for population data. Molecular
Biology and Evolution, 22(2), 2005.

[HK05] Daniel H. Huson and Tobias H. Kloepper. Computing recombination net-
works from binary sequences. Bioinformatics, 21(2):159–165, 2005.

[HP82] M. D. Hendy and D. Penny. Branch and bound algorithms to determine
minimal evolutionary trees. Mathematical Biosciences, 59, 1982.

112 Bibliography

[HP04] Sariel Har-Peled. Clustering motion. In Discrete & Computational Geom-
etry, volume 31, pages 545–565, 2004.

[JNST05] Guohua Jin, Luay Nakhleh, Sagi Snir, and Tamir Tuller. Inferring phy-
logenetic networks by the maximum parsimony criterion: A case study.
Molecular Biology and Evolution, 24(1):324–337, 2005.

[JNST07] Guohua Jin, Luay Nakhleh, Sagi Snir, and Tamir Tuller. Efficient
parsimony-based methods for phylogenetic network reconstruction. Bioin-
formatics, 23(2):123–128, 2007.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Com-
plexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[KG98] John Kececioglu and Dan Gusfield. Reconstructing a history of recom-
binations from a set of sequences. In Discrete Applied Mathematics and
Combinatorial Operations Research and Computer Science (DAMATH),
volume 88, pages 239–260. Elsevier Science Publishers B.V. (North Hol-
land), 1998.

[KKKP00] Lefteris M. Kirousis, Evangelos Kranakis, Danny Krizanc, and Andrzej
Pelc. Power consumption in packet radio networks. In Proceedings of
the 14th Annual Symposium on Theoretical Aspects of Computer Science
(STACS), Lübeck, Germany, volume 243, pages 289–305. Elsevier Science
B.V., 2000.

[KTND07] S. Kumar, K. Tamura, M. Nei, and J. Dudley. Mega4: Molecular evo-
lutionary genetics analysis (MEGA) software version 4.0. In Molecular
Biology and Evolution, volume 24, pages 1596–1599, 2007.

[Meh88] K. Mehlhorn. A faster approximation algorithm for the steiner problem
in graphs. In Information Processing Letters, volume 27, pages 125–128.
North-Holland Publishing Company, 1988.

[MKL06] V. Makarenkov, D. Kevorkov, and P. Legendre. Phylogenetic network re-
construction approaches. In Applied Mycology and Biotechnology - Bioin-
formatics, volume 6 of International Elsevier Series, pages 61–97. Oxford
University Press, 2006.

[ML06] Jochen Maydt and Thomas Lengauer. Recco: recombination analysis using
cost optimization. In Bioinformatics, volume 22, pages 1064–1071. Oxford
University Press, 2006.

[MM06] M.M. Morin and B.M.E. Moret. NetGen: generating phylogenetic net-
works with diploid hybrids. In Bioinformatics, volume 22, pages 1921–
1923, 2006.

[MN99] Kurt Mehlhorn and Stefan Näher. LEDA: A Platform for Combinatorial
and Geometric Computing. Cambridge University Press, 1999.

Bibliography 113

[MS07] Jens Maue and Peter Sanders. Engineering algorithms for approximate
weighted matching. In Experimental Algorithms, 6th International Work-
shop (WEA), Rome, Italy, volume 4525 of Lecture Notes in Computer
Science, pages 242–255. Springer, 2007.

[NJZMC05] Luay Nakhleh, Guohua Jin, Fengmei Zhao, and John Mellor-Crummey.
Reconstructing phylogenetic networks using maximum parsimony. In Pro-
ceedings of the 2005 IEEE Computational Systems Bioinformatics Con-
ference, Stanford, 2005.

[NK00] N. Nei and S. Kumar. Molecular Evolution and Phylogenetics. Oxford
University Press, 2000.

[OM] Pekka Orponen and Heikki Mannila. On approximation preserving reduc-
tions: Complete problems and robust measures. Technical Report, Uni-
versity of Helsinki, 1990.

[PCH02] David Posada, Keith A. Crandall, and Edward C. Holmes. Recombination
in evolutionary genomics. In Annual Review of Genetics, volume 36, pages
75–97, 2002.

[Pol03] Tobias Polzin. Algorithms for the Steiner Problem in Networks. PhD
thesis, Universität des Saarlandes, 2003.

[RG97] Andrew Rambaut and N. C. Grassly. Seq-gen: an application for the
monte carlo simulation of dna sequence evolution along phylogenetic trees.
volume 13, pages 235–238, 1997.

[RG01] Vincent Ranwez and Olivier Gascuel. Quartet based phylogenetic infer-
ence: improvement and limits. In Molecular Biology and Evolution, vol-
ume 18, pages 1103–1116, 2001. http://www.lirmm.fr/ ranwez/.

[RN05] D. Ruths and L. Nakhleh. Recombination and phylogeny: Effects and
detection. In International Journal on Bioinformatics Research and Ap-
plications, volume 1, pages 202–212, 2005.

[Sch86] Schreiber. Zur geschichte des sogenannten steiner-weber-problems. In
Wiss. Zeitschr. Ernst-Moritz-Arndt-Univ. Greifswald, Math.-Nat. Reihe
Bd. 35 Heft 3, 53-58, 1986.

[Ste05] Mike Steel. Should phylogenetic models be trying to ‘fit an elephant’?
Trends in Genetics, 21(6):307–309, 2005.

[Swo03] D. L Swofford. PAUP*. Phylogenetic Analysis Using Parsimony (*and
other methods). Version 4., 2003.

[TD88] T.Feder and D.Greene. Optimal algorithms for approximate clustering. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing
(STOC), Chicago, IL, USA, pages 434–444. ACM Press, 1988.

[Vaz03] Vijay Vazirani. Approximation Algorithms. Springer, 2003.

114 Bibliography

[WCLF01] Peng-Jun Wan, Gruia Calinescu, Xiang-Yang Li, and Ophir Frieder.
Minimum-energy broadcast routing in static ad hoc wireless networks. In
Proceedings of the Twentieth Annual Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM), Los Alamitos, CA,
USA, pages 1162–1171. IEEE Computer Society, 2001.

[WEBa] http://evolution.genetics.washington.edu/phylip/software.html.

[WEBb] http://www.bioinf.manchester.ac.uk/recombination/programs.shtml.

[WEBc] http://evolution.genetics.washington.edu/phylip/software.html#Recombinant.

[WNE00] Jeffrey E. Wieselthier, Gam D. Nguyen, and Anthony Ephremides. On the
construction of energy-efficient broadcast and multicast trees in wireless
networks. In Proceedings of the 2000 IEEE Computer and Communica-
tions Societies Conference on Computer Communications (INFOCOM),
Tel-Aviv, Israel, pages 585–594. IEEE Computer Society, 2000.

[WWZ00] D. M. Warme, P. Winter, and M Zachariasen. Exact algorithms for plane
steiner tree problems: A computational study. In Advances in Steiner
Trees, pages 81–116. Kluwer Academic Publishers, 2000.

[WZZ01] Lusheng Wang, Kaizhong Zhang, and Louxin Zhang. Perfect phyloge-
netic networks with recombination. In Journal of Computational Biology,
volume 8, pages 69–78, 2001.

[Zac99] Zachariasen. Rectilinear full steiner tree generation. In Networks, vol-
ume 33, pages 125–143. John Wiley & Sons, 1999.

http://evolution.genetics.washington.edu/phylip/software.html
http://www.bioinf.manchester.ac.uk/recombination/programs.shtml
http://evolution.genetics.washington.edu/phylip/software.html#Recombinant

	The Steiner Minimum Tree in Hamming Metric Problem
	Our Contribution
	Related Work
	Preliminaries
	Fitch's Algorithm

	Pruning Algorithm
	Pruning Tests
	Edge Replacement Tests
	Topology Replacement Tests
	Preprocessing Techniques
	Implementation Issues
	Cascading Pruning Tests
	Amortized Fitch Range Costs
	Topology Replacement Tests

	Lower Bounds
	Lower Bounds by Minors
	Lower Bounds by Dimension Partitioning
	One-Dimensional Steiner Minimum Trees
	Two-Dimensional Steiner Minimum Trees
	Three-Dimensional Steiner Minimum Trees
	k-Dimensional Steiner Minimum Trees

	Implementation Issues
	Cascading Lower Bounds
	Maximum Weight Matchings
	Computing the Subproblems
	Computing MST Lower Bounds
	Inner Preprocessing

	Experiments
	Running Times
	Lower Bounds
	Preprocessing

	Conclusion
	An Extension to Recombination Networks
	Model
	Related Work
	The Algorithm
	Preliminaries
	Evaluation of a Recombination Network
	Enumeration Process
	Pruning the Search Space
	Recombination Phase

	Experiments
	Fixed Recombination Scenarios
	Results

	Conclusion

	Problems in Wireless Network Design
	Introduction
	Preliminaries
	The k-Station Network/k-Disk Coverage Problem
	Our Contribution
	Related Work
	A Small Coreset For k-Disk Cover
	Algorithms
	Discrete Version
	Non-Discrete Version

	k-Disk Cover With Few Outliers

	The k-Hop Multicast Problem
	Our Contribution
	Related Work
	Preliminaries
	A Small Coreset For k-hop Multicast
	Solution Via a Naive Algorithm

	The k-Set Broadcast Problem
	Our Contribution
	Related Work
	Preliminaries
	Algorithms
	A Naive, Brute-Force Algorithm
	Small Coreset of the Network Topology
	Faster O(1)-Approximations

	TSP Under Squared Euclidean Distance
	Our Contribution
	Related Work
	Why Euclidean TSP Does Not Work
	A 6-Approximation Algorithm

	Conclusion

	Bibliography

